RNPE: An MSDF and Redundant Number System-Based DNN Accelerator Engine

Deep neural network (DNN) is becoming pervasive in today's applications with intelligent autonomy. Nonetheless, the ever-increasing complexity of modern DNN models caused several challenges on edge devices, struggling to support the intensive computing demands. Although several hardware acceler...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 12; pp. 96552 - 96564
Main Authors Moghaddasi, Iraj, Jaberipur, Ghassem, Javaheri, Danial, Nam, Byeong-Gyu
Format Journal Article
LanguageEnglish
Published IEEE 2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Deep neural network (DNN) is becoming pervasive in today's applications with intelligent autonomy. Nonetheless, the ever-increasing complexity of modern DNN models caused several challenges on edge devices, struggling to support the intensive computing demands. Although several hardware accelerators have been introduced to improve performance and computation efficiency, challenges still exist particularly in mission-critical applications, e.g., automotive and healthcare. Compression and approximation have been utilized in this respect, albeit with the probability of accuracy loss. Meanwhile, serial accelerators increase computation efficiency via dynamic precision adaptation and computation pruning but at the expense of increasing response time. This paper proposes the Redundant number system-based Neural Processing Engine (RNPE) with the Most Significant Digit First (MSDF) input and output streams. RNPE reduces the response time while improving computation efficiency compared to traditional bit-parallel and bit-serial processing engines. The proposed architecture has been described in RTL and synthesized in 28 nm CMOS technology for evaluation. Cycle-accurate simulations over the DNN models of image classification demonstrated a single unit of RNPE significantly reduces the response time by up to 97% with no accuracy loss compared to the baseline; however, an additional 25% area overhead is imposed. Furthermore, RNPE improves the average power-delay and energy-delay products by 14% and 53%, respectively. Eventually, RNPE exceeds the state-of-the-art by 23% on average in pruning ineffectual computations on the MSDF output stream.
AbstractList Deep neural network (DNN) is becoming pervasive in today's applications with intelligent autonomy. Nonetheless, the ever-increasing complexity of modern DNN models caused several challenges on edge devices, struggling to support the intensive computing demands. Although several hardware accelerators have been introduced to improve performance and computation efficiency, challenges still exist particularly in mission-critical applications, e.g., automotive and healthcare. Compression and approximation have been utilized in this respect, albeit with the probability of accuracy loss. Meanwhile, serial accelerators increase computation efficiency via dynamic precision adaptation and computation pruning but at the expense of increasing response time. This paper proposes the Redundant number system-based Neural Processing Engine (RNPE) with the Most Significant Digit First (MSDF) input and output streams. RNPE reduces the response time while improving computation efficiency compared to traditional bit-parallel and bit-serial processing engines. The proposed architecture has been described in RTL and synthesized in 28 nm CMOS technology for evaluation. Cycle-accurate simulations over the DNN models of image classification demonstrated a single unit of RNPE significantly reduces the response time by up to 97% with no accuracy loss compared to the baseline; however, an additional 25% area overhead is imposed. Furthermore, RNPE improves the average power-delay and energy-delay products by 14% and 53%, respectively. Eventually, RNPE exceeds the state-of-the-art by 23% on average in pruning ineffectual computations on the MSDF output stream.
Author Moghaddasi, Iraj
Nam, Byeong-Gyu
Jaberipur, Ghassem
Javaheri, Danial
Author_xml – sequence: 1
  givenname: Iraj
  orcidid: 0009-0007-7934-5720
  surname: Moghaddasi
  fullname: Moghaddasi, Iraj
  organization: Department of Computer Science and Engineering, Chungnam National University, Daejeon, Republic of Korea
– sequence: 2
  givenname: Ghassem
  surname: Jaberipur
  fullname: Jaberipur, Ghassem
  organization: Department of Computer Engineering, Chosun University, Gwangju, Republic of Korea
– sequence: 3
  givenname: Danial
  orcidid: 0000-0002-7275-2370
  surname: Javaheri
  fullname: Javaheri, Danial
  organization: Department of Computer Science and Engineering, Korea University, Seoul, Republic of Korea
– sequence: 4
  givenname: Byeong-Gyu
  orcidid: 0000-0003-0069-1959
  surname: Nam
  fullname: Nam, Byeong-Gyu
  email: bgnam@cnu.ac.kr
  organization: Department of Computer Science and Engineering, Chungnam National University, Daejeon, Republic of Korea
BookMark eNpNkM1OAjEUhRujiYg8gS76AoP9nU7dIT9KgqMBXTed9pYMgRnTGRa8vYMQw92cm5Ocb_HdoeuqrgChB0qGlBL9NBqPp6vVkBEmhlywNGXyCvUYTXXCJU-vL_5bNGiaDeku6yqpemi2zD-nz3hU4ffVZIZt5fES_L7ytmpxvt8VEPHq0LSwS15sAx5P8hyPnIMtRNvWEU-rdVnBPboJdtvA4Jx99D2bfo3fksXH63w8WiSOc9ommadpkApAFcGmlgnFrA-ZU5pBUMzrwmrhAmRCac4BAvWq8IXwwnpGnON9ND9xfW035ieWOxsPpral-SvquDY2tqXbgsmyTAlCg-QyFdzpjEpwlAivtCISRMfiJ5aLddNECP88SszRrDmZNUez5my2Wz2eViUAXCyklkQT_gsJaHSD
CODEN IAECCG
Cites_doi 10.1109/MWSCAS47672.2021.9531722
10.1109/tetc.2023.3301590
10.1007/s11831-021-09530-9
10.23919/DATE.2019.8715178
10.1145/3007787.3001177
10.1109/ICFPT47387.2019.00073
10.1109/ISCAS51556.2021.9401475
10.1109/JSSC.2018.2865489
10.1109/TC.2016.2574353
10.1109/ACCESS.2023.3300376
10.1145/3079856.3080246
10.1109/TC.2021.3092205
10.1007/978-3-031-38133-1_3
10.1109/ACSSC.2017.8335445
10.1002/9781119206804.ch8
10.1109/ASP-DAC52403.2022.9712509
10.1109/MICRO.2016.7783722
10.1109/tetc.2023.3237914
10.1109/ISCAS.2019.8702290
10.1109/ISCA.2018.00061
10.1109/tetc.2021.3050989
10.1145/3007787.3001138
10.1007/978-3-030-58607-2_14
10.1109/ISCA.2018.00040
10.1109/ISCA.2018.00069
10.1147/rd.252.0156
10.1109/DAC.2018.8465915
10.1109/TCSI.2021.3138092
10.1109/MICRO50266.2020.00066
10.1109/JSSC.2022.3214064
10.1109/MWSCAS48704.2020.9184599
10.1109/CAC.2015.7382560
10.1109/JETCAS.2019.2910232
10.1109/TVLSI.2019.2947757
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
DOA
DOI 10.1109/ACCESS.2024.3426625
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 96564
ExternalDocumentID oai_doaj_org_article_8887401f535643c9815ec104d79705e4
10_1109_ACCESS_2024_3426625
10595090
Genre orig-research
GrantInformation_xml – fundername: Korea Government (MSIT)
  grantid: 2022R1A5A8026986
– fundername: Electronics and Telecommunications Research Institute (ETRI)
  funderid: 10.13039/501100003696
– fundername: National Research Foundation of Korea (NRF)
  funderid: 10.13039/501100003725
– fundername: Korean Government (AI Semiconductor Technology N-Laboratory)
  grantid: 24ZH1230
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c331t-8d16f57ee7bfa6a2472adf8c792ef72d9ba94cfe847933eef1d7bdb4d4ad20cc3
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:28:05 EDT 2025
Tue Jul 01 03:02:41 EDT 2025
Wed Aug 27 02:36:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-8d16f57ee7bfa6a2472adf8c792ef72d9ba94cfe847933eef1d7bdb4d4ad20cc3
ORCID 0009-0007-7934-5720
0000-0003-0069-1959
0000-0002-7275-2370
OpenAccessLink https://doaj.org/article/8887401f535643c9815ec104d79705e4
PageCount 13
ParticipantIDs crossref_primary_10_1109_ACCESS_2024_3426625
doaj_primary_oai_doaj_org_article_8887401f535643c9815ec104d79705e4
ieee_primary_10595090
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
ref12
ref34
ref15
ref14
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref38
ref19
ref18
Delmas (ref36) 2017
Krizhevsky (ref3); 25
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref29
ref8
ref7
ref9
ref4
ref6
ref5
Sharify (ref37)
Albericio (ref27)
References_xml – start-page: 382
  volume-title: Proc. 50th Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO)
  ident: ref27
  article-title: Bit-pragmatic deep neural network computing
– ident: ref8
  doi: 10.1109/MWSCAS47672.2021.9531722
– ident: ref13
  doi: 10.1109/tetc.2023.3301590
– ident: ref19
  doi: 10.1007/s11831-021-09530-9
– ident: ref18
  doi: 10.23919/DATE.2019.8715178
– ident: ref34
  doi: 10.1145/3007787.3001177
– ident: ref35
  doi: 10.1109/ICFPT47387.2019.00073
– ident: ref38
  doi: 10.1109/ISCAS51556.2021.9401475
– ident: ref6
  doi: 10.1109/JSSC.2018.2865489
– ident: ref11
  doi: 10.1109/TC.2016.2574353
– ident: ref22
  doi: 10.1109/ACCESS.2023.3300376
– ident: ref17
  doi: 10.1145/3079856.3080246
– ident: ref31
  doi: 10.1109/TC.2021.3092205
– ident: ref14
  doi: 10.1007/978-3-031-38133-1_3
– ident: ref16
  doi: 10.1109/ACSSC.2017.8335445
– ident: ref15
  doi: 10.1002/9781119206804.ch8
– ident: ref24
  doi: 10.1109/ASP-DAC52403.2022.9712509
– ident: ref5
  doi: 10.1109/MICRO.2016.7783722
– ident: ref32
  doi: 10.1109/tetc.2023.3237914
– ident: ref2
  doi: 10.1109/ISCAS.2019.8702290
– ident: ref28
  doi: 10.1109/ISCA.2018.00061
– ident: ref21
  doi: 10.1109/tetc.2021.3050989
– start-page: 304
  volume-title: Proc. ACM/IEEE 46th Annu. Int. Symp. Comput. Archit. (ISCA)
  ident: ref37
  article-title: Laconic deep learning inference acceleration
– ident: ref23
  doi: 10.1145/3007787.3001138
– year: 2017
  ident: ref36
  article-title: Tartan: Accelerating fully-connected and convolutional layers in deep learning networks by exploiting numerical precision variability
  publication-title: arXiv:1707.09068
– ident: ref29
  doi: 10.1007/978-3-030-58607-2_14
– ident: ref10
  doi: 10.1109/ISCA.2018.00040
– ident: ref9
  doi: 10.1109/ISCA.2018.00069
– ident: ref33
  doi: 10.1147/rd.252.0156
– ident: ref26
  doi: 10.1109/DAC.2018.8465915
– ident: ref20
  doi: 10.1109/TCSI.2021.3138092
– ident: ref30
  doi: 10.1109/MICRO50266.2020.00066
– ident: ref25
  doi: 10.1109/JSSC.2022.3214064
– ident: ref12
  doi: 10.1109/MWSCAS48704.2020.9184599
– ident: ref1
  doi: 10.1109/CAC.2015.7382560
– volume: 25
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref3
  article-title: ImageNet classification with deep convolutional neural networks
– ident: ref7
  doi: 10.1109/JETCAS.2019.2910232
– ident: ref4
  doi: 10.1109/TVLSI.2019.2947757
SSID ssj0000816957
Score 2.3067138
Snippet Deep neural network (DNN) is becoming pervasive in today's applications with intelligent autonomy. Nonetheless, the ever-increasing complexity of modern DNN...
SourceID doaj
crossref
ieee
SourceType Open Website
Index Database
Publisher
StartPage 96552
SubjectTerms Arithmetic
Artificial neural networks
Computational efficiency
Computer architecture
DNN accelerator
Engines
MSDF
pruning
real-time
Real-time systems
redundant number system
serial inference
Streams
Time factors
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA7qSQ--xfVFDh7t2keaNN7W1UWELbK64K3kMbkIXZHdi7_eTNKVVRC8lbS005mEeSTzfYRcSutS7gqVmEzohFXaJZUp_MIDaSSA5LHDe1zzhyl7fC1fu2b10AsDAOHwGfTxMuzl25lZYKnsGmMB7-B8hr7uM7fYrPVdUEEGCVmKDlkoS-X1YDj0P-FzwJz1C_REyIe94n0CSP8PVpXgVEY7pF6KE8-SvPUXc903n7-QGv8t7y7Z7sJLOojzYY-sQbtPtlZABw_IaFI_3d_QQUvHz3cjqlpLJ4C9ZF7HtA4EITTimCe33sVZelfXdGCM909hS57Gtx2S6ej-ZfiQdGwKiSmKbJ5UNuOuFABCO8VVzkSurKuMkDk4kVuplWTGQYW1tgLAZVZoq5llyuapMcUR2WhnLRwTWqEyFU9zCf4-NwoJFRHpjHFulc565Gqp5eY9gmY0IdlIZRON0qBRms4oPXKLlvh-FBGvw4BXZtMtoMZn6kge6Mqi9EGUkVVWgvG5pBVSpCWwHjlEA6x8L-r-5I_xU7KJMsRqyhnZmH8s4NzHF3N9EebVF6xvyow
  priority: 102
  providerName: IEEE
Title RNPE: An MSDF and Redundant Number System-Based DNN Accelerator Engine
URI https://ieeexplore.ieee.org/document/10595090
https://doaj.org/article/8887401f535643c9815ec104d79705e4
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05T8MwGLVQJxgQRxHlqDwwEhrH8cXWK6qQGqFCpW6RzzEgVP4_PgIKEwtrEjn2-5I8f3a-9wC4E8bl1GGZacRUVnLlMq6xf_Gs0MJaQVOF97qmq235tCO7ntVX-CcsyQMn4CY-QwumcY5g4slTC46I1T6HMEywnNioBOo5r5dMxW8wR1QQ1skMoVxMpvO5H5FPCIvyAQdaCubYPSqKiv2_LFYiw1Qn4LibGsJp6tIpOLDtGTjqCQaeg2pTPy8f4bSF65dFBWVr4MaGOjCPD6yjuQdMGuTZzNOTgYu6hlOtPbfE7XSYWhuCbbV8na-yzgkh0xijfcYNoo4wa5lyksqiZIU0jmsmCutYYYSSotTO8rBOhq11yDBlVGlKaYpca3wBBu1bay8B5GHskuaFsP481TKYIQaVspJSIxUagftvUJr3JHjRxEQhF03CsAkYNh2GIzALwP1cGtSq4wEfw6aLYfNXDEdgGGDv3Y8IP5HJr_6j8WtwGDqclk1uwGD_8Wlv_URir8bxmRnHmr8vK4K_gA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYqeig9AC1ULK_6wLFZ8nDsuLdlH9qW3QhtQeIW-TG-IGWravfCr8djh9WCVIlb5ETJZMbWPOz5PkIupXUpd4VKTCZ0wirtksoUfuGBNBJA8tjhPa_59J79figfumb10AsDAOHwGfTxMuzl26VZY6nsCmMB7-B8hv7RO_4yi-1am5IKckjIUnTYQlkqrwbDof8NnwXmrF-gL0JG7C3_E2D6X_GqBLcy2Sf1i0DxNMljf73SffP0Bqvx3RIfkL0uwKSDOCO-kA_QfiWft2AHD8lkUd-Of9JBS-d_RhOqWksXgN1kXsu0DhQhNCKZJ9feyVk6qms6MMZ7qLApT-Pbjsj9ZHw3nCYdn0JiiiJbJZXNuCsFgNBOcZUzkSvrKiNkDk7kVmolmXFQYbWtAHCZFdpqZpmyeWpM8Y3stMsWjgmtUJmKp7kEf58bhZSKiHXGOLdKZz3y40XLzd8Im9GEdCOVTTRKg0ZpOqP0yDVaYvMoYl6HAa_MpltCjc_VkT7QlUXpwygjq6wE47NJK6RIS2A9coQG2Ppe1P3Jf8a_k0_Tu_msmf2qb07JLsoTaytnZGf1bw3nPtpY6Yswx54BbMTN1Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RNPE%3A+An+MSDF+and+Redundant+Number+System-Based+DNN+Accelerator+Engine&rft.jtitle=IEEE+access&rft.au=Moghaddasi%2C+Iraj&rft.au=Jaberipur%2C+Ghassem&rft.au=Javaheri%2C+Danial&rft.au=Nam%2C+Byeong-Gyu&rft.date=2024&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=96552&rft.epage=96564&rft_id=info:doi/10.1109%2FACCESS.2024.3426625&rft.externalDocID=10595090
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon