Dynamic interaction analysis of suspended monorail vehicle and bridge subject to crosswinds
•A coupled wind- suspended monorail vehicle-bridge dynamic model is proposed.•A turbulent wind velocity field consisting of various velocities is simulated.•The effects of crosswinds on the ride comfort of vehicles are investigated. This paper develops a fully coupled wind-vehicle-bridge (WVB) inter...
Saved in:
Published in | Mechanical systems and signal processing Vol. 156; p. 107707 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin
Elsevier Ltd
01.07.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A coupled wind- suspended monorail vehicle-bridge dynamic model is proposed.•A turbulent wind velocity field consisting of various velocities is simulated.•The effects of crosswinds on the ride comfort of vehicles are investigated.
This paper develops a fully coupled wind-vehicle-bridge (WVB) interaction model to evaluate the dynamic performance and riding comfort of the suspended monorail vehicle-bridge system subject to turbulent crosswinds. The dynamic interactions between the vehicle and the bridge, the wind and the bridge, and the wind and the vehicle are considered in the model. The suspended monorail vehicle is modeled as a mass-spring-damper system and the motion equations of the multi-body system are derived. Through generating nonuniformity wind velocity fields consisting of various wind average velocities, an accurate approach to simulate the actual aerodynamic wind forces acting on the bridge and on moving vehicles is proposed. Further, a multi-span bridge is chosen as an example to illustrate the dynamic behaviors of the proposed WVB system. Results indicate that the turbulent crosswinds could have a great influence on the dynamic performance of the suspended monorail vehicle-bridge system, and it should be taken into account in the simulation of aerodynamic wind forces to guarantee the accurateness of vehicle vibration analysis. Besides, passengers could experience uncomfortable when vehicles pass through the bridge under strong turbulent crosswinds. |
---|---|
AbstractList | This paper develops a fully coupled wind-vehicle-bridge (WVB) interaction model to evaluate the dynamic performance and riding comfort of the suspended monorail vehicle-bridge system subject to turbulent crosswinds. The dynamic interactions between the vehicle and the bridge, the wind and the bridge, and the wind and the vehicle are considered in the model. The suspended monorail vehicle is modeled as a mass-spring-damper system and the motion equations of the multi-body system are derived. Through generating nonuniformity wind velocity fields consisting of various wind average velocities, an accurate approach to simulate the actual aerodynamic wind forces acting on the bridge and on moving vehicles is proposed. Further, a multi-span bridge is chosen as an example to illustrate the dynamic behaviors of the proposed WVB system. Results indicate that the turbulent crosswinds could have a great influence on the dynamic performance of the suspended monorail vehicle-bridge system, and it should be taken into account in the simulation of aerodynamic wind forces to guarantee the accurateness of vehicle vibration analysis. Besides, passengers could experience uncomfortable when vehicles pass through the bridge under strong turbulent crosswinds. •A coupled wind- suspended monorail vehicle-bridge dynamic model is proposed.•A turbulent wind velocity field consisting of various velocities is simulated.•The effects of crosswinds on the ride comfort of vehicles are investigated. This paper develops a fully coupled wind-vehicle-bridge (WVB) interaction model to evaluate the dynamic performance and riding comfort of the suspended monorail vehicle-bridge system subject to turbulent crosswinds. The dynamic interactions between the vehicle and the bridge, the wind and the bridge, and the wind and the vehicle are considered in the model. The suspended monorail vehicle is modeled as a mass-spring-damper system and the motion equations of the multi-body system are derived. Through generating nonuniformity wind velocity fields consisting of various wind average velocities, an accurate approach to simulate the actual aerodynamic wind forces acting on the bridge and on moving vehicles is proposed. Further, a multi-span bridge is chosen as an example to illustrate the dynamic behaviors of the proposed WVB system. Results indicate that the turbulent crosswinds could have a great influence on the dynamic performance of the suspended monorail vehicle-bridge system, and it should be taken into account in the simulation of aerodynamic wind forces to guarantee the accurateness of vehicle vibration analysis. Besides, passengers could experience uncomfortable when vehicles pass through the bridge under strong turbulent crosswinds. |
ArticleNumber | 107707 |
Author | Li, Yongle Bao, Yulong Cai, Chengbiao Zhu, Shengyang Zhai, Wanming |
Author_xml | – sequence: 1 givenname: Yulong surname: Bao fullname: Bao, Yulong organization: Train and Track Research Institute, State Key Laboratory of Traction Power, Southwest Jiaotong University, 610031 Chengdu, Sichuan, PR China – sequence: 2 givenname: Wanming surname: Zhai fullname: Zhai, Wanming email: wmzhai@swjtu.edu.cn organization: Train and Track Research Institute, State Key Laboratory of Traction Power, Southwest Jiaotong University, 610031 Chengdu, Sichuan, PR China – sequence: 3 givenname: Chengbiao surname: Cai fullname: Cai, Chengbiao organization: Train and Track Research Institute, State Key Laboratory of Traction Power, Southwest Jiaotong University, 610031 Chengdu, Sichuan, PR China – sequence: 4 givenname: Shengyang surname: Zhu fullname: Zhu, Shengyang organization: Train and Track Research Institute, State Key Laboratory of Traction Power, Southwest Jiaotong University, 610031 Chengdu, Sichuan, PR China – sequence: 5 givenname: Yongle surname: Li fullname: Li, Yongle organization: Department of Bridge Engineering, Southwest Jiaotong University, 610031 Chengdu, Sichuan, PR China |
BookMark | eNqFkD1PwzAQhi1UJErhF7BYYk45220cDwyofEqVWLoxWI59BUetXey0KP-etGVigOmk0_uc7n3OySDEgIRcMRgzYOVNM-7WOW_GHDjrN1KCPCFDBqosGGflgAyhqqpCcAln5DznBgDUBMohebvvgll7S31oMRnb-hioCWbVZZ9pXNK8zRsMDh1dxxCT8Su6ww9vV9jHHK2Td-_Yp-oGbUvbSG2KOX_54PIFOV2aVcbLnzkii8eHxey5mL8-vczu5oUVgrWFspOpFc5yp2o0SpUGTD2tpQIjJXJEYWvmKuuEqThIUFKxqeBgWQ1WoRiR6-PZTYqfW8ytbuI29RWy5lMmSqh4CX1KHFOH_xIu9Sb5tUmdZqD3EnWjDxL1XqI-Suwp9YuyvjV7Se1exT_s7ZHFvvvOY9LZegwWnU-9K-2i_5P_Bq8cko4 |
CitedBy_id | crossref_primary_10_1016_j_apm_2024_115696 crossref_primary_10_1016_j_dibe_2024_100569 crossref_primary_10_1007_s11071_021_07190_9 crossref_primary_10_1155_2022_7771358 crossref_primary_10_1016_j_jweia_2022_105289 crossref_primary_10_1142_S0219455421400095 crossref_primary_10_1007_s40534_022_00278_x crossref_primary_10_1016_j_soildyn_2024_108789 crossref_primary_10_1007_s11771_023_5403_8 crossref_primary_10_1063_5_0261117 crossref_primary_10_1016_j_istruc_2024_106324 crossref_primary_10_1155_2021_4960461 crossref_primary_10_1177_09544097221150822 crossref_primary_10_1007_s10409_023_23446_x crossref_primary_10_1016_j_measurement_2025_117101 crossref_primary_10_1088_1361_6501_ad0959 crossref_primary_10_1016_j_kscej_2024_100021 crossref_primary_10_1007_s12206_024_0106_0 crossref_primary_10_1080_00423114_2022_2093759 crossref_primary_10_1016_j_ymssp_2024_112283 crossref_primary_10_1142_S0219455423500219 crossref_primary_10_3390_app132011505 crossref_primary_10_3390_app12157442 crossref_primary_10_1142_S1758825121500964 crossref_primary_10_1177_13694332221145345 |
Cites_doi | 10.1061/(ASCE)BE.1943-5592.0001268 10.1016/j.ymssp.2020.106743 10.1016/j.jweia.2016.01.005 10.1080/00423110600886689 10.1016/j.jweia.2004.03.007 10.1080/00423114.2019.1577470 10.1016/j.jweia.2005.04.001 10.1016/j.jsv.2017.12.038 10.1080/00423114.2019.1605085 10.1016/j.compstruc.2008.04.007 10.1016/j.ymssp.2020.106865 10.1142/S0219455419500147 10.1061/(ASCE)BE.1943-5592.0000216 10.1016/j.ymssp.2018.08.062 10.1016/j.jweia.2012.04.006 10.1016/j.ymssp.2019.106568 10.1115/1.4042142 10.1007/s40534-020-00209-8 10.1016/S0045-7949(03)00261-X 10.1016/j.engstruct.2020.110430 10.1177/1369433219900302 10.1061/(ASCE)0733-9399(2000)126:1(1) 10.1080/00423114.2020.1828595 10.1177/1369433219830255 10.1016/j.jweia.2009.09.006 10.1080/00423114.2019.1668029 10.1016/j.jsv.2019.06.020 10.1061/(ASCE)BE.1943-5592.0001110 10.1080/23248378.2019.1632753 10.1016/j.jsv.2009.11.039 10.1016/j.engstruct.2019.109287 10.1080/23248378.2013.791498 10.1016/j.jweia.2004.03.009 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Jul 2021 |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Jul 2021 |
DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.ymssp.2021.107707 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1096-1216 |
ExternalDocumentID | 10_1016_j_ymssp_2021_107707 S0888327021001023 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG5 LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SPD SST SSV SSZ T5K WUQ XPP ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SC 7SP 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c331t-9c45c3dc2d9bea996a0ab5b790a77e2ee3cb1d8cd3a8207097915320c1b0c9e3 |
IEDL.DBID | .~1 |
ISSN | 0888-3270 |
IngestDate | Fri Jul 25 07:56:08 EDT 2025 Thu Apr 24 22:51:42 EDT 2025 Tue Jul 01 04:30:09 EDT 2025 Fri Feb 23 02:46:37 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Dynamic response Riding comfort Turbulent crosswind Wind-vehicle-bridge interaction Suspended monorail vehicle |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c331t-9c45c3dc2d9bea996a0ab5b790a77e2ee3cb1d8cd3a8207097915320c1b0c9e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2513608260 |
PQPubID | 2045429 |
ParticipantIDs | proquest_journals_2513608260 crossref_primary_10_1016_j_ymssp_2021_107707 crossref_citationtrail_10_1016_j_ymssp_2021_107707 elsevier_sciencedirect_doi_10_1016_j_ymssp_2021_107707 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2021 2021-07-00 20210701 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: July 2021 |
PublicationDecade | 2020 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin |
PublicationTitle | Mechanical systems and signal processing |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Montenegro, Barbosa, Carvalho (b0005) 2020; 211 Gutarevych (b0100) 2014; 9 Neto, Montenegro, Vale (b0135) 2020 Zhai, Xia, Cai (b0070) 2013; 1 Xu, Guo (b0095) 2004; 92 Bao, Xiang, Li (b0160) 2020; 23 Camara, Kavrakov, Nguyen, Morgenthal (b0055) 2019; 458 Bao, Xiang, Li, Yu, Wang (b0125) 2019; 22 Nguyen, Camara, Rio, Sparowitz (b0130) 2017; 22 Xia, Guo, Zhang, Sun (b0080) 2008; 86 Xu, Zhai (b0075) 2019; 14 Kim, Kawatani, Kanbara, Nishimura (b0010) 2013; 07 He, Cai, Zhu (b0115) 2020; 144 Gharad, Sonparote (b0035) 2020; 8 Jiang, Wu, Zeng, Wu, Zhang, Yang, Gao, Dai (b0120) 2021; 59 Liu, Tomasini, Rocchi (b0060) 2020; 142 Cheli, Corradi, Tomasini (b0170) 2012; 104-106 Cai, Chen (b0085) 2004; 92 Cai, He, Zhu (b0105) 2019; 118 Ti, Zhang, Li, Wei (b0015) 2019; 196 Cao, Xiang, Zhou (b0145) 2000; 126 Togbenou, Li, Chen, Liao (b0150) 2016; 151 Duan, Wang, Yau (b0040) 2019; 19 Baker (b0165) 2010; 98 Li, Qiang, Liao (b0180) 2005; 93 Y.L. Bao, W. Zhai, C.B. Cai, et al., Impact coefficient analysis of track beams due to moving suspended monorail vehicles. Vehicle. Syst. Dyn. (2020). DOI: 10.1080/00423114.2020.1828595. Cheli, Belforte, Melzi, Sabbioni, Tomasini (b0175) 2006; 44 Olmos, Astiz (b0020) 2018; 419 Zhai, Han, Chen (b0065) 2019; 57 GB/T 5599, Specification for dynamic performance assessment and testing verification of rolling stock, Beijing, 2019. Zhou, Xia, Chen (b0050) 2020; 139 Yau (b0025) 2010; 329 Chen, Cai (b0090) 2003; 81 He, Cai, Zhu, Wang, Wang, Zhai (b0110) 2020; 58 Gong, Zhu, Liu, Liu, Tang, Jiang (b0030) 2020; 28 Chen, Xu, Li, Wu (b0045) 2011; 16 J. Zhu, W. Zhang, M.X. Wu, Coupled dynamic analysis of the vehicle-bridge-wind-wave system, J. Bridge Eng. 23(8) (2018); 04018054. JTG/T 3360-01, Wind-resistant design specification for highway bridge, Beijing, 2018. Neto (10.1016/j.ymssp.2021.107707_b0135) 2020 Xu (10.1016/j.ymssp.2021.107707_b0075) 2019; 14 Yau (10.1016/j.ymssp.2021.107707_b0025) 2010; 329 10.1016/j.ymssp.2021.107707_b0155 Cai (10.1016/j.ymssp.2021.107707_b0105) 2019; 118 Li (10.1016/j.ymssp.2021.107707_b0180) 2005; 93 Liu (10.1016/j.ymssp.2021.107707_b0060) 2020; 142 Zhai (10.1016/j.ymssp.2021.107707_b0070) 2013; 1 Xia (10.1016/j.ymssp.2021.107707_b0080) 2008; 86 10.1016/j.ymssp.2021.107707_b0190 Nguyen (10.1016/j.ymssp.2021.107707_b0130) 2017; 22 Cao (10.1016/j.ymssp.2021.107707_b0145) 2000; 126 Jiang (10.1016/j.ymssp.2021.107707_b0120) 2021; 59 Gharad (10.1016/j.ymssp.2021.107707_b0035) 2020; 8 Chen (10.1016/j.ymssp.2021.107707_b0090) 2003; 81 Cai (10.1016/j.ymssp.2021.107707_b0085) 2004; 92 Kim (10.1016/j.ymssp.2021.107707_b0010) 2013; 07 Zhai (10.1016/j.ymssp.2021.107707_b0065) 2019; 57 Bao (10.1016/j.ymssp.2021.107707_b0125) 2019; 22 He (10.1016/j.ymssp.2021.107707_b0110) 2020; 58 Cheli (10.1016/j.ymssp.2021.107707_b0170) 2012; 104-106 Montenegro (10.1016/j.ymssp.2021.107707_b0005) 2020; 211 10.1016/j.ymssp.2021.107707_b0185 Bao (10.1016/j.ymssp.2021.107707_b0160) 2020; 23 10.1016/j.ymssp.2021.107707_b0140 Baker (10.1016/j.ymssp.2021.107707_b0165) 2010; 98 Olmos (10.1016/j.ymssp.2021.107707_b0020) 2018; 419 Duan (10.1016/j.ymssp.2021.107707_b0040) 2019; 19 Gong (10.1016/j.ymssp.2021.107707_b0030) 2020; 28 Chen (10.1016/j.ymssp.2021.107707_b0045) 2011; 16 Togbenou (10.1016/j.ymssp.2021.107707_b0150) 2016; 151 Zhou (10.1016/j.ymssp.2021.107707_b0050) 2020; 139 Ti (10.1016/j.ymssp.2021.107707_b0015) 2019; 196 Gutarevych (10.1016/j.ymssp.2021.107707_b0100) 2014; 9 Cheli (10.1016/j.ymssp.2021.107707_b0175) 2006; 44 He (10.1016/j.ymssp.2021.107707_b0115) 2020; 144 Camara (10.1016/j.ymssp.2021.107707_b0055) 2019; 458 Xu (10.1016/j.ymssp.2021.107707_b0095) 2004; 92 |
References_xml | – volume: 16 start-page: 383 year: 2011 end-page: 391 ident: b0045 article-title: Dynamic stress analysis of long suspension bridges under wind, railway, and highway loadings publication-title: J. Bridge Eng. – volume: 57 start-page: 984 year: 2019 end-page: 1027 ident: b0065 article-title: Train–track–bridge dynamic interaction: a state-of the-art review publication-title: Veh. Syst. Dyn. – volume: 126 start-page: 1 year: 2000 end-page: 6 ident: b0145 article-title: Simulation of stochastic wind velocity field on long-span bridges publication-title: J. Eng. Mech. – volume: 8 start-page: 285 year: 2020 end-page: 306 ident: b0035 article-title: Sonparote, Influence of soil-structure interaction on the dynamic response of continuous and integral bridge subjected to moving loads publication-title: Int. J. Rail. Transp. – reference: J. Zhu, W. Zhang, M.X. Wu, Coupled dynamic analysis of the vehicle-bridge-wind-wave system, J. Bridge Eng. 23(8) (2018); 04018054. – volume: 419 start-page: 63 year: 2018 end-page: 89 ident: b0020 article-title: Non-linear vehicle-bridge-wind interaction model for running safety assessment of high-speed trains over a high-pier viaduct publication-title: J. Sound Vib. – volume: 1 start-page: 3 year: 2013 end-page: 24 ident: b0070 article-title: High-speed train–track–bridge dynamic interactions – Part I: theoretical model and numerical simulation publication-title: Int. J. Rail. Transp. – volume: 07 start-page: 1350006 year: 2013 ident: b0010 article-title: Seismic behavior of steel monorail bridges under train load during strong earthquakes publication-title: Int. J. Struct. Stab. Dyn. – volume: 139 year: 2020 ident: b0050 article-title: Analytical solution to temperature-induced deformation of suspension bridges publication-title: Mech. Syst. Signal. Pr. – volume: 92 start-page: 579 year: 2004 end-page: 607 ident: b0085 article-title: Framework of vehicle-bridge-wind dynamic analysis publication-title: J. Wind Eng. Ind. Aerodyn. – volume: 19 start-page: 1950014 year: 2019 ident: b0040 article-title: Vector form intrinsic finite element method for analysis of train–bridge interaction problems considering the coach-coupler effect publication-title: Int. J. Struct. Stab. Dyn. – volume: 58 start-page: 339 year: 2020 end-page: 356 ident: b0110 article-title: Key parameter selection of suspended monorail system based on vehicle–bridge dynamical interaction analysis publication-title: Vehicle. Syst. Dyn. – volume: 14 year: 2019 ident: b0075 article-title: Cross wind effects on vehicle–track interactions: a methodology for dynamic model construction publication-title: J. Comput. Nonlinear Dynam. – volume: 98 start-page: 88 year: 2010 end-page: 99 ident: b0165 article-title: The simulation of unsteady aerodynamic cross wind forces on vehicles publication-title: J. Wind Eng. Ind. Aerodyn. – volume: 28 start-page: 184 year: 2020 end-page: 198 ident: b0030 article-title: Running safety assessment of a train traversing a three-tower cable-stayed bridge under spatially varying ground motion publication-title: Rail. Eng. Science. – volume: 23 start-page: 1728 year: 2020 end-page: 1738 ident: b0160 article-title: A dynamic analysis scheme for the suspended monorail vehicle–curved bridge coupling system publication-title: Adv. Struct. Eng. – volume: 22 start-page: 1988 year: 2019 end-page: 1997 ident: b0125 article-title: Study of wind–vehicle–bridge system of suspended monorail during the meeting of two trains publication-title: Adv. Struct. Eng. – reference: Y.L. Bao, W. Zhai, C.B. Cai, et al., Impact coefficient analysis of track beams due to moving suspended monorail vehicles. Vehicle. Syst. Dyn. (2020). DOI: 10.1080/00423114.2020.1828595. – volume: 151 start-page: 48 year: 2016 end-page: 59 ident: b0150 article-title: An efficient simulation method for vertically distributed stochastic wind velocity field based on approximate piecewise wind spectrum publication-title: J. Wind Eng. Ind. Aerodyn. – volume: 104-106 start-page: 248 year: 2012 end-page: 255 ident: b0170 article-title: Cross wind action on rail vehicles: a methodology for the estimation of the characteristic wind curves publication-title: J. Wind Eng. Ind. Aerodyn. – volume: 92 start-page: 641 year: 2004 end-page: 662 ident: b0095 article-title: Effects of bridge motion and crosswind on ride comfort of road vehicles publication-title: J. Wind Eng. Ind. Aerodyn. – volume: 22 start-page: 06017005 year: 2017 ident: b0130 article-title: Dynamic effects of turbulent crosswind on the service ability state of vibrations of a slender arch bridge including wind–vehicle–bridge interaction publication-title: J. Bridge Eng. – volume: 329 start-page: 1743 year: 2010 end-page: 1759 ident: b0025 article-title: Aerodynamic vibrations of a maglev vehicle running on flexible guideways under oncoming wind actions publication-title: J. Sound Vib. – volume: 118 start-page: 388 year: 2019 end-page: 407 ident: b0105 article-title: Dynamic analysis on suspension-type monorail vehicle and bridge: Numerical simulation and experiment publication-title: Mech. Syst. Signal. Pr. – volume: 458 start-page: 197 year: 2019 end-page: 217 ident: b0055 article-title: Complete framework of wind-vehicle-bridge interaction with random road surfaces publication-title: J. Sound Vib. – volume: 196 start-page: 109287 year: 2019 ident: b0015 article-title: Numerical study on the stochastic response of a long-span sea-crossing bridge subjected to extreme nonlinear wave loads publication-title: Eng. Struct. – reference: JTG/T 3360-01, Wind-resistant design specification for highway bridge, Beijing, 2018. – volume: 44 start-page: 791 year: 2006 end-page: 804 ident: b0175 article-title: Numerical–experimental approach for evaluating cross-wind aerodynamic effects on heavy vehicles publication-title: Vehicle. Syst. Dyn. – volume: 211 year: 2020 ident: b0005 article-title: Dynamic effects on a train-bridge system caused by stochastically generated turbulent wind fields publication-title: Eng. Struct. – year: 2020 ident: b0135 article-title: Evaluation of the train running safety under crosswinds - a numerical study on the influence of the wind speed and orientation considering the normative Chinese Hat Model publication-title: Int. J. Rail. Transp. – volume: 142 year: 2020 ident: b0060 article-title: Correlation of car-body vibration and train overturning under strong wind conditions publication-title: Mech. Syst. Signal. Pr. – volume: 144 year: 2020 ident: b0115 article-title: An improved dynamic model of suspended monorail train-bridge system considering a tyre model with patch contact publication-title: Mech. Syst. Signal. Pr. – volume: 86 start-page: 1845 year: 2008 end-page: 1855 ident: b0080 article-title: Dynamic analysis of a train-bridge system under wind action publication-title: Comput. Struct. – volume: 81 start-page: 2055 year: 2003 end-page: 2066 ident: b0090 article-title: Evolution of long-span bridge response to wind-numerical simulation and discussion publication-title: Comput. Struct. – volume: 93 start-page: 487 year: 2005 end-page: 507 ident: b0180 article-title: Dynamic of wind-rail vehicle-bridge systems publication-title: J. Wind Eng. Ind. Aerodyn. – reference: GB/T 5599, Specification for dynamic performance assessment and testing verification of rolling stock, Beijing, 2019. – volume: 9 start-page: 13 year: 2014 end-page: 18 ident: b0100 article-title: Dynamic model of movement of mine suspended monorail publication-title: Transport Problems. – volume: 59 start-page: 135 year: 2021 end-page: 154 ident: b0120 article-title: Researches on the resonance of a new type of suspended monorail vehicle-bridge coupling system based on modal analysis and rigid-flexible coupling dynamics publication-title: Veh. Syst. Dyn. – ident: 10.1016/j.ymssp.2021.107707_b0140 doi: 10.1061/(ASCE)BE.1943-5592.0001268 – volume: 142 year: 2020 ident: 10.1016/j.ymssp.2021.107707_b0060 article-title: Correlation of car-body vibration and train overturning under strong wind conditions publication-title: Mech. Syst. Signal. Pr. doi: 10.1016/j.ymssp.2020.106743 – volume: 151 start-page: 48 year: 2016 ident: 10.1016/j.ymssp.2021.107707_b0150 article-title: An efficient simulation method for vertically distributed stochastic wind velocity field based on approximate piecewise wind spectrum publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2016.01.005 – volume: 44 start-page: 791 year: 2006 ident: 10.1016/j.ymssp.2021.107707_b0175 article-title: Numerical–experimental approach for evaluating cross-wind aerodynamic effects on heavy vehicles publication-title: Vehicle. Syst. Dyn. doi: 10.1080/00423110600886689 – volume: 92 start-page: 579 year: 2004 ident: 10.1016/j.ymssp.2021.107707_b0085 article-title: Framework of vehicle-bridge-wind dynamic analysis publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2004.03.007 – ident: 10.1016/j.ymssp.2021.107707_b0190 – volume: 58 start-page: 339 issue: 3 year: 2020 ident: 10.1016/j.ymssp.2021.107707_b0110 article-title: Key parameter selection of suspended monorail system based on vehicle–bridge dynamical interaction analysis publication-title: Vehicle. Syst. Dyn. doi: 10.1080/00423114.2019.1577470 – volume: 93 start-page: 487 year: 2005 ident: 10.1016/j.ymssp.2021.107707_b0180 article-title: Dynamic of wind-rail vehicle-bridge systems publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2005.04.001 – year: 2020 ident: 10.1016/j.ymssp.2021.107707_b0135 article-title: Evaluation of the train running safety under crosswinds - a numerical study on the influence of the wind speed and orientation considering the normative Chinese Hat Model publication-title: Int. J. Rail. Transp. – volume: 419 start-page: 63 year: 2018 ident: 10.1016/j.ymssp.2021.107707_b0020 article-title: Non-linear vehicle-bridge-wind interaction model for running safety assessment of high-speed trains over a high-pier viaduct publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2017.12.038 – volume: 57 start-page: 984 issue: 7 year: 2019 ident: 10.1016/j.ymssp.2021.107707_b0065 article-title: Train–track–bridge dynamic interaction: a state-of the-art review publication-title: Veh. Syst. Dyn. doi: 10.1080/00423114.2019.1605085 – volume: 86 start-page: 1845 issue: 19-20 year: 2008 ident: 10.1016/j.ymssp.2021.107707_b0080 article-title: Dynamic analysis of a train-bridge system under wind action publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2008.04.007 – volume: 144 year: 2020 ident: 10.1016/j.ymssp.2021.107707_b0115 article-title: An improved dynamic model of suspended monorail train-bridge system considering a tyre model with patch contact publication-title: Mech. Syst. Signal. Pr. doi: 10.1016/j.ymssp.2020.106865 – volume: 19 start-page: 1950014 issue: 02 year: 2019 ident: 10.1016/j.ymssp.2021.107707_b0040 article-title: Vector form intrinsic finite element method for analysis of train–bridge interaction problems considering the coach-coupler effect publication-title: Int. J. Struct. Stab. Dyn. doi: 10.1142/S0219455419500147 – volume: 16 start-page: 383 issue: 3 year: 2011 ident: 10.1016/j.ymssp.2021.107707_b0045 article-title: Dynamic stress analysis of long suspension bridges under wind, railway, and highway loadings publication-title: J. Bridge Eng. doi: 10.1061/(ASCE)BE.1943-5592.0000216 – volume: 118 start-page: 388 year: 2019 ident: 10.1016/j.ymssp.2021.107707_b0105 article-title: Dynamic analysis on suspension-type monorail vehicle and bridge: Numerical simulation and experiment publication-title: Mech. Syst. Signal. Pr. doi: 10.1016/j.ymssp.2018.08.062 – volume: 104-106 start-page: 248 year: 2012 ident: 10.1016/j.ymssp.2021.107707_b0170 article-title: Cross wind action on rail vehicles: a methodology for the estimation of the characteristic wind curves publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2012.04.006 – volume: 139 year: 2020 ident: 10.1016/j.ymssp.2021.107707_b0050 article-title: Analytical solution to temperature-induced deformation of suspension bridges publication-title: Mech. Syst. Signal. Pr. doi: 10.1016/j.ymssp.2019.106568 – volume: 14 year: 2019 ident: 10.1016/j.ymssp.2021.107707_b0075 article-title: Cross wind effects on vehicle–track interactions: a methodology for dynamic model construction publication-title: J. Comput. Nonlinear Dynam. doi: 10.1115/1.4042142 – volume: 28 start-page: 184 issue: 2 year: 2020 ident: 10.1016/j.ymssp.2021.107707_b0030 article-title: Running safety assessment of a train traversing a three-tower cable-stayed bridge under spatially varying ground motion publication-title: Rail. Eng. Science. doi: 10.1007/s40534-020-00209-8 – volume: 81 start-page: 2055 issue: 21 year: 2003 ident: 10.1016/j.ymssp.2021.107707_b0090 article-title: Evolution of long-span bridge response to wind-numerical simulation and discussion publication-title: Comput. Struct. doi: 10.1016/S0045-7949(03)00261-X – volume: 07 start-page: 1350006 issue: 02 year: 2013 ident: 10.1016/j.ymssp.2021.107707_b0010 article-title: Seismic behavior of steel monorail bridges under train load during strong earthquakes publication-title: Int. J. Struct. Stab. Dyn. – volume: 211 year: 2020 ident: 10.1016/j.ymssp.2021.107707_b0005 article-title: Dynamic effects on a train-bridge system caused by stochastically generated turbulent wind fields publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2020.110430 – volume: 23 start-page: 1728 issue: 8 year: 2020 ident: 10.1016/j.ymssp.2021.107707_b0160 article-title: A dynamic analysis scheme for the suspended monorail vehicle–curved bridge coupling system publication-title: Adv. Struct. Eng. doi: 10.1177/1369433219900302 – volume: 126 start-page: 1 issue: 1 year: 2000 ident: 10.1016/j.ymssp.2021.107707_b0145 article-title: Simulation of stochastic wind velocity field on long-span bridges publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)0733-9399(2000)126:1(1) – ident: 10.1016/j.ymssp.2021.107707_b0185 doi: 10.1080/00423114.2020.1828595 – volume: 22 start-page: 1988 issue: 8 year: 2019 ident: 10.1016/j.ymssp.2021.107707_b0125 article-title: Study of wind–vehicle–bridge system of suspended monorail during the meeting of two trains publication-title: Adv. Struct. Eng. doi: 10.1177/1369433219830255 – volume: 98 start-page: 88 issue: 2 year: 2010 ident: 10.1016/j.ymssp.2021.107707_b0165 article-title: The simulation of unsteady aerodynamic cross wind forces on vehicles publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2009.09.006 – volume: 59 start-page: 135 issue: 1 year: 2021 ident: 10.1016/j.ymssp.2021.107707_b0120 article-title: Researches on the resonance of a new type of suspended monorail vehicle-bridge coupling system based on modal analysis and rigid-flexible coupling dynamics publication-title: Veh. Syst. Dyn. doi: 10.1080/00423114.2019.1668029 – volume: 458 start-page: 197 year: 2019 ident: 10.1016/j.ymssp.2021.107707_b0055 article-title: Complete framework of wind-vehicle-bridge interaction with random road surfaces publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2019.06.020 – volume: 9 start-page: 13 issue: 1 year: 2014 ident: 10.1016/j.ymssp.2021.107707_b0100 article-title: Dynamic model of movement of mine suspended monorail publication-title: Transport Problems. – volume: 22 start-page: 06017005 issue: 11 year: 2017 ident: 10.1016/j.ymssp.2021.107707_b0130 article-title: Dynamic effects of turbulent crosswind on the service ability state of vibrations of a slender arch bridge including wind–vehicle–bridge interaction publication-title: J. Bridge Eng. doi: 10.1061/(ASCE)BE.1943-5592.0001110 – volume: 8 start-page: 285 issue: 3 year: 2020 ident: 10.1016/j.ymssp.2021.107707_b0035 article-title: Sonparote, Influence of soil-structure interaction on the dynamic response of continuous and integral bridge subjected to moving loads publication-title: Int. J. Rail. Transp. doi: 10.1080/23248378.2019.1632753 – volume: 329 start-page: 1743 issue: 10 year: 2010 ident: 10.1016/j.ymssp.2021.107707_b0025 article-title: Aerodynamic vibrations of a maglev vehicle running on flexible guideways under oncoming wind actions publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2009.11.039 – ident: 10.1016/j.ymssp.2021.107707_b0155 – volume: 196 start-page: 109287 year: 2019 ident: 10.1016/j.ymssp.2021.107707_b0015 article-title: Numerical study on the stochastic response of a long-span sea-crossing bridge subjected to extreme nonlinear wave loads publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2019.109287 – volume: 1 start-page: 3 year: 2013 ident: 10.1016/j.ymssp.2021.107707_b0070 article-title: High-speed train–track–bridge dynamic interactions – Part I: theoretical model and numerical simulation publication-title: Int. J. Rail. Transp. doi: 10.1080/23248378.2013.791498 – volume: 92 start-page: 641 issue: 7-8 year: 2004 ident: 10.1016/j.ymssp.2021.107707_b0095 article-title: Effects of bridge motion and crosswind on ride comfort of road vehicles publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2004.03.009 |
SSID | ssj0009406 |
Score | 2.4838626 |
Snippet | •A coupled wind- suspended monorail vehicle-bridge dynamic model is proposed.•A turbulent wind velocity field consisting of various velocities is... This paper develops a fully coupled wind-vehicle-bridge (WVB) interaction model to evaluate the dynamic performance and riding comfort of the suspended... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 107707 |
SubjectTerms | Aerodynamics Crosswinds Dynamic response Equations of motion Interaction models Mass-spring-damper systems Model testing Monorails Multibody systems Nonuniformity Performance evaluation Riding comfort Suspended monorail vehicle Turbulent crosswind Vehicles Velocity distribution Vibration analysis Wind forces Wind speed Wind-vehicle-bridge interaction |
Title | Dynamic interaction analysis of suspended monorail vehicle and bridge subject to crosswinds |
URI | https://dx.doi.org/10.1016/j.ymssp.2021.107707 https://www.proquest.com/docview/2513608260 |
Volume | 156 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrFaSw4eXbubx2b3WKqlKvZihYKHkGSzWKlt6baKF3-7mX34Qjx43DAJYWYymVkm34fQSaQstzrkHiMm8ljIiacE455hQRIbS90NAoXizSDs37GrER_VULd6CwNtlWXsL2J6Hq3LkXapzfZ8PG7fuvPh3FFA0QLAaID4yZgALz97-2zziFnOrwnCHkhXyEN5j9frU5YBaCUJ3IgQwCn7--30I07nl09vC22WWSPuFBvbRjU73UEbX7AEd9H9ecEtjwEAYlE8V8CqhBzBsxRnqyznu02w8zxn-PEEP9sHWM-JJbh4ueWkNPyZwcsZzrf44mr2bA8NexfDbt8rmRM8Q2mw9GLDuKGJIUmsrXIljfKV5lrEvhLCEmup0QHwFlHlMgDhxyIOgCHCBNo3saX7qD6dTe0Bwglg1wZECetyLctTHVmSEsqNCFPFedRApFKYNCWqOJBbTGTVPvYocy1L0LIstNxApx-T5gWoxt_iYWUJ-c03pAv7f09sVnaT5dHMpEvoaOgSn9A__O-6R2gdvoqu3SaqLxcre-xyk6Vu5c7XQmudy-v-4B01VORu |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGOAAHxFO8yYEj1dqkadbjxEODPS4MCYlDlKSZGIIN0Q3EvyduU15CHLimThTZjmNXzvcBHDWV5VYnPIipaQZxwmmgRMwDE0dZaixzNwgWir1-0r6OL2_4TQ1Oqrcw2FbpY38Z04to7UcaXpuNp9GoceXOh3NHgUULAqOxOZhHdCpeh_nWRafd_8TejQuKTZQPcEIFPlS0eb095jniVtLIjQiBtLK_X1A_QnVx_5yvwLJPHEmr3Nsq1Ox4DZa-wAmuw-1pSS9PEAPiuXyxQJRHHSGTIclneUF5mxHnfM72owfyYu9wPSeWkfLxlpPS-HOGTCek2OKrK9vzDRicnw1O2oEnTwgMY9E0SE3MDcsMzVJtlatqVKg01yINlRCWWsuMjpC6iCmXBIgwFWmEJBEm0qFJLduE-ngytltAMoSvjagS1qVblg9109IhZdyIZKg4b24DrRQmjQcWR36LB1l1kN3LQssStSxLLW_D8cekpxJX42_xpLKE_OYe0kX-vyfuVXaT_nTm0uV0LHG5TxLu_HfdQ1hoD3pd2b3od3ZhEb-UTbx7UJ8-z-y-S1Wm-sC74jsNeOcf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+interaction+analysis+of+suspended+monorail+vehicle+and+bridge+subject+to+crosswinds&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Bao%2C+Yulong&rft.au=Zhai%2C+Wanming&rft.au=Cai%2C+Chengbiao&rft.au=Zhu%2C+Shengyang&rft.date=2021-07-01&rft.issn=0888-3270&rft.volume=156&rft.spage=107707&rft_id=info:doi/10.1016%2Fj.ymssp.2021.107707&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ymssp_2021_107707 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon |