Genome-Wide Association Study with Three Control Cohorts of Japanese Patients with Esotropia and Exotropia of Comitant Strabismus and Idiopathic Superior Oblique Muscle Palsy

Esotropia and exotropia in the entity of comitant strabismus are multifactorial diseases with both genetic and environmental backgrounds. Idiopathic superior oblique muscle palsy, as the predominant entity of non-comitant (paralytic) strabismus, also has a genetic background, as evidenced by varying...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 25; no. 13; p. 6986
Main Authors Matsuo, Toshihiko, Hamasaki, Ichiro, Kamatani, Yoichiro, Kawaguchi, Takahisa, Yamaguchi, Izumi, Matsuda, Fumihiko, Saito, Akira, Nakazono, Kazuyuki, Kamitsuji, Shigeo
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 26.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Esotropia and exotropia in the entity of comitant strabismus are multifactorial diseases with both genetic and environmental backgrounds. Idiopathic superior oblique muscle palsy, as the predominant entity of non-comitant (paralytic) strabismus, also has a genetic background, as evidenced by varying degrees of muscle hypoplasia. A genome-wide association study (GWAS) was conducted of 711 Japanese patients with esotropia (n= 253), exotropia (n = 356), and idiopathic superior oblique muscle palsy (n = 102). The genotypes of single nucleotide polymorphisms (SNPs) were determined by Infinium Asian Screening Array. Three control cohorts from the Japanese population were used: two cohorts from BioBank Japan (BBJ) and the Nagahama Cohort. BBJ (180K) was genotyped by a different array, Illumina Infinium OmniExpressExome or HumanOmniExpress, while BBJ (ASA) and the Nagahama Cohort were genotyped by the same Asian array. After quality control of SNPs and individuals, common SNPs between the case cohort and the control cohort were chosen in the condition of genotyping by different arrays, while all SNPs genotyped by the same array were used for SNP imputation. The SNPs imputed with R-square values ≥ 0.3 were used to compare the case cohort of each entity or the combined entity with the control cohort. In comparison with BBJ (180K), the esotropia group and the exotropia group showed CDCA7 and HLA-F, respectively, as candidate genes at a significant level of p < 5 × 10−8, while the idiopathic superior oblique muscle palsy group showed DAB1 as a candidate gene which is involved in neuronal migration. DAB1 was also detected as a candidate in comparison with BBJ (ASA) and the Nagahama Cohort at a weak level of significance of p < 1 × 10−6. In comparison with BBJ (180K), RARB (retinoic acid receptor-β) was detected as a candidate at a significant level of p < 5 × 10−8 in the combined group of esotropia, exotropia, and idiopathic superior oblique muscle palsy. In conclusion, a series of GWASs with three different control cohorts would be an effective method with which to search for candidate genes for multifactorial diseases such as strabismus.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms25136986