Sensorimotor brain–computer interface performance depends on signal-to-noise ratio but not connectivity of the mu rhythm in a multiverse analysis of longitudinal data
Objective. Serving as a channel for communication with locked-in patients or control of prostheses, sensorimotor brain–computer interfaces (BCIs) decode imaginary movements from the recorded activity of the user’s brain. However, many individuals remain unable to control the BCI, and the underlying...
Saved in:
| Published in | Journal of neural engineering Vol. 21; no. 5; pp. 56027 - 56050 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
IOP Publishing
01.10.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1741-2560 1741-2552 1741-2552 |
| DOI | 10.1088/1741-2552/ad7a24 |
Cover
Loading…
| Abstract | Objective.
Serving as a channel for communication with locked-in patients or control of prostheses, sensorimotor brain–computer interfaces (BCIs) decode imaginary movements from the recorded activity of the user’s brain. However, many individuals remain unable to control the BCI, and the underlying mechanisms are unclear. The user’s BCI performance was previously shown to correlate with the resting-state signal-to-noise ratio (SNR) of the mu rhythm and the phase synchronization (PS) of the mu rhythm between sensorimotor areas. Yet, these predictors of performance were primarily evaluated in a single BCI session, while the longitudinal aspect remains rather uninvestigated. In addition, different analysis pipelines were used to estimate PS in source space, potentially hindering the reproducibility of the results.
Approach.
To systematically address these issues, we performed an extensive validation of the relationship between pre-stimulus SNR, PS, and session-wise BCI performance using a publicly available dataset of 62 human participants performing up to 11 sessions of BCI training. We performed the analysis in sensor space using the surface Laplacian and in source space by combining 24 processing pipelines in a multiverse analysis. This way, we could investigate how robust the observed effects were to the selection of the pipeline.
Main results.
Our results show that SNR had both between- and within-subject effects on BCI performance for the majority of the pipelines. In contrast, the effect of PS on BCI performance was less robust to the selection of the pipeline and became non-significant after controlling for SNR.
Significance.
Taken together, our results demonstrate that changes in neuronal connectivity within the sensorimotor system are not critical for learning to control a BCI, and interventions that increase the SNR of the mu rhythm might lead to improvements in the user’s BCI performance. |
|---|---|
| AbstractList | Objective.Serving as a channel for communication with locked-in patients or control of prostheses, sensorimotor brain-computer interfaces (BCIs) decode imaginary movements from the recorded activity of the user's brain. However, many individuals remain unable to control the BCI, and the underlying mechanisms are unclear. The user's BCI performance was previously shown to correlate with the resting-state signal-to-noise ratio (SNR) of the mu rhythm and the phase synchronization (PS) of the mu rhythm between sensorimotor areas. Yet, these predictors of performance were primarily evaluated in a single BCI session, while the longitudinal aspect remains rather uninvestigated. In addition, different analysis pipelines were used to estimate PS in source space, potentially hindering the reproducibility of the results.Approach.To systematically address these issues, we performed an extensive validation of the relationship between pre-stimulus SNR, PS, and session-wise BCI performance using a publicly available dataset of 62 human participants performing up to 11 sessions of BCI training. We performed the analysis in sensor space using the surface Laplacian and in source space by combining 24 processing pipelines in a multiverse analysis. This way, we could investigate how robust the observed effects were to the selection of the pipeline.Main results.Our results show that SNR had both between- and within-subject effects on BCI performance for the majority of the pipelines. In contrast, the effect of PS on BCI performance was less robust to the selection of the pipeline and became non-significant after controlling for SNR.Significance.Taken together, our results demonstrate that changes in neuronal connectivity within the sensorimotor system are not critical for learning to control a BCI, and interventions that increase the SNR of the mu rhythm might lead to improvements in the user's BCI performance.Objective.Serving as a channel for communication with locked-in patients or control of prostheses, sensorimotor brain-computer interfaces (BCIs) decode imaginary movements from the recorded activity of the user's brain. However, many individuals remain unable to control the BCI, and the underlying mechanisms are unclear. The user's BCI performance was previously shown to correlate with the resting-state signal-to-noise ratio (SNR) of the mu rhythm and the phase synchronization (PS) of the mu rhythm between sensorimotor areas. Yet, these predictors of performance were primarily evaluated in a single BCI session, while the longitudinal aspect remains rather uninvestigated. In addition, different analysis pipelines were used to estimate PS in source space, potentially hindering the reproducibility of the results.Approach.To systematically address these issues, we performed an extensive validation of the relationship between pre-stimulus SNR, PS, and session-wise BCI performance using a publicly available dataset of 62 human participants performing up to 11 sessions of BCI training. We performed the analysis in sensor space using the surface Laplacian and in source space by combining 24 processing pipelines in a multiverse analysis. This way, we could investigate how robust the observed effects were to the selection of the pipeline.Main results.Our results show that SNR had both between- and within-subject effects on BCI performance for the majority of the pipelines. In contrast, the effect of PS on BCI performance was less robust to the selection of the pipeline and became non-significant after controlling for SNR.Significance.Taken together, our results demonstrate that changes in neuronal connectivity within the sensorimotor system are not critical for learning to control a BCI, and interventions that increase the SNR of the mu rhythm might lead to improvements in the user's BCI performance. Objective. Serving as a channel for communication with locked-in patients or control of prostheses, sensorimotor brain–computer interfaces (BCIs) decode imaginary movements from the recorded activity of the user’s brain. However, many individuals remain unable to control the BCI, and the underlying mechanisms are unclear. The user’s BCI performance was previously shown to correlate with the resting-state signal-to-noise ratio (SNR) of the mu rhythm and the phase synchronization (PS) of the mu rhythm between sensorimotor areas. Yet, these predictors of performance were primarily evaluated in a single BCI session, while the longitudinal aspect remains rather uninvestigated. In addition, different analysis pipelines were used to estimate PS in source space, potentially hindering the reproducibility of the results. Approach. To systematically address these issues, we performed an extensive validation of the relationship between pre-stimulus SNR, PS, and session-wise BCI performance using a publicly available dataset of 62 human participants performing up to 11 sessions of BCI training. We performed the analysis in sensor space using the surface Laplacian and in source space by combining 24 processing pipelines in a multiverse analysis. This way, we could investigate how robust the observed effects were to the selection of the pipeline. Main results. Our results show that SNR had both between- and within-subject effects on BCI performance for the majority of the pipelines. In contrast, the effect of PS on BCI performance was less robust to the selection of the pipeline and became non-significant after controlling for SNR. Significance. Taken together, our results demonstrate that changes in neuronal connectivity within the sensorimotor system are not critical for learning to control a BCI, and interventions that increase the SNR of the mu rhythm might lead to improvements in the user’s BCI performance. Serving as a channel for communication with locked-in patients or control of prostheses, sensorimotor brain-computer interfaces (BCIs) decode imaginary movements from the recorded activity of the user's brain. However, many individuals remain unable to control the BCI, and the underlying mechanisms are unclear. The user's BCI performance was previously shown to correlate with the resting-state signal-to-noise ratio (SNR) of the mu rhythm and the phase synchronization (PS) of the mu rhythm between sensorimotor areas. Yet, these predictors of performance were primarily evaluated in a single BCI session, while the longitudinal aspect remains rather uninvestigated. In addition, different analysis pipelines were used to estimate PS in source space, potentially hindering the reproducibility of the results. To systematically address these issues, we performed an extensive validation of the relationship between pre-stimulus SNR, PS, and session-wise BCI performance using a publicly available dataset of 62 human participants performing up to 11 sessions of BCI training. We performed the analysis in sensor space using the surface Laplacian and in source space by combining 24 processing pipelines in a multiverse analysis. This way, we could investigate how robust the observed effects were to the selection of the pipeline. Our results show that SNR had both between- and within-subject effects on BCI performance for the majority of the pipelines. In contrast, the effect of PS on BCI performance was less robust to the selection of the pipeline and became non-significant after controlling for SNR. Taken together, our results demonstrate that changes in neuronal connectivity within the sensorimotor system are not critical for learning to control a BCI, and interventions that increase the SNR of the mu rhythm might lead to improvements in the user's BCI performance. |
| Author | Ros, Tomas Nikulin, Vadim Vidaurre, Carmen Studenova, Alina Stephani, Tilman Villringer, Arno Kapralov, Nikolai Jamshidi Idaji, Mina |
| Author_xml | – sequence: 1 givenname: Nikolai orcidid: 0000-0002-5659-7307 surname: Kapralov fullname: Kapralov, Nikolai organization: Leipzig International Max Planck Research School NeuroCom, Germany – sequence: 2 givenname: Mina orcidid: 0000-0003-1593-3201 surname: Jamshidi Idaji fullname: Jamshidi Idaji, Mina organization: Technische Universität Berlin Machine Learning Group, Berlin, Germany – sequence: 3 givenname: Tilman orcidid: 0000-0003-3323-3874 surname: Stephani fullname: Stephani, Tilman organization: Leipzig International Max Planck Research School NeuroCom, Germany – sequence: 4 givenname: Alina orcidid: 0000-0003-0821-9966 surname: Studenova fullname: Studenova, Alina organization: Leipzig Max Planck School of Cognition, Germany – sequence: 5 givenname: Carmen orcidid: 0000-0003-3740-049X surname: Vidaurre fullname: Vidaurre, Carmen organization: Basque Excellence Research Centre (BERC) Basque Center on Cognition, Brain and Language, San Sebastian, Spain – sequence: 6 givenname: Tomas orcidid: 0000-0001-6952-0459 surname: Ros fullname: Ros, Tomas organization: Center for Biomedical Imaging (CIBM) , Geneva-Lausanne, Switzerland – sequence: 7 givenname: Arno orcidid: 0000-0003-2604-2404 surname: Villringer fullname: Villringer, Arno organization: Max Planck Institute for Human Cognitive and Brain Sciences Department of Neurology, Leipzig, Germany – sequence: 8 givenname: Vadim orcidid: 0000-0001-6082-3859 surname: Nikulin fullname: Nikulin, Vadim organization: Max Planck Institute for Human Cognitive and Brain Sciences Department of Neurology, Leipzig, Germany |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39265614$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kbuOFDEQRS20iH1AToQcEtCs3Xa_QrRaHtJKBEBsVbvLO151uxrbjTQZ_8BP8F18CR7NMhmJq1w-90que8nOAgVk7KUUb6Xo-2vZaVnVTVNfw9RBrZ-wi9Po7NS34pxdpvQghJLdIJ6xczXUbdNKfcF-f8GQKPqFMkU-RvDhz89flpZ1yxi5D-V0YJGvpVJcIJR-whXDlDgFnvx9gLnKVAXyCXmE7ImPW-aBMrcUAtrsf_i85-R43iFfNh53-7xbijmHcp3LO8aiheK0Tz4dyJnCvc_b5MuMT5DhOXvqYE744rFesW_vb7_efKzuPn_4dPPurrJKyVyNfSttP7hJONtg09XCjmKw6PSoVS3UoBFc1wx1DyM6NwyAQqJo9YjKTm2trtjro-8a6fuGKZvFJ4vzDAFpS0ZJoYXqpVYFffWIbuOCk1nLGiHuzb_tFkAcARsppYjuhEhhDgGaQ0LmkJY5Blgkb44ST6t5oC2W_6f_438B92ehcw |
| CODEN | JNEOBH |
| Cites_doi | 10.1002/(SICI)1097-0193(1999)8:4%3C194::AID-HBM4%3E3.0.CO;2-C 10.1002/acn3.544 10.1109/TNSRE.2012.2205707 10.1016/j.neuroimage.2006.01.021 10.1016/j.neuroimage.2012.03.048 10.1371/journal.pone.0207351 10.1007/s10548-018-0691-2 10.1016/j.clinph.2004.04.029 10.1098/rsta.2011.0081 10.1109/TBME.2004.827072 10.1016/j.neuroimage.2010.08.078 10.18637/jss.v082.i13 10.1016/j.biopsycho.2011.09.006 10.1002/hbm.20745 10.1155/2011/879716 10.1016/j.neuroimage.2009.10.028 10.1109/TNSRE.2023.3339612 10.1371/journal.pone.0080886 10.1016/j.tics.2005.08.011 10.1093/cercor/bhaa234 10.1016/s1388-2457(02)00057-3 10.1016/j.neuroimage.2009.10.003 10.1007/978-1-84996-272-8_3 10.3389/fnins.2016.00530 10.1016/j.neuroimage.2015.12.019 10.1109/10.623056 10.1007/BF01129656 10.1080/2326263x.2017.1307625 10.1038/s41593-020-00744-x 10.1016/j.neurobiolaging.2021.03.016 10.1002/hbm.20585 10.1371/journal.pone.0143962 10.1016/B978-0-12-812892-3.00008-X 10.3389/fnins.2020.575081 10.1016/j.neuron.2021.09.037 10.1007/s10548-016-0498-y 10.1109/72.761722 10.1016/s0167-8760(96)00066-9 10.1093/cercor/bhh086 10.1186/s12883-020-01960-5 10.1016/j.neuroimage.2022.119443 10.1016/j.neuroimage.2010.07.033 10.1016/j.neuroimage.2011.01.021 10.1038/nn.3101 10.1113/JP278118 10.3389/fnsys.2015.00175 10.1016/j.neuroimage.2019.116500 10.1016/j.schres.2005.11.020 10.1016/S1053-8119(09)70884-5 10.1016/j.neuroimage.2017.02.076 10.1016/j.neuroimage.2012.08.069 10.1007/s10548-015-0429-3 10.1016/j.neuroimage.2016.06.056 10.1088/1741-2552/ac0767 10.1016/j.neuroimage.2011.09.015 10.1016/j.neuroimage.2022.119395 10.1016/s1388-2457(99)00141-8 10.1016/j.tins.2007.02.001 10.3389/fnhum.2014.00620 10.1016/j.jneumeth.2014.01.031 10.1109/TBME.2014.2312397 10.1016/j.biopsych.2006.06.027 10.6084/m9.figshare.13123148.v1 10.1016/j.neuroimage.2023.120218 10.1038/35094565 10.1038/s41598-018-30869-w 10.1016/j.neuropsychologia.2007.10.008 10.1016/j.jneumeth.2013.10.018 10.1016/j.neuroimage.2004.09.036 10.3389/fnins.2010.00198 10.1088/1741-2552/aaf12e 10.1038/nrneurol.2016.113 10.1073/pnas.98.2.694 10.1016/j.neuroimage.2010.03.022 10.2307/3002019 10.1016/j.neuron.2013.09.038 10.1038/s41597-021-00883-1 10.1016/j.jneumeth.2003.10.009 10.1177/1745691616658637 10.1109/86.895946 10.3389/fnhum.2021.732946 10.18637/jss.v067.i01 10.3389/fnhum.2022.798883 10.1111/psyp.14268 10.1371/journal.pone.0148886 10.1155/2007/79642 10.1016/j.clinph.2011.04.003 10.1176/appi.ajp.162.7.1256 10.1016/j.neubiorev.2018.08.003 10.1016/j.neuroimage.2019.05.026 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s). Published by IOP Publishing Ltd Creative Commons Attribution license. |
| Copyright_xml | – notice: 2024 The Author(s). Published by IOP Publishing Ltd – notice: Creative Commons Attribution license. |
| DBID | O3W TSCCA AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1088/1741-2552/ad7a24 |
| DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1741-2552 |
| ExternalDocumentID | 39265614 10_1088_1741_2552_ad7a24 jnead7a24 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Spanish Ministry of Science, Innovation and Universities grantid: PID2020-118829RB-I00 |
| GroupedDBID | --- 1JI 4.4 53G 5B3 5GY 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO KOT LAP N5L N9A O3W P2P PJBAE RIN RO9 ROL RPA SY9 TSCCA W28 XPP AAYXX ADEQX CITATION AEINN CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c331t-b861c89fd0fc5e5720cb09cef4b4320394eaf75928abeff99ae01e064be3cd623 |
| IEDL.DBID | IOP |
| ISSN | 1741-2560 1741-2552 |
| IngestDate | Fri Jul 11 09:57:01 EDT 2025 Tue Aug 05 11:42:43 EDT 2025 Tue Jul 01 01:48:13 EDT 2025 Tue Oct 15 22:49:17 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | functional connectivity multiverse analysis source space analysis brain computer interface (BCI) motor imagery electroencephalogram (EEG) longitudinal data |
| Language | English |
| License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Creative Commons Attribution license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c331t-b861c89fd0fc5e5720cb09cef4b4320394eaf75928abeff99ae01e064be3cd623 |
| Notes | JNE-107086.R1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-6082-3859 0000-0001-6952-0459 0000-0002-5659-7307 0000-0003-0821-9966 0000-0003-3323-3874 0000-0003-2604-2404 0000-0003-1593-3201 0000-0003-3740-049X |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1741-2552/ad7a24 |
| PMID | 39265614 |
| PQID | 3104038143 |
| PQPubID | 23479 |
| PageCount | 24 |
| ParticipantIDs | iop_journals_10_1088_1741_2552_ad7a24 proquest_miscellaneous_3104038143 pubmed_primary_39265614 crossref_primary_10_1088_1741_2552_ad7a24 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-10-01 |
| PublicationDateYYYYMMDD | 2024-10-01 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Journal of neural engineering |
| PublicationTitleAbbrev | JNE |
| PublicationTitleAlternate | J. Neural Eng |
| PublicationYear | 2024 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | Frazier (jnead7a24bib27) 2005; 162 Hipp (jnead7a24bib35) 2012; 15 Maeder (jnead7a24bib49) 2012; 20 Stieger (jnead7a24bib83) 2021b Abiri (jnead7a24bib1) 2019; 16 Delorme (jnead7a24bib19) 2004; 134 Sugata (jnead7a24bib84) 2014; 8 Leeuwis (jnead7a24bib48) 2021; 15 Pascual-Marqui (jnead7a24bib59) 2011; 369 Yuan (jnead7a24bib90) 2014; 61 Blankertz (jnead7a24bib10) 2010b; 4 Huang (jnead7a24bib36) 2016; 140 Vidaurre (jnead7a24bib88) 2020; 14 Engel (jnead7a24bib22) 2001; 2 Jorajuría (jnead7a24bib40) 2023; 31 Ramoser (jnead7a24bib67) 2000; 8 Jenkinson (jnead7a24bib38) 2012; 62 Barnett (jnead7a24bib6) 2014; 223 Popov (jnead7a24bib65) 2023; 60 Solodkin (jnead7a24bib79) 2004; 14 Stieger (jnead7a24bib82) 2020; 31 Engel (jnead7a24bib23) 2013; 80 Sannelli (jnead7a24bib72) 2019; 14 Tadel (jnead7a24bib85) 2011; 2011 Satterthwaite (jnead7a24bib73) 1946; 2 Mahjoory (jnead7a24bib50) 2017; 152 Schoffelen (jnead7a24bib77) 2009; 30 Donoghue (jnead7a24bib21) 2020; 23 Desikan (jnead7a24bib20) 2006; 31 Nierhaus (jnead7a24bib54) 2021; 599 Blankertz (jnead7a24bib11) 2016; 10 Fonov (jnead7a24bib25) 2011; 54 Gross (jnead7a24bib30) 2001; 98 Koles (jnead7a24bib41) 1990; 2 Pfurtscheller (jnead7a24bib63) 1996; 24 Nolte (jnead7a24bib56) 2004; 115 Chevallier (jnead7a24bib17) 2024 Allison (jnead7a24bib4) 2010 Bayraktaroglu (jnead7a24bib9) 2013; 64 Halder (jnead7a24bib31) 2011; 55 Nikulin (jnead7a24bib55) 2008; 46 Hyvärinen (jnead7a24bib37) 1999; 10 Shih (jnead7a24bib78) 2021; 104 Rubega (jnead7a24bib69) 2019; 32 Palva (jnead7a24bib57) 2007; 30 Samek (jnead7a24bib71) 2016; 141 Pellegrini (jnead7a24bib60) 2023; 277 Ritter (jnead7a24bib68) 2009; 30 Pfurtscheller (jnead7a24bib62) 1999; 110 Lai (jnead7a24bib46) 2018; 8 Van Veen (jnead7a24bib87) 1997; 44 Bates (jnead7a24bib8) 2015; 67 Peng (jnead7a24bib61) 2022; 16 Cervera (jnead7a24bib14) 2018; 5 Pion-Tonachini (jnead7a24bib64) 2019; 198 Hardwick (jnead7a24bib33) 2018; 94 Korhonen (jnead7a24bib42) 2014; 226 Brookes (jnead7a24bib13) 2012; 63 Feuerriegel (jnead7a24bib24) 2022; 259 Babiloni (jnead7a24bib5) 2005; 24 Chalas (jnead7a24bib15) 2022; 258 Jeunet (jnead7a24bib39) 2015; 10 Ahn (jnead7a24bib3) 2013; 8 Fries (jnead7a24bib28) 2005; 9 Yuan (jnead7a24bib91) 2010; 49 Tao (jnead7a24bib86) 2021; 18 Steegen (jnead7a24bib80) 2016; 11 Pascual-Marqui (jnead7a24bib58) 2007 Acqualagna (jnead7a24bib2) 2016; 11 Blankertz (jnead7a24bib12) 2010a; 51 Makris (jnead7a24bib51) 2006; 83 Corsi (jnead7a24bib18) 2020; 209 McFarland (jnead7a24bib52) 2017; 47 Schneider (jnead7a24bib76) 2021; 109 Zoefel (jnead7a24bib93) 2011; 54 Bastos (jnead7a24bib7) 2015; 9 Scherer (jnead7a24bib75) 2018 Goldstein (jnead7a24bib29) 2007; 61 Zhang (jnead7a24bib92) 2015; 28 Haufe (jnead7a24bib34) 2019; 32 Leeb (jnead7a24bib47) 2007; 2007 Wolpaw (jnead7a24bib89) 2002; 113 Schalk (jnead7a24bib74) 2004; 51 Lachaux (jnead7a24bib45) 1999; 8 Fonov (jnead7a24bib26) 2009; 47 Rubinov (jnead7a24bib70) 2010; 52 Stieger (jnead7a24bib81) 2021a; 8 R Core Team (jnead7a24bib66) 2022 Kruse (jnead7a24bib43) 2020; 20 Hammer (jnead7a24bib32) 2012; 89 Muthukumaraswamy (jnead7a24bib53) 2011; 122 Chaudhary (jnead7a24bib16) 2016; 12 Kuznetsova (jnead7a24bib44) 2017; 82 |
| References_xml | – volume: 8 start-page: 194 year: 1999 ident: jnead7a24bib45 article-title: Measuring phase synchrony in brain signals publication-title: Hum. Brain Mapp. doi: 10.1002/(SICI)1097-0193(1999)8:4%3C194::AID-HBM4%3E3.0.CO;2-C – volume: 5 start-page: 651 year: 2018 ident: jnead7a24bib14 article-title: Brain-computer interfaces for post-stroke motor rehabilitation: a meta-analysis publication-title: Ann. Clin. Transl. Neurol. doi: 10.1002/acn3.544 – year: 2024 ident: jnead7a24bib17 article-title: The largest EEG-based BCI reproducibility study for open science: the MOABB benchmark – volume: 20 start-page: 653 year: 2012 ident: jnead7a24bib49 article-title: Pre-stimulus sensorimotor rhythms influence brain–computer interface classification performance publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2012.2205707 – volume: 31 start-page: 968 year: 2006 ident: jnead7a24bib20 article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.01.021 – volume: 63 start-page: 910 year: 2012 ident: jnead7a24bib13 article-title: Measuring functional connectivity in MEG: a multivariate approach insensitive to linear source leakage publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.03.048 – volume: 14 year: 2019 ident: jnead7a24bib72 article-title: A large scale screening study with a SMR-based BCI: categorization of BCI users and differences in their SMR activity publication-title: PLoS One doi: 10.1371/journal.pone.0207351 – volume: 32 start-page: 704 year: 2019 ident: jnead7a24bib69 article-title: Estimating EEG source dipole orientation based on singular-value decomposition for connectivity analysis publication-title: Brain Topogr. doi: 10.1007/s10548-018-0691-2 – volume: 115 start-page: 2292 year: 2004 ident: jnead7a24bib56 article-title: Identifying true brain interaction from EEG data using the imaginary part of coherency publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2004.04.029 – volume: 369 start-page: 3768 year: 2011 ident: jnead7a24bib59 article-title: Assessing interactions in the brain with exact low-resolution electromagnetic tomography publication-title: Phil. Trans. R. Soc. A doi: 10.1098/rsta.2011.0081 – volume: 51 start-page: 1034 year: 2004 ident: jnead7a24bib74 article-title: BCI2000: a general-purpose brain-computer interface (BCI) system publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.827072 – volume: 54 start-page: 1427 year: 2011 ident: jnead7a24bib93 article-title: Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.08.078 – volume: 82 start-page: 1 year: 2017 ident: jnead7a24bib44 article-title: lmerTest package: tests in linear mixed effects models publication-title: J. Stat. Softw. doi: 10.18637/jss.v082.i13 – volume: 89 start-page: 80 year: 2012 ident: jnead7a24bib32 article-title: Psychological predictors of SMR-BCI performance publication-title: Biol. Psychol. doi: 10.1016/j.biopsycho.2011.09.006 – volume: 30 start-page: 1857 year: 2009 ident: jnead7a24bib77 article-title: Source connectivity analysis with MEG and EEG publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20745 – volume: 2011 year: 2011 ident: jnead7a24bib85 article-title: Brainstorm: a user-friendly application for MEG/EEG analysis publication-title: Comput. Intell. Neurosci. doi: 10.1155/2011/879716 – volume: 49 start-page: 2596 year: 2010 ident: jnead7a24bib91 article-title: Negative covariation between task-related responses in alpha/beta-band activity and BOLD in human sensorimotor cortex: an EEG and fMRI study of motor imagery and movements publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.10.028 – volume: 31 start-page: 4931 year: 2023 ident: jnead7a24bib40 article-title: MEANSP: how many channels are needed to predict the performance of a SMR-based BCI? publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2023.3339612 – volume: 8 year: 2013 ident: jnead7a24bib3 article-title: High theta and low alpha powers may be indicative of BCI-illiteracy in motor imagery publication-title: PLoS One doi: 10.1371/journal.pone.0080886 – volume: 9 start-page: 474 year: 2005 ident: jnead7a24bib28 article-title: A mechanism for cognitive dynamics: neuronal communication through neuronal coherence publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2005.08.011 – volume: 31 start-page: 426 year: 2020 ident: jnead7a24bib82 article-title: Mindfulness improves brain–computer interface performance by increasing control over neural activity in the alpha band publication-title: Cereb. Cortex doi: 10.1093/cercor/bhaa234 – volume: 113 start-page: 767 year: 2002 ident: jnead7a24bib89 article-title: Brain-computer interfaces for communication and control publication-title: Clin. Neurophysiol. doi: 10.1016/s1388-2457(02)00057-3 – volume: 52 start-page: 1059 year: 2010 ident: jnead7a24bib70 article-title: Complex network measures of brain connectivity: uses and interpretations publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.10.003 – start-page: 35 year: 2010 ident: jnead7a24bib4 article-title: Could anyone use a BCI? doi: 10.1007/978-1-84996-272-8_3 – volume: 10 start-page: 530 year: 2016 ident: jnead7a24bib11 article-title: The Berlin brain-computer interface: progress beyond communication and control publication-title: Front. Neurosci. doi: 10.3389/fnins.2016.00530 – volume: 140 start-page: 150 year: 2016 ident: jnead7a24bib36 article-title: The New York head—a precise standardized volume conductor model for EEG source localization and tES targeting publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.12.019 – volume: 44 start-page: 867 year: 1997 ident: jnead7a24bib87 article-title: Localization of brain electrical activity via linearly constrained minimum variance spatial filtering publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.623056 – volume: 2 start-page: 275 year: 1990 ident: jnead7a24bib41 article-title: Spatial patterns underlying population differences in the background EEG publication-title: Brain Topogr. doi: 10.1007/BF01129656 – volume: 47 start-page: 37 year: 2017 ident: jnead7a24bib52 article-title: Therapeutic applications of BCI technologies publication-title: Brain Comput. Interfaces doi: 10.1080/2326263x.2017.1307625 – volume: 23 start-page: 1655 year: 2020 ident: jnead7a24bib21 article-title: Parameterizing neural power spectra into periodic and aperiodic components publication-title: Nat. Neurosci. doi: 10.1038/s41593-020-00744-x – volume: 104 start-page: 82 year: 2021 ident: jnead7a24bib78 article-title: Alpha and beta neural oscillations differentially reflect age-related differences in bilateral coordination publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2021.03.016 – volume: 30 start-page: 1168 year: 2009 ident: jnead7a24bib68 article-title: Rolandic alpha and beta EEG rhythms’ strengths are inversely related to fMRI-BOLD signal in primary somatosensory and motor cortex publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20585 – volume: 10 start-page: 1 year: 2015 ident: jnead7a24bib39 article-title: Predicting mental imagery-based BCI performance from personality, cognitive profile and neurophysiological patterns publication-title: PLoS One doi: 10.1371/journal.pone.0143962 – start-page: 171 year: 2018 ident: jnead7a24bib75 article-title: Motor imagery based brain–computer interfaces doi: 10.1016/B978-0-12-812892-3.00008-X – volume: 14 year: 2020 ident: jnead7a24bib88 article-title: Sensorimotor functional connectivity: a neurophysiological factor related to BCI performance publication-title: Front. Neurosci. doi: 10.3389/fnins.2020.575081 – volume: 109 start-page: 4050 year: 2021 ident: jnead7a24bib76 article-title: A mechanism for inter-areal coherence through communication based on connectivity and oscillatory power publication-title: Neuron doi: 10.1016/j.neuron.2021.09.037 – volume: 32 start-page: 625 year: 2019 ident: jnead7a24bib34 article-title: A simulation framework for benchmarking EEG-based brain connectivity estimation methodologies publication-title: Brain Topogr. doi: 10.1007/s10548-016-0498-y – volume: 10 start-page: 626 year: 1999 ident: jnead7a24bib37 article-title: Fast and robust fixed-point algorithms for independent component analysis publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.761722 – volume: 24 start-page: 39 year: 1996 ident: jnead7a24bib63 article-title: Event-related synchronization (ERS) in the alpha band–an electrophysiological correlate of cortical idling: a review publication-title: Int. J. Psychophysiol. doi: 10.1016/s0167-8760(96)00066-9 – volume: 14 start-page: 1246 year: 2004 ident: jnead7a24bib79 article-title: Fine modulation in network activation during motor execution and motor imagery publication-title: Cereb. Cortex doi: 10.1093/cercor/bhh086 – volume: 20 start-page: 385 year: 2020 ident: jnead7a24bib43 article-title: Effect of brain-computer interface training based on non-invasive electroencephalography using motor imagery on functional recovery after stroke - a systematic review and meta-analysis publication-title: BMC Neurol. doi: 10.1186/s12883-020-01960-5 – volume: 259 year: 2022 ident: jnead7a24bib24 article-title: Bring a map when exploring the ERP data processing multiverse: a commentary on Clayson et al 2021 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2022.119443 – volume: 54 start-page: 313 year: 2011 ident: jnead7a24bib25 article-title: Unbiased average age-appropriate atlases for pediatric studies publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.07.033 – volume: 55 start-page: 1779 year: 2011 ident: jnead7a24bib31 article-title: Neural mechanisms of brain-computer interface control publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.01.021 – volume: 15 start-page: 884 year: 2012 ident: jnead7a24bib35 article-title: Large-scale cortical correlation structure of spontaneous oscillatory activity publication-title: Nat. Neurosci. doi: 10.1038/nn.3101 – volume: 599 start-page: 2435 year: 2021 ident: jnead7a24bib54 article-title: Immediate brain plasticity after one hour of brain-computer interface (BCI) publication-title: J. Physiol. doi: 10.1113/JP278118 – volume: 9 start-page: 175 year: 2015 ident: jnead7a24bib7 article-title: A tutorial review of functional connectivity analysis methods and their interpretational pitfalls publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2015.00175 – volume: 209 year: 2020 ident: jnead7a24bib18 article-title: Functional disconnection of associative cortical areas predicts performance during BCI training publication-title: NeuroImage doi: 10.1016/j.neuroimage.2019.116500 – volume: 83 start-page: 155 year: 2006 ident: jnead7a24bib51 article-title: Decreased volume of left and total anterior insular lobule in schizophrenia publication-title: Schizophr. Res. doi: 10.1016/j.schres.2005.11.020 – volume: 47 start-page: S102 year: 2009 ident: jnead7a24bib26 article-title: Unbiased nonlinear average age-appropriate brain templates from birth to adulthood publication-title: NeuroImage doi: 10.1016/S1053-8119(09)70884-5 – volume: 152 start-page: 590 year: 2017 ident: jnead7a24bib50 article-title: Consistency of EEG source localization and connectivity estimates publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.02.076 – volume: 64 start-page: 496 year: 2013 ident: jnead7a24bib9 article-title: It is not all about phase: amplitude dynamics in corticomuscular interactions publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.08.069 – year: 2007 ident: jnead7a24bib58 article-title: Discrete, 3D distributed, linear imaging methods of electric neuronal activity. Part 1: exact, zero error localization – volume: 28 start-page: 680 year: 2015 ident: jnead7a24bib92 article-title: Predicting inter-session performance of SMR-based brain-computer interface using the spectral entropy of resting-state EEG publication-title: Brain Topogr. doi: 10.1007/s10548-015-0429-3 – volume: 141 start-page: 291 year: 2016 ident: jnead7a24bib71 article-title: Multiscale temporal neural dynamics predict performance in a complex sensorimotor task publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.06.056 – volume: 18 year: 2021 ident: jnead7a24bib86 article-title: Inter-stimulus phase coherence in steady-state somatosensory evoked potentials and its application in improving the performance of single-channel MI-BCI publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ac0767 – volume: 62 start-page: 782 year: 2012 ident: jnead7a24bib38 article-title: FSL publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.09.015 – volume: 258 year: 2022 ident: jnead7a24bib15 article-title: Multivariate analysis of speech envelope tracking reveals coupling beyond auditory cortex publication-title: NeuroImage doi: 10.1016/j.neuroimage.2022.119395 – volume: 110 start-page: 1842 year: 1999 ident: jnead7a24bib62 article-title: Event-related EEG/MEG synchronization and desynchronization: basic principles publication-title: Clin. Neurophysiol. doi: 10.1016/s1388-2457(99)00141-8 – volume: 30 start-page: 150 year: 2007 ident: jnead7a24bib57 article-title: New vistas for alpha-frequency band oscillations publication-title: Trends Neurosci. doi: 10.1016/j.tins.2007.02.001 – volume: 8 start-page: 620 year: 2014 ident: jnead7a24bib84 article-title: Alpha band functional connectivity correlates with the performance of brain-machine interfaces to decode real and imagined movements publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2014.00620 – volume: 226 start-page: 147 year: 2014 ident: jnead7a24bib42 article-title: Sparse weightings for collapsing inverse solutions to cortical parcellations optimize M/EEG source reconstruction accuracy publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2014.01.031 – volume: 61 start-page: 1425 year: 2014 ident: jnead7a24bib90 article-title: Brain-computer interfaces using sensorimotor rhythms: current state and future perspectives publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2014.2312397 – volume: 61 start-page: 935 year: 2007 ident: jnead7a24bib29 article-title: Hypothalamic abnormalities in schizophrenia: sex effects and genetic vulnerability publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2006.06.027 – year: 2021b ident: jnead7a24bib83 article-title: Human EEG Dataset for brain-Computer interface and meditation publication-title: figshare doi: 10.6084/m9.figshare.13123148.v1 – volume: 277 year: 2023 ident: jnead7a24bib60 article-title: Identifying good practices for detecting inter-regional linear functional connectivity from EEG publication-title: NeuroImage doi: 10.1016/j.neuroimage.2023.120218 – volume: 2 start-page: 704 year: 2001 ident: jnead7a24bib22 article-title: Dynamic predictions: oscillations and synchrony in top-down processing publication-title: Nat. Rev. Neurosci. doi: 10.1038/35094565 – year: 2022 ident: jnead7a24bib66 article-title: R: a language and environment for statistical computing – volume: 8 year: 2018 ident: jnead7a24bib46 article-title: A comparison between scalp- and source-reconstructed EEG networks publication-title: Sci. Rep. doi: 10.1038/s41598-018-30869-w – volume: 46 start-page: 727 year: 2008 ident: jnead7a24bib55 article-title: Quasi-movements: a novel motor-cognitive phenomenon publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2007.10.008 – volume: 223 start-page: 50 year: 2014 ident: jnead7a24bib6 article-title: The MVGC multivariate Granger causality toolbox: a new approach to Granger-causal inference publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2013.10.018 – volume: 24 start-page: 118 year: 2005 ident: jnead7a24bib5 article-title: Estimation of the cortical functional connectivity with the multimodal integration of high-resolution EEG and fMRI data by directed transfer function publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.09.036 – volume: 4 start-page: 198 year: 2010b ident: jnead7a24bib10 article-title: The Berlin brain-computer interface: non-medical uses of BCI technology publication-title: Front. Neurosci. doi: 10.3389/fnins.2010.00198 – volume: 16 year: 2019 ident: jnead7a24bib1 article-title: A comprehensive review of EEG-based brain-computer interface paradigms publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aaf12e – volume: 12 start-page: 513 year: 2016 ident: jnead7a24bib16 article-title: Brain-computer interfaces for communication and rehabilitation publication-title: Nat. Rev. Neurol. doi: 10.1038/nrneurol.2016.113 – volume: 98 start-page: 694 year: 2001 ident: jnead7a24bib30 article-title: Dynamic imaging of coherent sources: studying neural interactions in the human brain publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.98.2.694 – volume: 51 start-page: 1303 year: 2010a ident: jnead7a24bib12 article-title: Neurophysiological predictor of SMR-based BCI performance publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.03.022 – volume: 2 start-page: 110 year: 1946 ident: jnead7a24bib73 article-title: An approximate distribution of estimates of variance components publication-title: Biometrics doi: 10.2307/3002019 – volume: 80 start-page: 867 year: 2013 ident: jnead7a24bib23 article-title: Intrinsic coupling modes: multiscale interactions in ongoing brain activity publication-title: Neuron doi: 10.1016/j.neuron.2013.09.038 – volume: 8 start-page: 98 year: 2021a ident: jnead7a24bib81 article-title: Continuous sensorimotor rhythm based brain computer interface learning in a large population publication-title: Sci. Data doi: 10.1038/s41597-021-00883-1 – volume: 134 start-page: 9 year: 2004 ident: jnead7a24bib19 article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2003.10.009 – volume: 11 start-page: 702 year: 2016 ident: jnead7a24bib80 article-title: Increasing transparency through a multiverse analysis publication-title: Perspect. Psychol. Sci. doi: 10.1177/1745691616658637 – volume: 8 start-page: 441 year: 2000 ident: jnead7a24bib67 article-title: Optimal spatial filtering of single trial EEG during imagined hand movement publication-title: IEEE Trans. Rehabil. Eng. doi: 10.1109/86.895946 – volume: 15 year: 2021 ident: jnead7a24bib48 article-title: Functional connectivity analysis in motor-imagery brain computer interfaces publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2021.732946 – volume: 67 start-page: 1 year: 2015 ident: jnead7a24bib8 article-title: Fitting linear mixed-effects models using lme4 publication-title: J. Stat. Softw. doi: 10.18637/jss.v067.i01 – volume: 16 year: 2022 ident: jnead7a24bib61 article-title: The application of brain-computer interface in upper limb dysfunction after stroke: a systematic review and meta-analysis of randomized controlled trials publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2022.798883 – volume: 60 year: 2023 ident: jnead7a24bib65 article-title: Test-retest reliability of resting-state EEG in young and older adults publication-title: Psychophysiology doi: 10.1111/psyp.14268 – volume: 11 year: 2016 ident: jnead7a24bib2 article-title: Large-scale assessment of a fully automatic co-adaptive motor imagery-based brain computer interface publication-title: PLoS One doi: 10.1371/journal.pone.0148886 – volume: 2007 year: 2007 ident: jnead7a24bib47 article-title: Self-paced (asynchronous) BCI control of a wheelchair in virtual environments: a case study with a tetraplegic publication-title: Comput. Intell. Neurosci. doi: 10.1155/2007/79642 – volume: 122 start-page: 2324 year: 2011 ident: jnead7a24bib53 article-title: A cautionary note on the interpretation of phase-locking estimates with concurrent changes in power publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2011.04.003 – volume: 162 start-page: 1256 year: 2005 ident: jnead7a24bib27 article-title: Structural brain magnetic resonance imaging of limbic and thalamic volumes in pediatric bipolar disorder publication-title: Am. J. Psychiatry doi: 10.1176/appi.ajp.162.7.1256 – volume: 94 start-page: 31 year: 2018 ident: jnead7a24bib33 article-title: Neural correlates of action: comparing meta-analyses of imagery, observation and execution publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2018.08.003 – volume: 198 start-page: 181 year: 2019 ident: jnead7a24bib64 article-title: ICLabel: an automated electroencephalographic independent component classifier, dataset and website publication-title: NeuroImage doi: 10.1016/j.neuroimage.2019.05.026 |
| SSID | ssj0031790 |
| Score | 2.4030955 |
| Snippet | Objective.
Serving as a channel for communication with locked-in patients or control of prostheses, sensorimotor brain–computer interfaces (BCIs) decode... Serving as a channel for communication with locked-in patients or control of prostheses, sensorimotor brain-computer interfaces (BCIs) decode imaginary... Objective.Serving as a channel for communication with locked-in patients or control of prostheses, sensorimotor brain-computer interfaces (BCIs) decode... |
| SourceID | proquest pubmed crossref iop |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 56027 |
| SubjectTerms | Adult brain computer interface (BCI) Brain Waves - physiology Brain-Computer Interfaces electroencephalogram (EEG) Electroencephalography - methods Female functional connectivity Humans longitudinal data Longitudinal Studies Male motor imagery multiverse analysis Reproducibility of Results Sensorimotor Cortex - physiology Signal-To-Noise Ratio source space analysis Young Adult |
| Title | Sensorimotor brain–computer interface performance depends on signal-to-noise ratio but not connectivity of the mu rhythm in a multiverse analysis of longitudinal data |
| URI | https://iopscience.iop.org/article/10.1088/1741-2552/ad7a24 https://www.ncbi.nlm.nih.gov/pubmed/39265614 https://www.proquest.com/docview/3104038143 |
| Volume | 21 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELbacuFCgfKzhaJBAiQO3mZjOz_qqUJUFRIUCSp6QIpsx1ZRu_EqmxzaE-_AS_BcPAkzcbYIBAhxiXIY2Ulm7Pmc-WaGsSfeG-3TRPGiVIpL9Dm8rL3jVC3LZlktC0eJwq_fZIfH8tWJOllje1e5MGExbv1TvI2FguMnHAlxxS5i6BmOpdJdXec6levsmijQzVD23tHb1TYsqPRUzIYk6SwZY5S_G-Enn7SO8_4Zbg5u52CTfVw9cGSbnE37zkzt5S-1HP_zjW6yGyMchf0oeoutueY229pv8Cg-v4BnMBBEhz_vW-zrOzzyhpaUG1ow1Fvi2-cvdmwLAVR4ovXaOlj8SEaA2GR3CaEBooroc94F3oRPSweD7YHpO2hCB5YYNzb2soDgAYEpzHtoTy-60zkODhoG8iPRSBzosZYKSZ4H6rnU19TfC4jxeocdH7x8_-KQj40euBVi1nFTZDNblL5OvFVO5WliTVJa56WRIk1EKZ32uSrTQhvnfVlql8wcginjhK0RwN1lG01o3H2Gb2Vzqy2K55TCmxohfW5VnpepRqynJuz5StXVItbzqIY4fFFUpIaK1FBFNUzYU9RYNS7q5V_kHq-spcLFSREX3bjQLyvEzpJCsVJM2L1oRlezIjDNqAzr9j_O8oBdTxFQRSLhQ7bRtb3bQUDUmUeD4eP1SHz4DrcXCVs |
| linkProvider | IOP Publishing |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JjtQwELWYQUJcEDAszVpIgMTBdNpLluMIaA3bgAQj5hbZjq1Bmo5b6eQwN_6Bn-C7-BKq4jQICRC3HBw7yfPyHL-qx9jDEKwJItO8rLTmCtccXjXBc8qW5fK8UaWnQOG3h_nBkXp1rI8nn9MxFiaup6n_KV6mRMHpE06CuHKOHHqBdWkxN01hhJqvm7DDzmuZa-rW7-Sn7VQsKf1UioikO_JsOqf8Uy2_rUs72PbfKee49Cwvs0sTZ4T99IRX2DnfXmV7-y3ul1dn8BhGFef4e3yPffuA-9LYEQKxA0sGEN-_fHWTdwNQdoguGOdh_StiAJIT7gZiC6TnMKe8j7yNnzcexg4CduihjT04ksW4ZDgBMQCyR1gN0J2c9ScrrBwMjApF0np4MFPCEyp5GskYaWjIhAtIlnqNHS1ffHx2wCc3Bu6kXPTclvnClVVosuC014XInM0q54OySopMVsqbUOhKlMb6EKrK-GzhkfFYL12DLOs6221j628yfCtXOOOweEFxtsJKFQqni6ISBgmZnrEnWyzqdUq6UY-H5WVZE2414VYn3GbsEYJVTyNv849yD7Zw1jiC6FjEtD4OmxoJrqLzUiVn7EbC-WeryB5zypV66z9buc8uvH--rN-8PHx9m10USICS8O8O2-27wd9FAtPbe2Mn_QGw8O0i |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensorimotor+brain-computer+interface+performance+depends+on+signal-to-noise+ratio+but+not+connectivity+of+the+mu+rhythm+in+a+multiverse+analysis+of+longitudinal+data&rft.jtitle=Journal+of+neural+engineering&rft.au=Kapralov%2C+Nikolai&rft.au=Jamshidi+Idaji%2C+Mina&rft.au=Stephani%2C+Tilman&rft.au=Studenova%2C+Alina&rft.date=2024-10-01&rft.eissn=1741-2552&rft.volume=21&rft.issue=5&rft_id=info:doi/10.1088%2F1741-2552%2Fad7a24&rft_id=info%3Apmid%2F39265614&rft.externalDocID=39265614 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon |