Understanding and compensating for noise on IBM quantum computers

Quantum algorithms offer efficient solutions to computational problems that are expensive to solve classically. Publicly available quantum computers, such as those provided by IBM, can now be used to run small quantum circuits that execute quantum algorithms. However, these quantum computers are hig...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of physics Vol. 89; no. 10; pp. 935 - 942
Main Authors Johnstun, Scott, Van Huele, Jean-François
Format Journal Article
LanguageEnglish
Published Woodbury American Institute of Physics 01.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Quantum algorithms offer efficient solutions to computational problems that are expensive to solve classically. Publicly available quantum computers, such as those provided by IBM, can now be used to run small quantum circuits that execute quantum algorithms. However, these quantum computers are highly prone to noise. Here, we introduce important concepts of quantum circuit noise and connectivity that must be addressed to obtain reliable results on quantum computers. We utilize several examples to show how noise scales with circuit depth. We present Simon's algorithm, a quantum algorithm for solving a computational problem of the same name, explain how to implement it in IBM's Qiskit platform, and compare the results of running it both on a noiseless simulator and on physical hardware subject to noise. We discuss the impact of Qiskit's transpiler, which adapts ideal quantum circuits for physical hardware with limited connectivity between qubits. We show that even circuits of only a few qubits can have their success rate significantly reduced by quantum noise unless specific measures are taken to minimize its impact.
AbstractList Quantum algorithms offer efficient solutions to computational problems that are expensive to solve classically. Publicly available quantum computers, such as those provided by IBM, can now be used to run small quantum circuits that execute quantum algorithms. However, these quantum computers are highly prone to noise. Here, we introduce important concepts of quantum circuit noise and connectivity that must be addressed to obtain reliable results on quantum computers. We utilize several examples to show how noise scales with circuit depth. We present Simon's algorithm, a quantum algorithm for solving a computational problem of the same name, explain how to implement it in IBM's Qiskit platform, and compare the results of running it both on a noiseless simulator and on physical hardware subject to noise. We discuss the impact of Qiskit's transpiler, which adapts ideal quantum circuits for physical hardware with limited connectivity between qubits. We show that even circuits of only a few qubits can have their success rate significantly reduced by quantum noise unless specific measures are taken to minimize its impact.
Author Van Huele, Jean-François
Johnstun, Scott
Author_xml – sequence: 1
  givenname: Scott
  surname: Johnstun
  fullname: Johnstun, Scott
  email: scottjohnstun@byu.net
  organization: Department of Physics and Astronomy, Brigham Young University, Provo, 84602 Utah
– sequence: 2
  givenname: Jean-François
  surname: Van Huele
  fullname: Van Huele, Jean-François
  email: vanhuele@byu.edu
  organization: Department of Physics and Astronomy, Brigham Young University, Provo, 84602 Utah
BookMark eNp9kNFLwzAQxoNMcJu--BcUfFOql3Zt08c5pg4mvrjnkiYX6diSLkkF_3tTN0Vk-PRxd7_vO-5GZKCNRkIuKdxSSsu7oACQJzA5IUNaTtI4KaEckGHoJnGZQXZGRs6tQ1lSBkMyXWmJ1nmuZaPfoiCRMNsWteO-byhjI20ah5HR0eL-Odp1XPtu-0V1PljPyaniG4cXBx2T1cP8dfYUL18eF7PpMhZpSn3MCkWFQC7ppKhZnSNXrOaCK5WGIqOCZWEkOZc5yznWeY2SyQITYKKQiOmYXO1zW2t2HTpfrU1ndVhZJRmjUABkeaBgTwlrnLOoKtH4cIrR3vJmU1Go-kf1enhUsFz_sbS22XL7cRy-2cPuO_eHfjf2F1m1Uv1HH8n-BFrDh8s
CODEN AJPIAS
CitedBy_id crossref_primary_10_1007_s10957_023_02229_w
crossref_primary_10_1103_PhysRevResearch_6_013142
crossref_primary_10_1088_1361_6404_ad7e60
crossref_primary_10_38124_ijisrt_IJISRT24AUG998
crossref_primary_10_21468_SciPostPhys_15_4_170
crossref_primary_10_1103_PhysRevA_109_052628
crossref_primary_10_1088_1402_4896_ac698b
crossref_primary_10_54097_hset_v38i_5831
crossref_primary_10_1119_5_0112717
crossref_primary_10_1007_s13389_023_00341_1
crossref_primary_10_1142_S0218194024410018
crossref_primary_10_1088_2058_9565_ad5b16
crossref_primary_10_1007_s11128_022_03777_2
crossref_primary_10_1007_s11128_024_04420_y
crossref_primary_10_1088_1674_1056_ad02e7
crossref_primary_10_1109_ACCESS_2024_3506981
crossref_primary_10_3389_fdgth_2024_1502745
crossref_primary_10_1049_gtd2_12602
Cites_doi 10.1119/1.4948608
10.1119/1.5021360
10.1103/PhysRevLett.103.150502
10.1119/1.4922296
10.1088/2058-9565/aba038
10.1080/00107514.2019.1667078
10.1126/science.aax0578
10.1080/00107514.2014.964942
10.1119/1.1522741
10.1038/s41598-019-52275-6
10.1137/S0036144598347011
10.1119/1.5065506
10.1364/ON.11.2.000011
10.1038/s41586-019-1666-5
10.1119/1.1891170
10.1119/1.1359518
10.1016/j.eswa.2021.114768
10.1063/1.5089550
10.1103/PhysRevA.89.042337
10.1103/PhysRevLett.55.1908
10.1088/2058-9565/abaa2c
10.1103/PhysRevA.54.139
ContentType Journal Article
Copyright Author(s)
Copyright American Institute of Physics Oct 2021
Copyright_xml – notice: Author(s)
– notice: Copyright American Institute of Physics Oct 2021
DBID AAYXX
CITATION
DOI 10.1119/10.0006204
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Education
Physics
EISSN 1943-2909
EndPage 942
ExternalDocumentID 10_1119_10_0006204
ajp
GroupedDBID -DZ
-~X
.DC
186
23M
4.4
41~
5-Q
53G
5GY
5VS
6J9
6TJ
7K8
85S
8WZ
9M8
A6W
AAAAW
AAEUA
AAIKC
AAMNW
AAPUP
AAYIH
AAYJJ
AAYOK
ABDNZ
ABEFU
ABFSI
ABFTF
ABJNI
ABNAN
ABPPZ
ABRSH
ABTAH
ACBRY
ACGFO
ACGFS
ACGOD
ACNCT
ACQAM
ADCTM
AEIPJ
AENEX
AETEA
AFDAS
AFFDN
AFFNX
AFHCQ
AFMIJ
AGCDD
AGKCL
AGLKD
AGMXG
AGNAY
AGTJO
AGVCI
AHSDT
AI.
AIDAL
AIDBO
AIDUJ
ALMA_UNASSIGNED_HOLDINGS
AQWKA
BAUXJ
BKOMP
CS3
D0L
E.L
EBS
EJD
F20
F5P
HF~
M71
M73
MVM
NEJ
NHB
OHT
P-O
P2P
PHQ
PQQKQ
PUQ
QZG
RIP
RNS
ROL
RQS
S10
SC5
SJN
TAE
TN5
TWZ
UAO
UBC
UBW
UBY
UBZ
UCJ
UHB
UKR
UPT
VH1
VOH
VQA
VQP
WH7
WHG
XFK
XIH
XJT
XOL
XSW
XZL
YYP
YYQ
YZZ
ZCA
ZCG
ZHY
ZKB
ZUP
ZY4
AAGWI
AAYXX
ABJGX
ADMLS
ADXHL
CITATION
ID FETCH-LOGICAL-c331t-87f1ccead147b8b6eaf8bacaff3b6e51c85d14daad686aeb6bed8d7e208c7dee3
ISSN 0002-9505
IngestDate Sun Jun 29 15:52:50 EDT 2025
Thu Apr 24 23:05:36 EDT 2025
Tue Jul 01 01:17:12 EDT 2025
Fri Jun 21 00:14:05 EDT 2024
Thu Jun 23 13:36:42 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License Published under an exclusive license by American Association of Physics Teachers.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c331t-87f1ccead147b8b6eaf8bacaff3b6e51c85d14daad686aeb6bed8d7e208c7dee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2581070056
PQPubID 44916
PageCount 8
ParticipantIDs crossref_primary_10_1119_10_0006204
scitation_primary_10_1119_10_0006204
proquest_journals_2581070056
crossref_citationtrail_10_1119_10_0006204
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211000
2021-10-01
20211001
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 20211000
PublicationDecade 2020
PublicationPlace Woodbury
PublicationPlace_xml – name: Woodbury
PublicationTitle American journal of physics
PublicationYear 2021
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Schuld, Sinayskiy, Petruccione (c7) 2014
Roffe (c48) 2019
Barenco (c34) 1996
Monroe, Raymer, Taylor (c11) 2019
Vianna, Barros, Hor-Meyll (c15) 2018
Harrow, Hassidim, Lloyd (c6) 2009
Nam, Blümel (c37) 2014
Krantz (c31) 2019
Devoret, Martinis, Clarke (c9) 1985
Candela (c14) 2015
Gerjuoy (c3) 2005
Feynman (c1) 1985
Strauch (c13) 2016
Arute (c10) 2019
Borujeni (c24) 2020
Shor (c2) 1999
James (c25) 2020
Chen (c23) 2019
Grover (c5) 2001
Rodríguez-Laguna, Santalla (c21) 2018
Cruz (c46) 2020
Mermin (c22) 2003
(2024080620063259600_c37) 2014; 89
(2024080620063259600_c14) 2015; 83
(2024080620063259600_c23) 2019; 9
(2024080620063259600_c32) 2020
(2024080620063259600_c48) 2019; 60
(2024080620063259600_c22) 2003; 71
(2024080620063259600_c15) 2018; 86
(2024080620063259600_c25) 2020; 5
(2024080620063259600_c3) 2005; 73
(2024080620063259600_c38) 2019
(2024080620063259600_c6) 2009; 103
2024080620063259600_c45
2024080620063259600_c44
2024080620063259600_c43
2024080620063259600_c20
2024080620063259600_c42
(2024080620063259600_c46) 2020; 5
2024080620063259600_c41
(2024080620063259600_c17) 2007
(2024080620063259600_c27) 1994
2024080620063259600_c40
(2024080620063259600_c4) 1996
(2024080620063259600_c24) 2020; 176
(2024080620063259600_c10) 2019; 574
(2024080620063259600_c1) 1985; 11
2024080620063259600_c29
2024080620063259600_c28
(2024080620063259600_c5) 2001; 69
2024080620063259600_c26
(2024080620063259600_c13) 2016; 84
2024080620063259600_c47
(2024080620063259600_c33) 2020
2024080620063259600_c8
(2024080620063259600_c9) 1985; 55
(2024080620063259600_c7) 2014; 56
(2024080620063259600_c11) 2019; 364
2024080620063259600_c35
(2024080620063259600_c21) 2018; 86
(2024080620063259600_c16) 2000
(2024080620063259600_c34) 1996; 54
2024080620063259600_c30
(2024080620063259600_c31) 2019; 6
(2024080620063259600_c2) 1999; 41
2024080620063259600_c19
National Academies of Sciences, Engineering, and Medicine (2024080620063259600_c12) 2019
2024080620063259600_c18
2024080620063259600_c39
2024080620063259600_c36
References_xml – start-page: 521
  year: 2005
  ident: c3
  article-title: Shor's factoring algorithm and modern cryptography. An illustration of the capabilities inherent in quantum computers
  publication-title: Am. J. Phys.
– start-page: 16251
  year: 2019
  ident: c23
  article-title: Hybrid classical-quantum linear solver using Noisy Intermediate-Scale Quantum machines
  publication-title: Sci. Rep.
– start-page: 114768
  year: 2020
  ident: c24
  article-title: Quantum circuit representation of Bayesian networks
  publication-title: Expert Syst. Appl.
– start-page: 044005
  year: 2020
  ident: c46
  article-title: Optimizing quantum phase estimation for the simulation of Hamiltonian eigenstates
  publication-title: Quantum Sci. Technol.
– start-page: 495
  year: 2016
  ident: c13
  article-title: Resource letter QI-1: Quantum information
  publication-title: Am. J. Phys.
– start-page: 688
  year: 2015
  ident: c14
  article-title: Undergraduate computational physics projects on quantum computing
  publication-title: Am. J. Phys.
– start-page: 914
  year: 2018
  ident: c15
  article-title: Classical realization of the quantum Deutsch algorithm
  publication-title: Am. J. Phys.
– start-page: 505
  year: 2019
  ident: c10
  article-title: Quantum supremacy using a programmable superconducting processor
  publication-title: Nature
– start-page: 042337
  year: 2014
  ident: c37
  article-title: Robustness of the quantum Fourier transform with respect to static gate defects
  publication-title: Phys. Rev. A
– start-page: 1908
  year: 1985
  ident: c9
  article-title: Measurements of macroscopic quantum tunneling out of the zero-voltage state of a current-biased Josephson junction
  publication-title: Phys. Rev. Lett.
– start-page: 440
  year: 2019
  ident: c11
  article-title: The U.S. National Quantum Initiative: From act to action
  publication-title: Science
– start-page: 225
  year: 2019
  ident: c48
  article-title: Quantum error correction: An introductory guide
  publication-title: Contemp. Phys.
– start-page: 769
  year: 2001
  ident: c5
  article-title: From Schrödinger's equation to the quantum search algorithm
  publication-title: Am. J. Phys.
– start-page: 021318
  year: 2019
  ident: c31
  article-title: A quantum engineer's guide to superconducting qubits
  publication-title: Appl. Phys. Rev.
– start-page: 23
  year: 2003
  ident: c22
  article-title: From Cbits to Qbits: Teaching computer scientists quantum mechanics
  publication-title: Am. J. Phys.
– start-page: 044044
  year: 2020
  ident: c25
  article-title: Benchmarking near-term devices with quantum error correction
  publication-title: Quantum Sci. Technol.
– start-page: 303
  year: 1999
  ident: c2
  article-title: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer
  publication-title: SIAM Rev.
– start-page: 172
  year: 2014
  ident: c7
  article-title: An introduction to quantum machine learning
  publication-title: Contemp. Phys.
– start-page: 360
  year: 2018
  ident: c21
  article-title: Building an adiabatic quantum computer simulation in the classroom
  publication-title: Am. J. Phys.
– start-page: 139
  year: 1996
  ident: c34
  article-title: Approximate quantum Fourier transform and decoherence
  publication-title: Phys. Rev. A
– start-page: 11
  year: 1985
  ident: c1
  article-title: Quantum mechanical computers
  publication-title: Opt. News
– start-page: 150502
  year: 2009
  ident: c6
  article-title: Quantum algorithm for linear systems of equations
  publication-title: Phys. Rev. Lett.
– ident: 2024080620063259600_c39
– year: 2019
  ident: 2024080620063259600_c38
– volume: 84
  start-page: 495
  year: 2016
  ident: 2024080620063259600_c13
  article-title: Resource letter QI-1: Quantum information
  publication-title: Am. J. Phys.
  doi: 10.1119/1.4948608
– ident: 2024080620063259600_c41
– ident: 2024080620063259600_c18
– ident: 2024080620063259600_c43
– start-page: 115
  year: 1994
  ident: 2024080620063259600_c27
  article-title: On the power of quantum computation
– ident: 2024080620063259600_c35
– volume: 86
  start-page: 360
  year: 2018
  ident: 2024080620063259600_c21
  article-title: Building an adiabatic quantum computer simulation in the classroom
  publication-title: Am. J. Phys.
  doi: 10.1119/1.5021360
– ident: 2024080620063259600_c20
– volume: 103
  start-page: 150502
  year: 2009
  ident: 2024080620063259600_c6
  article-title: Quantum algorithm for linear systems of equations
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.150502
– volume: 83
  start-page: 688
  year: 2015
  ident: 2024080620063259600_c14
  article-title: Undergraduate computational physics projects on quantum computing
  publication-title: Am. J. Phys.
  doi: 10.1119/1.4922296
– volume: 5
  start-page: 044044
  year: 2020
  ident: 2024080620063259600_c25
  article-title: Benchmarking near-term devices with quantum error correction
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/aba038
– volume: 60
  start-page: 225
  year: 2019
  ident: 2024080620063259600_c48
  article-title: Quantum error correction: An introductory guide
  publication-title: Contemp. Phys.
  doi: 10.1080/00107514.2019.1667078
– volume: 364
  start-page: 440
  year: 2019
  ident: 2024080620063259600_c11
  article-title: The U.S. National Quantum Initiative: From act to action
  publication-title: Science
  doi: 10.1126/science.aax0578
– ident: 2024080620063259600_c26
– year: 2020
  ident: 2024080620063259600_c32
– ident: 2024080620063259600_c47
– ident: 2024080620063259600_c28
– volume: 56
  start-page: 172
  year: 2014
  ident: 2024080620063259600_c7
  article-title: An introduction to quantum machine learning
  publication-title: Contemp. Phys.
  doi: 10.1080/00107514.2014.964942
– ident: 2024080620063259600_c45
– volume-title: Quantum Computing: Progress and Prospects
  year: 2019
  ident: 2024080620063259600_c12
– year: 1996
  ident: 2024080620063259600_c4
  article-title: A fast quantum mechanical algorithm for database search
– ident: 2024080620063259600_c8
– volume: 71
  start-page: 23
  year: 2003
  ident: 2024080620063259600_c22
  article-title: From Cbits to Qbits: Teaching computer scientists quantum mechanics
  publication-title: Am. J. Phys.
  doi: 10.1119/1.1522741
– volume: 9
  start-page: 16251
  year: 2019
  ident: 2024080620063259600_c23
  article-title: Hybrid classical-quantum linear solver using Noisy Intermediate-Scale Quantum machines
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-52275-6
– volume: 41
  start-page: 303
  year: 1999
  ident: 2024080620063259600_c2
  article-title: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer
  publication-title: SIAM Rev.
  doi: 10.1137/S0036144598347011
– volume: 86
  start-page: 914
  year: 2018
  ident: 2024080620063259600_c15
  article-title: Classical realization of the quantum Deutsch algorithm
  publication-title: Am. J. Phys.
  doi: 10.1119/1.5065506
– ident: 2024080620063259600_c40
– volume: 11
  start-page: 11
  year: 1985
  ident: 2024080620063259600_c1
  article-title: Quantum mechanical computers
  publication-title: Opt. News
  doi: 10.1364/ON.11.2.000011
– volume: 574
  start-page: 505
  year: 2019
  ident: 2024080620063259600_c10
  article-title: Quantum supremacy using a programmable superconducting processor
  publication-title: Nature
  doi: 10.1038/s41586-019-1666-5
– ident: 2024080620063259600_c42
– volume: 73
  start-page: 521
  year: 2005
  ident: 2024080620063259600_c3
  article-title: Shor's factoring algorithm and modern cryptography. An illustration of the capabilities inherent in quantum computers
  publication-title: Am. J. Phys.
  doi: 10.1119/1.1891170
– volume: 69
  start-page: 769
  year: 2001
  ident: 2024080620063259600_c5
  article-title: From Schrödinger's equation to the quantum search algorithm
  publication-title: Am. J. Phys.
  doi: 10.1119/1.1359518
– ident: 2024080620063259600_c19
– ident: 2024080620063259600_c36
– ident: 2024080620063259600_c44
– volume-title: Quantum Computer Science
  year: 2007
  ident: 2024080620063259600_c17
– volume: 176
  start-page: 114768
  year: 2020
  ident: 2024080620063259600_c24
  article-title: Quantum circuit representation of Bayesian networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.114768
– year: 2020
  ident: 2024080620063259600_c33
– volume-title: Quantum Computation and Quantum Information
  year: 2000
  ident: 2024080620063259600_c16
– volume: 6
  start-page: 021318
  year: 2019
  ident: 2024080620063259600_c31
  article-title: A quantum engineer's guide to superconducting qubits
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.5089550
– volume: 89
  start-page: 042337
  year: 2014
  ident: 2024080620063259600_c37
  article-title: Robustness of the quantum Fourier transform with respect to static gate defects
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.89.042337
– ident: 2024080620063259600_c29
– ident: 2024080620063259600_c30
– volume: 55
  start-page: 1908
  year: 1985
  ident: 2024080620063259600_c9
  article-title: Measurements of macroscopic quantum tunneling out of the zero-voltage state of a current-biased Josephson junction
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.55.1908
– volume: 5
  start-page: 044005
  year: 2020
  ident: 2024080620063259600_c46
  article-title: Optimizing quantum phase estimation for the simulation of Hamiltonian eigenstates
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/abaa2c
– volume: 54
  start-page: 139
  year: 1996
  ident: 2024080620063259600_c34
  article-title: Approximate quantum Fourier transform and decoherence
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.54.139
SSID ssj0009180
Score 2.438995
Snippet Quantum algorithms offer efficient solutions to computational problems that are expensive to solve classically. Publicly available quantum computers, such as...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 935
SubjectTerms Algorithms
Noise
Quantum computing
Title Understanding and compensating for noise on IBM quantum computers
URI http://dx.doi.org/10.1119/10.0006204
https://www.proquest.com/docview/2581070056
Volume 89
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKJwSXaQwQhYEssQtCgdiOE_vYMVCpGEJiRbtFtuNIk0ZSbSkH_nqe4yR1oEKDS9omdtr6_fK-_D4QOk4LJmiSpRFzJkpSKh3JshBRCrqCZYLT2LZRvp_TxSpZXvCLyWQZRC1tGv3G_NyZV_I_VIVzQFeXJfsPlB1uCifgPdAXjkBhON6KxqtRZkqXobYGw1Q1fYBkVV86b331-uPJmcugBBHzvR3lWjnchKrpsHcTFJPwfo9tlKFrp9VsvMvUFXXoL3yDaYuN9aHJS6uqyCnE7SZ8Vl-OXAuUDEFqIbuUPPbbztZzSJm45m-xDFmo7wLUQyUOGKJkPJCt0lfS2sG2pfcgOOlJfT_icW3s32TWEEnobRiZE1fltJ17B-1RMBnoFO3NT88-fd2WYCYi7o0h96e6YrUw--32m8fqydbmuAcKiY-NCNSP8wO039kNeO5B8ABNbHXoWm534TmH6O4XT6uHaD6CBYYXHMICAyxwCwtcVxhggTtY4AEWj9Dqw_vzd4uo65QRGcZIAyKtJMYAUyBJpoVOrSqFVkaVJYMPnBjB4VKhVJGKVFmdaluIIrM0FiYrrGWP0bSqK_sEYR7DxNIaApp6UlIlrOQqKQzRioBpmczQq36B8n5JXDeTq_xPUszQy2Hs2hdP2TnqqF_nvEP4TU65ICCNQD2foeNh7f96lx3DftTXwZB8XZRPb_WTnqH7_fNA2BGaNtcb-xyUz0a_6FD1CyNggek
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+and+compensating+for+noise+on+IBM+quantum+computers&rft.jtitle=American+journal+of+physics&rft.au=Johnstun%2C+Scott&rft.au=Van+Huele%2C+Jean-Fran%C3%A7ois&rft.date=2021-10-01&rft.issn=0002-9505&rft.eissn=1943-2909&rft.volume=89&rft.issue=10&rft.spage=935&rft.epage=942&rft_id=info:doi/10.1119%2F10.0006204&rft.externalDBID=n%2Fa&rft.externalDocID=10_1119_10_0006204
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9505&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9505&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9505&client=summon