RNPE: An MSDF and Redundant Number System-Based DNN Accelerator Engine
Deep neural network (DNN) is becoming pervasive in today's applications with intelligent autonomy. Nonetheless, the ever-increasing complexity of modern DNN models caused several challenges on edge devices, struggling to support the intensive computing demands. Although several hardware acceler...
Saved in:
Published in | IEEE access Vol. 12; pp. 96552 - 96564 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Deep neural network (DNN) is becoming pervasive in today's applications with intelligent autonomy. Nonetheless, the ever-increasing complexity of modern DNN models caused several challenges on edge devices, struggling to support the intensive computing demands. Although several hardware accelerators have been introduced to improve performance and computation efficiency, challenges still exist particularly in mission-critical applications, e.g., automotive and healthcare. Compression and approximation have been utilized in this respect, albeit with the probability of accuracy loss. Meanwhile, serial accelerators increase computation efficiency via dynamic precision adaptation and computation pruning but at the expense of increasing response time. This paper proposes the Redundant number system-based Neural Processing Engine (RNPE) with the Most Significant Digit First (MSDF) input and output streams. RNPE reduces the response time while improving computation efficiency compared to traditional bit-parallel and bit-serial processing engines. The proposed architecture has been described in RTL and synthesized in 28 nm CMOS technology for evaluation. Cycle-accurate simulations over the DNN models of image classification demonstrated a single unit of RNPE significantly reduces the response time by up to 97% with no accuracy loss compared to the baseline; however, an additional 25% area overhead is imposed. Furthermore, RNPE improves the average power-delay and energy-delay products by 14% and 53%, respectively. Eventually, RNPE exceeds the state-of-the-art by 23% on average in pruning ineffectual computations on the MSDF output stream. |
---|---|
AbstractList | Deep neural network (DNN) is becoming pervasive in today's applications with intelligent autonomy. Nonetheless, the ever-increasing complexity of modern DNN models caused several challenges on edge devices, struggling to support the intensive computing demands. Although several hardware accelerators have been introduced to improve performance and computation efficiency, challenges still exist particularly in mission-critical applications, e.g., automotive and healthcare. Compression and approximation have been utilized in this respect, albeit with the probability of accuracy loss. Meanwhile, serial accelerators increase computation efficiency via dynamic precision adaptation and computation pruning but at the expense of increasing response time. This paper proposes the Redundant number system-based Neural Processing Engine (RNPE) with the Most Significant Digit First (MSDF) input and output streams. RNPE reduces the response time while improving computation efficiency compared to traditional bit-parallel and bit-serial processing engines. The proposed architecture has been described in RTL and synthesized in 28 nm CMOS technology for evaluation. Cycle-accurate simulations over the DNN models of image classification demonstrated a single unit of RNPE significantly reduces the response time by up to 97% with no accuracy loss compared to the baseline; however, an additional 25% area overhead is imposed. Furthermore, RNPE improves the average power-delay and energy-delay products by 14% and 53%, respectively. Eventually, RNPE exceeds the state-of-the-art by 23% on average in pruning ineffectual computations on the MSDF output stream. |
Author | Moghaddasi, Iraj Nam, Byeong-Gyu Jaberipur, Ghassem Javaheri, Danial |
Author_xml | – sequence: 1 givenname: Iraj orcidid: 0009-0007-7934-5720 surname: Moghaddasi fullname: Moghaddasi, Iraj organization: Department of Computer Science and Engineering, Chungnam National University, Daejeon, Republic of Korea – sequence: 2 givenname: Ghassem surname: Jaberipur fullname: Jaberipur, Ghassem organization: Department of Computer Engineering, Chosun University, Gwangju, Republic of Korea – sequence: 3 givenname: Danial orcidid: 0000-0002-7275-2370 surname: Javaheri fullname: Javaheri, Danial organization: Department of Computer Science and Engineering, Korea University, Seoul, Republic of Korea – sequence: 4 givenname: Byeong-Gyu orcidid: 0000-0003-0069-1959 surname: Nam fullname: Nam, Byeong-Gyu email: bgnam@cnu.ac.kr organization: Department of Computer Science and Engineering, Chungnam National University, Daejeon, Republic of Korea |
BookMark | eNpNkM1OAjEUhRujiYg8gS76AoP9nU7dIT9KgqMBXTed9pYMgRnTGRa8vYMQw92cm5Ocb_HdoeuqrgChB0qGlBL9NBqPp6vVkBEmhlywNGXyCvUYTXXCJU-vL_5bNGiaDeku6yqpemi2zD-nz3hU4ffVZIZt5fES_L7ytmpxvt8VEPHq0LSwS15sAx5P8hyPnIMtRNvWEU-rdVnBPboJdtvA4Jx99D2bfo3fksXH63w8WiSOc9ommadpkApAFcGmlgnFrA-ZU5pBUMzrwmrhAmRCac4BAvWq8IXwwnpGnON9ND9xfW035ieWOxsPpral-SvquDY2tqXbgsmyTAlCg-QyFdzpjEpwlAivtCISRMfiJ5aLddNECP88SszRrDmZNUez5my2Wz2eViUAXCyklkQT_gsJaHSD |
CODEN | IAECCG |
Cites_doi | 10.1109/MWSCAS47672.2021.9531722 10.1109/tetc.2023.3301590 10.1007/s11831-021-09530-9 10.23919/DATE.2019.8715178 10.1145/3007787.3001177 10.1109/ICFPT47387.2019.00073 10.1109/ISCAS51556.2021.9401475 10.1109/JSSC.2018.2865489 10.1109/TC.2016.2574353 10.1109/ACCESS.2023.3300376 10.1145/3079856.3080246 10.1109/TC.2021.3092205 10.1007/978-3-031-38133-1_3 10.1109/ACSSC.2017.8335445 10.1002/9781119206804.ch8 10.1109/ASP-DAC52403.2022.9712509 10.1109/MICRO.2016.7783722 10.1109/tetc.2023.3237914 10.1109/ISCAS.2019.8702290 10.1109/ISCA.2018.00061 10.1109/tetc.2021.3050989 10.1145/3007787.3001138 10.1007/978-3-030-58607-2_14 10.1109/ISCA.2018.00040 10.1109/ISCA.2018.00069 10.1147/rd.252.0156 10.1109/DAC.2018.8465915 10.1109/TCSI.2021.3138092 10.1109/MICRO50266.2020.00066 10.1109/JSSC.2022.3214064 10.1109/MWSCAS48704.2020.9184599 10.1109/CAC.2015.7382560 10.1109/JETCAS.2019.2910232 10.1109/TVLSI.2019.2947757 |
ContentType | Journal Article |
DBID | 97E ESBDL RIA RIE AAYXX CITATION DOA |
DOI | 10.1109/ACCESS.2024.3426625 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 96564 |
ExternalDocumentID | oai_doaj_org_article_8887401f535643c9815ec104d79705e4 10_1109_ACCESS_2024_3426625 10595090 |
Genre | orig-research |
GrantInformation_xml | – fundername: Korea Government (MSIT) grantid: 2022R1A5A8026986 – fundername: Electronics and Telecommunications Research Institute (ETRI) funderid: 10.13039/501100003696 – fundername: National Research Foundation of Korea (NRF) funderid: 10.13039/501100003725 – fundername: Korean Government (AI Semiconductor Technology N-Laboratory) grantid: 24ZH1230 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c331t-8d16f57ee7bfa6a2472adf8c792ef72d9ba94cfe847933eef1d7bdb4d4ad20cc3 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:28:05 EDT 2025 Tue Jul 01 03:02:41 EDT 2025 Wed Aug 27 02:36:27 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c331t-8d16f57ee7bfa6a2472adf8c792ef72d9ba94cfe847933eef1d7bdb4d4ad20cc3 |
ORCID | 0009-0007-7934-5720 0000-0003-0069-1959 0000-0002-7275-2370 |
OpenAccessLink | https://doaj.org/article/8887401f535643c9815ec104d79705e4 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1109_ACCESS_2024_3426625 doaj_primary_oai_doaj_org_article_8887401f535643c9815ec104d79705e4 ieee_primary_10595090 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref35 ref12 ref34 ref15 ref14 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref38 ref19 ref18 Delmas (ref36) 2017 Krizhevsky (ref3); 25 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref29 ref8 ref7 ref9 ref4 ref6 ref5 Sharify (ref37) Albericio (ref27) |
References_xml | – start-page: 382 volume-title: Proc. 50th Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO) ident: ref27 article-title: Bit-pragmatic deep neural network computing – ident: ref8 doi: 10.1109/MWSCAS47672.2021.9531722 – ident: ref13 doi: 10.1109/tetc.2023.3301590 – ident: ref19 doi: 10.1007/s11831-021-09530-9 – ident: ref18 doi: 10.23919/DATE.2019.8715178 – ident: ref34 doi: 10.1145/3007787.3001177 – ident: ref35 doi: 10.1109/ICFPT47387.2019.00073 – ident: ref38 doi: 10.1109/ISCAS51556.2021.9401475 – ident: ref6 doi: 10.1109/JSSC.2018.2865489 – ident: ref11 doi: 10.1109/TC.2016.2574353 – ident: ref22 doi: 10.1109/ACCESS.2023.3300376 – ident: ref17 doi: 10.1145/3079856.3080246 – ident: ref31 doi: 10.1109/TC.2021.3092205 – ident: ref14 doi: 10.1007/978-3-031-38133-1_3 – ident: ref16 doi: 10.1109/ACSSC.2017.8335445 – ident: ref15 doi: 10.1002/9781119206804.ch8 – ident: ref24 doi: 10.1109/ASP-DAC52403.2022.9712509 – ident: ref5 doi: 10.1109/MICRO.2016.7783722 – ident: ref32 doi: 10.1109/tetc.2023.3237914 – ident: ref2 doi: 10.1109/ISCAS.2019.8702290 – ident: ref28 doi: 10.1109/ISCA.2018.00061 – ident: ref21 doi: 10.1109/tetc.2021.3050989 – start-page: 304 volume-title: Proc. ACM/IEEE 46th Annu. Int. Symp. Comput. Archit. (ISCA) ident: ref37 article-title: Laconic deep learning inference acceleration – ident: ref23 doi: 10.1145/3007787.3001138 – year: 2017 ident: ref36 article-title: Tartan: Accelerating fully-connected and convolutional layers in deep learning networks by exploiting numerical precision variability publication-title: arXiv:1707.09068 – ident: ref29 doi: 10.1007/978-3-030-58607-2_14 – ident: ref10 doi: 10.1109/ISCA.2018.00040 – ident: ref9 doi: 10.1109/ISCA.2018.00069 – ident: ref33 doi: 10.1147/rd.252.0156 – ident: ref26 doi: 10.1109/DAC.2018.8465915 – ident: ref20 doi: 10.1109/TCSI.2021.3138092 – ident: ref30 doi: 10.1109/MICRO50266.2020.00066 – ident: ref25 doi: 10.1109/JSSC.2022.3214064 – ident: ref12 doi: 10.1109/MWSCAS48704.2020.9184599 – ident: ref1 doi: 10.1109/CAC.2015.7382560 – volume: 25 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref3 article-title: ImageNet classification with deep convolutional neural networks – ident: ref7 doi: 10.1109/JETCAS.2019.2910232 – ident: ref4 doi: 10.1109/TVLSI.2019.2947757 |
SSID | ssj0000816957 |
Score | 2.3067138 |
Snippet | Deep neural network (DNN) is becoming pervasive in today's applications with intelligent autonomy. Nonetheless, the ever-increasing complexity of modern DNN... |
SourceID | doaj crossref ieee |
SourceType | Open Website Index Database Publisher |
StartPage | 96552 |
SubjectTerms | Arithmetic Artificial neural networks Computational efficiency Computer architecture DNN accelerator Engines MSDF pruning real-time Real-time systems redundant number system serial inference Streams Time factors |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA7qSQ--xfVFDh7t2keaNN7W1UWELbK64K3kMbkIXZHdi7_eTNKVVRC8lbS005mEeSTzfYRcSutS7gqVmEzohFXaJZUp_MIDaSSA5LHDe1zzhyl7fC1fu2b10AsDAOHwGfTxMuzl25lZYKnsGmMB7-B8hr7uM7fYrPVdUEEGCVmKDlkoS-X1YDj0P-FzwJz1C_REyIe94n0CSP8PVpXgVEY7pF6KE8-SvPUXc903n7-QGv8t7y7Z7sJLOojzYY-sQbtPtlZABw_IaFI_3d_QQUvHz3cjqlpLJ4C9ZF7HtA4EITTimCe33sVZelfXdGCM909hS57Gtx2S6ej-ZfiQdGwKiSmKbJ5UNuOuFABCO8VVzkSurKuMkDk4kVuplWTGQYW1tgLAZVZoq5llyuapMcUR2WhnLRwTWqEyFU9zCf4-NwoJFRHpjHFulc565Gqp5eY9gmY0IdlIZRON0qBRms4oPXKLlvh-FBGvw4BXZtMtoMZn6kge6Mqi9EGUkVVWgvG5pBVSpCWwHjlEA6x8L-r-5I_xU7KJMsRqyhnZmH8s4NzHF3N9EebVF6xvyow priority: 102 providerName: IEEE |
Title | RNPE: An MSDF and Redundant Number System-Based DNN Accelerator Engine |
URI | https://ieeexplore.ieee.org/document/10595090 https://doaj.org/article/8887401f535643c9815ec104d79705e4 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05T8MwGLVQJxgQRxHlqDwwEhrH8cXWK6qQGqFCpW6RzzEgVP4_PgIKEwtrEjn2-5I8f3a-9wC4E8bl1GGZacRUVnLlMq6xf_Gs0MJaQVOF97qmq235tCO7ntVX-CcsyQMn4CY-QwumcY5g4slTC46I1T6HMEywnNioBOo5r5dMxW8wR1QQ1skMoVxMpvO5H5FPCIvyAQdaCubYPSqKiv2_LFYiw1Qn4LibGsJp6tIpOLDtGTjqCQaeg2pTPy8f4bSF65dFBWVr4MaGOjCPD6yjuQdMGuTZzNOTgYu6hlOtPbfE7XSYWhuCbbV8na-yzgkh0xijfcYNoo4wa5lyksqiZIU0jmsmCutYYYSSotTO8rBOhq11yDBlVGlKaYpca3wBBu1bay8B5GHskuaFsP481TKYIQaVspJSIxUagftvUJr3JHjRxEQhF03CsAkYNh2GIzALwP1cGtSq4wEfw6aLYfNXDEdgGGDv3Y8IP5HJr_6j8WtwGDqclk1uwGD_8Wlv_URir8bxmRnHmr8vK4K_gA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYqeig9AC1ULK_6wLFZ8nDsuLdlH9qW3QhtQeIW-TG-IGWravfCr8djh9WCVIlb5ETJZMbWPOz5PkIupXUpd4VKTCZ0wirtksoUfuGBNBJA8tjhPa_59J79figfumb10AsDAOHwGfTxMuzl26VZY6nsCmMB7-B8hv7RO_4yi-1am5IKckjIUnTYQlkqrwbDof8NnwXmrF-gL0JG7C3_E2D6X_GqBLcy2Sf1i0DxNMljf73SffP0Bqvx3RIfkL0uwKSDOCO-kA_QfiWft2AHD8lkUd-Of9JBS-d_RhOqWksXgN1kXsu0DhQhNCKZJ9feyVk6qms6MMZ7qLApT-Pbjsj9ZHw3nCYdn0JiiiJbJZXNuCsFgNBOcZUzkSvrKiNkDk7kVmolmXFQYbWtAHCZFdpqZpmyeWpM8Y3stMsWjgmtUJmKp7kEf58bhZSKiHXGOLdKZz3y40XLzd8Im9GEdCOVTTRKg0ZpOqP0yDVaYvMoYl6HAa_MpltCjc_VkT7QlUXpwygjq6wE47NJK6RIS2A9coQG2Ppe1P3Jf8a_k0_Tu_msmf2qb07JLsoTaytnZGf1bw3nPtpY6Yswx54BbMTN1Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RNPE%3A+An+MSDF+and+Redundant+Number+System-Based+DNN+Accelerator+Engine&rft.jtitle=IEEE+access&rft.au=Moghaddasi%2C+Iraj&rft.au=Jaberipur%2C+Ghassem&rft.au=Javaheri%2C+Danial&rft.au=Nam%2C+Byeong-Gyu&rft.date=2024&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=96552&rft.epage=96564&rft_id=info:doi/10.1109%2FACCESS.2024.3426625&rft.externalDocID=10595090 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |