The effect of charge mode transition on electrohydrodynamic flow in a multistage negative air corona discharge

We study the electrohydrodynamic (EHD) flow induced by a multistage negative air corona discharge with two main subjects: unipolar-to-bipolar charge mode transition, mechanism of EHD flow. Charge mode transition is identified through the maximum-current-based numerical analysis of a six-stage cylind...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. D, Applied physics Vol. 45; no. 46; pp. 465204 - 1-10
Main Authors Kim, C, Hwang, J
Format Journal Article
LanguageEnglish
Published IOP Publishing 21.11.2012
Subjects
Online AccessGet full text
ISSN0022-3727
1361-6463
DOI10.1088/0022-3727/45/46/465204

Cover

Loading…
Abstract We study the electrohydrodynamic (EHD) flow induced by a multistage negative air corona discharge with two main subjects: unipolar-to-bipolar charge mode transition, mechanism of EHD flow. Charge mode transition is identified through the maximum-current-based numerical analysis of a six-stage cylindrical ionic wind generator, and confirmed by the experimental data. After formulating the degree of charge mode transition β, we discuss how β affects the electric-to-kinetic energy conversion efficiency and the thrust performance of the EHD flow. We suggest 35 Td of reduced electric field on the collector surface as the occurrence criterion of charge mode transition. As an essential feature of the multistage EHD flow, the highest negative pressure is created in the intake. Accordingly, air is drawn into the intake and subsequent flow climbs up a positive static pressure slope, and exhausted into the atmosphere with a high linearity. We explain the physical mechanism of this interesting flow pattern using the first-principle based analysis.
AbstractList We study the electrohydrodynamic (EHD) flow induced by a multistage negative air corona discharge with two main subjects: unipolar-to-bipolar charge mode transition, mechanism of EHD flow. Charge mode transition is identified through the maximum-current-based numerical analysis of a six-stage cylindrical ionic wind generator, and confirmed by the experimental data. After formulating the degree of charge mode transition beta , we discuss how beta affects the electric-to-kinetic energy conversion efficiency and the thrust performance of the EHD flow. We suggest 35 Td of reduced electric field on the collector surface as the occurrence criterion of charge mode transition. As an essential feature of the multistage EHD flow, the highest negative pressure is created in the intake. Accordingly, air is drawn into the intake and subsequent flow climbs up a positive static pressure slope, and exhausted into the atmosphere with a high linearity. We explain the physical mechanism of this interesting flow pattern using the first-principle based analysis.
We study the electrohydrodynamic (EHD) flow induced by a multistage negative air corona discharge with two main subjects: unipolar-to-bipolar charge mode transition, mechanism of EHD flow. Charge mode transition is identified through the maximum-current-based numerical analysis of a six-stage cylindrical ionic wind generator, and confirmed by the experimental data. After formulating the degree of charge mode transition β , we discuss how β affects the electric-to-kinetic energy conversion efficiency and the thrust performance of the EHD flow. We suggest 35 Td of reduced electric field on the collector surface as the occurrence criterion of charge mode transition. As an essential feature of the multistage EHD flow, the highest negative pressure is created in the intake. Accordingly, air is drawn into the intake and subsequent flow climbs up a positive static pressure slope, and exhausted into the atmosphere with a high linearity. We explain the physical mechanism of this interesting flow pattern using the first-principle based analysis.
We study the electrohydrodynamic (EHD) flow induced by a multistage negative air corona discharge with two main subjects: unipolar-to-bipolar charge mode transition, mechanism of EHD flow. Charge mode transition is identified through the maximum-current-based numerical analysis of a six-stage cylindrical ionic wind generator, and confirmed by the experimental data. After formulating the degree of charge mode transition β, we discuss how β affects the electric-to-kinetic energy conversion efficiency and the thrust performance of the EHD flow. We suggest 35 Td of reduced electric field on the collector surface as the occurrence criterion of charge mode transition. As an essential feature of the multistage EHD flow, the highest negative pressure is created in the intake. Accordingly, air is drawn into the intake and subsequent flow climbs up a positive static pressure slope, and exhausted into the atmosphere with a high linearity. We explain the physical mechanism of this interesting flow pattern using the first-principle based analysis.
Author Kim, C
Hwang, J
Author_xml – sequence: 1
  givenname: C
  surname: Kim
  fullname: Kim, C
  organization: Yonsei University School of Mechanical Engineering, 134 Sinchon-dong, Seodaemun-ku, Seoul 120-749, Republic of Korea
– sequence: 2
  givenname: J
  surname: Hwang
  fullname: Hwang, J
  email: hwangjh@yonsei.ac.kr
  organization: Yonsei University School of Mechanical Engineering, 134 Sinchon-dong, Seodaemun-ku, Seoul 120-749, Republic of Korea
BookMark eNqFkE1r3DAQhkVJoZu0f6Ho2Iu7-rItQy8lpGlhIZfkLMbyKKtgS1tJm7D_PloceuglMDCX93mZeS7JRYgBCfnK2XfOtN4yJkQje9FvVbtVXZ1WMPWBbLjseNOpTl6Qzb_QJ3KZ8xNjrO0035Bwv0eKzqEtNDpq95AekS5xQloShOyLj4HWwblGUtyfphSnU4DFW-rm-EJ9oECX41x8LlDZgI9Q_DNS8InamGIAOvm8Nn8mHx3MGb-87Svy8Ovm_vp3s7u7_XP9c9dYKXlpoG312LtRu6kfh85yBC6V1IiCje0Iyg2acwaoph6ERsUdk0I42w-WqRblFfm29h5S_HvEXMxST8B5hoDxmA0XusqQchhq9McatSnmnNAZ6wuc364C_Gw4M2fN5mzQnA0a1RrVmVVzxbv_8EPyC6TT-6BYQR8P5ikeU6hC3oNeAdKNk0k
CODEN JPAPBE
CitedBy_id crossref_primary_10_1007_s11090_014_9525_5
crossref_primary_10_1063_5_0143629
crossref_primary_10_1063_1_5007817
crossref_primary_10_1016_j_applthermaleng_2023_121556
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125643
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120210
crossref_primary_10_1016_j_ijheatmasstransfer_2017_05_079
crossref_primary_10_1063_5_0174944
crossref_primary_10_1063_5_0113670
crossref_primary_10_1063_1_4800012
crossref_primary_10_1038_s41598_022_18144_5
crossref_primary_10_1016_j_ijthermalsci_2022_107878
crossref_primary_10_1088_1009_0630_16_5_09
crossref_primary_10_1038_srep11738
Cites_doi 10.1063/1.4729443
10.1088/0022-3727/44/5/055201
10.1016/j.elstat.2005.09.005
10.1088/1009-0630/13/6/11
10.1016/S1359-4311(02)00082-0
10.1016/j.elstat.2009.09.001
10.1063/1.4725499
10.1088/0022-3727/41/3/035205
10.1016/j.elstat.2004.06.003
10.1063/1.3636409
10.1088/0022-3727/19/9/011
10.4209/aaqr.2010.03.0019
10.1088/0022-3727/41/6/065209
10.1109/JMEMS.2007.899336
10.1109/JRPROC.1939.228757
10.1063/1.3514131
10.1088/0022-3727/38/6/017
10.1016/j.jfoodeng.2006.09.016
10.1088/0022-3727/34/18/322
10.1063/1.330557
10.1088/0022-3727/40/3/S01
10.1016/j.elstat.2008.04.009
10.1063/1.3257694
10.1063/1.1710367
10.2514/3.4302
10.1088/0963-0252/13/2/008
10.1016/j.ijheatmasstransfer.2004.04.014
10.1016/j.elstat.2007.09.002
10.1016/0304-3886(86)90021-5
ContentType Journal Article
Copyright 2012 IOP Publishing Ltd
Copyright_xml – notice: 2012 IOP Publishing Ltd
DBID AAYXX
CITATION
7U5
8FD
L7M
DOI 10.1088/0022-3727/45/46/465204
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList Technology Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
DocumentTitleAlternate The effect of charge mode transition on electrohydrodynamic flow in a multistage negative air corona discharge
EISSN 1361-6463
EndPage 1-10
ExternalDocumentID 10_1088_0022_3727_45_46_465204
jphysd439888
GroupedDBID -ET
-~X
1JI
1WK
4.4
5B3
5GY
5PX
5VS
5ZH
6TJ
7.M
7.Q
9BW
AAGCD
AAGID
AAJIO
AAJKP
AALHV
AATNI
ABCXL
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFO
ACGFS
ACHIP
ACNCT
ADIYS
AEFHF
AFFNX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
FEDTE
HAK
HVGLF
IHE
IJHAN
IOP
IZVLO
JCGBZ
KOT
LAP
M45
N5L
N9A
NT-
NT.
P2P
PJBAE
Q02
RIN
RKQ
RNS
RO9
ROL
RPA
S3P
SY9
TAE
TN5
UCJ
W28
WH7
XPP
XSW
YQT
ZMT
AAYXX
ADEQX
AERVB
CITATION
7U5
8FD
AEINN
L7M
ID FETCH-LOGICAL-c331t-a558b7fb8fd7b96c1ea13438ee20b5ba4f98110ae4d7a28e41f0322fc79c045e3
IEDL.DBID IOP
ISSN 0022-3727
IngestDate Fri Sep 05 04:44:53 EDT 2025
Tue Jul 01 04:08:52 EDT 2025
Thu Apr 24 23:10:48 EDT 2025
Wed Aug 21 03:34:19 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 46
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-a558b7fb8fd7b96c1ea13438ee20b5ba4f98110ae4d7a28e41f0322fc79c045e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1283723399
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_1283723399
iop_journals_10_1088_0022_3727_45_46_465204
crossref_citationtrail_10_1088_0022_3727_45_46_465204
crossref_primary_10_1088_0022_3727_45_46_465204
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-11-21
PublicationDateYYYYMMDD 2012-11-21
PublicationDate_xml – month: 11
  year: 2012
  text: 2012-11-21
  day: 21
PublicationDecade 2010
PublicationTitle Journal of physics. D, Applied physics
PublicationTitleAbbrev JPhysD
PublicationTitleAlternate J. Phys. D: Appl. Phys
PublicationYear 2012
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Shockley (jphysd439888bib30) 1938; 9
Kim (jphysd439888bib09) 2011; 99
Colas (jphysd439888bib03) 2010; 108
Qiu (jphysd439888bib18) 2011; 13
Akishev (jphysd439888bib29) 2001; 34
Kim (jphysd439888bib16) 2010; 68
Martins (jphysd439888bib21) 2012; 19
Rashkovan (jphysd439888bib11) 2002; 22
Makrinich (jphysd439888bib04) 2009; 95
Kawamoto (jphysd439888bib13) 2005; 38
Christenson (jphysd439888bib06) 1967; 5
Callebaut (jphysd439888bib22) 2004; 13
Bondar (jphysd439888bib15) 1986; 19
Tsubone (jphysd439888bib05) 2008; 66
Sigmond (jphysd439888bib26) 1982; 53
Kawamoto (jphysd439888bib20) 2008; 66
Goodenough (jphysd439888bib14) 2007; 80
Kim (jphysd439888bib07) 2012; 100
Rickard (jphysd439888bib17) 2006; 64
Ramo (jphysd439888bib31) 1939; 27
Molki (jphysd439888bib10) 2004; 47
Hsu (jphysd439888bib12) 2007; 16
Matéo-Vélez (jphysd439888bib24) 2008; 41
Sigmond (jphysd439888bib27) 1986; 18
Zhao (jphysd439888bib19) 2005; 63
Moreau (jphysd439888bib02) 2007; 40
Meng (jphysd439888bib28) 2008; 41
Robinson (jphysd439888bib01) 1961; 80
Kim (jphysd439888bib25) 2010; 10
Wilson (jphysd439888bib08) 2009
Yanallah (jphysd439888bib23) 2011; 44
References_xml – volume: 100
  year: 2012
  ident: jphysd439888bib07
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4729443
– volume: 44
  year: 2011
  ident: jphysd439888bib23
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/44/5/055201
– volume: 64
  start-page: 368
  year: 2006
  ident: jphysd439888bib17
  publication-title: J. Electrostat.
  doi: 10.1016/j.elstat.2005.09.005
– volume: 13
  start-page: 693
  year: 2011
  ident: jphysd439888bib18
  publication-title: Plasma Sci. Technol.
  doi: 10.1088/1009-0630/13/6/11
– volume: 22
  start-page: 1587
  year: 2002
  ident: jphysd439888bib11
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/S1359-4311(02)00082-0
– volume: 68
  start-page: 36
  year: 2010
  ident: jphysd439888bib16
  publication-title: J. Electrostat.
  doi: 10.1016/j.elstat.2009.09.001
– volume: 19
  year: 2012
  ident: jphysd439888bib21
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4725499
– volume: 41
  year: 2008
  ident: jphysd439888bib24
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/41/3/035205
– volume: 63
  start-page: 337
  year: 2005
  ident: jphysd439888bib19
  publication-title: J. Electrostat.
  doi: 10.1016/j.elstat.2004.06.003
– volume: 99
  year: 2011
  ident: jphysd439888bib09
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3636409
– volume: 19
  start-page: 1657
  year: 1986
  ident: jphysd439888bib15
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/19/9/011
– volume: 10
  start-page: 446
  year: 2010
  ident: jphysd439888bib25
  publication-title: Aerosol Air Qual. Res.
  doi: 10.4209/aaqr.2010.03.0019
– year: 2009
  ident: jphysd439888bib08
– volume: 41
  year: 2008
  ident: jphysd439888bib28
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/41/6/065209
– volume: 16
  start-page: 809
  year: 2007
  ident: jphysd439888bib12
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2007.899336
– volume: 27
  start-page: 584
  year: 1939
  ident: jphysd439888bib31
  publication-title: Proc. IRE
  doi: 10.1109/JRPROC.1939.228757
– volume: 108
  year: 2010
  ident: jphysd439888bib03
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3514131
– volume: 38
  start-page: 887
  year: 2005
  ident: jphysd439888bib13
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/38/6/017
– volume: 80
  start-page: 143
  year: 1961
  ident: jphysd439888bib01
  publication-title: Trans. Am. Inst. Electr. Eng.
– volume: 80
  start-page: 1233
  year: 2007
  ident: jphysd439888bib14
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2006.09.016
– volume: 34
  start-page: 2875
  year: 2001
  ident: jphysd439888bib29
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/34/18/322
– volume: 53
  start-page: 891
  year: 1982
  ident: jphysd439888bib26
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.330557
– volume: 40
  start-page: 605
  year: 2007
  ident: jphysd439888bib02
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/40/3/S01
– volume: 66
  start-page: 445
  year: 2008
  ident: jphysd439888bib20
  publication-title: J. Electrostat.
  doi: 10.1016/j.elstat.2008.04.009
– volume: 95
  year: 2009
  ident: jphysd439888bib04
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3257694
– volume: 9
  start-page: 635
  year: 1938
  ident: jphysd439888bib30
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1710367
– volume: 5
  start-page: 1768
  year: 1967
  ident: jphysd439888bib06
  publication-title: AIAA J.
  doi: 10.2514/3.4302
– volume: 13
  start-page: 245
  year: 2004
  ident: jphysd439888bib22
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/0963-0252/13/2/008
– volume: 47
  start-page: 4301
  year: 2004
  ident: jphysd439888bib10
  publication-title: J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2004.04.014
– volume: 66
  start-page: 115
  year: 2008
  ident: jphysd439888bib05
  publication-title: J. Electrostat.
  doi: 10.1016/j.elstat.2007.09.002
– volume: 18
  start-page: 249
  year: 1986
  ident: jphysd439888bib27
  publication-title: J. Electrostat.
  doi: 10.1016/0304-3886(86)90021-5
SSID ssj0005681
Score 2.1492002
Snippet We study the electrohydrodynamic (EHD) flow induced by a multistage negative air corona discharge with two main subjects: unipolar-to-bipolar charge mode...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 465204
SubjectTerms Charge
Coronas
Electric charge
Electric fields
Electrohydrodynamics
Intakes
Linearity
Multistage
Title The effect of charge mode transition on electrohydrodynamic flow in a multistage negative air corona discharge
URI https://iopscience.iop.org/article/10.1088/0022-3727/45/46/465204
https://www.proquest.com/docview/1283723399
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEA_1SkEfbGsrnrYlhb7J3l2-s49SKrbQjwcF30KSTdqjdle8PeT8651kd61tKSJCHvZhJ2Qnycws85vfIPROUj8DN0gLohgvuNCkKKmL8KvilZSWViVPtcOfv8ijE_7pVAxowlwL05z3pn8Cjx1RcKfCHhCnpx0AHfzulIsplzAETYygj5mWMnVv-Pj122-Uh9TkhjAcZIYi4f_O84d_WoM1_GOks-c5fIrcsOYOcPJzsmzdxF_9Ref4oI96hjb7uBQfdALP0aNQb6GNW2yFW-hJRov6xQtUw-HCHRIENxFntqWAU1Md3Cbfl2FgGEbfZOfHqgI7vartr7nH8ay5xPMaW5zBjBCdgmwdvmcGcmznF9gnVgWLU8FwnvklOjn8cPz-qOgbNxSeMdIWVgjtVHQ6VsqV0pNgCeNMh0BnTjjLY6kh7LCBV8pSHTiJMzAs0avSQ4gZ2DYa1U0ddhDm0kamwAg5xbkjUduUZwSjIwSLrCrHSAzbZXzPap6aa5yZnF3X2iTNmqRZw4Xh0nSaHaPpjdx5x-txp8Q-bJ7pr_jizrffDqfGwIVNWRhbh2YJcolviDIIDHfvNeMeWodgjaY6SEpeoVF7sQyvISBq3Zt85K8BCk35vg
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbaIlA5tFCo6AuMxA1ls37GOVZtVy2P0gOVerNsx4YVJVl1s0Ll1zN2sgtthSqElEMOGSsZ2zNf5G--QeiNpG4IaZBmpGA840KRrKQ2wK-KK6Q0tCp5rB3-eCqPz_m7C3GxhI4WtTDNpA_9A7jthII7F_aEOJV3BHTIuzkXOZdwCTrk-aQKy-iBYJLFRgYnn85-Mz2kIgvRcLCbFwr_dawbOWoZ3uNOoE7ZZ7TesUSmSbQwkk6-DWatHbiftyQd__vDnqC1Hp_i_c7oKVry9QZ6_Idq4QZ6mFijbvoM1bDIcMcIwU3ASXXJ49hcB7cxByY6GIarb7bz9bqCeH1dm-9jh8Nl8wOPa2xwIjUCSgXb2n9JSuTYjK-wi-oKBsfC4TTyc3Q-Ovp8cJz1DRwyxxhpMyOEskWwKlSFLaUj3hDGmfKeDq2whodSAfwwnleFocpzEoYQYIIrSgdQ07NNtFI3tX-BMJcmsAKCkS04tyQoE88bIfgIwQKryi0k5lOmXa9uHptsXOp0yq6Ujt7V0buaC82l7ry7hfKF3aTT97jX4i1MoO63-vTep1_PV46GjRtPY0ztmxnYRd0hygAgbv_TiK_Qo7PDkf5wcvp-B60CfqOxNJKSXbTSXs38HmCk1r5MO-AXLr__Ig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effect+of+charge+mode+transition+on+electrohydrodynamic+flow+in+a+multistage+negative+air+corona+discharge&rft.jtitle=Journal+of+physics.+D%2C+Applied+physics&rft.au=Kim%2C+C&rft.au=Hwang%2C+J&rft.date=2012-11-21&rft.issn=0022-3727&rft.eissn=1361-6463&rft.volume=45&rft.issue=46&rft.spage=465204&rft_id=info:doi/10.1088%2F0022-3727%2F45%2F46%2F465204&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_0022_3727_45_46_465204
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3727&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3727&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3727&client=summon