Dynamic interaction analysis of suspended monorail vehicle and bridge subject to crosswinds

•A coupled wind- suspended monorail vehicle-bridge dynamic model is proposed.•A turbulent wind velocity field consisting of various velocities is simulated.•The effects of crosswinds on the ride comfort of vehicles are investigated. This paper develops a fully coupled wind-vehicle-bridge (WVB) inter...

Full description

Saved in:
Bibliographic Details
Published inMechanical systems and signal processing Vol. 156; p. 107707
Main Authors Bao, Yulong, Zhai, Wanming, Cai, Chengbiao, Zhu, Shengyang, Li, Yongle
Format Journal Article
LanguageEnglish
Published Berlin Elsevier Ltd 01.07.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A coupled wind- suspended monorail vehicle-bridge dynamic model is proposed.•A turbulent wind velocity field consisting of various velocities is simulated.•The effects of crosswinds on the ride comfort of vehicles are investigated. This paper develops a fully coupled wind-vehicle-bridge (WVB) interaction model to evaluate the dynamic performance and riding comfort of the suspended monorail vehicle-bridge system subject to turbulent crosswinds. The dynamic interactions between the vehicle and the bridge, the wind and the bridge, and the wind and the vehicle are considered in the model. The suspended monorail vehicle is modeled as a mass-spring-damper system and the motion equations of the multi-body system are derived. Through generating nonuniformity wind velocity fields consisting of various wind average velocities, an accurate approach to simulate the actual aerodynamic wind forces acting on the bridge and on moving vehicles is proposed. Further, a multi-span bridge is chosen as an example to illustrate the dynamic behaviors of the proposed WVB system. Results indicate that the turbulent crosswinds could have a great influence on the dynamic performance of the suspended monorail vehicle-bridge system, and it should be taken into account in the simulation of aerodynamic wind forces to guarantee the accurateness of vehicle vibration analysis. Besides, passengers could experience uncomfortable when vehicles pass through the bridge under strong turbulent crosswinds.
AbstractList This paper develops a fully coupled wind-vehicle-bridge (WVB) interaction model to evaluate the dynamic performance and riding comfort of the suspended monorail vehicle-bridge system subject to turbulent crosswinds. The dynamic interactions between the vehicle and the bridge, the wind and the bridge, and the wind and the vehicle are considered in the model. The suspended monorail vehicle is modeled as a mass-spring-damper system and the motion equations of the multi-body system are derived. Through generating nonuniformity wind velocity fields consisting of various wind average velocities, an accurate approach to simulate the actual aerodynamic wind forces acting on the bridge and on moving vehicles is proposed. Further, a multi-span bridge is chosen as an example to illustrate the dynamic behaviors of the proposed WVB system. Results indicate that the turbulent crosswinds could have a great influence on the dynamic performance of the suspended monorail vehicle-bridge system, and it should be taken into account in the simulation of aerodynamic wind forces to guarantee the accurateness of vehicle vibration analysis. Besides, passengers could experience uncomfortable when vehicles pass through the bridge under strong turbulent crosswinds.
•A coupled wind- suspended monorail vehicle-bridge dynamic model is proposed.•A turbulent wind velocity field consisting of various velocities is simulated.•The effects of crosswinds on the ride comfort of vehicles are investigated. This paper develops a fully coupled wind-vehicle-bridge (WVB) interaction model to evaluate the dynamic performance and riding comfort of the suspended monorail vehicle-bridge system subject to turbulent crosswinds. The dynamic interactions between the vehicle and the bridge, the wind and the bridge, and the wind and the vehicle are considered in the model. The suspended monorail vehicle is modeled as a mass-spring-damper system and the motion equations of the multi-body system are derived. Through generating nonuniformity wind velocity fields consisting of various wind average velocities, an accurate approach to simulate the actual aerodynamic wind forces acting on the bridge and on moving vehicles is proposed. Further, a multi-span bridge is chosen as an example to illustrate the dynamic behaviors of the proposed WVB system. Results indicate that the turbulent crosswinds could have a great influence on the dynamic performance of the suspended monorail vehicle-bridge system, and it should be taken into account in the simulation of aerodynamic wind forces to guarantee the accurateness of vehicle vibration analysis. Besides, passengers could experience uncomfortable when vehicles pass through the bridge under strong turbulent crosswinds.
ArticleNumber 107707
Author Li, Yongle
Bao, Yulong
Cai, Chengbiao
Zhu, Shengyang
Zhai, Wanming
Author_xml – sequence: 1
  givenname: Yulong
  surname: Bao
  fullname: Bao, Yulong
  organization: Train and Track Research Institute, State Key Laboratory of Traction Power, Southwest Jiaotong University, 610031 Chengdu, Sichuan, PR China
– sequence: 2
  givenname: Wanming
  surname: Zhai
  fullname: Zhai, Wanming
  email: wmzhai@swjtu.edu.cn
  organization: Train and Track Research Institute, State Key Laboratory of Traction Power, Southwest Jiaotong University, 610031 Chengdu, Sichuan, PR China
– sequence: 3
  givenname: Chengbiao
  surname: Cai
  fullname: Cai, Chengbiao
  organization: Train and Track Research Institute, State Key Laboratory of Traction Power, Southwest Jiaotong University, 610031 Chengdu, Sichuan, PR China
– sequence: 4
  givenname: Shengyang
  surname: Zhu
  fullname: Zhu, Shengyang
  organization: Train and Track Research Institute, State Key Laboratory of Traction Power, Southwest Jiaotong University, 610031 Chengdu, Sichuan, PR China
– sequence: 5
  givenname: Yongle
  surname: Li
  fullname: Li, Yongle
  organization: Department of Bridge Engineering, Southwest Jiaotong University, 610031 Chengdu, Sichuan, PR China
BookMark eNqFkD1PwzAQhi1UJErhF7BYYk45220cDwyofEqVWLoxWI59BUetXey0KP-etGVigOmk0_uc7n3OySDEgIRcMRgzYOVNM-7WOW_GHDjrN1KCPCFDBqosGGflgAyhqqpCcAln5DznBgDUBMohebvvgll7S31oMRnb-hioCWbVZZ9pXNK8zRsMDh1dxxCT8Su6ww9vV9jHHK2Td-_Yp-oGbUvbSG2KOX_54PIFOV2aVcbLnzkii8eHxey5mL8-vczu5oUVgrWFspOpFc5yp2o0SpUGTD2tpQIjJXJEYWvmKuuEqThIUFKxqeBgWQ1WoRiR6-PZTYqfW8ytbuI29RWy5lMmSqh4CX1KHFOH_xIu9Sb5tUmdZqD3EnWjDxL1XqI-Suwp9YuyvjV7Se1exT_s7ZHFvvvOY9LZegwWnU-9K-2i_5P_Bq8cko4
CitedBy_id crossref_primary_10_1016_j_apm_2024_115696
crossref_primary_10_1016_j_dibe_2024_100569
crossref_primary_10_1007_s11071_021_07190_9
crossref_primary_10_1155_2022_7771358
crossref_primary_10_1016_j_jweia_2022_105289
crossref_primary_10_1142_S0219455421400095
crossref_primary_10_1007_s40534_022_00278_x
crossref_primary_10_1016_j_soildyn_2024_108789
crossref_primary_10_1007_s11771_023_5403_8
crossref_primary_10_1063_5_0261117
crossref_primary_10_1016_j_istruc_2024_106324
crossref_primary_10_1155_2021_4960461
crossref_primary_10_1177_09544097221150822
crossref_primary_10_1007_s10409_023_23446_x
crossref_primary_10_1016_j_measurement_2025_117101
crossref_primary_10_1088_1361_6501_ad0959
crossref_primary_10_1016_j_kscej_2024_100021
crossref_primary_10_1007_s12206_024_0106_0
crossref_primary_10_1080_00423114_2022_2093759
crossref_primary_10_1016_j_ymssp_2024_112283
crossref_primary_10_1142_S0219455423500219
crossref_primary_10_3390_app132011505
crossref_primary_10_3390_app12157442
crossref_primary_10_1142_S1758825121500964
crossref_primary_10_1177_13694332221145345
Cites_doi 10.1061/(ASCE)BE.1943-5592.0001268
10.1016/j.ymssp.2020.106743
10.1016/j.jweia.2016.01.005
10.1080/00423110600886689
10.1016/j.jweia.2004.03.007
10.1080/00423114.2019.1577470
10.1016/j.jweia.2005.04.001
10.1016/j.jsv.2017.12.038
10.1080/00423114.2019.1605085
10.1016/j.compstruc.2008.04.007
10.1016/j.ymssp.2020.106865
10.1142/S0219455419500147
10.1061/(ASCE)BE.1943-5592.0000216
10.1016/j.ymssp.2018.08.062
10.1016/j.jweia.2012.04.006
10.1016/j.ymssp.2019.106568
10.1115/1.4042142
10.1007/s40534-020-00209-8
10.1016/S0045-7949(03)00261-X
10.1016/j.engstruct.2020.110430
10.1177/1369433219900302
10.1061/(ASCE)0733-9399(2000)126:1(1)
10.1080/00423114.2020.1828595
10.1177/1369433219830255
10.1016/j.jweia.2009.09.006
10.1080/00423114.2019.1668029
10.1016/j.jsv.2019.06.020
10.1061/(ASCE)BE.1943-5592.0001110
10.1080/23248378.2019.1632753
10.1016/j.jsv.2009.11.039
10.1016/j.engstruct.2019.109287
10.1080/23248378.2013.791498
10.1016/j.jweia.2004.03.009
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Jul 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Jul 2021
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.ymssp.2021.107707
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1096-1216
ExternalDocumentID 10_1016_j_ymssp_2021_107707
S0888327021001023
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SST
SSV
SSZ
T5K
WUQ
XPP
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
7SP
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c331t-9c45c3dc2d9bea996a0ab5b790a77e2ee3cb1d8cd3a8207097915320c1b0c9e3
IEDL.DBID .~1
ISSN 0888-3270
IngestDate Fri Jul 25 07:56:08 EDT 2025
Thu Apr 24 22:51:42 EDT 2025
Tue Jul 01 04:30:09 EDT 2025
Fri Feb 23 02:46:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Dynamic response
Riding comfort
Turbulent crosswind
Wind-vehicle-bridge interaction
Suspended monorail vehicle
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-9c45c3dc2d9bea996a0ab5b790a77e2ee3cb1d8cd3a8207097915320c1b0c9e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2513608260
PQPubID 2045429
ParticipantIDs proquest_journals_2513608260
crossref_primary_10_1016_j_ymssp_2021_107707
crossref_citationtrail_10_1016_j_ymssp_2021_107707
elsevier_sciencedirect_doi_10_1016_j_ymssp_2021_107707
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2021
2021-07-00
20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Mechanical systems and signal processing
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Montenegro, Barbosa, Carvalho (b0005) 2020; 211
Gutarevych (b0100) 2014; 9
Neto, Montenegro, Vale (b0135) 2020
Zhai, Xia, Cai (b0070) 2013; 1
Xu, Guo (b0095) 2004; 92
Bao, Xiang, Li (b0160) 2020; 23
Camara, Kavrakov, Nguyen, Morgenthal (b0055) 2019; 458
Bao, Xiang, Li, Yu, Wang (b0125) 2019; 22
Nguyen, Camara, Rio, Sparowitz (b0130) 2017; 22
Xia, Guo, Zhang, Sun (b0080) 2008; 86
Xu, Zhai (b0075) 2019; 14
Kim, Kawatani, Kanbara, Nishimura (b0010) 2013; 07
He, Cai, Zhu (b0115) 2020; 144
Gharad, Sonparote (b0035) 2020; 8
Jiang, Wu, Zeng, Wu, Zhang, Yang, Gao, Dai (b0120) 2021; 59
Liu, Tomasini, Rocchi (b0060) 2020; 142
Cheli, Corradi, Tomasini (b0170) 2012; 104-106
Cai, Chen (b0085) 2004; 92
Cai, He, Zhu (b0105) 2019; 118
Ti, Zhang, Li, Wei (b0015) 2019; 196
Cao, Xiang, Zhou (b0145) 2000; 126
Togbenou, Li, Chen, Liao (b0150) 2016; 151
Duan, Wang, Yau (b0040) 2019; 19
Baker (b0165) 2010; 98
Li, Qiang, Liao (b0180) 2005; 93
Y.L. Bao, W. Zhai, C.B. Cai, et al., Impact coefficient analysis of track beams due to moving suspended monorail vehicles. Vehicle. Syst. Dyn. (2020). DOI: 10.1080/00423114.2020.1828595.
Cheli, Belforte, Melzi, Sabbioni, Tomasini (b0175) 2006; 44
Olmos, Astiz (b0020) 2018; 419
Zhai, Han, Chen (b0065) 2019; 57
GB/T 5599, Specification for dynamic performance assessment and testing verification of rolling stock, Beijing, 2019.
Zhou, Xia, Chen (b0050) 2020; 139
Yau (b0025) 2010; 329
Chen, Cai (b0090) 2003; 81
He, Cai, Zhu, Wang, Wang, Zhai (b0110) 2020; 58
Gong, Zhu, Liu, Liu, Tang, Jiang (b0030) 2020; 28
Chen, Xu, Li, Wu (b0045) 2011; 16
J. Zhu, W. Zhang, M.X. Wu, Coupled dynamic analysis of the vehicle-bridge-wind-wave system, J. Bridge Eng. 23(8) (2018); 04018054.
JTG/T 3360-01, Wind-resistant design specification for highway bridge, Beijing, 2018.
Neto (10.1016/j.ymssp.2021.107707_b0135) 2020
Xu (10.1016/j.ymssp.2021.107707_b0075) 2019; 14
Yau (10.1016/j.ymssp.2021.107707_b0025) 2010; 329
10.1016/j.ymssp.2021.107707_b0155
Cai (10.1016/j.ymssp.2021.107707_b0105) 2019; 118
Li (10.1016/j.ymssp.2021.107707_b0180) 2005; 93
Liu (10.1016/j.ymssp.2021.107707_b0060) 2020; 142
Zhai (10.1016/j.ymssp.2021.107707_b0070) 2013; 1
Xia (10.1016/j.ymssp.2021.107707_b0080) 2008; 86
10.1016/j.ymssp.2021.107707_b0190
Nguyen (10.1016/j.ymssp.2021.107707_b0130) 2017; 22
Cao (10.1016/j.ymssp.2021.107707_b0145) 2000; 126
Jiang (10.1016/j.ymssp.2021.107707_b0120) 2021; 59
Gharad (10.1016/j.ymssp.2021.107707_b0035) 2020; 8
Chen (10.1016/j.ymssp.2021.107707_b0090) 2003; 81
Cai (10.1016/j.ymssp.2021.107707_b0085) 2004; 92
Kim (10.1016/j.ymssp.2021.107707_b0010) 2013; 07
Zhai (10.1016/j.ymssp.2021.107707_b0065) 2019; 57
Bao (10.1016/j.ymssp.2021.107707_b0125) 2019; 22
He (10.1016/j.ymssp.2021.107707_b0110) 2020; 58
Cheli (10.1016/j.ymssp.2021.107707_b0170) 2012; 104-106
Montenegro (10.1016/j.ymssp.2021.107707_b0005) 2020; 211
10.1016/j.ymssp.2021.107707_b0185
Bao (10.1016/j.ymssp.2021.107707_b0160) 2020; 23
10.1016/j.ymssp.2021.107707_b0140
Baker (10.1016/j.ymssp.2021.107707_b0165) 2010; 98
Olmos (10.1016/j.ymssp.2021.107707_b0020) 2018; 419
Duan (10.1016/j.ymssp.2021.107707_b0040) 2019; 19
Gong (10.1016/j.ymssp.2021.107707_b0030) 2020; 28
Chen (10.1016/j.ymssp.2021.107707_b0045) 2011; 16
Togbenou (10.1016/j.ymssp.2021.107707_b0150) 2016; 151
Zhou (10.1016/j.ymssp.2021.107707_b0050) 2020; 139
Ti (10.1016/j.ymssp.2021.107707_b0015) 2019; 196
Gutarevych (10.1016/j.ymssp.2021.107707_b0100) 2014; 9
Cheli (10.1016/j.ymssp.2021.107707_b0175) 2006; 44
He (10.1016/j.ymssp.2021.107707_b0115) 2020; 144
Camara (10.1016/j.ymssp.2021.107707_b0055) 2019; 458
Xu (10.1016/j.ymssp.2021.107707_b0095) 2004; 92
References_xml – volume: 16
  start-page: 383
  year: 2011
  end-page: 391
  ident: b0045
  article-title: Dynamic stress analysis of long suspension bridges under wind, railway, and highway loadings
  publication-title: J. Bridge Eng.
– volume: 57
  start-page: 984
  year: 2019
  end-page: 1027
  ident: b0065
  article-title: Train–track–bridge dynamic interaction: a state-of the-art review
  publication-title: Veh. Syst. Dyn.
– volume: 126
  start-page: 1
  year: 2000
  end-page: 6
  ident: b0145
  article-title: Simulation of stochastic wind velocity field on long-span bridges
  publication-title: J. Eng. Mech.
– volume: 8
  start-page: 285
  year: 2020
  end-page: 306
  ident: b0035
  article-title: Sonparote, Influence of soil-structure interaction on the dynamic response of continuous and integral bridge subjected to moving loads
  publication-title: Int. J. Rail. Transp.
– reference: J. Zhu, W. Zhang, M.X. Wu, Coupled dynamic analysis of the vehicle-bridge-wind-wave system, J. Bridge Eng. 23(8) (2018); 04018054.
– volume: 419
  start-page: 63
  year: 2018
  end-page: 89
  ident: b0020
  article-title: Non-linear vehicle-bridge-wind interaction model for running safety assessment of high-speed trains over a high-pier viaduct
  publication-title: J. Sound Vib.
– volume: 1
  start-page: 3
  year: 2013
  end-page: 24
  ident: b0070
  article-title: High-speed train–track–bridge dynamic interactions – Part I: theoretical model and numerical simulation
  publication-title: Int. J. Rail. Transp.
– volume: 07
  start-page: 1350006
  year: 2013
  ident: b0010
  article-title: Seismic behavior of steel monorail bridges under train load during strong earthquakes
  publication-title: Int. J. Struct. Stab. Dyn.
– volume: 139
  year: 2020
  ident: b0050
  article-title: Analytical solution to temperature-induced deformation of suspension bridges
  publication-title: Mech. Syst. Signal. Pr.
– volume: 92
  start-page: 579
  year: 2004
  end-page: 607
  ident: b0085
  article-title: Framework of vehicle-bridge-wind dynamic analysis
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 19
  start-page: 1950014
  year: 2019
  ident: b0040
  article-title: Vector form intrinsic finite element method for analysis of train–bridge interaction problems considering the coach-coupler effect
  publication-title: Int. J. Struct. Stab. Dyn.
– volume: 58
  start-page: 339
  year: 2020
  end-page: 356
  ident: b0110
  article-title: Key parameter selection of suspended monorail system based on vehicle–bridge dynamical interaction analysis
  publication-title: Vehicle. Syst. Dyn.
– volume: 14
  year: 2019
  ident: b0075
  article-title: Cross wind effects on vehicle–track interactions: a methodology for dynamic model construction
  publication-title: J. Comput. Nonlinear Dynam.
– volume: 98
  start-page: 88
  year: 2010
  end-page: 99
  ident: b0165
  article-title: The simulation of unsteady aerodynamic cross wind forces on vehicles
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 28
  start-page: 184
  year: 2020
  end-page: 198
  ident: b0030
  article-title: Running safety assessment of a train traversing a three-tower cable-stayed bridge under spatially varying ground motion
  publication-title: Rail. Eng. Science.
– volume: 23
  start-page: 1728
  year: 2020
  end-page: 1738
  ident: b0160
  article-title: A dynamic analysis scheme for the suspended monorail vehicle–curved bridge coupling system
  publication-title: Adv. Struct. Eng.
– volume: 22
  start-page: 1988
  year: 2019
  end-page: 1997
  ident: b0125
  article-title: Study of wind–vehicle–bridge system of suspended monorail during the meeting of two trains
  publication-title: Adv. Struct. Eng.
– reference: Y.L. Bao, W. Zhai, C.B. Cai, et al., Impact coefficient analysis of track beams due to moving suspended monorail vehicles. Vehicle. Syst. Dyn. (2020). DOI: 10.1080/00423114.2020.1828595.
– volume: 151
  start-page: 48
  year: 2016
  end-page: 59
  ident: b0150
  article-title: An efficient simulation method for vertically distributed stochastic wind velocity field based on approximate piecewise wind spectrum
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 104-106
  start-page: 248
  year: 2012
  end-page: 255
  ident: b0170
  article-title: Cross wind action on rail vehicles: a methodology for the estimation of the characteristic wind curves
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 92
  start-page: 641
  year: 2004
  end-page: 662
  ident: b0095
  article-title: Effects of bridge motion and crosswind on ride comfort of road vehicles
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 22
  start-page: 06017005
  year: 2017
  ident: b0130
  article-title: Dynamic effects of turbulent crosswind on the service ability state of vibrations of a slender arch bridge including wind–vehicle–bridge interaction
  publication-title: J. Bridge Eng.
– volume: 329
  start-page: 1743
  year: 2010
  end-page: 1759
  ident: b0025
  article-title: Aerodynamic vibrations of a maglev vehicle running on flexible guideways under oncoming wind actions
  publication-title: J. Sound Vib.
– volume: 118
  start-page: 388
  year: 2019
  end-page: 407
  ident: b0105
  article-title: Dynamic analysis on suspension-type monorail vehicle and bridge: Numerical simulation and experiment
  publication-title: Mech. Syst. Signal. Pr.
– volume: 458
  start-page: 197
  year: 2019
  end-page: 217
  ident: b0055
  article-title: Complete framework of wind-vehicle-bridge interaction with random road surfaces
  publication-title: J. Sound Vib.
– volume: 196
  start-page: 109287
  year: 2019
  ident: b0015
  article-title: Numerical study on the stochastic response of a long-span sea-crossing bridge subjected to extreme nonlinear wave loads
  publication-title: Eng. Struct.
– reference: JTG/T 3360-01, Wind-resistant design specification for highway bridge, Beijing, 2018.
– volume: 44
  start-page: 791
  year: 2006
  end-page: 804
  ident: b0175
  article-title: Numerical–experimental approach for evaluating cross-wind aerodynamic effects on heavy vehicles
  publication-title: Vehicle. Syst. Dyn.
– volume: 211
  year: 2020
  ident: b0005
  article-title: Dynamic effects on a train-bridge system caused by stochastically generated turbulent wind fields
  publication-title: Eng. Struct.
– year: 2020
  ident: b0135
  article-title: Evaluation of the train running safety under crosswinds - a numerical study on the influence of the wind speed and orientation considering the normative Chinese Hat Model
  publication-title: Int. J. Rail. Transp.
– volume: 142
  year: 2020
  ident: b0060
  article-title: Correlation of car-body vibration and train overturning under strong wind conditions
  publication-title: Mech. Syst. Signal. Pr.
– volume: 144
  year: 2020
  ident: b0115
  article-title: An improved dynamic model of suspended monorail train-bridge system considering a tyre model with patch contact
  publication-title: Mech. Syst. Signal. Pr.
– volume: 86
  start-page: 1845
  year: 2008
  end-page: 1855
  ident: b0080
  article-title: Dynamic analysis of a train-bridge system under wind action
  publication-title: Comput. Struct.
– volume: 81
  start-page: 2055
  year: 2003
  end-page: 2066
  ident: b0090
  article-title: Evolution of long-span bridge response to wind-numerical simulation and discussion
  publication-title: Comput. Struct.
– volume: 93
  start-page: 487
  year: 2005
  end-page: 507
  ident: b0180
  article-title: Dynamic of wind-rail vehicle-bridge systems
  publication-title: J. Wind Eng. Ind. Aerodyn.
– reference: GB/T 5599, Specification for dynamic performance assessment and testing verification of rolling stock, Beijing, 2019.
– volume: 9
  start-page: 13
  year: 2014
  end-page: 18
  ident: b0100
  article-title: Dynamic model of movement of mine suspended monorail
  publication-title: Transport Problems.
– volume: 59
  start-page: 135
  year: 2021
  end-page: 154
  ident: b0120
  article-title: Researches on the resonance of a new type of suspended monorail vehicle-bridge coupling system based on modal analysis and rigid-flexible coupling dynamics
  publication-title: Veh. Syst. Dyn.
– ident: 10.1016/j.ymssp.2021.107707_b0140
  doi: 10.1061/(ASCE)BE.1943-5592.0001268
– volume: 142
  year: 2020
  ident: 10.1016/j.ymssp.2021.107707_b0060
  article-title: Correlation of car-body vibration and train overturning under strong wind conditions
  publication-title: Mech. Syst. Signal. Pr.
  doi: 10.1016/j.ymssp.2020.106743
– volume: 151
  start-page: 48
  year: 2016
  ident: 10.1016/j.ymssp.2021.107707_b0150
  article-title: An efficient simulation method for vertically distributed stochastic wind velocity field based on approximate piecewise wind spectrum
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2016.01.005
– volume: 44
  start-page: 791
  year: 2006
  ident: 10.1016/j.ymssp.2021.107707_b0175
  article-title: Numerical–experimental approach for evaluating cross-wind aerodynamic effects on heavy vehicles
  publication-title: Vehicle. Syst. Dyn.
  doi: 10.1080/00423110600886689
– volume: 92
  start-page: 579
  year: 2004
  ident: 10.1016/j.ymssp.2021.107707_b0085
  article-title: Framework of vehicle-bridge-wind dynamic analysis
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2004.03.007
– ident: 10.1016/j.ymssp.2021.107707_b0190
– volume: 58
  start-page: 339
  issue: 3
  year: 2020
  ident: 10.1016/j.ymssp.2021.107707_b0110
  article-title: Key parameter selection of suspended monorail system based on vehicle–bridge dynamical interaction analysis
  publication-title: Vehicle. Syst. Dyn.
  doi: 10.1080/00423114.2019.1577470
– volume: 93
  start-page: 487
  year: 2005
  ident: 10.1016/j.ymssp.2021.107707_b0180
  article-title: Dynamic of wind-rail vehicle-bridge systems
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2005.04.001
– year: 2020
  ident: 10.1016/j.ymssp.2021.107707_b0135
  article-title: Evaluation of the train running safety under crosswinds - a numerical study on the influence of the wind speed and orientation considering the normative Chinese Hat Model
  publication-title: Int. J. Rail. Transp.
– volume: 419
  start-page: 63
  year: 2018
  ident: 10.1016/j.ymssp.2021.107707_b0020
  article-title: Non-linear vehicle-bridge-wind interaction model for running safety assessment of high-speed trains over a high-pier viaduct
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2017.12.038
– volume: 57
  start-page: 984
  issue: 7
  year: 2019
  ident: 10.1016/j.ymssp.2021.107707_b0065
  article-title: Train–track–bridge dynamic interaction: a state-of the-art review
  publication-title: Veh. Syst. Dyn.
  doi: 10.1080/00423114.2019.1605085
– volume: 86
  start-page: 1845
  issue: 19-20
  year: 2008
  ident: 10.1016/j.ymssp.2021.107707_b0080
  article-title: Dynamic analysis of a train-bridge system under wind action
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2008.04.007
– volume: 144
  year: 2020
  ident: 10.1016/j.ymssp.2021.107707_b0115
  article-title: An improved dynamic model of suspended monorail train-bridge system considering a tyre model with patch contact
  publication-title: Mech. Syst. Signal. Pr.
  doi: 10.1016/j.ymssp.2020.106865
– volume: 19
  start-page: 1950014
  issue: 02
  year: 2019
  ident: 10.1016/j.ymssp.2021.107707_b0040
  article-title: Vector form intrinsic finite element method for analysis of train–bridge interaction problems considering the coach-coupler effect
  publication-title: Int. J. Struct. Stab. Dyn.
  doi: 10.1142/S0219455419500147
– volume: 16
  start-page: 383
  issue: 3
  year: 2011
  ident: 10.1016/j.ymssp.2021.107707_b0045
  article-title: Dynamic stress analysis of long suspension bridges under wind, railway, and highway loadings
  publication-title: J. Bridge Eng.
  doi: 10.1061/(ASCE)BE.1943-5592.0000216
– volume: 118
  start-page: 388
  year: 2019
  ident: 10.1016/j.ymssp.2021.107707_b0105
  article-title: Dynamic analysis on suspension-type monorail vehicle and bridge: Numerical simulation and experiment
  publication-title: Mech. Syst. Signal. Pr.
  doi: 10.1016/j.ymssp.2018.08.062
– volume: 104-106
  start-page: 248
  year: 2012
  ident: 10.1016/j.ymssp.2021.107707_b0170
  article-title: Cross wind action on rail vehicles: a methodology for the estimation of the characteristic wind curves
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2012.04.006
– volume: 139
  year: 2020
  ident: 10.1016/j.ymssp.2021.107707_b0050
  article-title: Analytical solution to temperature-induced deformation of suspension bridges
  publication-title: Mech. Syst. Signal. Pr.
  doi: 10.1016/j.ymssp.2019.106568
– volume: 14
  year: 2019
  ident: 10.1016/j.ymssp.2021.107707_b0075
  article-title: Cross wind effects on vehicle–track interactions: a methodology for dynamic model construction
  publication-title: J. Comput. Nonlinear Dynam.
  doi: 10.1115/1.4042142
– volume: 28
  start-page: 184
  issue: 2
  year: 2020
  ident: 10.1016/j.ymssp.2021.107707_b0030
  article-title: Running safety assessment of a train traversing a three-tower cable-stayed bridge under spatially varying ground motion
  publication-title: Rail. Eng. Science.
  doi: 10.1007/s40534-020-00209-8
– volume: 81
  start-page: 2055
  issue: 21
  year: 2003
  ident: 10.1016/j.ymssp.2021.107707_b0090
  article-title: Evolution of long-span bridge response to wind-numerical simulation and discussion
  publication-title: Comput. Struct.
  doi: 10.1016/S0045-7949(03)00261-X
– volume: 07
  start-page: 1350006
  issue: 02
  year: 2013
  ident: 10.1016/j.ymssp.2021.107707_b0010
  article-title: Seismic behavior of steel monorail bridges under train load during strong earthquakes
  publication-title: Int. J. Struct. Stab. Dyn.
– volume: 211
  year: 2020
  ident: 10.1016/j.ymssp.2021.107707_b0005
  article-title: Dynamic effects on a train-bridge system caused by stochastically generated turbulent wind fields
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2020.110430
– volume: 23
  start-page: 1728
  issue: 8
  year: 2020
  ident: 10.1016/j.ymssp.2021.107707_b0160
  article-title: A dynamic analysis scheme for the suspended monorail vehicle–curved bridge coupling system
  publication-title: Adv. Struct. Eng.
  doi: 10.1177/1369433219900302
– volume: 126
  start-page: 1
  issue: 1
  year: 2000
  ident: 10.1016/j.ymssp.2021.107707_b0145
  article-title: Simulation of stochastic wind velocity field on long-span bridges
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)0733-9399(2000)126:1(1)
– ident: 10.1016/j.ymssp.2021.107707_b0185
  doi: 10.1080/00423114.2020.1828595
– volume: 22
  start-page: 1988
  issue: 8
  year: 2019
  ident: 10.1016/j.ymssp.2021.107707_b0125
  article-title: Study of wind–vehicle–bridge system of suspended monorail during the meeting of two trains
  publication-title: Adv. Struct. Eng.
  doi: 10.1177/1369433219830255
– volume: 98
  start-page: 88
  issue: 2
  year: 2010
  ident: 10.1016/j.ymssp.2021.107707_b0165
  article-title: The simulation of unsteady aerodynamic cross wind forces on vehicles
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2009.09.006
– volume: 59
  start-page: 135
  issue: 1
  year: 2021
  ident: 10.1016/j.ymssp.2021.107707_b0120
  article-title: Researches on the resonance of a new type of suspended monorail vehicle-bridge coupling system based on modal analysis and rigid-flexible coupling dynamics
  publication-title: Veh. Syst. Dyn.
  doi: 10.1080/00423114.2019.1668029
– volume: 458
  start-page: 197
  year: 2019
  ident: 10.1016/j.ymssp.2021.107707_b0055
  article-title: Complete framework of wind-vehicle-bridge interaction with random road surfaces
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2019.06.020
– volume: 9
  start-page: 13
  issue: 1
  year: 2014
  ident: 10.1016/j.ymssp.2021.107707_b0100
  article-title: Dynamic model of movement of mine suspended monorail
  publication-title: Transport Problems.
– volume: 22
  start-page: 06017005
  issue: 11
  year: 2017
  ident: 10.1016/j.ymssp.2021.107707_b0130
  article-title: Dynamic effects of turbulent crosswind on the service ability state of vibrations of a slender arch bridge including wind–vehicle–bridge interaction
  publication-title: J. Bridge Eng.
  doi: 10.1061/(ASCE)BE.1943-5592.0001110
– volume: 8
  start-page: 285
  issue: 3
  year: 2020
  ident: 10.1016/j.ymssp.2021.107707_b0035
  article-title: Sonparote, Influence of soil-structure interaction on the dynamic response of continuous and integral bridge subjected to moving loads
  publication-title: Int. J. Rail. Transp.
  doi: 10.1080/23248378.2019.1632753
– volume: 329
  start-page: 1743
  issue: 10
  year: 2010
  ident: 10.1016/j.ymssp.2021.107707_b0025
  article-title: Aerodynamic vibrations of a maglev vehicle running on flexible guideways under oncoming wind actions
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2009.11.039
– ident: 10.1016/j.ymssp.2021.107707_b0155
– volume: 196
  start-page: 109287
  year: 2019
  ident: 10.1016/j.ymssp.2021.107707_b0015
  article-title: Numerical study on the stochastic response of a long-span sea-crossing bridge subjected to extreme nonlinear wave loads
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2019.109287
– volume: 1
  start-page: 3
  year: 2013
  ident: 10.1016/j.ymssp.2021.107707_b0070
  article-title: High-speed train–track–bridge dynamic interactions – Part I: theoretical model and numerical simulation
  publication-title: Int. J. Rail. Transp.
  doi: 10.1080/23248378.2013.791498
– volume: 92
  start-page: 641
  issue: 7-8
  year: 2004
  ident: 10.1016/j.ymssp.2021.107707_b0095
  article-title: Effects of bridge motion and crosswind on ride comfort of road vehicles
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2004.03.009
SSID ssj0009406
Score 2.4838626
Snippet •A coupled wind- suspended monorail vehicle-bridge dynamic model is proposed.•A turbulent wind velocity field consisting of various velocities is...
This paper develops a fully coupled wind-vehicle-bridge (WVB) interaction model to evaluate the dynamic performance and riding comfort of the suspended...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107707
SubjectTerms Aerodynamics
Crosswinds
Dynamic response
Equations of motion
Interaction models
Mass-spring-damper systems
Model testing
Monorails
Multibody systems
Nonuniformity
Performance evaluation
Riding comfort
Suspended monorail vehicle
Turbulent crosswind
Vehicles
Velocity distribution
Vibration analysis
Wind forces
Wind speed
Wind-vehicle-bridge interaction
Title Dynamic interaction analysis of suspended monorail vehicle and bridge subject to crosswinds
URI https://dx.doi.org/10.1016/j.ymssp.2021.107707
https://www.proquest.com/docview/2513608260
Volume 156
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrFaSw4eXbubx2b3WKqlKvZihYKHkGSzWKlt6baKF3-7mX34Qjx43DAJYWYymVkm34fQSaQstzrkHiMm8ljIiacE455hQRIbS90NAoXizSDs37GrER_VULd6CwNtlWXsL2J6Hq3LkXapzfZ8PG7fuvPh3FFA0QLAaID4yZgALz97-2zziFnOrwnCHkhXyEN5j9frU5YBaCUJ3IgQwCn7--30I07nl09vC22WWSPuFBvbRjU73UEbX7AEd9H9ecEtjwEAYlE8V8CqhBzBsxRnqyznu02w8zxn-PEEP9sHWM-JJbh4ueWkNPyZwcsZzrf44mr2bA8NexfDbt8rmRM8Q2mw9GLDuKGJIUmsrXIljfKV5lrEvhLCEmup0QHwFlHlMgDhxyIOgCHCBNo3saX7qD6dTe0Bwglg1wZECetyLctTHVmSEsqNCFPFedRApFKYNCWqOJBbTGTVPvYocy1L0LIstNxApx-T5gWoxt_iYWUJ-c03pAv7f09sVnaT5dHMpEvoaOgSn9A__O-6R2gdvoqu3SaqLxcre-xyk6Vu5c7XQmudy-v-4B01VORu
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGOAAHxFO8yYEj1dqkadbjxEODPS4MCYlDlKSZGIIN0Q3EvyduU15CHLimThTZjmNXzvcBHDWV5VYnPIipaQZxwmmgRMwDE0dZaixzNwgWir1-0r6OL2_4TQ1Oqrcw2FbpY38Z04to7UcaXpuNp9GoceXOh3NHgUULAqOxOZhHdCpeh_nWRafd_8TejQuKTZQPcEIFPlS0eb095jniVtLIjQiBtLK_X1A_QnVx_5yvwLJPHEmr3Nsq1Ox4DZa-wAmuw-1pSS9PEAPiuXyxQJRHHSGTIclneUF5mxHnfM72owfyYu9wPSeWkfLxlpPS-HOGTCek2OKrK9vzDRicnw1O2oEnTwgMY9E0SE3MDcsMzVJtlatqVKg01yINlRCWWsuMjpC6iCmXBIgwFWmEJBEm0qFJLduE-ngytltAMoSvjagS1qVblg9109IhZdyIZKg4b24DrRQmjQcWR36LB1l1kN3LQssStSxLLW_D8cekpxJX42_xpLKE_OYe0kX-vyfuVXaT_nTm0uV0LHG5TxLu_HfdQ1hoD3pd2b3od3ZhEb-UTbx7UJ8-z-y-S1Wm-sC74jsNeOcf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+interaction+analysis+of+suspended+monorail+vehicle+and+bridge+subject+to+crosswinds&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Bao%2C+Yulong&rft.au=Zhai%2C+Wanming&rft.au=Cai%2C+Chengbiao&rft.au=Zhu%2C+Shengyang&rft.date=2021-07-01&rft.issn=0888-3270&rft.volume=156&rft.spage=107707&rft_id=info:doi/10.1016%2Fj.ymssp.2021.107707&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ymssp_2021_107707
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon