Research on regional differences and influencing factors of green technology innovation efficiency of China’s high-tech industry

Through the K-means clustering analysis, it divides the regions of China into four clusters according to the differences in high-tech industry development level between 2008 and 2016. Considering ”environmental pollution” and ”innovation failure”, an improved SBM-DEA efficiency measurement model was...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational and applied mathematics Vol. 369; p. 112597
Main Authors Liu, Chunyang, Gao, Xingyu, Ma, Wanli, Chen, Xiangtuo
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2020
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Through the K-means clustering analysis, it divides the regions of China into four clusters according to the differences in high-tech industry development level between 2008 and 2016. Considering ”environmental pollution” and ”innovation failure”, an improved SBM-DEA efficiency measurement model was constructed to measure the green technology innovation efficiency of China’s high-tech industry clusters. Lasso regression was used to screen out the factors affecting the green technology innovation efficiency of high-tech industry in each cluster area. On this basis, quantile regression method is used to study the influence degree and regional differences of various influencing factors on green innovation efficiency of high-tech industry at different quantile. Meanwhile, DEA-tobit model is used for robustness test. The research shows that in each cluster area, the factors that significantly affect the green innovation efficiency of high-tech industry are different, and the degree of influence of each factor on the innovation efficiency at different quantile is also different. Combining the empirical results with the reality of high-tech industries in various regions, the corresponding policy recommendations are put forward.
AbstractList Through the K-means clustering analysis, it divides the regions of China into four clusters according to the differences in high-tech industry development level between 2008 and 2016. Considering ”environmental pollution” and ”innovation failure”, an improved SBM-DEA efficiency measurement model was constructed to measure the green technology innovation efficiency of China’s high-tech industry clusters. Lasso regression was used to screen out the factors affecting the green technology innovation efficiency of high-tech industry in each cluster area. On this basis, quantile regression method is used to study the influence degree and regional differences of various influencing factors on green innovation efficiency of high-tech industry at different quantile. Meanwhile, DEA-tobit model is used for robustness test. The research shows that in each cluster area, the factors that significantly affect the green innovation efficiency of high-tech industry are different, and the degree of influence of each factor on the innovation efficiency at different quantile is also different. Combining the empirical results with the reality of high-tech industries in various regions, the corresponding policy recommendations are put forward.
ArticleNumber 112597
Author Liu, Chunyang
Gao, Xingyu
Ma, Wanli
Chen, Xiangtuo
Author_xml – sequence: 1
  givenname: Chunyang
  surname: Liu
  fullname: Liu, Chunyang
  organization: College of Business, Shandong University, Weihai 264209, China
– sequence: 2
  givenname: Xingyu
  surname: Gao
  fullname: Gao, Xingyu
  organization: College of Business, Shandong University, Weihai 264209, China
– sequence: 3
  givenname: Wanli
  surname: Ma
  fullname: Ma, Wanli
  email: mawanli@sdu.edu.cn
  organization: College of Business, Shandong University, Weihai 264209, China
– sequence: 4
  givenname: Xiangtuo
  surname: Chen
  fullname: Chen, Xiangtuo
  organization: Laboratory MICS, CentraleSupélec, Paris-Saclay University, Gif sur Yvette 91190, France
BackLink https://centralesupelec.hal.science/hal-03197864$$DView record in HAL
BookMark eNp9kMFqGzEURUVJIY7bD8hO2y7G0ZvRWDN0FUwbFwyB0q6FLD3NyIylIk0M3oX-RX4vXxKN3W6y8EpIuuc97rkhVz54JOQW2AIYLO92C632i5JBuwAo61Z8IDNoRFuAEM0VmbFKiILxUlyTm5R2jLFlC3xG_v7EhCrqngZPI3YueDVQ46zFiF5josob6rwdnvLV-Y5apccQEw2WdhHR0xF178MQumPO-XBQYx5C0VqnXWaOU3LVO69en18S7V3XFxOSw-YpjfH4iXy0akj4-d85J7-_f_u1Whebx4cfq_tNoasKxqIRdWW4qbmFbc253irNa5NrVW0JtWV8WRo0VvBagTbYtKplts0mmgrzv6rm5Mt5bq8G-Se6vYpHGZST6_uNnN5YBTm95AfIWXHO6hhSimilduOp2BiVGyQwOWmXO5m1y0m7PGvPJLwj_6-6xHw9M5jrHxxGmU7q0LiIepQmuAv0G46Sn7I
CitedBy_id crossref_primary_10_1007_s10668_024_05470_z
crossref_primary_10_1007_s11356_022_22699_1
crossref_primary_10_15446_ede_v34n64_112357
crossref_primary_10_1016_j_jclepro_2024_142589
crossref_primary_10_1108_APJIE_10_2023_0190
crossref_primary_10_1142_S0217595922500348
crossref_primary_10_3390_land12071283
crossref_primary_10_1016_j_eswa_2024_125513
crossref_primary_10_1080_09537325_2023_2196350
crossref_primary_10_1007_s10660_022_09599_9
crossref_primary_10_1007_s13132_022_00899_x
crossref_primary_10_1038_s41598_022_15614_8
crossref_primary_10_3389_fenvs_2023_1104078
crossref_primary_10_3390_systems11050240
crossref_primary_10_4018_JOEUC_348654
crossref_primary_10_1007_s10098_023_02622_z
crossref_primary_10_1016_j_eneco_2022_106479
crossref_primary_10_1080_09537325_2022_2163889
crossref_primary_10_1016_j_cities_2023_104585
crossref_primary_10_1016_j_eneco_2020_104974
crossref_primary_10_1016_j_techfore_2024_123665
crossref_primary_10_1016_j_techfore_2023_122333
crossref_primary_10_3389_fenvs_2024_1406577
crossref_primary_10_1080_00036846_2025_2453760
crossref_primary_10_3389_fenvs_2022_959926
crossref_primary_10_3390_land11010122
crossref_primary_10_1007_s11356_021_12755_7
crossref_primary_10_1016_j_jclepro_2023_136453
crossref_primary_10_3390_buildings13010073
crossref_primary_10_1016_j_ecolind_2023_110101
crossref_primary_10_1080_09537325_2023_2254852
crossref_primary_10_3390_su141912739
crossref_primary_10_1108_IJOEM_09_2021_1364
crossref_primary_10_1016_j_seps_2020_100939
crossref_primary_10_1007_s11356_024_32484_x
crossref_primary_10_3390_systems10040124
crossref_primary_10_1007_s11356_022_21431_3
crossref_primary_10_3390_su141811584
crossref_primary_10_1016_j_iref_2024_103819
crossref_primary_10_3389_fenvs_2022_859523
crossref_primary_10_3934_GF_2022020
crossref_primary_10_1016_j_est_2023_107307
crossref_primary_10_1080_09537287_2023_2165189
crossref_primary_10_1108_K_01_2023_0164
crossref_primary_10_3390_su162411192
crossref_primary_10_3390_land13030292
crossref_primary_10_1016_j_ecolind_2023_109901
crossref_primary_10_1016_j_jbusres_2023_114049
crossref_primary_10_3389_fenvs_2023_1276913
crossref_primary_10_1016_j_eneco_2024_107342
crossref_primary_10_3390_su12166343
crossref_primary_10_24136_oc_2023_024
crossref_primary_10_3389_fenrg_2023_1167330
crossref_primary_10_1016_j_iref_2024_05_017
crossref_primary_10_1016_j_chaos_2021_111303
crossref_primary_10_1016_j_frl_2023_104192
crossref_primary_10_1016_j_telpol_2024_102834
crossref_primary_10_3390_en13205467
crossref_primary_10_1155_2022_4047572
crossref_primary_10_1016_j_eneco_2022_106109
crossref_primary_10_1021_acsomega_0c01891
crossref_primary_10_3390_su15129845
crossref_primary_10_3389_fenvs_2022_997084
crossref_primary_10_3390_su16010334
crossref_primary_10_1007_s13132_024_02286_0
crossref_primary_10_3390_su14052876
crossref_primary_10_3390_ijerph19053046
crossref_primary_10_1080_2331186X_2024_2401252
crossref_primary_10_1002_bse_3615
crossref_primary_10_3390_su15076033
crossref_primary_10_1007_s10668_022_02159_z
crossref_primary_10_1080_00405000_2024_2418149
crossref_primary_10_3390_su14010297
crossref_primary_10_3389_fenvs_2023_1180781
crossref_primary_10_3390_su13031104
crossref_primary_10_1016_j_eneco_2024_107524
crossref_primary_10_1080_09537325_2024_2304217
crossref_primary_10_3390_su14073903
crossref_primary_10_1109_ACCESS_2020_3043364
crossref_primary_10_1016_j_resourpol_2024_105023
crossref_primary_10_3390_sym16040429
crossref_primary_10_1038_s41598_023_46699_4
crossref_primary_10_1007_s00500_021_05878_z
crossref_primary_10_1155_2021_6653474
crossref_primary_10_1177_21582440241277298
crossref_primary_10_1016_j_energy_2024_133634
crossref_primary_10_1016_j_techfore_2022_121836
crossref_primary_10_1108_IMDS_04_2021_0254
crossref_primary_10_1016_j_techfore_2021_121332
crossref_primary_10_1016_j_dajour_2023_100271
crossref_primary_10_1016_j_esr_2023_101170
crossref_primary_10_1016_j_jhtm_2022_06_009
crossref_primary_10_1016_j_psep_2024_05_087
crossref_primary_10_3390_axioms12020149
crossref_primary_10_3389_fenvs_2021_745498
crossref_primary_10_4018_IJKM_368003
crossref_primary_10_1016_j_strueco_2024_07_009
crossref_primary_10_1080_09537325_2022_2116570
crossref_primary_10_1016_j_energy_2021_120711
crossref_primary_10_3389_fenvs_2021_799794
crossref_primary_10_3390_su16114848
crossref_primary_10_3390_su152416643
crossref_primary_10_1111_itor_13284
crossref_primary_10_3390_ijerph19010139
crossref_primary_10_3390_su15021302
crossref_primary_10_3389_fsoc_2023_1141616
crossref_primary_10_3390_su141811695
crossref_primary_10_1016_j_iref_2023_09_014
crossref_primary_10_1016_j_techfore_2023_122352
crossref_primary_10_1155_2023_6630603
crossref_primary_10_1371_journal_pone_0259366
crossref_primary_10_3390_ijerph18073412
crossref_primary_10_3390_ijerph192214715
crossref_primary_10_3390_su15129354
crossref_primary_10_3389_fenvs_2022_857516
crossref_primary_10_1016_j_jenvman_2024_122053
crossref_primary_10_3389_fenvs_2023_1167918
crossref_primary_10_1080_09537325_2023_2233635
crossref_primary_10_3390_su151713264
crossref_primary_10_1016_j_jbusres_2021_04_023
crossref_primary_10_3389_fenrg_2024_1308494
crossref_primary_10_1177_21582440231214851
crossref_primary_10_1080_09640568_2024_2404196
crossref_primary_10_2478_amns_2025_0578
crossref_primary_10_1016_j_jclepro_2024_143443
crossref_primary_10_1016_j_ecolind_2022_108824
crossref_primary_10_1016_j_renene_2022_03_046
crossref_primary_10_1016_j_egyr_2022_05_096
crossref_primary_10_3390_su17030993
crossref_primary_10_3390_su17052122
crossref_primary_10_1007_s13132_024_02496_6
crossref_primary_10_1016_j_iref_2024_103398
crossref_primary_10_1007_s43621_024_00391_3
crossref_primary_10_1109_ACCESS_2023_3239914
crossref_primary_10_1007_s11356_023_28391_2
crossref_primary_10_1016_j_heliyon_2024_e30158
Cites_doi 10.1016/j.indmarman.2015.02.032
10.1016/j.csda.2013.08.006
10.1007/s00180-013-0439-0
10.1016/j.eswa.2016.06.017
10.1111/j.2517-6161.1996.tb02080.x
10.1016/S0031-3203(02)00060-2
10.1080/02664763.2011.620082
10.1186/1471-2288-14-99
10.1007/s11634-015-0206-x
10.1166/jctn.2016.6189
10.1016/S2212-5671(16)30310-0
10.1007/s13042-013-0156-6
10.1016/S0377-2217(99)00407-5
10.1016/j.apgeog.2017.08.022
10.1057/9780230362420_2
10.1016/j.technovation.2016.06.001
10.1007/s11205-015-1094-3
10.1016/S0048-7333(01)00152-4
10.1142/S0217595917500051
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
DOI 10.1016/j.cam.2019.112597
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1879-1778
ExternalDocumentID oai_HAL_hal_03197864v1
10_1016_j_cam_2019_112597
S0377042719306028
GrantInformation_xml – fundername: Shandong University
  funderid: http://dx.doi.org/10.13039/100009108
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABAOU
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSW
T5K
TN5
UPT
XPP
YQT
ZMT
~02
~G-
29K
5VS
AAFWJ
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AEXQZ
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
D-I
EJD
FGOYB
G-2
HZ~
NHB
R2-
RIG
SEW
SSH
SSZ
WUQ
ZY4
1XC
ID FETCH-LOGICAL-c331t-8753d4d54f1b544cbac45d37739215f0462dedf745a1cde89a90f959783e15fa3
IEDL.DBID IXB
ISSN 0377-0427
IngestDate Fri May 09 12:14:37 EDT 2025
Tue Jul 01 04:27:11 EDT 2025
Thu Apr 24 22:55:16 EDT 2025
Fri Feb 23 02:49:46 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Influencing factors
Innovation efficiency
Regional differences
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-8753d4d54f1b544cbac45d37739215f0462dedf745a1cde89a90f959783e15fa3
ParticipantIDs hal_primary_oai_HAL_hal_03197864v1
crossref_citationtrail_10_1016_j_cam_2019_112597
crossref_primary_10_1016_j_cam_2019_112597
elsevier_sciencedirect_doi_10_1016_j_cam_2019_112597
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-01
2020-05-00
2020-05
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of computational and applied mathematics
PublicationYear 2020
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Fan (b23) 2015; 44
Mansiaux, Carrat (b17) 2014; 14
Lyu, Li (b29) 2016
Fang, Zhang, Zhang (b16) 2014; 31
Meng, Li, Shi (b1) 2019
Li, Ran, Wei (b8) 2018; 36
Jiang, Bondell, Wang (b22) 2014; 69
Yeung, Azevedo (b5) 2011; 22
Kaya Samut, Cafrı (b3) 2016; 129
Li, Ran, Wei (b7) 2017
Carayannis, Grigoroudis, Goletsis (b2) 2016; 62
Gao, Lyu, Shi, Zeng, Liu (b9) 2019; 28
Fang, Chiu (b11) 2017; 34
Kalapouti, Petridis, Malesios (b12) 2017
Alhamzawi, Yu (b21) 2012; 39
Liu, Du (b15) 2012
Shen, Chen, Wang (b10) 2018
Xie, Xu (b25) 2014; 5
Y., W., R. (b33) 2017; 88
Castro, Gregorio (b14) 2015; 47
Hashem, Vinciotti, Alhamzawi (b24) 2016; 10
Ji, Dou (b6) 2016; 13
B.A. Lundvall, E. Lorenz, Innovation and Competence Building in the Learning Economy: Implications for Innovation Policy, Post-Print, 2012.
Tibshirani (b19) 1996; 58
Lafarga, Balderrama (b4) 2015
Pereira, Basto, Silva (b18) 2016; 39
Hong, Feng, Wu (b13) 2016
Likas, Vlassis, J.J. (b28) 2003; 36
Furman, Porter, S. (b31) 2000; 31
Benoit, Alhamzawi, Yu (b26) 2013; 28
Matsui, Hidetoshi (b20) 2018
K. (b27) 2001; 130
Li, Fu (b30) 2014
Li (10.1016/j.cam.2019.112597_b8) 2018; 36
Y. (10.1016/j.cam.2019.112597_b33) 2017; 88
Yeung (10.1016/j.cam.2019.112597_b5) 2011; 22
Shen (10.1016/j.cam.2019.112597_b10) 2018
Benoit (10.1016/j.cam.2019.112597_b26) 2013; 28
Jiang (10.1016/j.cam.2019.112597_b22) 2014; 69
Matsui (10.1016/j.cam.2019.112597_b20) 2018
Meng (10.1016/j.cam.2019.112597_b1) 2019
Pereira (10.1016/j.cam.2019.112597_b18) 2016; 39
Tibshirani (10.1016/j.cam.2019.112597_b19) 1996; 58
Hashem (10.1016/j.cam.2019.112597_b24) 2016; 10
Fang (10.1016/j.cam.2019.112597_b16) 2014; 31
Likas (10.1016/j.cam.2019.112597_b28) 2003; 36
K. (10.1016/j.cam.2019.112597_b27) 2001; 130
Kaya Samut (10.1016/j.cam.2019.112597_b3) 2016; 129
10.1016/j.cam.2019.112597_b32
Li (10.1016/j.cam.2019.112597_b7) 2017
Alhamzawi (10.1016/j.cam.2019.112597_b21) 2012; 39
Li (10.1016/j.cam.2019.112597_b30) 2014
Xie (10.1016/j.cam.2019.112597_b25) 2014; 5
Carayannis (10.1016/j.cam.2019.112597_b2) 2016; 62
Fang (10.1016/j.cam.2019.112597_b11) 2017; 34
Castro (10.1016/j.cam.2019.112597_b14) 2015; 47
Lafarga (10.1016/j.cam.2019.112597_b4) 2015
Kalapouti (10.1016/j.cam.2019.112597_b12) 2017
Hong (10.1016/j.cam.2019.112597_b13) 2016
Gao (10.1016/j.cam.2019.112597_b9) 2019; 28
Furman (10.1016/j.cam.2019.112597_b31) 2000; 31
Fan (10.1016/j.cam.2019.112597_b23) 2015; 44
Mansiaux (10.1016/j.cam.2019.112597_b17) 2014; 14
Ji (10.1016/j.cam.2019.112597_b6) 2016; 13
Liu (10.1016/j.cam.2019.112597_b15) 2012
Lyu (10.1016/j.cam.2019.112597_b29) 2016
References_xml – volume: 13
  start-page: 10504
  year: 2016
  end-page: 10513
  ident: b6
  article-title: Study on stage impacts of factor price distortion on chinese technology innovation based on data mining
  publication-title: J. Comput. Theor. Nanosci.
– volume: 39
  start-page: 799
  year: 2012
  end-page: 813
  ident: b21
  article-title: Variable selection in quantile regression via Gibbs sampling
  publication-title: J. Appl. Stat.
– volume: 62
  start-page: 63
  year: 2016
  end-page: 80
  ident: b2
  article-title: A multilevel and multistage efficiency evaluation of innovation systems: A multiobjective DEA approach
  publication-title: Expert Syst. Appl.
– volume: 39
  start-page: 634
  year: 2016
  end-page: 641
  ident: b18
  article-title: The logistic lasso and ridge regression in predicting corporate failure
  publication-title: Procedia Econ. Finance
– volume: 36
  start-page: 451
  year: 2003
  end-page: 461
  ident: b28
  article-title: The global
  publication-title: Pattern Recognit.
– volume: 88
  start-page: 38
  year: 2017
  end-page: 47
  ident: b33
  article-title: The spatial distribution of green buildings in china: regional imbalance, economic fundamentals, and policy incentives
  publication-title: Appl. Geography
– start-page: 103
  year: 2012
  end-page: 107
  ident: b15
  article-title: Portfolio construction using variable selection: Based on LASSO method
  publication-title: Econ. Probl.
– start-page: 54
  year: 2014
  end-page: 57
  ident: b30
  article-title: Research on the incentive mechanism of domestic research cooperation and scientific research innovation to promote the complementary effect of knowledge
  publication-title: Sci. Manag. Res.
– volume: 34
  year: 2017
  ident: b11
  article-title: Research on innovation efficiency and technology gap in China economic development
  publication-title: Asia Pac. J. Oper. Res.
– start-page: 78
  year: 2019
  end-page: 91
  ident: b1
  article-title: Analysis of innovation efficiency of high-tech industry in China in stages – based on three-stage DEA model
  publication-title: Macroecon. Res.
– year: 2015
  ident: b4
  article-title: Efficiency of Mexico’s regional innovation systems: an evaluation applying data envelopment analysis (DEA)
  publication-title: Afr. J. Sci. Technol. Innov. Dev.
– year: 2018
  ident: b10
  article-title: Analyzing the trend of O2O commerce by bilingual text mining on social media
  publication-title: Comput. Hum. Behav.
– volume: 14
  year: 2014
  ident: b17
  article-title: Detection of independent associations in a large epidemiologic dataset: a comparison of random forests, boosted regression trees, conventional and penalized logistic regression for identifying independent factors associated with H1N1pdm influenza infections
  publication-title: BMC Med. Res. Methodol.
– volume: 28
  start-page: 2861
  year: 2013
  end-page: 2873
  ident: b26
  article-title: BayesIan lasso binary quantile regression
  publication-title: Comput. Stat.
– volume: 36
  start-page: 558
  year: 2018
  end-page: 568
  ident: b8
  article-title: The innovative effect of financial factor distortion and its regional differences
  publication-title: Stud. Sci. Sci.
– volume: 47
  start-page: 143
  year: 2015
  end-page: 146
  ident: b14
  article-title: Knowledge management and innovation in knowledge-based and high-tech industrial markets: The role of openness and absorptive capacity
  publication-title: Ind. Mark. Manage.
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: b19
  article-title: Regression shrinkage and selection via the lasso: a retrospective
  publication-title: J. R. Stat. Soc.
– volume: 31
  start-page: 125
  year: 2014
  end-page: 136
  ident: b16
  article-title: Individual credit risk prediction method: Application of a lasso-logistic model
  publication-title: J. Quant. Tech. Econ.
– volume: 10
  start-page: 375
  year: 2016
  end-page: 390
  ident: b24
  article-title: Quantile regression with group lasso for classification
  publication-title: Adv. Data Anal. Classif.
– volume: 5
  start-page: 201
  year: 2014
  end-page: 210
  ident: b25
  article-title: Sparse group Lasso based uncertain feature selection
  publication-title: Int. J. Mach. Learn. Cybern.
– reference: B.A. Lundvall, E. Lorenz, Innovation and Competence Building in the Learning Economy: Implications for Innovation Policy, Post-Print, 2012.
– volume: 22
  start-page: 343
  year: 2011
  end-page: 356
  ident: b5
  article-title: Measuring efficiency of Brazilian courts with data envelopment analysis (DEA)
  publication-title: IMA J. Manag. Math.
– volume: 130
  start-page: 498
  year: 2001
  end-page: 509
  ident: b27
  article-title: A slacks-based measure of efficiency in data envelopment analysis
  publication-title: Eur. J. Oper. Res.
– volume: 28
  start-page: 3449
  year: 2019
  end-page: 3461
  ident: b9
  article-title: The impact of financial factor market distortion on green innovation efficiency of high-tech industry
  publication-title: Ekoloji
– volume: 69
  start-page: 208
  year: 2014
  end-page: 219
  ident: b22
  article-title: Interquantile shrinkage and variable selection in quantile regression
  publication-title: Comput. Statist. Data Anal.
– start-page: 25
  year: 2017
  end-page: 35
  ident: b7
  article-title: How does financial factor distortion affect enterprise innovation investment?——Analysis from the perspective of financing constraints
  publication-title: Stud. Int. Finance
– volume: 31
  start-page: 899
  year: 2000
  end-page: 933
  ident: b31
  article-title: The determinants of national innovative capacity
  publication-title: Res. Policy
– volume: 129
  start-page: 113
  year: 2016
  end-page: 132
  ident: b3
  article-title: Analysis of the efficiency determinants of health systems in OECD countries by DEA and panel tobit
  publication-title: Soc. Indic. Res.
– volume: 44
  start-page: 270
  year: 2015
  end-page: 283
  ident: b23
  article-title: Two-step variable selection in quantile regression models
  publication-title: J. Shanghai Normal Univ. (Nat. Sci.)
– start-page: 76
  year: 2016
  end-page: 87
  ident: b29
  article-title: Science and technology system reform and innovation driven impact: 1998–2013
  publication-title: Reform.
– year: 2016
  ident: b13
  article-title: Do government grants promote innovation efficiency in China’s high-tech industries?
  publication-title: Technovation
– year: 2017
  ident: b12
  article-title: Measuring efficiency of innovation using combined data envelopment analysis and structural equation modeling: empirical study in EU regions
  publication-title: Ann. Oper. Res.
– start-page: 1
  year: 2018
  end-page: 14
  ident: b20
  article-title: Sparse group Lasso for multiclass functional logistic regression models
  publication-title: Comm. Statist. Simulation Comput.
– start-page: 54
  issue: 03
  year: 2014
  ident: 10.1016/j.cam.2019.112597_b30
  article-title: Research on the incentive mechanism of domestic research cooperation and scientific research innovation to promote the complementary effect of knowledge
  publication-title: Sci. Manag. Res.
– volume: 47
  start-page: 143
  year: 2015
  ident: 10.1016/j.cam.2019.112597_b14
  article-title: Knowledge management and innovation in knowledge-based and high-tech industrial markets: The role of openness and absorptive capacity
  publication-title: Ind. Mark. Manage.
  doi: 10.1016/j.indmarman.2015.02.032
– volume: 69
  start-page: 208
  year: 2014
  ident: 10.1016/j.cam.2019.112597_b22
  article-title: Interquantile shrinkage and variable selection in quantile regression
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/j.csda.2013.08.006
– volume: 44
  start-page: 270
  issue: 03
  year: 2015
  ident: 10.1016/j.cam.2019.112597_b23
  article-title: Two-step variable selection in quantile regression models
  publication-title: J. Shanghai Normal Univ. (Nat. Sci.)
– volume: 28
  start-page: 2861
  issue: 6
  year: 2013
  ident: 10.1016/j.cam.2019.112597_b26
  article-title: BayesIan lasso binary quantile regression
  publication-title: Comput. Stat.
  doi: 10.1007/s00180-013-0439-0
– volume: 62
  start-page: 63
  year: 2016
  ident: 10.1016/j.cam.2019.112597_b2
  article-title: A multilevel and multistage efficiency evaluation of innovation systems: A multiobjective DEA approach
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.06.017
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: 10.1016/j.cam.2019.112597_b19
  article-title: Regression shrinkage and selection via the lasso: a retrospective
  publication-title: J. R. Stat. Soc.
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 36
  start-page: 451
  issue: 2
  year: 2003
  ident: 10.1016/j.cam.2019.112597_b28
  article-title: The global k-means clustering algorithm
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(02)00060-2
– year: 2017
  ident: 10.1016/j.cam.2019.112597_b12
  article-title: Measuring efficiency of innovation using combined data envelopment analysis and structural equation modeling: empirical study in EU regions
  publication-title: Ann. Oper. Res.
– volume: 39
  start-page: 799
  issue: 4
  year: 2012
  ident: 10.1016/j.cam.2019.112597_b21
  article-title: Variable selection in quantile regression via Gibbs sampling
  publication-title: J. Appl. Stat.
  doi: 10.1080/02664763.2011.620082
– volume: 31
  start-page: 125
  issue: 02
  year: 2014
  ident: 10.1016/j.cam.2019.112597_b16
  article-title: Individual credit risk prediction method: Application of a lasso-logistic model
  publication-title: J. Quant. Tech. Econ.
– volume: 14
  issue: 1
  year: 2014
  ident: 10.1016/j.cam.2019.112597_b17
  publication-title: BMC Med. Res. Methodol.
  doi: 10.1186/1471-2288-14-99
– volume: 10
  start-page: 375
  issue: 3
  year: 2016
  ident: 10.1016/j.cam.2019.112597_b24
  article-title: Quantile regression with group lasso for classification
  publication-title: Adv. Data Anal. Classif.
  doi: 10.1007/s11634-015-0206-x
– volume: 13
  start-page: 10504
  issue: 12
  year: 2016
  ident: 10.1016/j.cam.2019.112597_b6
  article-title: Study on stage impacts of factor price distortion on chinese technology innovation based on data mining
  publication-title: J. Comput. Theor. Nanosci.
  doi: 10.1166/jctn.2016.6189
– volume: 36
  start-page: 558
  issue: 03
  year: 2018
  ident: 10.1016/j.cam.2019.112597_b8
  article-title: The innovative effect of financial factor distortion and its regional differences
  publication-title: Stud. Sci. Sci.
– volume: 39
  start-page: 634
  year: 2016
  ident: 10.1016/j.cam.2019.112597_b18
  article-title: The logistic lasso and ridge regression in predicting corporate failure
  publication-title: Procedia Econ. Finance
  doi: 10.1016/S2212-5671(16)30310-0
– volume: 22
  start-page: 343
  issue: 4
  year: 2011
  ident: 10.1016/j.cam.2019.112597_b5
  article-title: Measuring efficiency of Brazilian courts with data envelopment analysis (DEA)
  publication-title: IMA J. Manag. Math.
– start-page: 25
  issue: 12
  year: 2017
  ident: 10.1016/j.cam.2019.112597_b7
  article-title: How does financial factor distortion affect enterprise innovation investment?——Analysis from the perspective of financing constraints
  publication-title: Stud. Int. Finance
– volume: 5
  start-page: 201
  issue: 2
  year: 2014
  ident: 10.1016/j.cam.2019.112597_b25
  article-title: Sparse group Lasso based uncertain feature selection
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-013-0156-6
– start-page: 76
  issue: 01
  year: 2016
  ident: 10.1016/j.cam.2019.112597_b29
  article-title: Science and technology system reform and innovation driven impact: 1998–2013
  publication-title: Reform.
– start-page: 78
  issue: 02
  year: 2019
  ident: 10.1016/j.cam.2019.112597_b1
  article-title: Analysis of innovation efficiency of high-tech industry in China in stages – based on three-stage DEA model
  publication-title: Macroecon. Res.
– start-page: 1
  year: 2018
  ident: 10.1016/j.cam.2019.112597_b20
  article-title: Sparse group Lasso for multiclass functional logistic regression models
  publication-title: Comm. Statist. Simulation Comput.
– volume: 28
  start-page: 3449
  issue: 107
  year: 2019
  ident: 10.1016/j.cam.2019.112597_b9
  article-title: The impact of financial factor market distortion on green innovation efficiency of high-tech industry
  publication-title: Ekoloji
– start-page: 103
  issue: 9
  year: 2012
  ident: 10.1016/j.cam.2019.112597_b15
  article-title: Portfolio construction using variable selection: Based on LASSO method
  publication-title: Econ. Probl.
– volume: 130
  start-page: 498
  issue: 3
  year: 2001
  ident: 10.1016/j.cam.2019.112597_b27
  article-title: A slacks-based measure of efficiency in data envelopment analysis
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/S0377-2217(99)00407-5
– volume: 88
  start-page: 38
  year: 2017
  ident: 10.1016/j.cam.2019.112597_b33
  article-title: The spatial distribution of green buildings in china: regional imbalance, economic fundamentals, and policy incentives
  publication-title: Appl. Geography
  doi: 10.1016/j.apgeog.2017.08.022
– ident: 10.1016/j.cam.2019.112597_b32
  doi: 10.1057/9780230362420_2
– year: 2015
  ident: 10.1016/j.cam.2019.112597_b4
  article-title: Efficiency of Mexico’s regional innovation systems: an evaluation applying data envelopment analysis (DEA)
  publication-title: Afr. J. Sci. Technol. Innov. Dev.
– year: 2016
  ident: 10.1016/j.cam.2019.112597_b13
  article-title: Do government grants promote innovation efficiency in China’s high-tech industries?
  publication-title: Technovation
  doi: 10.1016/j.technovation.2016.06.001
– volume: 129
  start-page: 113
  issue: 1
  year: 2016
  ident: 10.1016/j.cam.2019.112597_b3
  article-title: Analysis of the efficiency determinants of health systems in OECD countries by DEA and panel tobit
  publication-title: Soc. Indic. Res.
  doi: 10.1007/s11205-015-1094-3
– volume: 31
  start-page: 899
  issue: 6
  year: 2000
  ident: 10.1016/j.cam.2019.112597_b31
  article-title: The determinants of national innovative capacity
  publication-title: Res. Policy
  doi: 10.1016/S0048-7333(01)00152-4
– volume: 34
  issue: 2
  year: 2017
  ident: 10.1016/j.cam.2019.112597_b11
  article-title: Research on innovation efficiency and technology gap in China economic development
  publication-title: Asia Pac. J. Oper. Res.
  doi: 10.1142/S0217595917500051
– year: 2018
  ident: 10.1016/j.cam.2019.112597_b10
  article-title: Analyzing the trend of O2O commerce by bilingual text mining on social media
  publication-title: Comput. Hum. Behav.
SSID ssj0006914
Score 2.6165001
Snippet Through the K-means clustering analysis, it divides the regions of China into four clusters according to the differences in high-tech industry development...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 112597
SubjectTerms Engineering Sciences
Influencing factors
Innovation efficiency
Regional differences
Title Research on regional differences and influencing factors of green technology innovation efficiency of China’s high-tech industry
URI https://dx.doi.org/10.1016/j.cam.2019.112597
https://centralesupelec.hal.science/hal-03197864
Volume 369
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZ5XNJDSJOGbh6LCDkFlLUtybKPm6VhmxehTWBvRpbkdEvwhmQTyKWU_ov-vfySzMiWoVByyMkgj4TRiJnReOb7CNlXLpUqzyRTZVIxARaP5cpFzOm81DrREJFgvuP8Ih1fi5OJnCyQUeiFwbLK1vY3Nt1b63Zk0O7m4G46HXyPuFLIFAEhSJSCmwQ7zEXmm_gmR501TvMG3xuEGUqHP5u-xstobEaPc2ykkYj79H_ftPgjZFm91zleI6ttuEiHzRd9JAuuXicfzjus1YcN8icUz9FZTZFnAWNrGohPwAxQXVs6bclIwFPRlmOHzip6g2U3dN7l10EusKRS59ElsDUTJT3R9svvvw8UEY4ZTgFhz_vx_IlcH3-5Go1Zy6zADOfxnOElxQorRRWXUghTaiOkhS2CaCmWFTasWmcrJaSOjXVZrvOoyiWmiRy813yTLNWz2n0mlHOrTZImRiJsjMx0yUHQWcPjMklV1CNR2NPCtLDjyH5xW4T6sp8FqKFANRSNGnrkoJty12BuvCUsgqKKfw5OAT7hrWl7oNRueQTZHg_PChzDvi6VpeIp3nrf2ttkJcFbuS-L3CFL8_tHtwuhy7zsk8XDX3GfLA9H384u8fn1dHzR9yf2FWzP8LA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-DupBfOLbIJ6EsH0kzfa4Lsqqu15U2FtIk1RXpCu6Ct7Ef-Hf85c40zYFQTx4TSahZMLMZDrzfYQcSpcImbYFk1mUMw4Wj6XSBczpNNM60hCRYL5jcJn0bvj5UAynSNf3wmBZZW37K5teWut6pFWfZutxNGpdBbGUyBQBIUiQgJucJrMQDUjkbzgbHjfmOEkrgG-QZijuf22WRV5GYzd6mGInjUDgp9-d0_SdT7OWbud0iSzW8SLtVJ-0TKZcsUIWBg3Y6vMq-fDVc3RcUCRawOCaeuYTsANUF5aOajYScFW0Jtmh45zeYt0NnTQJdpDzNKnUlfAS2JuJkiXT9tf75zNFiGOGS0C4JP54WyM3pyfX3R6rqRWYieNwwvCVYrkVPA8zwbnJtOHCwhFBuBSKHDtWrbO55EKHxrp2qtMgTwXmiRzM63idzBTjwm0QGsdWmyiJjEDcGNHWWQyCzpo4zCJQxyYJ_JkqU-OOI_3Fg_IFZvcK1KBQDapSwyY5apY8VqAbfwlzryj14-YocAp_LTsApTbbI8p2r9NXOIaNXbKd8Ndw639775O53vWgr_pnlxfbZD7CJ3pZI7lDZiZPL24X4phJtlfe02_Vlu-u
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+regional+differences+and+influencing+factors+of+green+technology+innovation+efficiency+of+China%E2%80%99s+high-tech+industry&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Liu%2C+Chunyang&rft.au=Gao%2C+Xingyu&rft.au=Ma%2C+Wanli&rft.au=Chen%2C+Xiangtuo&rft.date=2020-05-01&rft.pub=Elsevier+B.V&rft.issn=0377-0427&rft.eissn=1879-1778&rft.volume=369&rft_id=info:doi/10.1016%2Fj.cam.2019.112597&rft.externalDocID=S0377042719306028
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon