Controllability of a quantum particle in a moving potential well

We consider a nonrelativistic charged particle in a 1D moving potential well. This quantum system is subject to a control, which is the acceleration of the well. It is represented by a wave function solution of a Schrödinger equation, the position of the well together with its velocity. We prove the...

Full description

Saved in:
Bibliographic Details
Published inJournal of functional analysis Vol. 232; no. 2; pp. 328 - 389
Main Authors Beauchard, Karine, Coron, Jean-Michel
Format Journal Article
LanguageEnglish
Published Elsevier Inc 15.03.2006
Elsevier
Subjects
Online AccessGet full text
ISSN0022-1236
1096-0783
DOI10.1016/j.jfa.2005.03.021

Cover

Loading…
Abstract We consider a nonrelativistic charged particle in a 1D moving potential well. This quantum system is subject to a control, which is the acceleration of the well. It is represented by a wave function solution of a Schrödinger equation, the position of the well together with its velocity. We prove the following controllability result for this bilinear control system: given ψ 0 close enough to an eigenstate and ψ f close enough to another eigenstate, the wave function can be moved exactly from ψ 0 to ψ f in finite time. Moreover, we can control the position and the velocity of the well. Our proof uses moment theory, a Nash–Moser implicit function theorem, the return method and expansion to the second order.
AbstractList We consider a nonrelativistic charged particle in a 1D moving potential well. This quantum system is subject to a control, which is the acceleration of the well. It is represented by a wave function solution of a Schrödinger equation, the position of the well together with its velocity. We prove the following controllability result for this bilinear control system: given ψ 0 close enough to an eigenstate and ψ f close enough to another eigenstate, the wave function can be moved exactly from ψ 0 to ψ f in finite time. Moreover, we can control the position and the velocity of the well. Our proof uses moment theory, a Nash–Moser implicit function theorem, the return method and expansion to the second order.
We consider a nonrelativistic charged particle in a 1D moving potential well. This quantum system is subject to a control, which is the acceleration of the well. It is represented by a wave function solution of a Schrödinger equation, the position of the well together with its velocity. We prove the following controllability result for this bilinear control system: given an initial condition close enough to an eigenstate and a target close enough to another eigenstate, the wave function can be moved exactly from the first one to the second one in finite time. Moreover, we can control the position and the velocity of the well. Our proof uses moment theory, a Nash-Moser implicit function theorem, the return method and expansion to the second order.
Author Coron, Jean-Michel
Beauchard, Karine
Author_xml – sequence: 1
  givenname: Karine
  surname: Beauchard
  fullname: Beauchard, Karine
  email: Karine.Beauchard@math.u-psud.fr
  organization: Département de Mathématique, Bât. 425, Université Paris-Sud, 91405 Orsay, France
– sequence: 2
  givenname: Jean-Michel
  surname: Coron
  fullname: Coron, Jean-Michel
  email: jean-Michel.Coron@math.u-psud.fr
  organization: Département de Mathématique, Bât. 425, Université Paris-Sud, 91405 Orsay, France
BackLink https://hal.science/hal-00825517$$DView record in HAL
BookMark eNp9kEFLwzAYhoMouE1_gLdePbR-Sdqkw4tjqBMGXvQc0vSrpmTNbLPJ_r0pEw8ednrh5X0--J4pOe98h4TcUMgoUHHXZm2jMwZQZMAzYPSMTCjMRQqy5OdkAsBYShkXl2Q6DC0ApSIvJuRh6bvQe-d0ZZ0Nh8Q3iU6-droLu02y1X2wxmFiu9hu_N52H8nWB-yC1S75RueuyEWj3YDXvzkj70-Pb8tVun59flku1qnhnIa0ohyERKikrBqdN_Na12UspWRNKWiMqqQoETmwHGtujBCa10XBhCgxZ3xGbo93P7VT295udH9QXlu1WqzV2AGUrCio3NO4pcet6f0w9Nj8ARTUqEu1KupSoy4FXEVdkZH_GGODDnbUo607Sd4fSYzv7y32ajAWO4O17dEEVXt7gv4BL1uFmA
CitedBy_id crossref_primary_10_1007_s00220_010_1008_9
crossref_primary_10_1016_j_automatica_2023_111028
crossref_primary_10_1088_1751_8113_44_13_135302
crossref_primary_10_3182_20080706_5_KR_1001_01477
crossref_primary_10_1142_S0219199706002209
crossref_primary_10_1137_140951618
crossref_primary_10_1016_j_matpur_2017_10_006
crossref_primary_10_1051_cocv_2016057
crossref_primary_10_3934_dcdsb_2021081
crossref_primary_10_1016_j_ifacol_2017_08_1104
crossref_primary_10_1016_j_jde_2008_11_004
crossref_primary_10_1016_j_anihpc_2009_01_005
crossref_primary_10_3934_mcrf_2014_4_45
crossref_primary_10_1007_s00023_021_01020_9
crossref_primary_10_1140_epjd_e2015_60464_1
crossref_primary_10_1051_cocv_2006014
crossref_primary_10_1051_cocv_2023077
crossref_primary_10_1016_j_anihpc_2008_09_006
crossref_primary_10_1016_j_crma_2010_09_002
crossref_primary_10_1016_j_physletb_2020_135610
crossref_primary_10_3182_20110828_6_IT_1002_03309
crossref_primary_10_1016_j_ifacol_2020_12_2588
crossref_primary_10_1016_j_anihpc_2013_05_001
crossref_primary_10_1137_130939328
crossref_primary_10_1137_050642034
crossref_primary_10_2140_apde_2017_10_281
crossref_primary_10_1137_070704204
crossref_primary_10_1016_j_anihpc_2007_11_003
crossref_primary_10_1007_s40435_018_0485_0
crossref_primary_10_1109_TAC_2012_2195862
crossref_primary_10_1137_17M1149869
crossref_primary_10_1088_1751_8121_aa98ab
crossref_primary_10_1137_06065369X
crossref_primary_10_5802_xups_1999_01
crossref_primary_10_1016_j_jde_2015_10_026
crossref_primary_10_1016_j_jde_2010_10_008
crossref_primary_10_1137_15M1041419
crossref_primary_10_1137_18M1212768
crossref_primary_10_1016_j_jfa_2017_09_016
crossref_primary_10_1016_j_matpur_2020_02_001
crossref_primary_10_1088_1751_8113_42_20_205301
crossref_primary_10_3934_mcrf_2012_2_247
crossref_primary_10_1137_22M1518980
crossref_primary_10_1093_imamci_dnad032
crossref_primary_10_1007_s00220_012_1441_z
crossref_primary_10_1016_j_anihpc_2010_01_004
crossref_primary_10_1016_j_jde_2017_10_009
crossref_primary_10_1016_j_sysconle_2006_10_024
crossref_primary_10_1007_s00220_009_0842_0
crossref_primary_10_1016_j_jde_2014_02_004
crossref_primary_10_3182_20100901_3_IT_2016_00045
crossref_primary_10_1002_mma_5174
crossref_primary_10_1063_1_2992557
crossref_primary_10_1051_cocv_2007047
crossref_primary_10_1142_S0218202510004933
crossref_primary_10_1007_s11424_009_9194_2
crossref_primary_10_1016_j_anihpc_2008_05_001
crossref_primary_10_1007_s10946_021_09957_2
crossref_primary_10_1016_j_na_2014_04_017
crossref_primary_10_1088_1751_8121_ace505
crossref_primary_10_3934_mcrf_2014_4_125
crossref_primary_10_1137_23M1556034
crossref_primary_10_1016_j_ejcon_2016_05_004
crossref_primary_10_11948_2016054
crossref_primary_10_1063_5_0005399
crossref_primary_10_1007_s00030_022_00770_7
crossref_primary_10_1016_j_matpur_2014_04_002
crossref_primary_10_1007_s00220_014_2195_6
crossref_primary_10_3934_eect_2020075
crossref_primary_10_1088_0143_0807_34_3_569
crossref_primary_10_1109_LCSYS_2022_3162250
crossref_primary_10_1016_j_jfa_2024_110563
crossref_primary_10_1016_j_matpur_2010_04_001
crossref_primary_10_1137_17M1126424
crossref_primary_10_1137_17M1128885
crossref_primary_10_1137_20M1311442
crossref_primary_10_1007_s00023_025_01559_x
crossref_primary_10_1016_j_ejcon_2020_06_010
crossref_primary_10_1137_120879701
crossref_primary_10_1016_j_jfa_2009_02_009
crossref_primary_10_1016_j_matpur_2017_07_002
crossref_primary_10_1016_j_automatica_2011_09_050
crossref_primary_10_1137_23M1597356
crossref_primary_10_1016_j_matpur_2011_11_005
crossref_primary_10_1007_s00245_022_09821_y
crossref_primary_10_1080_03605300903540919
Cites_doi 10.4171/JEMS/13
10.1051/cocv:1996102
10.1007/978-3-642-57237-1_4
10.1051/cocv:2002050
10.1016/S1474-6670(17)38906-1
10.1051/cocv:1998103
10.1007/BF01211563
10.1070/RM1999v054n03ABEH000153
10.5186/aasfm.1985.1028
10.1051/cocv:2000100
10.1016/S0022-0396(03)00066-4
10.1090/crmp/033/12
10.1016/j.matpur.2005.02.005
ContentType Journal Article
Copyright 2005 Elsevier Inc.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2005 Elsevier Inc.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 6I.
AAFTH
AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.jfa.2005.03.021
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1096-0783
EndPage 389
ExternalDocumentID oai_HAL_hal_00825517v1
10_1016_j_jfa_2005_03_021
S0022123605001308
GroupedDBID --K
--M
--Z
-ET
-~X
.~1
0R~
186
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADFGL
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AETEA
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG5
M25
M41
MCRUF
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OHT
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
TWZ
WH7
WUQ
XOL
XPP
YQT
ZCG
ZMT
ZU3
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
1XC
UMC
VOOES
ID FETCH-LOGICAL-c331t-b13067e0b77bfa4f9dad8b13772f861772b81e7ee3024ed3cc66a3d552668e423
IEDL.DBID .~1
ISSN 0022-1236
IngestDate Fri May 09 12:26:39 EDT 2025
Thu Apr 24 23:02:17 EDT 2025
Tue Jul 01 04:14:58 EDT 2025
Fri Feb 23 02:23:48 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 35Q55
Controllability
Schrödinger
93C20
Nash–Moser
93B05
Nash-Moser
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-b13067e0b77bfa4f9dad8b13772f861772b81e7ee3024ed3cc66a3d552668e423
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0022123605001308
PageCount 62
ParticipantIDs hal_primary_oai_HAL_hal_00825517v1
crossref_primary_10_1016_j_jfa_2005_03_021
crossref_citationtrail_10_1016_j_jfa_2005_03_021
elsevier_sciencedirect_doi_10_1016_j_jfa_2005_03_021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-03-15
PublicationDateYYYYMMDD 2006-03-15
PublicationDate_xml – month: 03
  year: 2006
  text: 2006-03-15
  day: 15
PublicationDecade 2000
PublicationTitle Journal of functional analysis
PublicationYear 2006
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Glass (bib10) 2000; 5
Horsin (bib14) 1998; 3
E. Zuazua, Remarks on the controllability of the Schrödinger equation, CRM Proceedings and Lecture Notes, vol. 33, 2003.
K. Beauchard, Local controllability of a 1-D Schrödinger equation, Prépubl. Univ. Paris Sud, (accepted in Journal de Mathématiques Pures et Appliquées), 2004.
A.V. Fursikov, O.Yu. Imanuvilov, Exact controllability of the Navier–Stokes and Boussinesq equations, Russian Math. Surveys 54 (3) (1999) 565–618; Uspekhi Mat. Nauk 54 (3) (1999) 565–618 (in Russian).
Coron, Crépeau (bib7) 2004; 6
Hörmander (bib13) 1985
Coron (bib2) 1992; 5
Glass (bib11) 2003; 195
Coron (bib5) 1996; 1
Coron, Fursikov (bib8) 1996; 4
G. Turinici, On the controllability of bilinear quantum systems, in: M. Defranceschi, C. Le Bris (Eds.), Mathematical models and methods for ab initio quantum chemistry. Lecture Notes in Chem. Vol. 74, Springer, Berlin, 2000, pp. 75–92.
Kato (bib15) 1966
P. Rouchon, Control of a quantum particule in a moving potential well, Second IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control, Seville, 2003.
Coron (bib4) 1996; 75
Coron (bib3) 1993; 317
Coron (bib6) 2002; 8
Gromov (bib12) 1986
10.1016/j.jfa.2005.03.021_bib9
Glass (10.1016/j.jfa.2005.03.021_bib10) 2000; 5
Coron (10.1016/j.jfa.2005.03.021_bib2) 1992; 5
Gromov (10.1016/j.jfa.2005.03.021_bib12) 1986
10.1016/j.jfa.2005.03.021_bib1
Hörmander (10.1016/j.jfa.2005.03.021_bib13) 1985
Kato (10.1016/j.jfa.2005.03.021_bib15) 1966
10.1016/j.jfa.2005.03.021_bib17
10.1016/j.jfa.2005.03.021_bib18
Coron (10.1016/j.jfa.2005.03.021_bib3) 1993; 317
Coron (10.1016/j.jfa.2005.03.021_bib6) 2002; 8
Glass (10.1016/j.jfa.2005.03.021_bib11) 2003; 195
10.1016/j.jfa.2005.03.021_bib16
Coron (10.1016/j.jfa.2005.03.021_bib7) 2004; 6
Coron (10.1016/j.jfa.2005.03.021_bib8) 1996; 4
Coron (10.1016/j.jfa.2005.03.021_bib5) 1996; 1
Coron (10.1016/j.jfa.2005.03.021_bib4) 1996; 75
Horsin (10.1016/j.jfa.2005.03.021_bib14) 1998; 3
References_xml – volume: 3
  start-page: 83
  year: 1998
  end-page: 95
  ident: bib14
  article-title: On the controllability of the Burgers equation
  publication-title: ESAIM: COCV
– year: 1966
  ident: bib15
  article-title: Perturbation Theory for Linear operators
– volume: 1
  start-page: 35
  year: 1996
  end-page: 75
  ident: bib5
  article-title: On the controllability of the 2-D incompressible Navier–Stokes equations with the Navier slip boundary conditions
  publication-title: ESAIM: COCV
– year: 1986
  ident: bib12
  article-title: Partial Differential Relations
– start-page: 255
  year: 1985
  end-page: 259
  ident: bib13
  article-title: On the Nash–Moser implicit function theorem
  publication-title: Ann. Acad. Sci. Fennicae
– reference: P. Rouchon, Control of a quantum particule in a moving potential well, Second IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control, Seville, 2003.
– volume: 5
  start-page: 295
  year: 1992
  end-page: 312
  ident: bib2
  article-title: Global asymptotic stabilization for controllable systems without drift
  publication-title: Math. Control Signals Systems
– volume: 317
  start-page: 271
  year: 1993
  end-page: 276
  ident: bib3
  article-title: Contrôlabilité exacte frontière de l’équation d’Euler des fluides parfaits incompressibles bidimensionnels
  publication-title: C.R. Acad. Sci. Paris
– volume: 8
  start-page: 513
  year: 2002
  end-page: 554
  ident: bib6
  article-title: Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations
  publication-title: ESAIM: COCV
– volume: 6
  start-page: 367
  year: 2004
  end-page: 398
  ident: bib7
  article-title: Exact boundary controllability of a nonlinear KdV equation with critical lengths
  publication-title: J. European Math. Soc.
– volume: 4
  start-page: 429
  year: 1996
  end-page: 448
  ident: bib8
  article-title: Global exact controllability of the 2-D Navier–Stokes equations on a manifold without boundary
  publication-title: Russian Journal of Mathematical Physics
– volume: 5
  start-page: 1
  year: 2000
  end-page: 44
  ident: bib10
  article-title: Exact boundary controllability of 3-D Euler equation
  publication-title: ESAIM: COCV
– reference: K. Beauchard, Local controllability of a 1-D Schrödinger equation, Prépubl. Univ. Paris Sud, (accepted in Journal de Mathématiques Pures et Appliquées), 2004.
– reference: A.V. Fursikov, O.Yu. Imanuvilov, Exact controllability of the Navier–Stokes and Boussinesq equations, Russian Math. Surveys 54 (3) (1999) 565–618; Uspekhi Mat. Nauk 54 (3) (1999) 565–618 (in Russian).
– volume: 75
  start-page: 155
  year: 1996
  end-page: 188
  ident: bib4
  article-title: On the controllability of 2-D incompressible perfect fluids
  publication-title: J. Math. Pures Appl.
– volume: 195
  start-page: 332
  year: 2003
  end-page: 379
  ident: bib11
  article-title: On the controllability of the Vlasov–Poisson system
  publication-title: Journal of Differential Equations
– reference: E. Zuazua, Remarks on the controllability of the Schrödinger equation, CRM Proceedings and Lecture Notes, vol. 33, 2003.
– reference: G. Turinici, On the controllability of bilinear quantum systems, in: M. Defranceschi, C. Le Bris (Eds.), Mathematical models and methods for ab initio quantum chemistry. Lecture Notes in Chem. Vol. 74, Springer, Berlin, 2000, pp. 75–92.
– volume: 6
  start-page: 367
  year: 2004
  ident: 10.1016/j.jfa.2005.03.021_bib7
  article-title: Exact boundary controllability of a nonlinear KdV equation with critical lengths
  publication-title: J. European Math. Soc.
  doi: 10.4171/JEMS/13
– volume: 1
  start-page: 35
  year: 1996
  ident: 10.1016/j.jfa.2005.03.021_bib5
  article-title: On the controllability of the 2-D incompressible Navier–Stokes equations with the Navier slip boundary conditions
  publication-title: ESAIM: COCV
  doi: 10.1051/cocv:1996102
– ident: 10.1016/j.jfa.2005.03.021_bib18
  doi: 10.1007/978-3-642-57237-1_4
– volume: 8
  start-page: 513
  year: 2002
  ident: 10.1016/j.jfa.2005.03.021_bib6
  article-title: Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations
  publication-title: ESAIM: COCV
  doi: 10.1051/cocv:2002050
– ident: 10.1016/j.jfa.2005.03.021_bib16
  doi: 10.1016/S1474-6670(17)38906-1
– volume: 3
  start-page: 83
  year: 1998
  ident: 10.1016/j.jfa.2005.03.021_bib14
  article-title: On the controllability of the Burgers equation
  publication-title: ESAIM: COCV
  doi: 10.1051/cocv:1998103
– volume: 5
  start-page: 295
  year: 1992
  ident: 10.1016/j.jfa.2005.03.021_bib2
  article-title: Global asymptotic stabilization for controllable systems without drift
  publication-title: Math. Control Signals Systems
  doi: 10.1007/BF01211563
– volume: 317
  start-page: 271
  year: 1993
  ident: 10.1016/j.jfa.2005.03.021_bib3
  article-title: Contrôlabilité exacte frontière de l’équation d’Euler des fluides parfaits incompressibles bidimensionnels
  publication-title: C.R. Acad. Sci. Paris
– ident: 10.1016/j.jfa.2005.03.021_bib9
  doi: 10.1070/RM1999v054n03ABEH000153
– start-page: 255
  year: 1985
  ident: 10.1016/j.jfa.2005.03.021_bib13
  article-title: On the Nash–Moser implicit function theorem
  publication-title: Ann. Acad. Sci. Fennicae
  doi: 10.5186/aasfm.1985.1028
– volume: 75
  start-page: 155
  year: 1996
  ident: 10.1016/j.jfa.2005.03.021_bib4
  article-title: On the controllability of 2-D incompressible perfect fluids
  publication-title: J. Math. Pures Appl.
– volume: 4
  start-page: 429
  year: 1996
  ident: 10.1016/j.jfa.2005.03.021_bib8
  article-title: Global exact controllability of the 2-D Navier–Stokes equations on a manifold without boundary
  publication-title: Russian Journal of Mathematical Physics
– volume: 5
  start-page: 1
  year: 2000
  ident: 10.1016/j.jfa.2005.03.021_bib10
  article-title: Exact boundary controllability of 3-D Euler equation
  publication-title: ESAIM: COCV
  doi: 10.1051/cocv:2000100
– volume: 195
  start-page: 332
  year: 2003
  ident: 10.1016/j.jfa.2005.03.021_bib11
  article-title: On the controllability of the Vlasov–Poisson system
  publication-title: Journal of Differential Equations
  doi: 10.1016/S0022-0396(03)00066-4
– year: 1986
  ident: 10.1016/j.jfa.2005.03.021_bib12
– ident: 10.1016/j.jfa.2005.03.021_bib17
  doi: 10.1090/crmp/033/12
– ident: 10.1016/j.jfa.2005.03.021_bib1
  doi: 10.1016/j.matpur.2005.02.005
– year: 1966
  ident: 10.1016/j.jfa.2005.03.021_bib15
SSID ssj0011645
Score 2.1825974
Snippet We consider a nonrelativistic charged particle in a 1D moving potential well. This quantum system is subject to a control, which is the acceleration of the...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 328
SubjectTerms Analysis of PDEs
Controllability
Mathematics
Nash–Moser
Schrödinger
Title Controllability of a quantum particle in a moving potential well
URI https://dx.doi.org/10.1016/j.jfa.2005.03.021
https://hal.science/hal-00825517
Volume 232
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7GuMAB8RTjMVWIE1K2pklfN8bE1AHbiUm7RWmbiE1bN6BD4sJvJ04fEgc4cKyVWKkT2Y5jf0bomqZx6klFsSd9DzPmpFiEicRBqEJFvNgOAygUHo29aMIepu60gfpVLQykVZa6v9DpRluXlG4pze56NoMaXwf0rvbHzfMbFPwy5sNZ73zVaR5EXwfcCjEcRlcvmybHa65EGVahHdshv9mmrZcqymqszmAf7ZXuotUrVnSAGjI7RLujGmv1_Qjd9ots80WBuP1prZQlrNeNFtlmaa3Ln7FmmaYuTfzAWq9ySBLSjCF0d4wmg_vnfoTLvgg4oZTkOCbg50s79v1YCabCVKRBDNCBjgq0R-I7cUCkLyXVBlimNEk8T9DUdbUxDqT2n05QM1tl8hRZMhTU1HFQmTDAHgQ0dyrsJFQOdAhvIbuSCE9K0HDoXbHgVXbYnGshQjNLl9uUayG20E09ZV0gZvw1mFVi5j-2nWuN_te0K70lNXuAyI56Txxo5s7rEv-DnP2P9znaKcIsFBP3AjXzt4281I5HHrfNyWqj7d7wMRrrr-H07htEMtVO
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELbaMgAD4inK00JMSKZJnOdGqahSaDu1UjcrD1u0atMAKRL_Hp_jRGKAgdWyT8nZuvt8vvsOoVuaxqnLBSUu91xi21ZKoiDhxA9EIEw3NgIfCoVHYzec2s8zZ9ZAvaoWBtIqte0vbbqy1nqko7XZyedzqPG1wO5KPK6e3_wm2pJowAUC_cHssX5KkPcBp6IMh-nV06ZK8lqISMdV6L1hmb85p-ZrFWZVbqe_j_Y0XsTd8pMOUINnh2h3VJOtfhyhh16Zbr4sKbe_8FrgCL9tpM42K5zrv8HzTI6uVAAB5-sCsoSkYIjdHaNp_2nSC4lujEASSs2CxCYAfW7EnheLyBZBGqV-DNyBlvAlJPGs2De5xzmVHpinNElcN6Kp40hv7HMJoE5QK1tn_BRhHkRUFXJQnthAPgh07jQykkBY0CK8jYxKIyzRrOHQvGLJqvSwBZNKhG6WDjMok0pso7t6SV5SZvw12a7UzH7sO5Mm_a9lN3JLavHAkR12hwzG1KXXMb1P8-x_sq_RdjgZDdlwMH45RztlzIUS07lAreJ9wy8lCiniK3XKvgFpINXq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controllability+of+a+quantum+particle+in+a+moving+potential+well&rft.jtitle=Journal+of+functional+analysis&rft.au=Beauchard%2C+Karine&rft.au=Coron%2C+Jean-Michel&rft.date=2006-03-15&rft.issn=0022-1236&rft.volume=232&rft.issue=2&rft.spage=328&rft.epage=389&rft_id=info:doi/10.1016%2Fj.jfa.2005.03.021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jfa_2005_03_021
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1236&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1236&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1236&client=summon