Activity Recognition for Incomplete Spinal Cord Injury Subjects Using Hidden Markov Models
Successful activity recognition in patients with motor disabilities can improve patient care by informing researchers and clinicians about changes in patient mobility both in the clinic and at home. Standard machine learning approaches can improve activity recognition in patient populations by tailo...
Saved in:
Published in | IEEE sensors journal Vol. 18; no. 15; pp. 6369 - 6374 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.08.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1530-437X 1558-1748 |
DOI | 10.1109/JSEN.2018.2845749 |
Cover
Loading…
Abstract | Successful activity recognition in patients with motor disabilities can improve patient care by informing researchers and clinicians about changes in patient mobility both in the clinic and at home. Standard machine learning approaches can improve activity recognition in patient populations by tailoring recognition models to specific populations. However, many approaches use only static machine learning classifiers, which classify each data sample individually, ignoring the temporal relationship of successive samples over time. Static classification can be augmented by integrating the output of static classifiers with a dynamic state estimation model. Here, we use a hidden Markov model (HMM) and apply the static supervised machine learning classifier results as observations. We experimentally validate the effectiveness of our model by recognizing six activities from 13 ambulatory incomplete spinal cord injury subjects who were instructed to perform a standardized set of activities while wearing a waist-worn accelerometer in a clinical setting. Activities included lying, sitting, standing, walking, wheeling, and stair climbing. Using within-subject cross validation, the highest classification accuracy from static classifiers alone was 86.3% (85.5%-87.0% and 95% confidence). By augmenting the classification model with an HMM, we were able to improve the accuracy to 88.9% (88.2%-89.6%). The additional 2.6% demonstrated a significant improvement of the classification accuracy using a hybrid static/dynamic classifier compared to the use of static classifiers alone. Such improved activity recognition can provide better outcome measures, aiding clinicians to select or refine the right physical or drug therapies to improve patient mobility. |
---|---|
AbstractList | Successful activity recognition in patients with motor disabilities can improve patient care by informing researchers and clinicians about changes in patient mobility both in the clinic and at home. Standard machine learning approaches can improve activity recognition in patient populations by tailoring recognition models to specific populations. However, many approaches use only static machine learning classifiers, which classify each data sample individually, ignoring the temporal relationship of successive samples over time. Static classification can be augmented by integrating the output of static classifiers with a dynamic state estimation model. Here, we use a hidden Markov model (HMM) and apply the static supervised machine learning classifier results as observations. We experimentally validate the effectiveness of our model by recognizing six activities from 13 ambulatory incomplete spinal cord injury subjects who were instructed to perform a standardized set of activities while wearing a waist-worn accelerometer in a clinical setting. Activities included lying, sitting, standing, walking, wheeling, and stair climbing. Using within-subject cross validation, the highest classification accuracy from static classifiers alone was 86.3% (85.5%-87.0% and 95% confidence). By augmenting the classification model with an HMM, we were able to improve the accuracy to 88.9% (88.2%-89.6%). The additional 2.6% demonstrated a significant improvement of the classification accuracy using a hybrid static/dynamic classifier compared to the use of static classifiers alone. Such improved activity recognition can provide better outcome measures, aiding clinicians to select or refine the right physical or drug therapies to improve patient mobility. |
Author | Azeze, Yohannes Jayaraman, Arun Pichleap Sok Ting Xiao Albert, Mark V. |
Author_xml | – sequence: 1 surname: Pichleap Sok fullname: Pichleap Sok email: psok@luc.edu organization: Comput. Sci. Dept., Loyola Univ. Chicago, Chicago, IL, USA – sequence: 2 surname: Ting Xiao fullname: Ting Xiao email: txiao@luc.edu organization: Comput. Sci. Dept., Loyola Univ. Chicago, Chicago, IL, USA – sequence: 3 givenname: Yohannes surname: Azeze fullname: Azeze, Yohannes email: yazeze@hawk.iit.edu organization: Dept. of Biomed. Eng., Illinois Inst. of Technol., Chicago, IL, USA – sequence: 4 givenname: Arun surname: Jayaraman fullname: Jayaraman, Arun email: ajayaraman@srability.org organization: Dept. of Phys. Med. & Rehabilitation, Northwestern Univ. Feinberg, Chicago, IL, USA – sequence: 5 givenname: Mark V. surname: Albert fullname: Albert, Mark V. email: mva@cs.luc.edu organization: Comput. Sci. Dept., Loyola Univ. Chicago, Chicago, IL, USA |
BookMark | eNp9kMFqAjEQhkOxULV9gNJLXmBtJtlsskcRWy3aQq1QellikpXYdSPJKvj2dVF66KGnGYb5fvi_HurUvrYI3QMZAJD88WUxfh1QAnJAZcpFml-hLnAuExCp7LQ7I0nKxOcN6sW4IQRywUUXfQ114w6uOeJ3q_26do3zNS59wNNa--2uso3Fi52rVYVHPpjTebMPR7zYrzZWNxEvo6vXeOKMsTWeq_DtD3juja3iLbouVRXt3WX20fJp_DGaJLO35-loOEs0Y9AkUhFjRAZaG06ZApOxUvGMMssZpwoymhJClTaSrwSTmS0zRmSuwayYVACsj8Q5VwcfY7BloV2j2h5NUK4qgBStoqJVVLSKiouiEwl_yF1wWxWO_zIPZ8ZZa3__JRMZAcp-ALBVdIY |
CODEN | ISJEAZ |
CitedBy_id | crossref_primary_10_3390_a17070286 crossref_primary_10_3389_fneur_2019_01092 crossref_primary_10_1080_03091902_2020_1822940 crossref_primary_10_3390_electronics12153275 crossref_primary_10_1016_j_patcog_2020_107561 crossref_primary_10_3390_s20051502 crossref_primary_10_1109_ACCESS_2019_2917125 crossref_primary_10_1088_1361_6579_ab6ebb crossref_primary_10_3390_s19235151 crossref_primary_10_3390_electronics12010210 crossref_primary_10_3390_s23115024 crossref_primary_10_1155_2020_8869134 crossref_primary_10_1016_j_expneurol_2024_114913 crossref_primary_10_3390_s22072513 crossref_primary_10_1109_JSEN_2024_3515173 crossref_primary_10_1186_s12984_022_01040_4 crossref_primary_10_1523_ENEURO_0335_22_2022 crossref_primary_10_1016_j_inffus_2019_03_002 crossref_primary_10_1016_j_measurement_2020_108551 crossref_primary_10_1007_s11042_022_12412_2 crossref_primary_10_1016_j_dsp_2021_103365 crossref_primary_10_3390_drones9020092 crossref_primary_10_3390_s22020573 crossref_primary_10_1186_s12984_020_00779_y crossref_primary_10_1109_ACCESS_2022_3171263 crossref_primary_10_1109_JSEN_2020_3028697 crossref_primary_10_1007_s11042_024_20136_8 crossref_primary_10_1016_j_artmed_2022_102314 crossref_primary_10_1109_JIOT_2021_3089520 crossref_primary_10_1109_JSEN_2020_2992879 |
Cites_doi | 10.1186/s12984-017-0222-5 10.1371/journal.pone.0124414 10.1109/CVPR.1997.609450 10.1109/TBME.2003.812189 10.1109/JBHI.2013.2253613 10.1016/j.jneumeth.2013.09.015 10.1016/j.ejpn.2010.07.002 10.1109/JSEN.2015.2485665 10.1016/S0197-2456(02)00320-3 10.1109/JSEN.2015.2496154 10.1109/TBME.2007.896591 10.1109/BSN.2009.53 10.1136/jnnp.2007.131045 10.1371/journal.pone.0130851 10.1371/journal.pone.0036556 10.1007/978-3-540-76772-5_15 10.1109/MPRV.2010.7 10.1016/S0003-9993(99)90126-0 10.1186/s12916-015-0319-2 10.3389/fneur.2012.00158 10.2196/mhealth.8201 10.1682/JRRD.2006.03.0033 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/JSEN.2018.2845749 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering Statistics |
EISSN | 1558-1748 |
EndPage | 6374 |
ExternalDocumentID | 10_1109_JSEN_2018_2845749 8376012 |
Genre | orig-research |
GrantInformation_xml | – fundername: Max Nader Rehabilitation Technologies and Outcomes Research Center, Shirley Ryan AbilityLab (formerly the Rehabilitation Institute of Chicago) |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c331t-8a0dd761ccd523a1d63fa5623e5352a1624002acd85b7386ef63089c1db38a113 |
IEDL.DBID | RIE |
ISSN | 1530-437X |
IngestDate | Thu Apr 24 23:03:25 EDT 2025 Tue Jul 01 03:36:42 EDT 2025 Wed Aug 27 03:06:20 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c331t-8a0dd761ccd523a1d63fa5623e5352a1624002acd85b7386ef63089c1db38a113 |
ORCID | 0000-0003-3977-2895 0000-0001-8548-5710 |
PageCount | 6 |
ParticipantIDs | crossref_citationtrail_10_1109_JSEN_2018_2845749 crossref_primary_10_1109_JSEN_2018_2845749 ieee_primary_8376012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-Aug.1,-1 2018-8-1 |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: 2018-Aug.1,-1 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | IEEE sensors journal |
PublicationTitleAbbrev | JSEN |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref12 ref15 ref14 olgúin (ref26) 2006 ref11 ref10 ref1 ref16 lester (ref3) 2006 ganapathiraju (ref21) 2000 ref19 gaikwad (ref17) 2012; 2 ref18 ref24 ref23 ravi (ref22) 2005; 3 ref25 ref20 lester (ref2) 2005 ref28 ref27 ref8 ref7 ref9 ref4 ref6 ref5 |
References_xml | – ident: ref9 doi: 10.1186/s12984-017-0222-5 – ident: ref23 doi: 10.1371/journal.pone.0124414 – ident: ref25 doi: 10.1109/CVPR.1997.609450 – ident: ref16 doi: 10.1109/TBME.2003.812189 – volume: 3 start-page: 1541 year: 2005 ident: ref22 article-title: Activity recognition from accelerometer data publication-title: Proc 17th Conf Innov Appl Artif Intell – ident: ref8 doi: 10.1109/JBHI.2013.2253613 – ident: ref5 doi: 10.1016/j.jneumeth.2013.09.015 – ident: ref15 doi: 10.1016/j.ejpn.2010.07.002 – ident: ref20 doi: 10.1109/JSEN.2015.2485665 – ident: ref7 doi: 10.1016/S0197-2456(02)00320-3 – ident: ref19 doi: 10.1109/JSEN.2015.2496154 – ident: ref14 doi: 10.1109/TBME.2007.896591 – start-page: 1 year: 2006 ident: ref3 article-title: A practical approach to recognizing physical activities publication-title: Proc 9th Int Conf Pervasive Comput (Pervasive) – ident: ref13 doi: 10.1109/BSN.2009.53 – start-page: 504 year: 2000 ident: ref21 article-title: Hybrid SVM/HMM architectures for speech recognition publication-title: Proc Speech Transcription Workshop – start-page: 11 year: 2006 ident: ref26 article-title: Human activity recognition: Accuracy across common locations for wearable sensors publication-title: Proc 10th Int Symp Wearable Comput – ident: ref11 doi: 10.1136/jnnp.2007.131045 – ident: ref1 doi: 10.1371/journal.pone.0130851 – ident: ref6 doi: 10.1371/journal.pone.0036556 – start-page: 766 year: 2005 ident: ref2 article-title: A hybrid discriminative/generative approach for modeling human activities publication-title: Proc 19th Int Joint Conf Artif Intell – ident: ref27 doi: 10.1007/978-3-540-76772-5_15 – ident: ref18 doi: 10.1109/MPRV.2010.7 – ident: ref10 doi: 10.1016/S0003-9993(99)90126-0 – ident: ref12 doi: 10.1186/s12916-015-0319-2 – ident: ref4 doi: 10.3389/fneur.2012.00158 – ident: ref24 doi: 10.2196/mhealth.8201 – volume: 2 start-page: 27 year: 2012 ident: ref17 article-title: HMM classifier for human activity recognition publication-title: Comput Sci Eng – ident: ref28 doi: 10.1682/JRRD.2006.03.0033 |
SSID | ssj0019757 |
Score | 2.4129624 |
Snippet | Successful activity recognition in patients with motor disabilities can improve patient care by informing researchers and clinicians about changes in patient... |
SourceID | crossref ieee |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 6369 |
SubjectTerms | Activity recognition Feature extraction Hidden Markov models incomplete spinal cord injury Sociology Spinal cord injury static/dynamic classifiers Statistics |
Title | Activity Recognition for Incomplete Spinal Cord Injury Subjects Using Hidden Markov Models |
URI | https://ieeexplore.ieee.org/document/8376012 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5qL9aDj1axvsjBk7jbzb73WEqlFNqDtVC8LNkki2jZFrsV9Nc7s7stRUS8LSFhA5NMZpJvvg_g1sNDh2Mgblh-Ig3XSbkhIu0agrvaVkHqyojqnUdjfzB1hzNvVoP7bS2M1roAn2mTPou3fLWQa7oq64QFggMd7h4mbmWt1vbFIAoKVk_cwBb-MphVL5jcijrDSX9MIK7QRF_sBUSbuXMG7YiqFGfKwxGMNrMpoSRv5jpPTPn1g6jxv9M9hsMquGTdcjWcQE1nTTjYoRxswn6lev7y2YQGRZolUXMLnruyFJJgjxtM0SJjGNIydCGEO8fomk2WJKLFepixYvMr2oOh56GrnBUrwAdsQJQkGaMSoMUHI6W1-eoUpg_9p97AqIQXDOk4PDdCYSkV-FxKhXmq4Mp3UkGBkiYyGMF9Ap7aQqrQS0g0VKe-Y4WR5CpxQsG5cwb1bJHpc2CpbatUcyewU3QXWoZJoKX2PF8IL-Xaa4O1MUUsK1ZyEseYx0V2YkUxWS8m68WV9dpwtx2yLCk5_urcIsNsO1Y2ufi9-RIaNLgE-F1BPX9f62sMOvLkplht3_kO0tg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT8IwFD4h-AA-eAGNeO2DT8bBuq27PBICQQQeBBLiy9K1XYySQQRM9Nfbsw1CjDG-LU13Sb7u9LT9zvcB3DI96VCdiBumGwnDsWNq8EA5BqeOsqQXOyLAeufB0O1OnN6UTQtwv62FUUql5DNVx8v0LF_OxRq3yhp-yuDQAXePYTFuVq21PTMIvFTXU__Cpn6pN83PMKkZNHqj9hBpXH5dR2PmoXDmziy0Y6uSziqdQxhsvicjk7zV16uoLr5-SDX-94OP4CBPL0kzGw_HUFBJBfZ3RAcrUMp9z18-K1DGXDOTaq7Cc1NkVhLkacMqmidEJ7VEBxFknuv8mowWaKNFWnrNqptfNSJExx7czFmSlH5AuihKkhAsApp_EPRamy1PYNJpj1tdI7deMIRt05Xhc1NKz6VCSL1S5VS6dswxVVIoB8Opi9RTiwvpswhtQ1Xs2qYfCCoj2-eU2qdQTOaJOgMSW5aMFbU9K9YBQwk_8pRQjLmcs5gqVgNzA0Uocl1ytMeYhen6xAxCRC9E9MIcvRrcbW9ZZKIcf3WuIjDbjjkm578330CpOx70w_7D8PECyvigjO53CcXV-1pd6RRkFV2nI-8bINnWIA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Activity+Recognition+for+Incomplete+Spinal+Cord+Injury+Subjects+Using+Hidden+Markov+Models&rft.jtitle=IEEE+sensors+journal&rft.au=Sok%2C+Pichleap&rft.au=Xiao%2C+Ting&rft.au=Azeze%2C+Yohannes&rft.au=Jayaraman%2C+Arun&rft.date=2018-08-01&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=18&rft.issue=15&rft.spage=6369&rft.epage=6374&rft_id=info:doi/10.1109%2FJSEN.2018.2845749&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2018_2845749 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |