Controllability of a quantum particle in a moving potential well
We consider a nonrelativistic charged particle in a 1D moving potential well. This quantum system is subject to a control, which is the acceleration of the well. It is represented by a wave function solution of a Schrödinger equation, the position of the well together with its velocity. We prove the...
Saved in:
Published in | Journal of functional analysis Vol. 232; no. 2; pp. 328 - 389 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
15.03.2006
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0022-1236 1096-0783 |
DOI | 10.1016/j.jfa.2005.03.021 |
Cover
Loading…
Abstract | We consider a nonrelativistic charged particle in a 1D moving potential well. This quantum system is subject to a control, which is the acceleration of the well. It is represented by a wave function solution of a Schrödinger equation, the position of the well together with its velocity. We prove the following controllability result for this bilinear control system: given
ψ
0
close enough to an eigenstate and
ψ
f
close enough to another eigenstate, the wave function can be moved exactly from
ψ
0
to
ψ
f
in finite time. Moreover, we can control the position and the velocity of the well. Our proof uses moment theory, a Nash–Moser implicit function theorem, the return method and expansion to the second order. |
---|---|
AbstractList | We consider a nonrelativistic charged particle in a 1D moving potential well. This quantum system is subject to a control, which is the acceleration of the well. It is represented by a wave function solution of a Schrödinger equation, the position of the well together with its velocity. We prove the following controllability result for this bilinear control system: given
ψ
0
close enough to an eigenstate and
ψ
f
close enough to another eigenstate, the wave function can be moved exactly from
ψ
0
to
ψ
f
in finite time. Moreover, we can control the position and the velocity of the well. Our proof uses moment theory, a Nash–Moser implicit function theorem, the return method and expansion to the second order. We consider a nonrelativistic charged particle in a 1D moving potential well. This quantum system is subject to a control, which is the acceleration of the well. It is represented by a wave function solution of a Schrödinger equation, the position of the well together with its velocity. We prove the following controllability result for this bilinear control system: given an initial condition close enough to an eigenstate and a target close enough to another eigenstate, the wave function can be moved exactly from the first one to the second one in finite time. Moreover, we can control the position and the velocity of the well. Our proof uses moment theory, a Nash-Moser implicit function theorem, the return method and expansion to the second order. |
Author | Coron, Jean-Michel Beauchard, Karine |
Author_xml | – sequence: 1 givenname: Karine surname: Beauchard fullname: Beauchard, Karine email: Karine.Beauchard@math.u-psud.fr organization: Département de Mathématique, Bât. 425, Université Paris-Sud, 91405 Orsay, France – sequence: 2 givenname: Jean-Michel surname: Coron fullname: Coron, Jean-Michel email: jean-Michel.Coron@math.u-psud.fr organization: Département de Mathématique, Bât. 425, Université Paris-Sud, 91405 Orsay, France |
BackLink | https://hal.science/hal-00825517$$DView record in HAL |
BookMark | eNp9kEFLwzAYhoMouE1_gLdePbR-Sdqkw4tjqBMGXvQc0vSrpmTNbLPJ_r0pEw8ednrh5X0--J4pOe98h4TcUMgoUHHXZm2jMwZQZMAzYPSMTCjMRQqy5OdkAsBYShkXl2Q6DC0ApSIvJuRh6bvQe-d0ZZ0Nh8Q3iU6-droLu02y1X2wxmFiu9hu_N52H8nWB-yC1S75RueuyEWj3YDXvzkj70-Pb8tVun59flku1qnhnIa0ohyERKikrBqdN_Na12UspWRNKWiMqqQoETmwHGtujBCa10XBhCgxZ3xGbo93P7VT295udH9QXlu1WqzV2AGUrCio3NO4pcet6f0w9Nj8ARTUqEu1KupSoy4FXEVdkZH_GGODDnbUo607Sd4fSYzv7y32ajAWO4O17dEEVXt7gv4BL1uFmA |
CitedBy_id | crossref_primary_10_1007_s00220_010_1008_9 crossref_primary_10_1016_j_automatica_2023_111028 crossref_primary_10_1088_1751_8113_44_13_135302 crossref_primary_10_3182_20080706_5_KR_1001_01477 crossref_primary_10_1142_S0219199706002209 crossref_primary_10_1137_140951618 crossref_primary_10_1016_j_matpur_2017_10_006 crossref_primary_10_1051_cocv_2016057 crossref_primary_10_3934_dcdsb_2021081 crossref_primary_10_1016_j_ifacol_2017_08_1104 crossref_primary_10_1016_j_jde_2008_11_004 crossref_primary_10_1016_j_anihpc_2009_01_005 crossref_primary_10_3934_mcrf_2014_4_45 crossref_primary_10_1007_s00023_021_01020_9 crossref_primary_10_1140_epjd_e2015_60464_1 crossref_primary_10_1051_cocv_2006014 crossref_primary_10_1051_cocv_2023077 crossref_primary_10_1016_j_anihpc_2008_09_006 crossref_primary_10_1016_j_crma_2010_09_002 crossref_primary_10_1016_j_physletb_2020_135610 crossref_primary_10_3182_20110828_6_IT_1002_03309 crossref_primary_10_1016_j_ifacol_2020_12_2588 crossref_primary_10_1016_j_anihpc_2013_05_001 crossref_primary_10_1137_130939328 crossref_primary_10_1137_050642034 crossref_primary_10_2140_apde_2017_10_281 crossref_primary_10_1137_070704204 crossref_primary_10_1016_j_anihpc_2007_11_003 crossref_primary_10_1007_s40435_018_0485_0 crossref_primary_10_1109_TAC_2012_2195862 crossref_primary_10_1137_17M1149869 crossref_primary_10_1088_1751_8121_aa98ab crossref_primary_10_1137_06065369X crossref_primary_10_5802_xups_1999_01 crossref_primary_10_1016_j_jde_2015_10_026 crossref_primary_10_1016_j_jde_2010_10_008 crossref_primary_10_1137_15M1041419 crossref_primary_10_1137_18M1212768 crossref_primary_10_1016_j_jfa_2017_09_016 crossref_primary_10_1016_j_matpur_2020_02_001 crossref_primary_10_1088_1751_8113_42_20_205301 crossref_primary_10_3934_mcrf_2012_2_247 crossref_primary_10_1137_22M1518980 crossref_primary_10_1093_imamci_dnad032 crossref_primary_10_1007_s00220_012_1441_z crossref_primary_10_1016_j_anihpc_2010_01_004 crossref_primary_10_1016_j_jde_2017_10_009 crossref_primary_10_1016_j_sysconle_2006_10_024 crossref_primary_10_1007_s00220_009_0842_0 crossref_primary_10_1016_j_jde_2014_02_004 crossref_primary_10_3182_20100901_3_IT_2016_00045 crossref_primary_10_1002_mma_5174 crossref_primary_10_1063_1_2992557 crossref_primary_10_1051_cocv_2007047 crossref_primary_10_1142_S0218202510004933 crossref_primary_10_1007_s11424_009_9194_2 crossref_primary_10_1016_j_anihpc_2008_05_001 crossref_primary_10_1007_s10946_021_09957_2 crossref_primary_10_1016_j_na_2014_04_017 crossref_primary_10_1088_1751_8121_ace505 crossref_primary_10_3934_mcrf_2014_4_125 crossref_primary_10_1137_23M1556034 crossref_primary_10_1016_j_ejcon_2016_05_004 crossref_primary_10_11948_2016054 crossref_primary_10_1063_5_0005399 crossref_primary_10_1007_s00030_022_00770_7 crossref_primary_10_1016_j_matpur_2014_04_002 crossref_primary_10_1007_s00220_014_2195_6 crossref_primary_10_3934_eect_2020075 crossref_primary_10_1088_0143_0807_34_3_569 crossref_primary_10_1109_LCSYS_2022_3162250 crossref_primary_10_1016_j_jfa_2024_110563 crossref_primary_10_1016_j_matpur_2010_04_001 crossref_primary_10_1137_17M1126424 crossref_primary_10_1137_17M1128885 crossref_primary_10_1137_20M1311442 crossref_primary_10_1007_s00023_025_01559_x crossref_primary_10_1016_j_ejcon_2020_06_010 crossref_primary_10_1137_120879701 crossref_primary_10_1016_j_jfa_2009_02_009 crossref_primary_10_1016_j_matpur_2017_07_002 crossref_primary_10_1016_j_automatica_2011_09_050 crossref_primary_10_1137_23M1597356 crossref_primary_10_1016_j_matpur_2011_11_005 crossref_primary_10_1007_s00245_022_09821_y crossref_primary_10_1080_03605300903540919 |
Cites_doi | 10.4171/JEMS/13 10.1051/cocv:1996102 10.1007/978-3-642-57237-1_4 10.1051/cocv:2002050 10.1016/S1474-6670(17)38906-1 10.1051/cocv:1998103 10.1007/BF01211563 10.1070/RM1999v054n03ABEH000153 10.5186/aasfm.1985.1028 10.1051/cocv:2000100 10.1016/S0022-0396(03)00066-4 10.1090/crmp/033/12 10.1016/j.matpur.2005.02.005 |
ContentType | Journal Article |
Copyright | 2005 Elsevier Inc. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2005 Elsevier Inc. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 6I. AAFTH AAYXX CITATION 1XC VOOES |
DOI | 10.1016/j.jfa.2005.03.021 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1096-0783 |
EndPage | 389 |
ExternalDocumentID | oai_HAL_hal_00825517v1 10_1016_j_jfa_2005_03_021 S0022123605001308 |
GroupedDBID | --K --M --Z -ET -~X .~1 0R~ 186 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6I. 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AASFE AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABTAH ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNCT ACRLP ADBBV ADEZE ADFGL ADIYS ADMUD AEBSH AEKER AENEX AETEA AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 D-I DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE IXB J1W KOM LG5 M25 M41 MCRUF MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OHT OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW SSZ T5K TN5 TWZ WH7 WUQ XOL XPP YQT ZCG ZMT ZU3 ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 1XC UMC VOOES |
ID | FETCH-LOGICAL-c331t-b13067e0b77bfa4f9dad8b13772f861772b81e7ee3024ed3cc66a3d552668e423 |
IEDL.DBID | .~1 |
ISSN | 0022-1236 |
IngestDate | Fri May 09 12:26:39 EDT 2025 Thu Apr 24 23:02:17 EDT 2025 Tue Jul 01 04:14:58 EDT 2025 Fri Feb 23 02:23:48 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | 35Q55 Controllability Schrödinger 93C20 Nash–Moser 93B05 Nash-Moser |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c331t-b13067e0b77bfa4f9dad8b13772f861772b81e7ee3024ed3cc66a3d552668e423 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0022123605001308 |
PageCount | 62 |
ParticipantIDs | hal_primary_oai_HAL_hal_00825517v1 crossref_primary_10_1016_j_jfa_2005_03_021 crossref_citationtrail_10_1016_j_jfa_2005_03_021 elsevier_sciencedirect_doi_10_1016_j_jfa_2005_03_021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-03-15 |
PublicationDateYYYYMMDD | 2006-03-15 |
PublicationDate_xml | – month: 03 year: 2006 text: 2006-03-15 day: 15 |
PublicationDecade | 2000 |
PublicationTitle | Journal of functional analysis |
PublicationYear | 2006 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Glass (bib10) 2000; 5 Horsin (bib14) 1998; 3 E. Zuazua, Remarks on the controllability of the Schrödinger equation, CRM Proceedings and Lecture Notes, vol. 33, 2003. K. Beauchard, Local controllability of a 1-D Schrödinger equation, Prépubl. Univ. Paris Sud, (accepted in Journal de Mathématiques Pures et Appliquées), 2004. A.V. Fursikov, O.Yu. Imanuvilov, Exact controllability of the Navier–Stokes and Boussinesq equations, Russian Math. Surveys 54 (3) (1999) 565–618; Uspekhi Mat. Nauk 54 (3) (1999) 565–618 (in Russian). Coron, Crépeau (bib7) 2004; 6 Hörmander (bib13) 1985 Coron (bib2) 1992; 5 Glass (bib11) 2003; 195 Coron (bib5) 1996; 1 Coron, Fursikov (bib8) 1996; 4 G. Turinici, On the controllability of bilinear quantum systems, in: M. Defranceschi, C. Le Bris (Eds.), Mathematical models and methods for ab initio quantum chemistry. Lecture Notes in Chem. Vol. 74, Springer, Berlin, 2000, pp. 75–92. Kato (bib15) 1966 P. Rouchon, Control of a quantum particule in a moving potential well, Second IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control, Seville, 2003. Coron (bib4) 1996; 75 Coron (bib3) 1993; 317 Coron (bib6) 2002; 8 Gromov (bib12) 1986 10.1016/j.jfa.2005.03.021_bib9 Glass (10.1016/j.jfa.2005.03.021_bib10) 2000; 5 Coron (10.1016/j.jfa.2005.03.021_bib2) 1992; 5 Gromov (10.1016/j.jfa.2005.03.021_bib12) 1986 10.1016/j.jfa.2005.03.021_bib1 Hörmander (10.1016/j.jfa.2005.03.021_bib13) 1985 Kato (10.1016/j.jfa.2005.03.021_bib15) 1966 10.1016/j.jfa.2005.03.021_bib17 10.1016/j.jfa.2005.03.021_bib18 Coron (10.1016/j.jfa.2005.03.021_bib3) 1993; 317 Coron (10.1016/j.jfa.2005.03.021_bib6) 2002; 8 Glass (10.1016/j.jfa.2005.03.021_bib11) 2003; 195 10.1016/j.jfa.2005.03.021_bib16 Coron (10.1016/j.jfa.2005.03.021_bib7) 2004; 6 Coron (10.1016/j.jfa.2005.03.021_bib8) 1996; 4 Coron (10.1016/j.jfa.2005.03.021_bib5) 1996; 1 Coron (10.1016/j.jfa.2005.03.021_bib4) 1996; 75 Horsin (10.1016/j.jfa.2005.03.021_bib14) 1998; 3 |
References_xml | – volume: 3 start-page: 83 year: 1998 end-page: 95 ident: bib14 article-title: On the controllability of the Burgers equation publication-title: ESAIM: COCV – year: 1966 ident: bib15 article-title: Perturbation Theory for Linear operators – volume: 1 start-page: 35 year: 1996 end-page: 75 ident: bib5 article-title: On the controllability of the 2-D incompressible Navier–Stokes equations with the Navier slip boundary conditions publication-title: ESAIM: COCV – year: 1986 ident: bib12 article-title: Partial Differential Relations – start-page: 255 year: 1985 end-page: 259 ident: bib13 article-title: On the Nash–Moser implicit function theorem publication-title: Ann. Acad. Sci. Fennicae – reference: P. Rouchon, Control of a quantum particule in a moving potential well, Second IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control, Seville, 2003. – volume: 5 start-page: 295 year: 1992 end-page: 312 ident: bib2 article-title: Global asymptotic stabilization for controllable systems without drift publication-title: Math. Control Signals Systems – volume: 317 start-page: 271 year: 1993 end-page: 276 ident: bib3 article-title: Contrôlabilité exacte frontière de l’équation d’Euler des fluides parfaits incompressibles bidimensionnels publication-title: C.R. Acad. Sci. Paris – volume: 8 start-page: 513 year: 2002 end-page: 554 ident: bib6 article-title: Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations publication-title: ESAIM: COCV – volume: 6 start-page: 367 year: 2004 end-page: 398 ident: bib7 article-title: Exact boundary controllability of a nonlinear KdV equation with critical lengths publication-title: J. European Math. Soc. – volume: 4 start-page: 429 year: 1996 end-page: 448 ident: bib8 article-title: Global exact controllability of the 2-D Navier–Stokes equations on a manifold without boundary publication-title: Russian Journal of Mathematical Physics – volume: 5 start-page: 1 year: 2000 end-page: 44 ident: bib10 article-title: Exact boundary controllability of 3-D Euler equation publication-title: ESAIM: COCV – reference: K. Beauchard, Local controllability of a 1-D Schrödinger equation, Prépubl. Univ. Paris Sud, (accepted in Journal de Mathématiques Pures et Appliquées), 2004. – reference: A.V. Fursikov, O.Yu. Imanuvilov, Exact controllability of the Navier–Stokes and Boussinesq equations, Russian Math. Surveys 54 (3) (1999) 565–618; Uspekhi Mat. Nauk 54 (3) (1999) 565–618 (in Russian). – volume: 75 start-page: 155 year: 1996 end-page: 188 ident: bib4 article-title: On the controllability of 2-D incompressible perfect fluids publication-title: J. Math. Pures Appl. – volume: 195 start-page: 332 year: 2003 end-page: 379 ident: bib11 article-title: On the controllability of the Vlasov–Poisson system publication-title: Journal of Differential Equations – reference: E. Zuazua, Remarks on the controllability of the Schrödinger equation, CRM Proceedings and Lecture Notes, vol. 33, 2003. – reference: G. Turinici, On the controllability of bilinear quantum systems, in: M. Defranceschi, C. Le Bris (Eds.), Mathematical models and methods for ab initio quantum chemistry. Lecture Notes in Chem. Vol. 74, Springer, Berlin, 2000, pp. 75–92. – volume: 6 start-page: 367 year: 2004 ident: 10.1016/j.jfa.2005.03.021_bib7 article-title: Exact boundary controllability of a nonlinear KdV equation with critical lengths publication-title: J. European Math. Soc. doi: 10.4171/JEMS/13 – volume: 1 start-page: 35 year: 1996 ident: 10.1016/j.jfa.2005.03.021_bib5 article-title: On the controllability of the 2-D incompressible Navier–Stokes equations with the Navier slip boundary conditions publication-title: ESAIM: COCV doi: 10.1051/cocv:1996102 – ident: 10.1016/j.jfa.2005.03.021_bib18 doi: 10.1007/978-3-642-57237-1_4 – volume: 8 start-page: 513 year: 2002 ident: 10.1016/j.jfa.2005.03.021_bib6 article-title: Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations publication-title: ESAIM: COCV doi: 10.1051/cocv:2002050 – ident: 10.1016/j.jfa.2005.03.021_bib16 doi: 10.1016/S1474-6670(17)38906-1 – volume: 3 start-page: 83 year: 1998 ident: 10.1016/j.jfa.2005.03.021_bib14 article-title: On the controllability of the Burgers equation publication-title: ESAIM: COCV doi: 10.1051/cocv:1998103 – volume: 5 start-page: 295 year: 1992 ident: 10.1016/j.jfa.2005.03.021_bib2 article-title: Global asymptotic stabilization for controllable systems without drift publication-title: Math. Control Signals Systems doi: 10.1007/BF01211563 – volume: 317 start-page: 271 year: 1993 ident: 10.1016/j.jfa.2005.03.021_bib3 article-title: Contrôlabilité exacte frontière de l’équation d’Euler des fluides parfaits incompressibles bidimensionnels publication-title: C.R. Acad. Sci. Paris – ident: 10.1016/j.jfa.2005.03.021_bib9 doi: 10.1070/RM1999v054n03ABEH000153 – start-page: 255 year: 1985 ident: 10.1016/j.jfa.2005.03.021_bib13 article-title: On the Nash–Moser implicit function theorem publication-title: Ann. Acad. Sci. Fennicae doi: 10.5186/aasfm.1985.1028 – volume: 75 start-page: 155 year: 1996 ident: 10.1016/j.jfa.2005.03.021_bib4 article-title: On the controllability of 2-D incompressible perfect fluids publication-title: J. Math. Pures Appl. – volume: 4 start-page: 429 year: 1996 ident: 10.1016/j.jfa.2005.03.021_bib8 article-title: Global exact controllability of the 2-D Navier–Stokes equations on a manifold without boundary publication-title: Russian Journal of Mathematical Physics – volume: 5 start-page: 1 year: 2000 ident: 10.1016/j.jfa.2005.03.021_bib10 article-title: Exact boundary controllability of 3-D Euler equation publication-title: ESAIM: COCV doi: 10.1051/cocv:2000100 – volume: 195 start-page: 332 year: 2003 ident: 10.1016/j.jfa.2005.03.021_bib11 article-title: On the controllability of the Vlasov–Poisson system publication-title: Journal of Differential Equations doi: 10.1016/S0022-0396(03)00066-4 – year: 1986 ident: 10.1016/j.jfa.2005.03.021_bib12 – ident: 10.1016/j.jfa.2005.03.021_bib17 doi: 10.1090/crmp/033/12 – ident: 10.1016/j.jfa.2005.03.021_bib1 doi: 10.1016/j.matpur.2005.02.005 – year: 1966 ident: 10.1016/j.jfa.2005.03.021_bib15 |
SSID | ssj0011645 |
Score | 2.1825974 |
Snippet | We consider a nonrelativistic charged particle in a 1D moving potential well. This quantum system is subject to a control, which is the acceleration of the... |
SourceID | hal crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 328 |
SubjectTerms | Analysis of PDEs Controllability Mathematics Nash–Moser Schrödinger |
Title | Controllability of a quantum particle in a moving potential well |
URI | https://dx.doi.org/10.1016/j.jfa.2005.03.021 https://hal.science/hal-00825517 |
Volume | 232 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7GuMAB8RTjMVWIE1K2pklfN8bE1AHbiUm7RWmbiE1bN6BD4sJvJ04fEgc4cKyVWKkT2Y5jf0bomqZx6klFsSd9DzPmpFiEicRBqEJFvNgOAygUHo29aMIepu60gfpVLQykVZa6v9DpRluXlG4pze56NoMaXwf0rvbHzfMbFPwy5sNZ73zVaR5EXwfcCjEcRlcvmybHa65EGVahHdshv9mmrZcqymqszmAf7ZXuotUrVnSAGjI7RLujGmv1_Qjd9ots80WBuP1prZQlrNeNFtlmaa3Ln7FmmaYuTfzAWq9ySBLSjCF0d4wmg_vnfoTLvgg4oZTkOCbg50s79v1YCabCVKRBDNCBjgq0R-I7cUCkLyXVBlimNEk8T9DUdbUxDqT2n05QM1tl8hRZMhTU1HFQmTDAHgQ0dyrsJFQOdAhvIbuSCE9K0HDoXbHgVXbYnGshQjNLl9uUayG20E09ZV0gZvw1mFVi5j-2nWuN_te0K70lNXuAyI56Txxo5s7rEv-DnP2P9znaKcIsFBP3AjXzt4281I5HHrfNyWqj7d7wMRrrr-H07htEMtVO |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELbaMgAD4inK00JMSKZJnOdGqahSaDu1UjcrD1u0atMAKRL_Hp_jRGKAgdWyT8nZuvt8vvsOoVuaxqnLBSUu91xi21ZKoiDhxA9EIEw3NgIfCoVHYzec2s8zZ9ZAvaoWBtIqte0vbbqy1nqko7XZyedzqPG1wO5KPK6e3_wm2pJowAUC_cHssX5KkPcBp6IMh-nV06ZK8lqISMdV6L1hmb85p-ZrFWZVbqe_j_Y0XsTd8pMOUINnh2h3VJOtfhyhh16Zbr4sKbe_8FrgCL9tpM42K5zrv8HzTI6uVAAB5-sCsoSkYIjdHaNp_2nSC4lujEASSs2CxCYAfW7EnheLyBZBGqV-DNyBlvAlJPGs2De5xzmVHpinNElcN6Kp40hv7HMJoE5QK1tn_BRhHkRUFXJQnthAPgh07jQykkBY0CK8jYxKIyzRrOHQvGLJqvSwBZNKhG6WDjMok0pso7t6SV5SZvw12a7UzH7sO5Mm_a9lN3JLavHAkR12hwzG1KXXMb1P8-x_sq_RdjgZDdlwMH45RztlzIUS07lAreJ9wy8lCiniK3XKvgFpINXq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controllability+of+a+quantum+particle+in+a+moving+potential+well&rft.jtitle=Journal+of+functional+analysis&rft.au=Beauchard%2C+Karine&rft.au=Coron%2C+Jean-Michel&rft.date=2006-03-15&rft.issn=0022-1236&rft.volume=232&rft.issue=2&rft.spage=328&rft.epage=389&rft_id=info:doi/10.1016%2Fj.jfa.2005.03.021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jfa_2005_03_021 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1236&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1236&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1236&client=summon |