Activity Recognition for Incomplete Spinal Cord Injury Subjects Using Hidden Markov Models

Successful activity recognition in patients with motor disabilities can improve patient care by informing researchers and clinicians about changes in patient mobility both in the clinic and at home. Standard machine learning approaches can improve activity recognition in patient populations by tailo...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 18; no. 15; pp. 6369 - 6374
Main Authors Pichleap Sok, Ting Xiao, Azeze, Yohannes, Jayaraman, Arun, Albert, Mark V.
Format Journal Article
LanguageEnglish
Published IEEE 01.08.2018
Subjects
Online AccessGet full text
ISSN1530-437X
1558-1748
DOI10.1109/JSEN.2018.2845749

Cover

Loading…
Abstract Successful activity recognition in patients with motor disabilities can improve patient care by informing researchers and clinicians about changes in patient mobility both in the clinic and at home. Standard machine learning approaches can improve activity recognition in patient populations by tailoring recognition models to specific populations. However, many approaches use only static machine learning classifiers, which classify each data sample individually, ignoring the temporal relationship of successive samples over time. Static classification can be augmented by integrating the output of static classifiers with a dynamic state estimation model. Here, we use a hidden Markov model (HMM) and apply the static supervised machine learning classifier results as observations. We experimentally validate the effectiveness of our model by recognizing six activities from 13 ambulatory incomplete spinal cord injury subjects who were instructed to perform a standardized set of activities while wearing a waist-worn accelerometer in a clinical setting. Activities included lying, sitting, standing, walking, wheeling, and stair climbing. Using within-subject cross validation, the highest classification accuracy from static classifiers alone was 86.3% (85.5%-87.0% and 95% confidence). By augmenting the classification model with an HMM, we were able to improve the accuracy to 88.9% (88.2%-89.6%). The additional 2.6% demonstrated a significant improvement of the classification accuracy using a hybrid static/dynamic classifier compared to the use of static classifiers alone. Such improved activity recognition can provide better outcome measures, aiding clinicians to select or refine the right physical or drug therapies to improve patient mobility.
AbstractList Successful activity recognition in patients with motor disabilities can improve patient care by informing researchers and clinicians about changes in patient mobility both in the clinic and at home. Standard machine learning approaches can improve activity recognition in patient populations by tailoring recognition models to specific populations. However, many approaches use only static machine learning classifiers, which classify each data sample individually, ignoring the temporal relationship of successive samples over time. Static classification can be augmented by integrating the output of static classifiers with a dynamic state estimation model. Here, we use a hidden Markov model (HMM) and apply the static supervised machine learning classifier results as observations. We experimentally validate the effectiveness of our model by recognizing six activities from 13 ambulatory incomplete spinal cord injury subjects who were instructed to perform a standardized set of activities while wearing a waist-worn accelerometer in a clinical setting. Activities included lying, sitting, standing, walking, wheeling, and stair climbing. Using within-subject cross validation, the highest classification accuracy from static classifiers alone was 86.3% (85.5%-87.0% and 95% confidence). By augmenting the classification model with an HMM, we were able to improve the accuracy to 88.9% (88.2%-89.6%). The additional 2.6% demonstrated a significant improvement of the classification accuracy using a hybrid static/dynamic classifier compared to the use of static classifiers alone. Such improved activity recognition can provide better outcome measures, aiding clinicians to select or refine the right physical or drug therapies to improve patient mobility.
Author Azeze, Yohannes
Jayaraman, Arun
Pichleap Sok
Ting Xiao
Albert, Mark V.
Author_xml – sequence: 1
  surname: Pichleap Sok
  fullname: Pichleap Sok
  email: psok@luc.edu
  organization: Comput. Sci. Dept., Loyola Univ. Chicago, Chicago, IL, USA
– sequence: 2
  surname: Ting Xiao
  fullname: Ting Xiao
  email: txiao@luc.edu
  organization: Comput. Sci. Dept., Loyola Univ. Chicago, Chicago, IL, USA
– sequence: 3
  givenname: Yohannes
  surname: Azeze
  fullname: Azeze, Yohannes
  email: yazeze@hawk.iit.edu
  organization: Dept. of Biomed. Eng., Illinois Inst. of Technol., Chicago, IL, USA
– sequence: 4
  givenname: Arun
  surname: Jayaraman
  fullname: Jayaraman, Arun
  email: ajayaraman@srability.org
  organization: Dept. of Phys. Med. & Rehabilitation, Northwestern Univ. Feinberg, Chicago, IL, USA
– sequence: 5
  givenname: Mark V.
  surname: Albert
  fullname: Albert, Mark V.
  email: mva@cs.luc.edu
  organization: Comput. Sci. Dept., Loyola Univ. Chicago, Chicago, IL, USA
BookMark eNp9kMFqAjEQhkOxULV9gNJLXmBtJtlsskcRWy3aQq1QellikpXYdSPJKvj2dVF66KGnGYb5fvi_HurUvrYI3QMZAJD88WUxfh1QAnJAZcpFml-hLnAuExCp7LQ7I0nKxOcN6sW4IQRywUUXfQ114w6uOeJ3q_26do3zNS59wNNa--2uso3Fi52rVYVHPpjTebMPR7zYrzZWNxEvo6vXeOKMsTWeq_DtD3juja3iLbouVRXt3WX20fJp_DGaJLO35-loOEs0Y9AkUhFjRAZaG06ZApOxUvGMMssZpwoymhJClTaSrwSTmS0zRmSuwayYVACsj8Q5VwcfY7BloV2j2h5NUK4qgBStoqJVVLSKiouiEwl_yF1wWxWO_zIPZ8ZZa3__JRMZAcp-ALBVdIY
CODEN ISJEAZ
CitedBy_id crossref_primary_10_3390_a17070286
crossref_primary_10_3389_fneur_2019_01092
crossref_primary_10_1080_03091902_2020_1822940
crossref_primary_10_3390_electronics12153275
crossref_primary_10_1016_j_patcog_2020_107561
crossref_primary_10_3390_s20051502
crossref_primary_10_1109_ACCESS_2019_2917125
crossref_primary_10_1088_1361_6579_ab6ebb
crossref_primary_10_3390_s19235151
crossref_primary_10_3390_electronics12010210
crossref_primary_10_3390_s23115024
crossref_primary_10_1155_2020_8869134
crossref_primary_10_1016_j_expneurol_2024_114913
crossref_primary_10_3390_s22072513
crossref_primary_10_1109_JSEN_2024_3515173
crossref_primary_10_1186_s12984_022_01040_4
crossref_primary_10_1523_ENEURO_0335_22_2022
crossref_primary_10_1016_j_inffus_2019_03_002
crossref_primary_10_1016_j_measurement_2020_108551
crossref_primary_10_1007_s11042_022_12412_2
crossref_primary_10_1016_j_dsp_2021_103365
crossref_primary_10_3390_drones9020092
crossref_primary_10_3390_s22020573
crossref_primary_10_1186_s12984_020_00779_y
crossref_primary_10_1109_ACCESS_2022_3171263
crossref_primary_10_1109_JSEN_2020_3028697
crossref_primary_10_1007_s11042_024_20136_8
crossref_primary_10_1016_j_artmed_2022_102314
crossref_primary_10_1109_JIOT_2021_3089520
crossref_primary_10_1109_JSEN_2020_2992879
Cites_doi 10.1186/s12984-017-0222-5
10.1371/journal.pone.0124414
10.1109/CVPR.1997.609450
10.1109/TBME.2003.812189
10.1109/JBHI.2013.2253613
10.1016/j.jneumeth.2013.09.015
10.1016/j.ejpn.2010.07.002
10.1109/JSEN.2015.2485665
10.1016/S0197-2456(02)00320-3
10.1109/JSEN.2015.2496154
10.1109/TBME.2007.896591
10.1109/BSN.2009.53
10.1136/jnnp.2007.131045
10.1371/journal.pone.0130851
10.1371/journal.pone.0036556
10.1007/978-3-540-76772-5_15
10.1109/MPRV.2010.7
10.1016/S0003-9993(99)90126-0
10.1186/s12916-015-0319-2
10.3389/fneur.2012.00158
10.2196/mhealth.8201
10.1682/JRRD.2006.03.0033
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/JSEN.2018.2845749
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
Statistics
EISSN 1558-1748
EndPage 6374
ExternalDocumentID 10_1109_JSEN_2018_2845749
8376012
Genre orig-research
GrantInformation_xml – fundername: Max Nader Rehabilitation Technologies and Outcomes Research Center, Shirley Ryan AbilityLab (formerly the Rehabilitation Institute of Chicago)
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c331t-8a0dd761ccd523a1d63fa5623e5352a1624002acd85b7386ef63089c1db38a113
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Thu Apr 24 23:03:25 EDT 2025
Tue Jul 01 03:36:42 EDT 2025
Wed Aug 27 03:06:20 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-8a0dd761ccd523a1d63fa5623e5352a1624002acd85b7386ef63089c1db38a113
ORCID 0000-0003-3977-2895
0000-0001-8548-5710
PageCount 6
ParticipantIDs crossref_citationtrail_10_1109_JSEN_2018_2845749
crossref_primary_10_1109_JSEN_2018_2845749
ieee_primary_8376012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-Aug.1,-1
2018-8-1
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-Aug.1,-1
  day: 01
PublicationDecade 2010
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
olgúin (ref26) 2006
ref11
ref10
ref1
ref16
lester (ref3) 2006
ganapathiraju (ref21) 2000
ref19
gaikwad (ref17) 2012; 2
ref18
ref24
ref23
ravi (ref22) 2005; 3
ref25
ref20
lester (ref2) 2005
ref28
ref27
ref8
ref7
ref9
ref4
ref6
ref5
References_xml – ident: ref9
  doi: 10.1186/s12984-017-0222-5
– ident: ref23
  doi: 10.1371/journal.pone.0124414
– ident: ref25
  doi: 10.1109/CVPR.1997.609450
– ident: ref16
  doi: 10.1109/TBME.2003.812189
– volume: 3
  start-page: 1541
  year: 2005
  ident: ref22
  article-title: Activity recognition from accelerometer data
  publication-title: Proc 17th Conf Innov Appl Artif Intell
– ident: ref8
  doi: 10.1109/JBHI.2013.2253613
– ident: ref5
  doi: 10.1016/j.jneumeth.2013.09.015
– ident: ref15
  doi: 10.1016/j.ejpn.2010.07.002
– ident: ref20
  doi: 10.1109/JSEN.2015.2485665
– ident: ref7
  doi: 10.1016/S0197-2456(02)00320-3
– ident: ref19
  doi: 10.1109/JSEN.2015.2496154
– ident: ref14
  doi: 10.1109/TBME.2007.896591
– start-page: 1
  year: 2006
  ident: ref3
  article-title: A practical approach to recognizing physical activities
  publication-title: Proc 9th Int Conf Pervasive Comput (Pervasive)
– ident: ref13
  doi: 10.1109/BSN.2009.53
– start-page: 504
  year: 2000
  ident: ref21
  article-title: Hybrid SVM/HMM architectures for speech recognition
  publication-title: Proc Speech Transcription Workshop
– start-page: 11
  year: 2006
  ident: ref26
  article-title: Human activity recognition: Accuracy across common locations for wearable sensors
  publication-title: Proc 10th Int Symp Wearable Comput
– ident: ref11
  doi: 10.1136/jnnp.2007.131045
– ident: ref1
  doi: 10.1371/journal.pone.0130851
– ident: ref6
  doi: 10.1371/journal.pone.0036556
– start-page: 766
  year: 2005
  ident: ref2
  article-title: A hybrid discriminative/generative approach for modeling human activities
  publication-title: Proc 19th Int Joint Conf Artif Intell
– ident: ref27
  doi: 10.1007/978-3-540-76772-5_15
– ident: ref18
  doi: 10.1109/MPRV.2010.7
– ident: ref10
  doi: 10.1016/S0003-9993(99)90126-0
– ident: ref12
  doi: 10.1186/s12916-015-0319-2
– ident: ref4
  doi: 10.3389/fneur.2012.00158
– ident: ref24
  doi: 10.2196/mhealth.8201
– volume: 2
  start-page: 27
  year: 2012
  ident: ref17
  article-title: HMM classifier for human activity recognition
  publication-title: Comput Sci Eng
– ident: ref28
  doi: 10.1682/JRRD.2006.03.0033
SSID ssj0019757
Score 2.4129624
Snippet Successful activity recognition in patients with motor disabilities can improve patient care by informing researchers and clinicians about changes in patient...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 6369
SubjectTerms Activity recognition
Feature extraction
Hidden Markov models
incomplete spinal cord injury
Sociology
Spinal cord injury
static/dynamic classifiers
Statistics
Title Activity Recognition for Incomplete Spinal Cord Injury Subjects Using Hidden Markov Models
URI https://ieeexplore.ieee.org/document/8376012
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5qL9aDj1axvsjBk7jbzb73WEqlFNqDtVC8LNkki2jZFrsV9Nc7s7stRUS8LSFhA5NMZpJvvg_g1sNDh2Mgblh-Ig3XSbkhIu0agrvaVkHqyojqnUdjfzB1hzNvVoP7bS2M1roAn2mTPou3fLWQa7oq64QFggMd7h4mbmWt1vbFIAoKVk_cwBb-MphVL5jcijrDSX9MIK7QRF_sBUSbuXMG7YiqFGfKwxGMNrMpoSRv5jpPTPn1g6jxv9M9hsMquGTdcjWcQE1nTTjYoRxswn6lev7y2YQGRZolUXMLnruyFJJgjxtM0SJjGNIydCGEO8fomk2WJKLFepixYvMr2oOh56GrnBUrwAdsQJQkGaMSoMUHI6W1-eoUpg_9p97AqIQXDOk4PDdCYSkV-FxKhXmq4Mp3UkGBkiYyGMF9Ap7aQqrQS0g0VKe-Y4WR5CpxQsG5cwb1bJHpc2CpbatUcyewU3QXWoZJoKX2PF8IL-Xaa4O1MUUsK1ZyEseYx0V2YkUxWS8m68WV9dpwtx2yLCk5_urcIsNsO1Y2ufi9-RIaNLgE-F1BPX9f62sMOvLkplht3_kO0tg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT8IwFD4h-AA-eAGNeO2DT8bBuq27PBICQQQeBBLiy9K1XYySQQRM9Nfbsw1CjDG-LU13Sb7u9LT9zvcB3DI96VCdiBumGwnDsWNq8EA5BqeOsqQXOyLAeufB0O1OnN6UTQtwv62FUUql5DNVx8v0LF_OxRq3yhp-yuDQAXePYTFuVq21PTMIvFTXU__Cpn6pN83PMKkZNHqj9hBpXH5dR2PmoXDmziy0Y6uSziqdQxhsvicjk7zV16uoLr5-SDX-94OP4CBPL0kzGw_HUFBJBfZ3RAcrUMp9z18-K1DGXDOTaq7Cc1NkVhLkacMqmidEJ7VEBxFknuv8mowWaKNFWnrNqptfNSJExx7czFmSlH5AuihKkhAsApp_EPRamy1PYNJpj1tdI7deMIRt05Xhc1NKz6VCSL1S5VS6dswxVVIoB8Opi9RTiwvpswhtQ1Xs2qYfCCoj2-eU2qdQTOaJOgMSW5aMFbU9K9YBQwk_8pRQjLmcs5gqVgNzA0Uocl1ytMeYhen6xAxCRC9E9MIcvRrcbW9ZZKIcf3WuIjDbjjkm578330CpOx70w_7D8PECyvigjO53CcXV-1pd6RRkFV2nI-8bINnWIA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Activity+Recognition+for+Incomplete+Spinal+Cord+Injury+Subjects+Using+Hidden+Markov+Models&rft.jtitle=IEEE+sensors+journal&rft.au=Sok%2C+Pichleap&rft.au=Xiao%2C+Ting&rft.au=Azeze%2C+Yohannes&rft.au=Jayaraman%2C+Arun&rft.date=2018-08-01&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=18&rft.issue=15&rft.spage=6369&rft.epage=6374&rft_id=info:doi/10.1109%2FJSEN.2018.2845749&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2018_2845749
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon