The effect of charge mode transition on electrohydrodynamic flow in a multistage negative air corona discharge
We study the electrohydrodynamic (EHD) flow induced by a multistage negative air corona discharge with two main subjects: unipolar-to-bipolar charge mode transition, mechanism of EHD flow. Charge mode transition is identified through the maximum-current-based numerical analysis of a six-stage cylind...
Saved in:
Published in | Journal of physics. D, Applied physics Vol. 45; no. 46; pp. 465204 - 1-10 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
21.11.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-3727 1361-6463 |
DOI | 10.1088/0022-3727/45/46/465204 |
Cover
Loading…
Abstract | We study the electrohydrodynamic (EHD) flow induced by a multistage negative air corona discharge with two main subjects: unipolar-to-bipolar charge mode transition, mechanism of EHD flow. Charge mode transition is identified through the maximum-current-based numerical analysis of a six-stage cylindrical ionic wind generator, and confirmed by the experimental data. After formulating the degree of charge mode transition β, we discuss how β affects the electric-to-kinetic energy conversion efficiency and the thrust performance of the EHD flow. We suggest 35 Td of reduced electric field on the collector surface as the occurrence criterion of charge mode transition. As an essential feature of the multistage EHD flow, the highest negative pressure is created in the intake. Accordingly, air is drawn into the intake and subsequent flow climbs up a positive static pressure slope, and exhausted into the atmosphere with a high linearity. We explain the physical mechanism of this interesting flow pattern using the first-principle based analysis. |
---|---|
AbstractList | We study the electrohydrodynamic (EHD) flow induced by a multistage negative air corona discharge with two main subjects: unipolar-to-bipolar charge mode transition, mechanism of EHD flow. Charge mode transition is identified through the maximum-current-based numerical analysis of a six-stage cylindrical ionic wind generator, and confirmed by the experimental data. After formulating the degree of charge mode transition beta , we discuss how beta affects the electric-to-kinetic energy conversion efficiency and the thrust performance of the EHD flow. We suggest 35 Td of reduced electric field on the collector surface as the occurrence criterion of charge mode transition. As an essential feature of the multistage EHD flow, the highest negative pressure is created in the intake. Accordingly, air is drawn into the intake and subsequent flow climbs up a positive static pressure slope, and exhausted into the atmosphere with a high linearity. We explain the physical mechanism of this interesting flow pattern using the first-principle based analysis. We study the electrohydrodynamic (EHD) flow induced by a multistage negative air corona discharge with two main subjects: unipolar-to-bipolar charge mode transition, mechanism of EHD flow. Charge mode transition is identified through the maximum-current-based numerical analysis of a six-stage cylindrical ionic wind generator, and confirmed by the experimental data. After formulating the degree of charge mode transition β , we discuss how β affects the electric-to-kinetic energy conversion efficiency and the thrust performance of the EHD flow. We suggest 35 Td of reduced electric field on the collector surface as the occurrence criterion of charge mode transition. As an essential feature of the multistage EHD flow, the highest negative pressure is created in the intake. Accordingly, air is drawn into the intake and subsequent flow climbs up a positive static pressure slope, and exhausted into the atmosphere with a high linearity. We explain the physical mechanism of this interesting flow pattern using the first-principle based analysis. We study the electrohydrodynamic (EHD) flow induced by a multistage negative air corona discharge with two main subjects: unipolar-to-bipolar charge mode transition, mechanism of EHD flow. Charge mode transition is identified through the maximum-current-based numerical analysis of a six-stage cylindrical ionic wind generator, and confirmed by the experimental data. After formulating the degree of charge mode transition β, we discuss how β affects the electric-to-kinetic energy conversion efficiency and the thrust performance of the EHD flow. We suggest 35 Td of reduced electric field on the collector surface as the occurrence criterion of charge mode transition. As an essential feature of the multistage EHD flow, the highest negative pressure is created in the intake. Accordingly, air is drawn into the intake and subsequent flow climbs up a positive static pressure slope, and exhausted into the atmosphere with a high linearity. We explain the physical mechanism of this interesting flow pattern using the first-principle based analysis. |
Author | Kim, C Hwang, J |
Author_xml | – sequence: 1 givenname: C surname: Kim fullname: Kim, C organization: Yonsei University School of Mechanical Engineering, 134 Sinchon-dong, Seodaemun-ku, Seoul 120-749, Republic of Korea – sequence: 2 givenname: J surname: Hwang fullname: Hwang, J email: hwangjh@yonsei.ac.kr organization: Yonsei University School of Mechanical Engineering, 134 Sinchon-dong, Seodaemun-ku, Seoul 120-749, Republic of Korea |
BookMark | eNqFkE1r3DAQhkVJoZu0f6Ho2Iu7-rItQy8lpGlhIZfkLMbyKKtgS1tJm7D_PloceuglMDCX93mZeS7JRYgBCfnK2XfOtN4yJkQje9FvVbtVXZ1WMPWBbLjseNOpTl6Qzb_QJ3KZ8xNjrO0035Bwv0eKzqEtNDpq95AekS5xQloShOyLj4HWwblGUtyfphSnU4DFW-rm-EJ9oECX41x8LlDZgI9Q_DNS8InamGIAOvm8Nn8mHx3MGb-87Svy8Ovm_vp3s7u7_XP9c9dYKXlpoG312LtRu6kfh85yBC6V1IiCje0Iyg2acwaoph6ERsUdk0I42w-WqRblFfm29h5S_HvEXMxST8B5hoDxmA0XusqQchhq9McatSnmnNAZ6wuc364C_Gw4M2fN5mzQnA0a1RrVmVVzxbv_8EPyC6TT-6BYQR8P5ikeU6hC3oNeAdKNk0k |
CODEN | JPAPBE |
CitedBy_id | crossref_primary_10_1007_s11090_014_9525_5 crossref_primary_10_1063_5_0143629 crossref_primary_10_1063_1_5007817 crossref_primary_10_1016_j_applthermaleng_2023_121556 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125643 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120210 crossref_primary_10_1016_j_ijheatmasstransfer_2017_05_079 crossref_primary_10_1063_5_0174944 crossref_primary_10_1063_5_0113670 crossref_primary_10_1063_1_4800012 crossref_primary_10_1038_s41598_022_18144_5 crossref_primary_10_1016_j_ijthermalsci_2022_107878 crossref_primary_10_1088_1009_0630_16_5_09 crossref_primary_10_1038_srep11738 |
Cites_doi | 10.1063/1.4729443 10.1088/0022-3727/44/5/055201 10.1016/j.elstat.2005.09.005 10.1088/1009-0630/13/6/11 10.1016/S1359-4311(02)00082-0 10.1016/j.elstat.2009.09.001 10.1063/1.4725499 10.1088/0022-3727/41/3/035205 10.1016/j.elstat.2004.06.003 10.1063/1.3636409 10.1088/0022-3727/19/9/011 10.4209/aaqr.2010.03.0019 10.1088/0022-3727/41/6/065209 10.1109/JMEMS.2007.899336 10.1109/JRPROC.1939.228757 10.1063/1.3514131 10.1088/0022-3727/38/6/017 10.1016/j.jfoodeng.2006.09.016 10.1088/0022-3727/34/18/322 10.1063/1.330557 10.1088/0022-3727/40/3/S01 10.1016/j.elstat.2008.04.009 10.1063/1.3257694 10.1063/1.1710367 10.2514/3.4302 10.1088/0963-0252/13/2/008 10.1016/j.ijheatmasstransfer.2004.04.014 10.1016/j.elstat.2007.09.002 10.1016/0304-3886(86)90021-5 |
ContentType | Journal Article |
Copyright | 2012 IOP Publishing Ltd |
Copyright_xml | – notice: 2012 IOP Publishing Ltd |
DBID | AAYXX CITATION 7U5 8FD L7M |
DOI | 10.1088/0022-3727/45/46/465204 |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
DocumentTitleAlternate | The effect of charge mode transition on electrohydrodynamic flow in a multistage negative air corona discharge |
EISSN | 1361-6463 |
EndPage | 1-10 |
ExternalDocumentID | 10_1088_0022_3727_45_46_465204 jphysd439888 |
GroupedDBID | -ET -~X 1JI 1WK 4.4 5B3 5GY 5PX 5VS 5ZH 6TJ 7.M 7.Q 9BW AAGCD AAGID AAJIO AAJKP AALHV AATNI ABCXL ABHWH ABJNI ABQJV ABVAM ACAFW ACGFO ACGFS ACHIP ACNCT ADIYS AEFHF AFFNX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS EDWGO EJD EMSAF EPQRW EQZZN F5P FEDTE HAK HVGLF IHE IJHAN IOP IZVLO JCGBZ KOT LAP M45 N5L N9A NT- NT. P2P PJBAE Q02 RIN RKQ RNS RO9 ROL RPA S3P SY9 TAE TN5 UCJ W28 WH7 XPP XSW YQT ZMT AAYXX ADEQX AERVB CITATION 7U5 8FD AEINN L7M |
ID | FETCH-LOGICAL-c331t-a558b7fb8fd7b96c1ea13438ee20b5ba4f98110ae4d7a28e41f0322fc79c045e3 |
IEDL.DBID | IOP |
ISSN | 0022-3727 |
IngestDate | Fri Sep 05 04:44:53 EDT 2025 Tue Jul 01 04:08:52 EDT 2025 Thu Apr 24 23:10:48 EDT 2025 Wed Aug 21 03:34:19 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 46 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c331t-a558b7fb8fd7b96c1ea13438ee20b5ba4f98110ae4d7a28e41f0322fc79c045e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1283723399 |
PQPubID | 23500 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1283723399 iop_journals_10_1088_0022_3727_45_46_465204 crossref_citationtrail_10_1088_0022_3727_45_46_465204 crossref_primary_10_1088_0022_3727_45_46_465204 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-11-21 |
PublicationDateYYYYMMDD | 2012-11-21 |
PublicationDate_xml | – month: 11 year: 2012 text: 2012-11-21 day: 21 |
PublicationDecade | 2010 |
PublicationTitle | Journal of physics. D, Applied physics |
PublicationTitleAbbrev | JPhysD |
PublicationTitleAlternate | J. Phys. D: Appl. Phys |
PublicationYear | 2012 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Shockley (jphysd439888bib30) 1938; 9 Kim (jphysd439888bib09) 2011; 99 Colas (jphysd439888bib03) 2010; 108 Qiu (jphysd439888bib18) 2011; 13 Akishev (jphysd439888bib29) 2001; 34 Kim (jphysd439888bib16) 2010; 68 Martins (jphysd439888bib21) 2012; 19 Rashkovan (jphysd439888bib11) 2002; 22 Makrinich (jphysd439888bib04) 2009; 95 Kawamoto (jphysd439888bib13) 2005; 38 Christenson (jphysd439888bib06) 1967; 5 Callebaut (jphysd439888bib22) 2004; 13 Bondar (jphysd439888bib15) 1986; 19 Tsubone (jphysd439888bib05) 2008; 66 Sigmond (jphysd439888bib26) 1982; 53 Kawamoto (jphysd439888bib20) 2008; 66 Goodenough (jphysd439888bib14) 2007; 80 Kim (jphysd439888bib07) 2012; 100 Rickard (jphysd439888bib17) 2006; 64 Ramo (jphysd439888bib31) 1939; 27 Molki (jphysd439888bib10) 2004; 47 Hsu (jphysd439888bib12) 2007; 16 Matéo-Vélez (jphysd439888bib24) 2008; 41 Sigmond (jphysd439888bib27) 1986; 18 Zhao (jphysd439888bib19) 2005; 63 Moreau (jphysd439888bib02) 2007; 40 Meng (jphysd439888bib28) 2008; 41 Robinson (jphysd439888bib01) 1961; 80 Kim (jphysd439888bib25) 2010; 10 Wilson (jphysd439888bib08) 2009 Yanallah (jphysd439888bib23) 2011; 44 |
References_xml | – volume: 100 year: 2012 ident: jphysd439888bib07 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4729443 – volume: 44 year: 2011 ident: jphysd439888bib23 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/44/5/055201 – volume: 64 start-page: 368 year: 2006 ident: jphysd439888bib17 publication-title: J. Electrostat. doi: 10.1016/j.elstat.2005.09.005 – volume: 13 start-page: 693 year: 2011 ident: jphysd439888bib18 publication-title: Plasma Sci. Technol. doi: 10.1088/1009-0630/13/6/11 – volume: 22 start-page: 1587 year: 2002 ident: jphysd439888bib11 publication-title: Appl. Therm. Eng. doi: 10.1016/S1359-4311(02)00082-0 – volume: 68 start-page: 36 year: 2010 ident: jphysd439888bib16 publication-title: J. Electrostat. doi: 10.1016/j.elstat.2009.09.001 – volume: 19 year: 2012 ident: jphysd439888bib21 publication-title: Phys. Plasmas doi: 10.1063/1.4725499 – volume: 41 year: 2008 ident: jphysd439888bib24 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/41/3/035205 – volume: 63 start-page: 337 year: 2005 ident: jphysd439888bib19 publication-title: J. Electrostat. doi: 10.1016/j.elstat.2004.06.003 – volume: 99 year: 2011 ident: jphysd439888bib09 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3636409 – volume: 19 start-page: 1657 year: 1986 ident: jphysd439888bib15 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/19/9/011 – volume: 10 start-page: 446 year: 2010 ident: jphysd439888bib25 publication-title: Aerosol Air Qual. Res. doi: 10.4209/aaqr.2010.03.0019 – year: 2009 ident: jphysd439888bib08 – volume: 41 year: 2008 ident: jphysd439888bib28 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/41/6/065209 – volume: 16 start-page: 809 year: 2007 ident: jphysd439888bib12 publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2007.899336 – volume: 27 start-page: 584 year: 1939 ident: jphysd439888bib31 publication-title: Proc. IRE doi: 10.1109/JRPROC.1939.228757 – volume: 108 year: 2010 ident: jphysd439888bib03 publication-title: J. Appl. Phys. doi: 10.1063/1.3514131 – volume: 38 start-page: 887 year: 2005 ident: jphysd439888bib13 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/38/6/017 – volume: 80 start-page: 143 year: 1961 ident: jphysd439888bib01 publication-title: Trans. Am. Inst. Electr. Eng. – volume: 80 start-page: 1233 year: 2007 ident: jphysd439888bib14 publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2006.09.016 – volume: 34 start-page: 2875 year: 2001 ident: jphysd439888bib29 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/34/18/322 – volume: 53 start-page: 891 year: 1982 ident: jphysd439888bib26 publication-title: J. Appl. Phys. doi: 10.1063/1.330557 – volume: 40 start-page: 605 year: 2007 ident: jphysd439888bib02 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/40/3/S01 – volume: 66 start-page: 445 year: 2008 ident: jphysd439888bib20 publication-title: J. Electrostat. doi: 10.1016/j.elstat.2008.04.009 – volume: 95 year: 2009 ident: jphysd439888bib04 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3257694 – volume: 9 start-page: 635 year: 1938 ident: jphysd439888bib30 publication-title: J. Appl. Phys. doi: 10.1063/1.1710367 – volume: 5 start-page: 1768 year: 1967 ident: jphysd439888bib06 publication-title: AIAA J. doi: 10.2514/3.4302 – volume: 13 start-page: 245 year: 2004 ident: jphysd439888bib22 publication-title: Plasma Sources Sci. Technol. doi: 10.1088/0963-0252/13/2/008 – volume: 47 start-page: 4301 year: 2004 ident: jphysd439888bib10 publication-title: J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2004.04.014 – volume: 66 start-page: 115 year: 2008 ident: jphysd439888bib05 publication-title: J. Electrostat. doi: 10.1016/j.elstat.2007.09.002 – volume: 18 start-page: 249 year: 1986 ident: jphysd439888bib27 publication-title: J. Electrostat. doi: 10.1016/0304-3886(86)90021-5 |
SSID | ssj0005681 |
Score | 2.1492002 |
Snippet | We study the electrohydrodynamic (EHD) flow induced by a multistage negative air corona discharge with two main subjects: unipolar-to-bipolar charge mode... |
SourceID | proquest crossref iop |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 465204 |
SubjectTerms | Charge Coronas Electric charge Electric fields Electrohydrodynamics Intakes Linearity Multistage |
Title | The effect of charge mode transition on electrohydrodynamic flow in a multistage negative air corona discharge |
URI | https://iopscience.iop.org/article/10.1088/0022-3727/45/46/465204 https://www.proquest.com/docview/1283723399 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEA_1SkEfbGsrnrYlhb7J3l2-s49SKrbQjwcF30KSTdqjdle8PeT8651kd61tKSJCHvZhJ2Qnycws85vfIPROUj8DN0gLohgvuNCkKKmL8KvilZSWViVPtcOfv8ijE_7pVAxowlwL05z3pn8Cjx1RcKfCHhCnpx0AHfzulIsplzAETYygj5mWMnVv-Pj122-Uh9TkhjAcZIYi4f_O84d_WoM1_GOks-c5fIrcsOYOcPJzsmzdxF_9Ref4oI96hjb7uBQfdALP0aNQb6GNW2yFW-hJRov6xQtUw-HCHRIENxFntqWAU1Md3Cbfl2FgGEbfZOfHqgI7vartr7nH8ay5xPMaW5zBjBCdgmwdvmcGcmznF9gnVgWLU8FwnvklOjn8cPz-qOgbNxSeMdIWVgjtVHQ6VsqV0pNgCeNMh0BnTjjLY6kh7LCBV8pSHTiJMzAs0avSQ4gZ2DYa1U0ddhDm0kamwAg5xbkjUduUZwSjIwSLrCrHSAzbZXzPap6aa5yZnF3X2iTNmqRZw4Xh0nSaHaPpjdx5x-txp8Q-bJ7pr_jizrffDqfGwIVNWRhbh2YJcolviDIIDHfvNeMeWodgjaY6SEpeoVF7sQyvISBq3Zt85K8BCk35vg |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbaIlA5tFCo6AuMxA1ls37GOVZtVy2P0gOVerNsx4YVJVl1s0Ll1zN2sgtthSqElEMOGSsZ2zNf5G--QeiNpG4IaZBmpGA840KRrKQ2wK-KK6Q0tCp5rB3-eCqPz_m7C3GxhI4WtTDNpA_9A7jthII7F_aEOJV3BHTIuzkXOZdwCTrk-aQKy-iBYJLFRgYnn85-Mz2kIgvRcLCbFwr_dawbOWoZ3uNOoE7ZZ7TesUSmSbQwkk6-DWatHbiftyQd__vDnqC1Hp_i_c7oKVry9QZ6_Idq4QZ6mFijbvoM1bDIcMcIwU3ASXXJ49hcB7cxByY6GIarb7bz9bqCeH1dm-9jh8Nl8wOPa2xwIjUCSgXb2n9JSuTYjK-wi-oKBsfC4TTyc3Q-Ovp8cJz1DRwyxxhpMyOEskWwKlSFLaUj3hDGmfKeDq2whodSAfwwnleFocpzEoYQYIIrSgdQ07NNtFI3tX-BMJcmsAKCkS04tyQoE88bIfgIwQKryi0k5lOmXa9uHptsXOp0yq6Ujt7V0buaC82l7ry7hfKF3aTT97jX4i1MoO63-vTep1_PV46GjRtPY0ztmxnYRd0hygAgbv_TiK_Qo7PDkf5wcvp-B60CfqOxNJKSXbTSXs38HmCk1r5MO-AXLr__Ig |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effect+of+charge+mode+transition+on+electrohydrodynamic+flow+in+a+multistage+negative+air+corona+discharge&rft.jtitle=Journal+of+physics.+D%2C+Applied+physics&rft.au=Kim%2C+C&rft.au=Hwang%2C+J&rft.date=2012-11-21&rft.issn=0022-3727&rft.eissn=1361-6463&rft.volume=45&rft.issue=46&rft.spage=465204&rft_id=info:doi/10.1088%2F0022-3727%2F45%2F46%2F465204&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_0022_3727_45_46_465204 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3727&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3727&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3727&client=summon |