Sensorimotor brain–computer interface performance depends on signal-to-noise ratio but not connectivity of the mu rhythm in a multiverse analysis of longitudinal data

Objective. Serving as a channel for communication with locked-in patients or control of prostheses, sensorimotor brain–computer interfaces (BCIs) decode imaginary movements from the recorded activity of the user’s brain. However, many individuals remain unable to control the BCI, and the underlying...

Full description

Saved in:
Bibliographic Details
Published inJournal of neural engineering Vol. 21; no. 5; pp. 56027 - 56050
Main Authors Kapralov, Nikolai, Jamshidi Idaji, Mina, Stephani, Tilman, Studenova, Alina, Vidaurre, Carmen, Ros, Tomas, Villringer, Arno, Nikulin, Vadim
Format Journal Article
LanguageEnglish
Published England IOP Publishing 01.10.2024
Subjects
Online AccessGet full text
ISSN1741-2560
1741-2552
1741-2552
DOI10.1088/1741-2552/ad7a24

Cover

Loading…
Abstract Objective. Serving as a channel for communication with locked-in patients or control of prostheses, sensorimotor brain–computer interfaces (BCIs) decode imaginary movements from the recorded activity of the user’s brain. However, many individuals remain unable to control the BCI, and the underlying mechanisms are unclear. The user’s BCI performance was previously shown to correlate with the resting-state signal-to-noise ratio (SNR) of the mu rhythm and the phase synchronization (PS) of the mu rhythm between sensorimotor areas. Yet, these predictors of performance were primarily evaluated in a single BCI session, while the longitudinal aspect remains rather uninvestigated. In addition, different analysis pipelines were used to estimate PS in source space, potentially hindering the reproducibility of the results. Approach. To systematically address these issues, we performed an extensive validation of the relationship between pre-stimulus SNR, PS, and session-wise BCI performance using a publicly available dataset of 62 human participants performing up to 11 sessions of BCI training. We performed the analysis in sensor space using the surface Laplacian and in source space by combining 24 processing pipelines in a multiverse analysis. This way, we could investigate how robust the observed effects were to the selection of the pipeline. Main results. Our results show that SNR had both between- and within-subject effects on BCI performance for the majority of the pipelines. In contrast, the effect of PS on BCI performance was less robust to the selection of the pipeline and became non-significant after controlling for SNR. Significance. Taken together, our results demonstrate that changes in neuronal connectivity within the sensorimotor system are not critical for learning to control a BCI, and interventions that increase the SNR of the mu rhythm might lead to improvements in the user’s BCI performance.
AbstractList Objective.Serving as a channel for communication with locked-in patients or control of prostheses, sensorimotor brain-computer interfaces (BCIs) decode imaginary movements from the recorded activity of the user's brain. However, many individuals remain unable to control the BCI, and the underlying mechanisms are unclear. The user's BCI performance was previously shown to correlate with the resting-state signal-to-noise ratio (SNR) of the mu rhythm and the phase synchronization (PS) of the mu rhythm between sensorimotor areas. Yet, these predictors of performance were primarily evaluated in a single BCI session, while the longitudinal aspect remains rather uninvestigated. In addition, different analysis pipelines were used to estimate PS in source space, potentially hindering the reproducibility of the results.Approach.To systematically address these issues, we performed an extensive validation of the relationship between pre-stimulus SNR, PS, and session-wise BCI performance using a publicly available dataset of 62 human participants performing up to 11 sessions of BCI training. We performed the analysis in sensor space using the surface Laplacian and in source space by combining 24 processing pipelines in a multiverse analysis. This way, we could investigate how robust the observed effects were to the selection of the pipeline.Main results.Our results show that SNR had both between- and within-subject effects on BCI performance for the majority of the pipelines. In contrast, the effect of PS on BCI performance was less robust to the selection of the pipeline and became non-significant after controlling for SNR.Significance.Taken together, our results demonstrate that changes in neuronal connectivity within the sensorimotor system are not critical for learning to control a BCI, and interventions that increase the SNR of the mu rhythm might lead to improvements in the user's BCI performance.Objective.Serving as a channel for communication with locked-in patients or control of prostheses, sensorimotor brain-computer interfaces (BCIs) decode imaginary movements from the recorded activity of the user's brain. However, many individuals remain unable to control the BCI, and the underlying mechanisms are unclear. The user's BCI performance was previously shown to correlate with the resting-state signal-to-noise ratio (SNR) of the mu rhythm and the phase synchronization (PS) of the mu rhythm between sensorimotor areas. Yet, these predictors of performance were primarily evaluated in a single BCI session, while the longitudinal aspect remains rather uninvestigated. In addition, different analysis pipelines were used to estimate PS in source space, potentially hindering the reproducibility of the results.Approach.To systematically address these issues, we performed an extensive validation of the relationship between pre-stimulus SNR, PS, and session-wise BCI performance using a publicly available dataset of 62 human participants performing up to 11 sessions of BCI training. We performed the analysis in sensor space using the surface Laplacian and in source space by combining 24 processing pipelines in a multiverse analysis. This way, we could investigate how robust the observed effects were to the selection of the pipeline.Main results.Our results show that SNR had both between- and within-subject effects on BCI performance for the majority of the pipelines. In contrast, the effect of PS on BCI performance was less robust to the selection of the pipeline and became non-significant after controlling for SNR.Significance.Taken together, our results demonstrate that changes in neuronal connectivity within the sensorimotor system are not critical for learning to control a BCI, and interventions that increase the SNR of the mu rhythm might lead to improvements in the user's BCI performance.
Objective. Serving as a channel for communication with locked-in patients or control of prostheses, sensorimotor brain–computer interfaces (BCIs) decode imaginary movements from the recorded activity of the user’s brain. However, many individuals remain unable to control the BCI, and the underlying mechanisms are unclear. The user’s BCI performance was previously shown to correlate with the resting-state signal-to-noise ratio (SNR) of the mu rhythm and the phase synchronization (PS) of the mu rhythm between sensorimotor areas. Yet, these predictors of performance were primarily evaluated in a single BCI session, while the longitudinal aspect remains rather uninvestigated. In addition, different analysis pipelines were used to estimate PS in source space, potentially hindering the reproducibility of the results. Approach. To systematically address these issues, we performed an extensive validation of the relationship between pre-stimulus SNR, PS, and session-wise BCI performance using a publicly available dataset of 62 human participants performing up to 11 sessions of BCI training. We performed the analysis in sensor space using the surface Laplacian and in source space by combining 24 processing pipelines in a multiverse analysis. This way, we could investigate how robust the observed effects were to the selection of the pipeline. Main results. Our results show that SNR had both between- and within-subject effects on BCI performance for the majority of the pipelines. In contrast, the effect of PS on BCI performance was less robust to the selection of the pipeline and became non-significant after controlling for SNR. Significance. Taken together, our results demonstrate that changes in neuronal connectivity within the sensorimotor system are not critical for learning to control a BCI, and interventions that increase the SNR of the mu rhythm might lead to improvements in the user’s BCI performance.
Serving as a channel for communication with locked-in patients or control of prostheses, sensorimotor brain-computer interfaces (BCIs) decode imaginary movements from the recorded activity of the user's brain. However, many individuals remain unable to control the BCI, and the underlying mechanisms are unclear. The user's BCI performance was previously shown to correlate with the resting-state signal-to-noise ratio (SNR) of the mu rhythm and the phase synchronization (PS) of the mu rhythm between sensorimotor areas. Yet, these predictors of performance were primarily evaluated in a single BCI session, while the longitudinal aspect remains rather uninvestigated. In addition, different analysis pipelines were used to estimate PS in source space, potentially hindering the reproducibility of the results. To systematically address these issues, we performed an extensive validation of the relationship between pre-stimulus SNR, PS, and session-wise BCI performance using a publicly available dataset of 62 human participants performing up to 11 sessions of BCI training. We performed the analysis in sensor space using the surface Laplacian and in source space by combining 24 processing pipelines in a multiverse analysis. This way, we could investigate how robust the observed effects were to the selection of the pipeline. Our results show that SNR had both between- and within-subject effects on BCI performance for the majority of the pipelines. In contrast, the effect of PS on BCI performance was less robust to the selection of the pipeline and became non-significant after controlling for SNR. Taken together, our results demonstrate that changes in neuronal connectivity within the sensorimotor system are not critical for learning to control a BCI, and interventions that increase the SNR of the mu rhythm might lead to improvements in the user's BCI performance.
Author Ros, Tomas
Nikulin, Vadim
Vidaurre, Carmen
Studenova, Alina
Stephani, Tilman
Villringer, Arno
Kapralov, Nikolai
Jamshidi Idaji, Mina
Author_xml – sequence: 1
  givenname: Nikolai
  orcidid: 0000-0002-5659-7307
  surname: Kapralov
  fullname: Kapralov, Nikolai
  organization: Leipzig International Max Planck Research School NeuroCom, Germany
– sequence: 2
  givenname: Mina
  orcidid: 0000-0003-1593-3201
  surname: Jamshidi Idaji
  fullname: Jamshidi Idaji, Mina
  organization: Technische Universität Berlin Machine Learning Group, Berlin, Germany
– sequence: 3
  givenname: Tilman
  orcidid: 0000-0003-3323-3874
  surname: Stephani
  fullname: Stephani, Tilman
  organization: Leipzig International Max Planck Research School NeuroCom, Germany
– sequence: 4
  givenname: Alina
  orcidid: 0000-0003-0821-9966
  surname: Studenova
  fullname: Studenova, Alina
  organization: Leipzig Max Planck School of Cognition, Germany
– sequence: 5
  givenname: Carmen
  orcidid: 0000-0003-3740-049X
  surname: Vidaurre
  fullname: Vidaurre, Carmen
  organization: Basque Excellence Research Centre (BERC) Basque Center on Cognition, Brain and Language, San Sebastian, Spain
– sequence: 6
  givenname: Tomas
  orcidid: 0000-0001-6952-0459
  surname: Ros
  fullname: Ros, Tomas
  organization: Center for Biomedical Imaging (CIBM) , Geneva-Lausanne, Switzerland
– sequence: 7
  givenname: Arno
  orcidid: 0000-0003-2604-2404
  surname: Villringer
  fullname: Villringer, Arno
  organization: Max Planck Institute for Human Cognitive and Brain Sciences Department of Neurology, Leipzig, Germany
– sequence: 8
  givenname: Vadim
  orcidid: 0000-0001-6082-3859
  surname: Nikulin
  fullname: Nikulin, Vadim
  organization: Max Planck Institute for Human Cognitive and Brain Sciences Department of Neurology, Leipzig, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39265614$$D View this record in MEDLINE/PubMed
BookMark eNp1kbuOFDEQRS20iH1AToQcEtCs3Xa_QrRaHtJKBEBsVbvLO151uxrbjTQZ_8BP8F18CR7NMhmJq1w-90que8nOAgVk7KUUb6Xo-2vZaVnVTVNfw9RBrZ-wi9Po7NS34pxdpvQghJLdIJ6xczXUbdNKfcF-f8GQKPqFMkU-RvDhz89flpZ1yxi5D-V0YJGvpVJcIJR-whXDlDgFnvx9gLnKVAXyCXmE7ImPW-aBMrcUAtrsf_i85-R43iFfNh53-7xbijmHcp3LO8aiheK0Tz4dyJnCvc_b5MuMT5DhOXvqYE744rFesW_vb7_efKzuPn_4dPPurrJKyVyNfSttP7hJONtg09XCjmKw6PSoVS3UoBFc1wx1DyM6NwyAQqJo9YjKTm2trtjro-8a6fuGKZvFJ4vzDAFpS0ZJoYXqpVYFffWIbuOCk1nLGiHuzb_tFkAcARsppYjuhEhhDgGaQ0LmkJY5Blgkb44ST6t5oC2W_6f_438B92ehcw
CODEN JNEOBH
Cites_doi 10.1002/(SICI)1097-0193(1999)8:4%3C194::AID-HBM4%3E3.0.CO;2-C
10.1002/acn3.544
10.1109/TNSRE.2012.2205707
10.1016/j.neuroimage.2006.01.021
10.1016/j.neuroimage.2012.03.048
10.1371/journal.pone.0207351
10.1007/s10548-018-0691-2
10.1016/j.clinph.2004.04.029
10.1098/rsta.2011.0081
10.1109/TBME.2004.827072
10.1016/j.neuroimage.2010.08.078
10.18637/jss.v082.i13
10.1016/j.biopsycho.2011.09.006
10.1002/hbm.20745
10.1155/2011/879716
10.1016/j.neuroimage.2009.10.028
10.1109/TNSRE.2023.3339612
10.1371/journal.pone.0080886
10.1016/j.tics.2005.08.011
10.1093/cercor/bhaa234
10.1016/s1388-2457(02)00057-3
10.1016/j.neuroimage.2009.10.003
10.1007/978-1-84996-272-8_3
10.3389/fnins.2016.00530
10.1016/j.neuroimage.2015.12.019
10.1109/10.623056
10.1007/BF01129656
10.1080/2326263x.2017.1307625
10.1038/s41593-020-00744-x
10.1016/j.neurobiolaging.2021.03.016
10.1002/hbm.20585
10.1371/journal.pone.0143962
10.1016/B978-0-12-812892-3.00008-X
10.3389/fnins.2020.575081
10.1016/j.neuron.2021.09.037
10.1007/s10548-016-0498-y
10.1109/72.761722
10.1016/s0167-8760(96)00066-9
10.1093/cercor/bhh086
10.1186/s12883-020-01960-5
10.1016/j.neuroimage.2022.119443
10.1016/j.neuroimage.2010.07.033
10.1016/j.neuroimage.2011.01.021
10.1038/nn.3101
10.1113/JP278118
10.3389/fnsys.2015.00175
10.1016/j.neuroimage.2019.116500
10.1016/j.schres.2005.11.020
10.1016/S1053-8119(09)70884-5
10.1016/j.neuroimage.2017.02.076
10.1016/j.neuroimage.2012.08.069
10.1007/s10548-015-0429-3
10.1016/j.neuroimage.2016.06.056
10.1088/1741-2552/ac0767
10.1016/j.neuroimage.2011.09.015
10.1016/j.neuroimage.2022.119395
10.1016/s1388-2457(99)00141-8
10.1016/j.tins.2007.02.001
10.3389/fnhum.2014.00620
10.1016/j.jneumeth.2014.01.031
10.1109/TBME.2014.2312397
10.1016/j.biopsych.2006.06.027
10.6084/m9.figshare.13123148.v1
10.1016/j.neuroimage.2023.120218
10.1038/35094565
10.1038/s41598-018-30869-w
10.1016/j.neuropsychologia.2007.10.008
10.1016/j.jneumeth.2013.10.018
10.1016/j.neuroimage.2004.09.036
10.3389/fnins.2010.00198
10.1088/1741-2552/aaf12e
10.1038/nrneurol.2016.113
10.1073/pnas.98.2.694
10.1016/j.neuroimage.2010.03.022
10.2307/3002019
10.1016/j.neuron.2013.09.038
10.1038/s41597-021-00883-1
10.1016/j.jneumeth.2003.10.009
10.1177/1745691616658637
10.1109/86.895946
10.3389/fnhum.2021.732946
10.18637/jss.v067.i01
10.3389/fnhum.2022.798883
10.1111/psyp.14268
10.1371/journal.pone.0148886
10.1155/2007/79642
10.1016/j.clinph.2011.04.003
10.1176/appi.ajp.162.7.1256
10.1016/j.neubiorev.2018.08.003
10.1016/j.neuroimage.2019.05.026
ContentType Journal Article
Copyright 2024 The Author(s). Published by IOP Publishing Ltd
Creative Commons Attribution license.
Copyright_xml – notice: 2024 The Author(s). Published by IOP Publishing Ltd
– notice: Creative Commons Attribution license.
DBID O3W
TSCCA
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1088/1741-2552/ad7a24
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1741-2552
ExternalDocumentID 39265614
10_1088_1741_2552_ad7a24
jnead7a24
Genre Journal Article
GrantInformation_xml – fundername: Spanish Ministry of Science, Innovation and Universities
  grantid: PID2020-118829RB-I00
GroupedDBID ---
1JI
4.4
53G
5B3
5GY
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
O3W
P2P
PJBAE
RIN
RO9
ROL
RPA
SY9
TSCCA
W28
XPP
AAYXX
ADEQX
CITATION
AEINN
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c331t-b861c89fd0fc5e5720cb09cef4b4320394eaf75928abeff99ae01e064be3cd623
IEDL.DBID IOP
ISSN 1741-2560
1741-2552
IngestDate Fri Jul 11 09:57:01 EDT 2025
Tue Aug 05 11:42:43 EDT 2025
Tue Jul 01 01:48:13 EDT 2025
Tue Oct 15 22:49:17 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords functional connectivity
multiverse analysis
source space analysis
brain computer interface (BCI)
motor imagery
electroencephalogram (EEG)
longitudinal data
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Creative Commons Attribution license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-b861c89fd0fc5e5720cb09cef4b4320394eaf75928abeff99ae01e064be3cd623
Notes JNE-107086.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6082-3859
0000-0001-6952-0459
0000-0002-5659-7307
0000-0003-0821-9966
0000-0003-3323-3874
0000-0003-2604-2404
0000-0003-1593-3201
0000-0003-3740-049X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1741-2552/ad7a24
PMID 39265614
PQID 3104038143
PQPubID 23479
PageCount 24
ParticipantIDs iop_journals_10_1088_1741_2552_ad7a24
proquest_miscellaneous_3104038143
pubmed_primary_39265614
crossref_primary_10_1088_1741_2552_ad7a24
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of neural engineering
PublicationTitleAbbrev JNE
PublicationTitleAlternate J. Neural Eng
PublicationYear 2024
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Frazier (jnead7a24bib27) 2005; 162
Hipp (jnead7a24bib35) 2012; 15
Maeder (jnead7a24bib49) 2012; 20
Stieger (jnead7a24bib83) 2021b
Abiri (jnead7a24bib1) 2019; 16
Delorme (jnead7a24bib19) 2004; 134
Sugata (jnead7a24bib84) 2014; 8
Leeuwis (jnead7a24bib48) 2021; 15
Pascual-Marqui (jnead7a24bib59) 2011; 369
Yuan (jnead7a24bib90) 2014; 61
Blankertz (jnead7a24bib10) 2010b; 4
Huang (jnead7a24bib36) 2016; 140
Vidaurre (jnead7a24bib88) 2020; 14
Engel (jnead7a24bib22) 2001; 2
Jorajuría (jnead7a24bib40) 2023; 31
Ramoser (jnead7a24bib67) 2000; 8
Jenkinson (jnead7a24bib38) 2012; 62
Barnett (jnead7a24bib6) 2014; 223
Popov (jnead7a24bib65) 2023; 60
Solodkin (jnead7a24bib79) 2004; 14
Stieger (jnead7a24bib82) 2020; 31
Engel (jnead7a24bib23) 2013; 80
Sannelli (jnead7a24bib72) 2019; 14
Tadel (jnead7a24bib85) 2011; 2011
Satterthwaite (jnead7a24bib73) 1946; 2
Mahjoory (jnead7a24bib50) 2017; 152
Schoffelen (jnead7a24bib77) 2009; 30
Donoghue (jnead7a24bib21) 2020; 23
Desikan (jnead7a24bib20) 2006; 31
Nierhaus (jnead7a24bib54) 2021; 599
Blankertz (jnead7a24bib11) 2016; 10
Fonov (jnead7a24bib25) 2011; 54
Gross (jnead7a24bib30) 2001; 98
Koles (jnead7a24bib41) 1990; 2
Pfurtscheller (jnead7a24bib63) 1996; 24
Nolte (jnead7a24bib56) 2004; 115
Chevallier (jnead7a24bib17) 2024
Allison (jnead7a24bib4) 2010
Bayraktaroglu (jnead7a24bib9) 2013; 64
Halder (jnead7a24bib31) 2011; 55
Nikulin (jnead7a24bib55) 2008; 46
Hyvärinen (jnead7a24bib37) 1999; 10
Shih (jnead7a24bib78) 2021; 104
Rubega (jnead7a24bib69) 2019; 32
Palva (jnead7a24bib57) 2007; 30
Samek (jnead7a24bib71) 2016; 141
Pellegrini (jnead7a24bib60) 2023; 277
Ritter (jnead7a24bib68) 2009; 30
Pfurtscheller (jnead7a24bib62) 1999; 110
Lai (jnead7a24bib46) 2018; 8
Van Veen (jnead7a24bib87) 1997; 44
Bates (jnead7a24bib8) 2015; 67
Peng (jnead7a24bib61) 2022; 16
Cervera (jnead7a24bib14) 2018; 5
Pion-Tonachini (jnead7a24bib64) 2019; 198
Hardwick (jnead7a24bib33) 2018; 94
Korhonen (jnead7a24bib42) 2014; 226
Brookes (jnead7a24bib13) 2012; 63
Feuerriegel (jnead7a24bib24) 2022; 259
Babiloni (jnead7a24bib5) 2005; 24
Chalas (jnead7a24bib15) 2022; 258
Jeunet (jnead7a24bib39) 2015; 10
Ahn (jnead7a24bib3) 2013; 8
Fries (jnead7a24bib28) 2005; 9
Yuan (jnead7a24bib91) 2010; 49
Tao (jnead7a24bib86) 2021; 18
Steegen (jnead7a24bib80) 2016; 11
Pascual-Marqui (jnead7a24bib58) 2007
Acqualagna (jnead7a24bib2) 2016; 11
Blankertz (jnead7a24bib12) 2010a; 51
Makris (jnead7a24bib51) 2006; 83
Corsi (jnead7a24bib18) 2020; 209
McFarland (jnead7a24bib52) 2017; 47
Schneider (jnead7a24bib76) 2021; 109
Zoefel (jnead7a24bib93) 2011; 54
Bastos (jnead7a24bib7) 2015; 9
Scherer (jnead7a24bib75) 2018
Goldstein (jnead7a24bib29) 2007; 61
Zhang (jnead7a24bib92) 2015; 28
Haufe (jnead7a24bib34) 2019; 32
Leeb (jnead7a24bib47) 2007; 2007
Wolpaw (jnead7a24bib89) 2002; 113
Schalk (jnead7a24bib74) 2004; 51
Lachaux (jnead7a24bib45) 1999; 8
Fonov (jnead7a24bib26) 2009; 47
Rubinov (jnead7a24bib70) 2010; 52
Stieger (jnead7a24bib81) 2021a; 8
R Core Team (jnead7a24bib66) 2022
Kruse (jnead7a24bib43) 2020; 20
Hammer (jnead7a24bib32) 2012; 89
Muthukumaraswamy (jnead7a24bib53) 2011; 122
Chaudhary (jnead7a24bib16) 2016; 12
Kuznetsova (jnead7a24bib44) 2017; 82
References_xml – volume: 8
  start-page: 194
  year: 1999
  ident: jnead7a24bib45
  article-title: Measuring phase synchrony in brain signals
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/(SICI)1097-0193(1999)8:4%3C194::AID-HBM4%3E3.0.CO;2-C
– volume: 5
  start-page: 651
  year: 2018
  ident: jnead7a24bib14
  article-title: Brain-computer interfaces for post-stroke motor rehabilitation: a meta-analysis
  publication-title: Ann. Clin. Transl. Neurol.
  doi: 10.1002/acn3.544
– year: 2024
  ident: jnead7a24bib17
  article-title: The largest EEG-based BCI reproducibility study for open science: the MOABB benchmark
– volume: 20
  start-page: 653
  year: 2012
  ident: jnead7a24bib49
  article-title: Pre-stimulus sensorimotor rhythms influence brain–computer interface classification performance
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2012.2205707
– volume: 31
  start-page: 968
  year: 2006
  ident: jnead7a24bib20
  article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.01.021
– volume: 63
  start-page: 910
  year: 2012
  ident: jnead7a24bib13
  article-title: Measuring functional connectivity in MEG: a multivariate approach insensitive to linear source leakage
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.03.048
– volume: 14
  year: 2019
  ident: jnead7a24bib72
  article-title: A large scale screening study with a SMR-based BCI: categorization of BCI users and differences in their SMR activity
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0207351
– volume: 32
  start-page: 704
  year: 2019
  ident: jnead7a24bib69
  article-title: Estimating EEG source dipole orientation based on singular-value decomposition for connectivity analysis
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-018-0691-2
– volume: 115
  start-page: 2292
  year: 2004
  ident: jnead7a24bib56
  article-title: Identifying true brain interaction from EEG data using the imaginary part of coherency
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2004.04.029
– volume: 369
  start-page: 3768
  year: 2011
  ident: jnead7a24bib59
  article-title: Assessing interactions in the brain with exact low-resolution electromagnetic tomography
  publication-title: Phil. Trans. R. Soc. A
  doi: 10.1098/rsta.2011.0081
– volume: 51
  start-page: 1034
  year: 2004
  ident: jnead7a24bib74
  article-title: BCI2000: a general-purpose brain-computer interface (BCI) system
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.827072
– volume: 54
  start-page: 1427
  year: 2011
  ident: jnead7a24bib93
  article-title: Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.08.078
– volume: 82
  start-page: 1
  year: 2017
  ident: jnead7a24bib44
  article-title: lmerTest package: tests in linear mixed effects models
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v082.i13
– volume: 89
  start-page: 80
  year: 2012
  ident: jnead7a24bib32
  article-title: Psychological predictors of SMR-BCI performance
  publication-title: Biol. Psychol.
  doi: 10.1016/j.biopsycho.2011.09.006
– volume: 30
  start-page: 1857
  year: 2009
  ident: jnead7a24bib77
  article-title: Source connectivity analysis with MEG and EEG
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20745
– volume: 2011
  year: 2011
  ident: jnead7a24bib85
  article-title: Brainstorm: a user-friendly application for MEG/EEG analysis
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2011/879716
– volume: 49
  start-page: 2596
  year: 2010
  ident: jnead7a24bib91
  article-title: Negative covariation between task-related responses in alpha/beta-band activity and BOLD in human sensorimotor cortex: an EEG and fMRI study of motor imagery and movements
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.10.028
– volume: 31
  start-page: 4931
  year: 2023
  ident: jnead7a24bib40
  article-title: MEANSP: how many channels are needed to predict the performance of a SMR-based BCI?
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2023.3339612
– volume: 8
  year: 2013
  ident: jnead7a24bib3
  article-title: High theta and low alpha powers may be indicative of BCI-illiteracy in motor imagery
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0080886
– volume: 9
  start-page: 474
  year: 2005
  ident: jnead7a24bib28
  article-title: A mechanism for cognitive dynamics: neuronal communication through neuronal coherence
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2005.08.011
– volume: 31
  start-page: 426
  year: 2020
  ident: jnead7a24bib82
  article-title: Mindfulness improves brain–computer interface performance by increasing control over neural activity in the alpha band
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhaa234
– volume: 113
  start-page: 767
  year: 2002
  ident: jnead7a24bib89
  article-title: Brain-computer interfaces for communication and control
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/s1388-2457(02)00057-3
– volume: 52
  start-page: 1059
  year: 2010
  ident: jnead7a24bib70
  article-title: Complex network measures of brain connectivity: uses and interpretations
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.10.003
– start-page: 35
  year: 2010
  ident: jnead7a24bib4
  article-title: Could anyone use a BCI?
  doi: 10.1007/978-1-84996-272-8_3
– volume: 10
  start-page: 530
  year: 2016
  ident: jnead7a24bib11
  article-title: The Berlin brain-computer interface: progress beyond communication and control
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2016.00530
– volume: 140
  start-page: 150
  year: 2016
  ident: jnead7a24bib36
  article-title: The New York head—a precise standardized volume conductor model for EEG source localization and tES targeting
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.12.019
– volume: 44
  start-page: 867
  year: 1997
  ident: jnead7a24bib87
  article-title: Localization of brain electrical activity via linearly constrained minimum variance spatial filtering
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.623056
– volume: 2
  start-page: 275
  year: 1990
  ident: jnead7a24bib41
  article-title: Spatial patterns underlying population differences in the background EEG
  publication-title: Brain Topogr.
  doi: 10.1007/BF01129656
– volume: 47
  start-page: 37
  year: 2017
  ident: jnead7a24bib52
  article-title: Therapeutic applications of BCI technologies
  publication-title: Brain Comput. Interfaces
  doi: 10.1080/2326263x.2017.1307625
– volume: 23
  start-page: 1655
  year: 2020
  ident: jnead7a24bib21
  article-title: Parameterizing neural power spectra into periodic and aperiodic components
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-020-00744-x
– volume: 104
  start-page: 82
  year: 2021
  ident: jnead7a24bib78
  article-title: Alpha and beta neural oscillations differentially reflect age-related differences in bilateral coordination
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2021.03.016
– volume: 30
  start-page: 1168
  year: 2009
  ident: jnead7a24bib68
  article-title: Rolandic alpha and beta EEG rhythms’ strengths are inversely related to fMRI-BOLD signal in primary somatosensory and motor cortex
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20585
– volume: 10
  start-page: 1
  year: 2015
  ident: jnead7a24bib39
  article-title: Predicting mental imagery-based BCI performance from personality, cognitive profile and neurophysiological patterns
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0143962
– start-page: 171
  year: 2018
  ident: jnead7a24bib75
  article-title: Motor imagery based brain–computer interfaces
  doi: 10.1016/B978-0-12-812892-3.00008-X
– volume: 14
  year: 2020
  ident: jnead7a24bib88
  article-title: Sensorimotor functional connectivity: a neurophysiological factor related to BCI performance
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2020.575081
– volume: 109
  start-page: 4050
  year: 2021
  ident: jnead7a24bib76
  article-title: A mechanism for inter-areal coherence through communication based on connectivity and oscillatory power
  publication-title: Neuron
  doi: 10.1016/j.neuron.2021.09.037
– volume: 32
  start-page: 625
  year: 2019
  ident: jnead7a24bib34
  article-title: A simulation framework for benchmarking EEG-based brain connectivity estimation methodologies
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-016-0498-y
– volume: 10
  start-page: 626
  year: 1999
  ident: jnead7a24bib37
  article-title: Fast and robust fixed-point algorithms for independent component analysis
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.761722
– volume: 24
  start-page: 39
  year: 1996
  ident: jnead7a24bib63
  article-title: Event-related synchronization (ERS) in the alpha band–an electrophysiological correlate of cortical idling: a review
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/s0167-8760(96)00066-9
– volume: 14
  start-page: 1246
  year: 2004
  ident: jnead7a24bib79
  article-title: Fine modulation in network activation during motor execution and motor imagery
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhh086
– volume: 20
  start-page: 385
  year: 2020
  ident: jnead7a24bib43
  article-title: Effect of brain-computer interface training based on non-invasive electroencephalography using motor imagery on functional recovery after stroke - a systematic review and meta-analysis
  publication-title: BMC Neurol.
  doi: 10.1186/s12883-020-01960-5
– volume: 259
  year: 2022
  ident: jnead7a24bib24
  article-title: Bring a map when exploring the ERP data processing multiverse: a commentary on Clayson et al 2021
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2022.119443
– volume: 54
  start-page: 313
  year: 2011
  ident: jnead7a24bib25
  article-title: Unbiased average age-appropriate atlases for pediatric studies
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.07.033
– volume: 55
  start-page: 1779
  year: 2011
  ident: jnead7a24bib31
  article-title: Neural mechanisms of brain-computer interface control
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.01.021
– volume: 15
  start-page: 884
  year: 2012
  ident: jnead7a24bib35
  article-title: Large-scale cortical correlation structure of spontaneous oscillatory activity
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3101
– volume: 599
  start-page: 2435
  year: 2021
  ident: jnead7a24bib54
  article-title: Immediate brain plasticity after one hour of brain-computer interface (BCI)
  publication-title: J. Physiol.
  doi: 10.1113/JP278118
– volume: 9
  start-page: 175
  year: 2015
  ident: jnead7a24bib7
  article-title: A tutorial review of functional connectivity analysis methods and their interpretational pitfalls
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2015.00175
– volume: 209
  year: 2020
  ident: jnead7a24bib18
  article-title: Functional disconnection of associative cortical areas predicts performance during BCI training
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.116500
– volume: 83
  start-page: 155
  year: 2006
  ident: jnead7a24bib51
  article-title: Decreased volume of left and total anterior insular lobule in schizophrenia
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2005.11.020
– volume: 47
  start-page: S102
  year: 2009
  ident: jnead7a24bib26
  article-title: Unbiased nonlinear average age-appropriate brain templates from birth to adulthood
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(09)70884-5
– volume: 152
  start-page: 590
  year: 2017
  ident: jnead7a24bib50
  article-title: Consistency of EEG source localization and connectivity estimates
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.02.076
– volume: 64
  start-page: 496
  year: 2013
  ident: jnead7a24bib9
  article-title: It is not all about phase: amplitude dynamics in corticomuscular interactions
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.08.069
– year: 2007
  ident: jnead7a24bib58
  article-title: Discrete, 3D distributed, linear imaging methods of electric neuronal activity. Part 1: exact, zero error localization
– volume: 28
  start-page: 680
  year: 2015
  ident: jnead7a24bib92
  article-title: Predicting inter-session performance of SMR-based brain-computer interface using the spectral entropy of resting-state EEG
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-015-0429-3
– volume: 141
  start-page: 291
  year: 2016
  ident: jnead7a24bib71
  article-title: Multiscale temporal neural dynamics predict performance in a complex sensorimotor task
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.06.056
– volume: 18
  year: 2021
  ident: jnead7a24bib86
  article-title: Inter-stimulus phase coherence in steady-state somatosensory evoked potentials and its application in improving the performance of single-channel MI-BCI
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ac0767
– volume: 62
  start-page: 782
  year: 2012
  ident: jnead7a24bib38
  article-title: FSL
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.09.015
– volume: 258
  year: 2022
  ident: jnead7a24bib15
  article-title: Multivariate analysis of speech envelope tracking reveals coupling beyond auditory cortex
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2022.119395
– volume: 110
  start-page: 1842
  year: 1999
  ident: jnead7a24bib62
  article-title: Event-related EEG/MEG synchronization and desynchronization: basic principles
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/s1388-2457(99)00141-8
– volume: 30
  start-page: 150
  year: 2007
  ident: jnead7a24bib57
  article-title: New vistas for alpha-frequency band oscillations
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2007.02.001
– volume: 8
  start-page: 620
  year: 2014
  ident: jnead7a24bib84
  article-title: Alpha band functional connectivity correlates with the performance of brain-machine interfaces to decode real and imagined movements
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2014.00620
– volume: 226
  start-page: 147
  year: 2014
  ident: jnead7a24bib42
  article-title: Sparse weightings for collapsing inverse solutions to cortical parcellations optimize M/EEG source reconstruction accuracy
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2014.01.031
– volume: 61
  start-page: 1425
  year: 2014
  ident: jnead7a24bib90
  article-title: Brain-computer interfaces using sensorimotor rhythms: current state and future perspectives
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2014.2312397
– volume: 61
  start-page: 935
  year: 2007
  ident: jnead7a24bib29
  article-title: Hypothalamic abnormalities in schizophrenia: sex effects and genetic vulnerability
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2006.06.027
– year: 2021b
  ident: jnead7a24bib83
  article-title: Human EEG Dataset for brain-Computer interface and meditation
  publication-title: figshare
  doi: 10.6084/m9.figshare.13123148.v1
– volume: 277
  year: 2023
  ident: jnead7a24bib60
  article-title: Identifying good practices for detecting inter-regional linear functional connectivity from EEG
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2023.120218
– volume: 2
  start-page: 704
  year: 2001
  ident: jnead7a24bib22
  article-title: Dynamic predictions: oscillations and synchrony in top-down processing
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/35094565
– year: 2022
  ident: jnead7a24bib66
  article-title: R: a language and environment for statistical computing
– volume: 8
  year: 2018
  ident: jnead7a24bib46
  article-title: A comparison between scalp- and source-reconstructed EEG networks
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-30869-w
– volume: 46
  start-page: 727
  year: 2008
  ident: jnead7a24bib55
  article-title: Quasi-movements: a novel motor-cognitive phenomenon
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2007.10.008
– volume: 223
  start-page: 50
  year: 2014
  ident: jnead7a24bib6
  article-title: The MVGC multivariate Granger causality toolbox: a new approach to Granger-causal inference
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2013.10.018
– volume: 24
  start-page: 118
  year: 2005
  ident: jnead7a24bib5
  article-title: Estimation of the cortical functional connectivity with the multimodal integration of high-resolution EEG and fMRI data by directed transfer function
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.09.036
– volume: 4
  start-page: 198
  year: 2010b
  ident: jnead7a24bib10
  article-title: The Berlin brain-computer interface: non-medical uses of BCI technology
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2010.00198
– volume: 16
  year: 2019
  ident: jnead7a24bib1
  article-title: A comprehensive review of EEG-based brain-computer interface paradigms
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aaf12e
– volume: 12
  start-page: 513
  year: 2016
  ident: jnead7a24bib16
  article-title: Brain-computer interfaces for communication and rehabilitation
  publication-title: Nat. Rev. Neurol.
  doi: 10.1038/nrneurol.2016.113
– volume: 98
  start-page: 694
  year: 2001
  ident: jnead7a24bib30
  article-title: Dynamic imaging of coherent sources: studying neural interactions in the human brain
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.98.2.694
– volume: 51
  start-page: 1303
  year: 2010a
  ident: jnead7a24bib12
  article-title: Neurophysiological predictor of SMR-based BCI performance
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.03.022
– volume: 2
  start-page: 110
  year: 1946
  ident: jnead7a24bib73
  article-title: An approximate distribution of estimates of variance components
  publication-title: Biometrics
  doi: 10.2307/3002019
– volume: 80
  start-page: 867
  year: 2013
  ident: jnead7a24bib23
  article-title: Intrinsic coupling modes: multiscale interactions in ongoing brain activity
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.09.038
– volume: 8
  start-page: 98
  year: 2021a
  ident: jnead7a24bib81
  article-title: Continuous sensorimotor rhythm based brain computer interface learning in a large population
  publication-title: Sci. Data
  doi: 10.1038/s41597-021-00883-1
– volume: 134
  start-page: 9
  year: 2004
  ident: jnead7a24bib19
  article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– volume: 11
  start-page: 702
  year: 2016
  ident: jnead7a24bib80
  article-title: Increasing transparency through a multiverse analysis
  publication-title: Perspect. Psychol. Sci.
  doi: 10.1177/1745691616658637
– volume: 8
  start-page: 441
  year: 2000
  ident: jnead7a24bib67
  article-title: Optimal spatial filtering of single trial EEG during imagined hand movement
  publication-title: IEEE Trans. Rehabil. Eng.
  doi: 10.1109/86.895946
– volume: 15
  year: 2021
  ident: jnead7a24bib48
  article-title: Functional connectivity analysis in motor-imagery brain computer interfaces
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2021.732946
– volume: 67
  start-page: 1
  year: 2015
  ident: jnead7a24bib8
  article-title: Fitting linear mixed-effects models using lme4
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v067.i01
– volume: 16
  year: 2022
  ident: jnead7a24bib61
  article-title: The application of brain-computer interface in upper limb dysfunction after stroke: a systematic review and meta-analysis of randomized controlled trials
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2022.798883
– volume: 60
  year: 2023
  ident: jnead7a24bib65
  article-title: Test-retest reliability of resting-state EEG in young and older adults
  publication-title: Psychophysiology
  doi: 10.1111/psyp.14268
– volume: 11
  year: 2016
  ident: jnead7a24bib2
  article-title: Large-scale assessment of a fully automatic co-adaptive motor imagery-based brain computer interface
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0148886
– volume: 2007
  year: 2007
  ident: jnead7a24bib47
  article-title: Self-paced (asynchronous) BCI control of a wheelchair in virtual environments: a case study with a tetraplegic
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2007/79642
– volume: 122
  start-page: 2324
  year: 2011
  ident: jnead7a24bib53
  article-title: A cautionary note on the interpretation of phase-locking estimates with concurrent changes in power
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2011.04.003
– volume: 162
  start-page: 1256
  year: 2005
  ident: jnead7a24bib27
  article-title: Structural brain magnetic resonance imaging of limbic and thalamic volumes in pediatric bipolar disorder
  publication-title: Am. J. Psychiatry
  doi: 10.1176/appi.ajp.162.7.1256
– volume: 94
  start-page: 31
  year: 2018
  ident: jnead7a24bib33
  article-title: Neural correlates of action: comparing meta-analyses of imagery, observation and execution
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2018.08.003
– volume: 198
  start-page: 181
  year: 2019
  ident: jnead7a24bib64
  article-title: ICLabel: an automated electroencephalographic independent component classifier, dataset and website
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.05.026
SSID ssj0031790
Score 2.4030955
Snippet Objective. Serving as a channel for communication with locked-in patients or control of prostheses, sensorimotor brain–computer interfaces (BCIs) decode...
Serving as a channel for communication with locked-in patients or control of prostheses, sensorimotor brain-computer interfaces (BCIs) decode imaginary...
Objective.Serving as a channel for communication with locked-in patients or control of prostheses, sensorimotor brain-computer interfaces (BCIs) decode...
SourceID proquest
pubmed
crossref
iop
SourceType Aggregation Database
Index Database
Publisher
StartPage 56027
SubjectTerms Adult
brain computer interface (BCI)
Brain Waves - physiology
Brain-Computer Interfaces
electroencephalogram (EEG)
Electroencephalography - methods
Female
functional connectivity
Humans
longitudinal data
Longitudinal Studies
Male
motor imagery
multiverse analysis
Reproducibility of Results
Sensorimotor Cortex - physiology
Signal-To-Noise Ratio
source space analysis
Young Adult
Title Sensorimotor brain–computer interface performance depends on signal-to-noise ratio but not connectivity of the mu rhythm in a multiverse analysis of longitudinal data
URI https://iopscience.iop.org/article/10.1088/1741-2552/ad7a24
https://www.ncbi.nlm.nih.gov/pubmed/39265614
https://www.proquest.com/docview/3104038143
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELbacuFCgfKzhaJBAiQO3mZjOz_qqUJUFRIUCSp6QIpsx1ZRu_EqmxzaE-_AS_BcPAkzcbYIBAhxiXIY2Ulm7Pmc-WaGsSfeG-3TRPGiVIpL9Dm8rL3jVC3LZlktC0eJwq_fZIfH8tWJOllje1e5MGExbv1TvI2FguMnHAlxxS5i6BmOpdJdXec6levsmijQzVD23tHb1TYsqPRUzIYk6SwZY5S_G-Enn7SO8_4Zbg5u52CTfVw9cGSbnE37zkzt5S-1HP_zjW6yGyMchf0oeoutueY229pv8Cg-v4BnMBBEhz_vW-zrOzzyhpaUG1ow1Fvi2-cvdmwLAVR4ovXaOlj8SEaA2GR3CaEBooroc94F3oRPSweD7YHpO2hCB5YYNzb2soDgAYEpzHtoTy-60zkODhoG8iPRSBzosZYKSZ4H6rnU19TfC4jxeocdH7x8_-KQj40euBVi1nFTZDNblL5OvFVO5WliTVJa56WRIk1EKZ32uSrTQhvnfVlql8wcginjhK0RwN1lG01o3H2Gb2Vzqy2K55TCmxohfW5VnpepRqynJuz5StXVItbzqIY4fFFUpIaK1FBFNUzYU9RYNS7q5V_kHq-spcLFSREX3bjQLyvEzpJCsVJM2L1oRlezIjDNqAzr9j_O8oBdTxFQRSLhQ7bRtb3bQUDUmUeD4eP1SHz4DrcXCVs
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JjtQwELWYQUJcEDAszVpIgMTBdNpLluMIaA3bgAQj5hbZjq1Bmo5b6eQwN_6Bn-C7-BKq4jQICRC3HBw7yfPyHL-qx9jDEKwJItO8rLTmCtccXjXBc8qW5fK8UaWnQOG3h_nBkXp1rI8nn9MxFiaup6n_KV6mRMHpE06CuHKOHHqBdWkxN01hhJqvm7DDzmuZa-rW7-Sn7VQsKf1UioikO_JsOqf8Uy2_rUs72PbfKee49Cwvs0sTZ4T99IRX2DnfXmV7-y3ul1dn8BhGFef4e3yPffuA-9LYEQKxA0sGEN-_fHWTdwNQdoguGOdh_StiAJIT7gZiC6TnMKe8j7yNnzcexg4CduihjT04ksW4ZDgBMQCyR1gN0J2c9ScrrBwMjApF0np4MFPCEyp5GskYaWjIhAtIlnqNHS1ffHx2wCc3Bu6kXPTclvnClVVosuC014XInM0q54OySopMVsqbUOhKlMb6EKrK-GzhkfFYL12DLOs6221j628yfCtXOOOweEFxtsJKFQqni6ISBgmZnrEnWyzqdUq6UY-H5WVZE2414VYn3GbsEYJVTyNv849yD7Zw1jiC6FjEtD4OmxoJrqLzUiVn7EbC-WeryB5zypV66z9buc8uvH--rN-8PHx9m10USICS8O8O2-27wd9FAtPbe2Mn_QGw8O0i
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensorimotor+brain-computer+interface+performance+depends+on+signal-to-noise+ratio+but+not+connectivity+of+the+mu+rhythm+in+a+multiverse+analysis+of+longitudinal+data&rft.jtitle=Journal+of+neural+engineering&rft.au=Kapralov%2C+Nikolai&rft.au=Jamshidi+Idaji%2C+Mina&rft.au=Stephani%2C+Tilman&rft.au=Studenova%2C+Alina&rft.date=2024-10-01&rft.eissn=1741-2552&rft.volume=21&rft.issue=5&rft_id=info:doi/10.1088%2F1741-2552%2Fad7a24&rft_id=info%3Apmid%2F39265614&rft.externalDocID=39265614
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon