Research on regional differences and influencing factors of green technology innovation efficiency of China’s high-tech industry
Through the K-means clustering analysis, it divides the regions of China into four clusters according to the differences in high-tech industry development level between 2008 and 2016. Considering ”environmental pollution” and ”innovation failure”, an improved SBM-DEA efficiency measurement model was...
Saved in:
Published in | Journal of computational and applied mathematics Vol. 369; p. 112597 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2020
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Through the K-means clustering analysis, it divides the regions of China into four clusters according to the differences in high-tech industry development level between 2008 and 2016. Considering ”environmental pollution” and ”innovation failure”, an improved SBM-DEA efficiency measurement model was constructed to measure the green technology innovation efficiency of China’s high-tech industry clusters. Lasso regression was used to screen out the factors affecting the green technology innovation efficiency of high-tech industry in each cluster area. On this basis, quantile regression method is used to study the influence degree and regional differences of various influencing factors on green innovation efficiency of high-tech industry at different quantile. Meanwhile, DEA-tobit model is used for robustness test. The research shows that in each cluster area, the factors that significantly affect the green innovation efficiency of high-tech industry are different, and the degree of influence of each factor on the innovation efficiency at different quantile is also different. Combining the empirical results with the reality of high-tech industries in various regions, the corresponding policy recommendations are put forward. |
---|---|
AbstractList | Through the K-means clustering analysis, it divides the regions of China into four clusters according to the differences in high-tech industry development level between 2008 and 2016. Considering ”environmental pollution” and ”innovation failure”, an improved SBM-DEA efficiency measurement model was constructed to measure the green technology innovation efficiency of China’s high-tech industry clusters. Lasso regression was used to screen out the factors affecting the green technology innovation efficiency of high-tech industry in each cluster area. On this basis, quantile regression method is used to study the influence degree and regional differences of various influencing factors on green innovation efficiency of high-tech industry at different quantile. Meanwhile, DEA-tobit model is used for robustness test. The research shows that in each cluster area, the factors that significantly affect the green innovation efficiency of high-tech industry are different, and the degree of influence of each factor on the innovation efficiency at different quantile is also different. Combining the empirical results with the reality of high-tech industries in various regions, the corresponding policy recommendations are put forward. |
ArticleNumber | 112597 |
Author | Liu, Chunyang Gao, Xingyu Ma, Wanli Chen, Xiangtuo |
Author_xml | – sequence: 1 givenname: Chunyang surname: Liu fullname: Liu, Chunyang organization: College of Business, Shandong University, Weihai 264209, China – sequence: 2 givenname: Xingyu surname: Gao fullname: Gao, Xingyu organization: College of Business, Shandong University, Weihai 264209, China – sequence: 3 givenname: Wanli surname: Ma fullname: Ma, Wanli email: mawanli@sdu.edu.cn organization: College of Business, Shandong University, Weihai 264209, China – sequence: 4 givenname: Xiangtuo surname: Chen fullname: Chen, Xiangtuo organization: Laboratory MICS, CentraleSupélec, Paris-Saclay University, Gif sur Yvette 91190, France |
BackLink | https://centralesupelec.hal.science/hal-03197864$$DView record in HAL |
BookMark | eNp9kMFqGzEURUVJIY7bD8hO2y7G0ZvRWDN0FUwbFwyB0q6FLD3NyIylIk0M3oX-RX4vXxKN3W6y8EpIuuc97rkhVz54JOQW2AIYLO92C632i5JBuwAo61Z8IDNoRFuAEM0VmbFKiILxUlyTm5R2jLFlC3xG_v7EhCrqngZPI3YueDVQ46zFiF5josob6rwdnvLV-Y5apccQEw2WdhHR0xF178MQumPO-XBQYx5C0VqnXWaOU3LVO69en18S7V3XFxOSw-YpjfH4iXy0akj4-d85J7-_f_u1Whebx4cfq_tNoasKxqIRdWW4qbmFbc253irNa5NrVW0JtWV8WRo0VvBagTbYtKplts0mmgrzv6rm5Mt5bq8G-Se6vYpHGZST6_uNnN5YBTm95AfIWXHO6hhSimilduOp2BiVGyQwOWmXO5m1y0m7PGvPJLwj_6-6xHw9M5jrHxxGmU7q0LiIepQmuAv0G46Sn7I |
CitedBy_id | crossref_primary_10_1007_s10668_024_05470_z crossref_primary_10_1007_s11356_022_22699_1 crossref_primary_10_15446_ede_v34n64_112357 crossref_primary_10_1016_j_jclepro_2024_142589 crossref_primary_10_1108_APJIE_10_2023_0190 crossref_primary_10_1142_S0217595922500348 crossref_primary_10_3390_land12071283 crossref_primary_10_1016_j_eswa_2024_125513 crossref_primary_10_1080_09537325_2023_2196350 crossref_primary_10_1007_s10660_022_09599_9 crossref_primary_10_1007_s13132_022_00899_x crossref_primary_10_1038_s41598_022_15614_8 crossref_primary_10_3389_fenvs_2023_1104078 crossref_primary_10_3390_systems11050240 crossref_primary_10_4018_JOEUC_348654 crossref_primary_10_1007_s10098_023_02622_z crossref_primary_10_1016_j_eneco_2022_106479 crossref_primary_10_1080_09537325_2022_2163889 crossref_primary_10_1016_j_cities_2023_104585 crossref_primary_10_1016_j_eneco_2020_104974 crossref_primary_10_1016_j_techfore_2024_123665 crossref_primary_10_1016_j_techfore_2023_122333 crossref_primary_10_3389_fenvs_2024_1406577 crossref_primary_10_1080_00036846_2025_2453760 crossref_primary_10_3389_fenvs_2022_959926 crossref_primary_10_3390_land11010122 crossref_primary_10_1007_s11356_021_12755_7 crossref_primary_10_1016_j_jclepro_2023_136453 crossref_primary_10_3390_buildings13010073 crossref_primary_10_1016_j_ecolind_2023_110101 crossref_primary_10_1080_09537325_2023_2254852 crossref_primary_10_3390_su141912739 crossref_primary_10_1108_IJOEM_09_2021_1364 crossref_primary_10_1016_j_seps_2020_100939 crossref_primary_10_1007_s11356_024_32484_x crossref_primary_10_3390_systems10040124 crossref_primary_10_1007_s11356_022_21431_3 crossref_primary_10_3390_su141811584 crossref_primary_10_1016_j_iref_2024_103819 crossref_primary_10_3389_fenvs_2022_859523 crossref_primary_10_3934_GF_2022020 crossref_primary_10_1016_j_est_2023_107307 crossref_primary_10_1080_09537287_2023_2165189 crossref_primary_10_1108_K_01_2023_0164 crossref_primary_10_3390_su162411192 crossref_primary_10_3390_land13030292 crossref_primary_10_1016_j_ecolind_2023_109901 crossref_primary_10_1016_j_jbusres_2023_114049 crossref_primary_10_3389_fenvs_2023_1276913 crossref_primary_10_1016_j_eneco_2024_107342 crossref_primary_10_3390_su12166343 crossref_primary_10_24136_oc_2023_024 crossref_primary_10_3389_fenrg_2023_1167330 crossref_primary_10_1016_j_iref_2024_05_017 crossref_primary_10_1016_j_chaos_2021_111303 crossref_primary_10_1016_j_frl_2023_104192 crossref_primary_10_1016_j_telpol_2024_102834 crossref_primary_10_3390_en13205467 crossref_primary_10_1155_2022_4047572 crossref_primary_10_1016_j_eneco_2022_106109 crossref_primary_10_1021_acsomega_0c01891 crossref_primary_10_3390_su15129845 crossref_primary_10_3389_fenvs_2022_997084 crossref_primary_10_3390_su16010334 crossref_primary_10_1007_s13132_024_02286_0 crossref_primary_10_3390_su14052876 crossref_primary_10_3390_ijerph19053046 crossref_primary_10_1080_2331186X_2024_2401252 crossref_primary_10_1002_bse_3615 crossref_primary_10_3390_su15076033 crossref_primary_10_1007_s10668_022_02159_z crossref_primary_10_1080_00405000_2024_2418149 crossref_primary_10_3390_su14010297 crossref_primary_10_3389_fenvs_2023_1180781 crossref_primary_10_3390_su13031104 crossref_primary_10_1016_j_eneco_2024_107524 crossref_primary_10_1080_09537325_2024_2304217 crossref_primary_10_3390_su14073903 crossref_primary_10_1109_ACCESS_2020_3043364 crossref_primary_10_1016_j_resourpol_2024_105023 crossref_primary_10_3390_sym16040429 crossref_primary_10_1038_s41598_023_46699_4 crossref_primary_10_1007_s00500_021_05878_z crossref_primary_10_1155_2021_6653474 crossref_primary_10_1177_21582440241277298 crossref_primary_10_1016_j_energy_2024_133634 crossref_primary_10_1016_j_techfore_2022_121836 crossref_primary_10_1108_IMDS_04_2021_0254 crossref_primary_10_1016_j_techfore_2021_121332 crossref_primary_10_1016_j_dajour_2023_100271 crossref_primary_10_1016_j_esr_2023_101170 crossref_primary_10_1016_j_jhtm_2022_06_009 crossref_primary_10_1016_j_psep_2024_05_087 crossref_primary_10_3390_axioms12020149 crossref_primary_10_3389_fenvs_2021_745498 crossref_primary_10_4018_IJKM_368003 crossref_primary_10_1016_j_strueco_2024_07_009 crossref_primary_10_1080_09537325_2022_2116570 crossref_primary_10_1016_j_energy_2021_120711 crossref_primary_10_3389_fenvs_2021_799794 crossref_primary_10_3390_su16114848 crossref_primary_10_3390_su152416643 crossref_primary_10_1111_itor_13284 crossref_primary_10_3390_ijerph19010139 crossref_primary_10_3390_su15021302 crossref_primary_10_3389_fsoc_2023_1141616 crossref_primary_10_3390_su141811695 crossref_primary_10_1016_j_iref_2023_09_014 crossref_primary_10_1016_j_techfore_2023_122352 crossref_primary_10_1155_2023_6630603 crossref_primary_10_1371_journal_pone_0259366 crossref_primary_10_3390_ijerph18073412 crossref_primary_10_3390_ijerph192214715 crossref_primary_10_3390_su15129354 crossref_primary_10_3389_fenvs_2022_857516 crossref_primary_10_1016_j_jenvman_2024_122053 crossref_primary_10_3389_fenvs_2023_1167918 crossref_primary_10_1080_09537325_2023_2233635 crossref_primary_10_3390_su151713264 crossref_primary_10_1016_j_jbusres_2021_04_023 crossref_primary_10_3389_fenrg_2024_1308494 crossref_primary_10_1177_21582440231214851 crossref_primary_10_1080_09640568_2024_2404196 crossref_primary_10_2478_amns_2025_0578 crossref_primary_10_1016_j_jclepro_2024_143443 crossref_primary_10_1016_j_ecolind_2022_108824 crossref_primary_10_1016_j_renene_2022_03_046 crossref_primary_10_1016_j_egyr_2022_05_096 crossref_primary_10_3390_su17030993 crossref_primary_10_3390_su17052122 crossref_primary_10_1007_s13132_024_02496_6 crossref_primary_10_1016_j_iref_2024_103398 crossref_primary_10_1007_s43621_024_00391_3 crossref_primary_10_1109_ACCESS_2023_3239914 crossref_primary_10_1007_s11356_023_28391_2 crossref_primary_10_1016_j_heliyon_2024_e30158 |
Cites_doi | 10.1016/j.indmarman.2015.02.032 10.1016/j.csda.2013.08.006 10.1007/s00180-013-0439-0 10.1016/j.eswa.2016.06.017 10.1111/j.2517-6161.1996.tb02080.x 10.1016/S0031-3203(02)00060-2 10.1080/02664763.2011.620082 10.1186/1471-2288-14-99 10.1007/s11634-015-0206-x 10.1166/jctn.2016.6189 10.1016/S2212-5671(16)30310-0 10.1007/s13042-013-0156-6 10.1016/S0377-2217(99)00407-5 10.1016/j.apgeog.2017.08.022 10.1057/9780230362420_2 10.1016/j.technovation.2016.06.001 10.1007/s11205-015-1094-3 10.1016/S0048-7333(01)00152-4 10.1142/S0217595917500051 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC |
DOI | 10.1016/j.cam.2019.112597 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1879-1778 |
ExternalDocumentID | oai_HAL_hal_03197864v1 10_1016_j_cam_2019_112597 S0377042719306028 |
GrantInformation_xml | – fundername: Shandong University funderid: http://dx.doi.org/10.13039/100009108 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABAOU ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE IXB J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSW T5K TN5 UPT XPP YQT ZMT ~02 ~G- 29K 5VS AAFWJ AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AEXQZ AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION D-I EJD FGOYB G-2 HZ~ NHB R2- RIG SEW SSH SSZ WUQ ZY4 1XC |
ID | FETCH-LOGICAL-c331t-8753d4d54f1b544cbac45d37739215f0462dedf745a1cde89a90f959783e15fa3 |
IEDL.DBID | IXB |
ISSN | 0377-0427 |
IngestDate | Fri May 09 12:14:37 EDT 2025 Tue Jul 01 04:27:11 EDT 2025 Thu Apr 24 22:55:16 EDT 2025 Fri Feb 23 02:49:46 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Influencing factors Innovation efficiency Regional differences |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c331t-8753d4d54f1b544cbac45d37739215f0462dedf745a1cde89a90f959783e15fa3 |
ParticipantIDs | hal_primary_oai_HAL_hal_03197864v1 crossref_citationtrail_10_1016_j_cam_2019_112597 crossref_primary_10_1016_j_cam_2019_112597 elsevier_sciencedirect_doi_10_1016_j_cam_2019_112597 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-01 2020-05-00 2020-05 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of computational and applied mathematics |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Fan (b23) 2015; 44 Mansiaux, Carrat (b17) 2014; 14 Lyu, Li (b29) 2016 Fang, Zhang, Zhang (b16) 2014; 31 Meng, Li, Shi (b1) 2019 Li, Ran, Wei (b8) 2018; 36 Jiang, Bondell, Wang (b22) 2014; 69 Yeung, Azevedo (b5) 2011; 22 Kaya Samut, Cafrı (b3) 2016; 129 Li, Ran, Wei (b7) 2017 Carayannis, Grigoroudis, Goletsis (b2) 2016; 62 Gao, Lyu, Shi, Zeng, Liu (b9) 2019; 28 Fang, Chiu (b11) 2017; 34 Kalapouti, Petridis, Malesios (b12) 2017 Alhamzawi, Yu (b21) 2012; 39 Liu, Du (b15) 2012 Shen, Chen, Wang (b10) 2018 Xie, Xu (b25) 2014; 5 Y., W., R. (b33) 2017; 88 Castro, Gregorio (b14) 2015; 47 Hashem, Vinciotti, Alhamzawi (b24) 2016; 10 Ji, Dou (b6) 2016; 13 B.A. Lundvall, E. Lorenz, Innovation and Competence Building in the Learning Economy: Implications for Innovation Policy, Post-Print, 2012. Tibshirani (b19) 1996; 58 Lafarga, Balderrama (b4) 2015 Pereira, Basto, Silva (b18) 2016; 39 Hong, Feng, Wu (b13) 2016 Likas, Vlassis, J.J. (b28) 2003; 36 Furman, Porter, S. (b31) 2000; 31 Benoit, Alhamzawi, Yu (b26) 2013; 28 Matsui, Hidetoshi (b20) 2018 K. (b27) 2001; 130 Li, Fu (b30) 2014 Li (10.1016/j.cam.2019.112597_b8) 2018; 36 Y. (10.1016/j.cam.2019.112597_b33) 2017; 88 Yeung (10.1016/j.cam.2019.112597_b5) 2011; 22 Shen (10.1016/j.cam.2019.112597_b10) 2018 Benoit (10.1016/j.cam.2019.112597_b26) 2013; 28 Jiang (10.1016/j.cam.2019.112597_b22) 2014; 69 Matsui (10.1016/j.cam.2019.112597_b20) 2018 Meng (10.1016/j.cam.2019.112597_b1) 2019 Pereira (10.1016/j.cam.2019.112597_b18) 2016; 39 Tibshirani (10.1016/j.cam.2019.112597_b19) 1996; 58 Hashem (10.1016/j.cam.2019.112597_b24) 2016; 10 Fang (10.1016/j.cam.2019.112597_b16) 2014; 31 Likas (10.1016/j.cam.2019.112597_b28) 2003; 36 K. (10.1016/j.cam.2019.112597_b27) 2001; 130 Kaya Samut (10.1016/j.cam.2019.112597_b3) 2016; 129 10.1016/j.cam.2019.112597_b32 Li (10.1016/j.cam.2019.112597_b7) 2017 Alhamzawi (10.1016/j.cam.2019.112597_b21) 2012; 39 Li (10.1016/j.cam.2019.112597_b30) 2014 Xie (10.1016/j.cam.2019.112597_b25) 2014; 5 Carayannis (10.1016/j.cam.2019.112597_b2) 2016; 62 Fang (10.1016/j.cam.2019.112597_b11) 2017; 34 Castro (10.1016/j.cam.2019.112597_b14) 2015; 47 Lafarga (10.1016/j.cam.2019.112597_b4) 2015 Kalapouti (10.1016/j.cam.2019.112597_b12) 2017 Hong (10.1016/j.cam.2019.112597_b13) 2016 Gao (10.1016/j.cam.2019.112597_b9) 2019; 28 Furman (10.1016/j.cam.2019.112597_b31) 2000; 31 Fan (10.1016/j.cam.2019.112597_b23) 2015; 44 Mansiaux (10.1016/j.cam.2019.112597_b17) 2014; 14 Ji (10.1016/j.cam.2019.112597_b6) 2016; 13 Liu (10.1016/j.cam.2019.112597_b15) 2012 Lyu (10.1016/j.cam.2019.112597_b29) 2016 |
References_xml | – volume: 13 start-page: 10504 year: 2016 end-page: 10513 ident: b6 article-title: Study on stage impacts of factor price distortion on chinese technology innovation based on data mining publication-title: J. Comput. Theor. Nanosci. – volume: 39 start-page: 799 year: 2012 end-page: 813 ident: b21 article-title: Variable selection in quantile regression via Gibbs sampling publication-title: J. Appl. Stat. – volume: 62 start-page: 63 year: 2016 end-page: 80 ident: b2 article-title: A multilevel and multistage efficiency evaluation of innovation systems: A multiobjective DEA approach publication-title: Expert Syst. Appl. – volume: 39 start-page: 634 year: 2016 end-page: 641 ident: b18 article-title: The logistic lasso and ridge regression in predicting corporate failure publication-title: Procedia Econ. Finance – volume: 36 start-page: 451 year: 2003 end-page: 461 ident: b28 article-title: The global publication-title: Pattern Recognit. – volume: 88 start-page: 38 year: 2017 end-page: 47 ident: b33 article-title: The spatial distribution of green buildings in china: regional imbalance, economic fundamentals, and policy incentives publication-title: Appl. Geography – start-page: 103 year: 2012 end-page: 107 ident: b15 article-title: Portfolio construction using variable selection: Based on LASSO method publication-title: Econ. Probl. – start-page: 54 year: 2014 end-page: 57 ident: b30 article-title: Research on the incentive mechanism of domestic research cooperation and scientific research innovation to promote the complementary effect of knowledge publication-title: Sci. Manag. Res. – volume: 34 year: 2017 ident: b11 article-title: Research on innovation efficiency and technology gap in China economic development publication-title: Asia Pac. J. Oper. Res. – start-page: 78 year: 2019 end-page: 91 ident: b1 article-title: Analysis of innovation efficiency of high-tech industry in China in stages – based on three-stage DEA model publication-title: Macroecon. Res. – year: 2015 ident: b4 article-title: Efficiency of Mexico’s regional innovation systems: an evaluation applying data envelopment analysis (DEA) publication-title: Afr. J. Sci. Technol. Innov. Dev. – year: 2018 ident: b10 article-title: Analyzing the trend of O2O commerce by bilingual text mining on social media publication-title: Comput. Hum. Behav. – volume: 14 year: 2014 ident: b17 article-title: Detection of independent associations in a large epidemiologic dataset: a comparison of random forests, boosted regression trees, conventional and penalized logistic regression for identifying independent factors associated with H1N1pdm influenza infections publication-title: BMC Med. Res. Methodol. – volume: 28 start-page: 2861 year: 2013 end-page: 2873 ident: b26 article-title: BayesIan lasso binary quantile regression publication-title: Comput. Stat. – volume: 36 start-page: 558 year: 2018 end-page: 568 ident: b8 article-title: The innovative effect of financial factor distortion and its regional differences publication-title: Stud. Sci. Sci. – volume: 47 start-page: 143 year: 2015 end-page: 146 ident: b14 article-title: Knowledge management and innovation in knowledge-based and high-tech industrial markets: The role of openness and absorptive capacity publication-title: Ind. Mark. Manage. – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: b19 article-title: Regression shrinkage and selection via the lasso: a retrospective publication-title: J. R. Stat. Soc. – volume: 31 start-page: 125 year: 2014 end-page: 136 ident: b16 article-title: Individual credit risk prediction method: Application of a lasso-logistic model publication-title: J. Quant. Tech. Econ. – volume: 10 start-page: 375 year: 2016 end-page: 390 ident: b24 article-title: Quantile regression with group lasso for classification publication-title: Adv. Data Anal. Classif. – volume: 5 start-page: 201 year: 2014 end-page: 210 ident: b25 article-title: Sparse group Lasso based uncertain feature selection publication-title: Int. J. Mach. Learn. Cybern. – reference: B.A. Lundvall, E. Lorenz, Innovation and Competence Building in the Learning Economy: Implications for Innovation Policy, Post-Print, 2012. – volume: 22 start-page: 343 year: 2011 end-page: 356 ident: b5 article-title: Measuring efficiency of Brazilian courts with data envelopment analysis (DEA) publication-title: IMA J. Manag. Math. – volume: 130 start-page: 498 year: 2001 end-page: 509 ident: b27 article-title: A slacks-based measure of efficiency in data envelopment analysis publication-title: Eur. J. Oper. Res. – volume: 28 start-page: 3449 year: 2019 end-page: 3461 ident: b9 article-title: The impact of financial factor market distortion on green innovation efficiency of high-tech industry publication-title: Ekoloji – volume: 69 start-page: 208 year: 2014 end-page: 219 ident: b22 article-title: Interquantile shrinkage and variable selection in quantile regression publication-title: Comput. Statist. Data Anal. – start-page: 25 year: 2017 end-page: 35 ident: b7 article-title: How does financial factor distortion affect enterprise innovation investment?——Analysis from the perspective of financing constraints publication-title: Stud. Int. Finance – volume: 31 start-page: 899 year: 2000 end-page: 933 ident: b31 article-title: The determinants of national innovative capacity publication-title: Res. Policy – volume: 129 start-page: 113 year: 2016 end-page: 132 ident: b3 article-title: Analysis of the efficiency determinants of health systems in OECD countries by DEA and panel tobit publication-title: Soc. Indic. Res. – volume: 44 start-page: 270 year: 2015 end-page: 283 ident: b23 article-title: Two-step variable selection in quantile regression models publication-title: J. Shanghai Normal Univ. (Nat. Sci.) – start-page: 76 year: 2016 end-page: 87 ident: b29 article-title: Science and technology system reform and innovation driven impact: 1998–2013 publication-title: Reform. – year: 2016 ident: b13 article-title: Do government grants promote innovation efficiency in China’s high-tech industries? publication-title: Technovation – year: 2017 ident: b12 article-title: Measuring efficiency of innovation using combined data envelopment analysis and structural equation modeling: empirical study in EU regions publication-title: Ann. Oper. Res. – start-page: 1 year: 2018 end-page: 14 ident: b20 article-title: Sparse group Lasso for multiclass functional logistic regression models publication-title: Comm. Statist. Simulation Comput. – start-page: 54 issue: 03 year: 2014 ident: 10.1016/j.cam.2019.112597_b30 article-title: Research on the incentive mechanism of domestic research cooperation and scientific research innovation to promote the complementary effect of knowledge publication-title: Sci. Manag. Res. – volume: 47 start-page: 143 year: 2015 ident: 10.1016/j.cam.2019.112597_b14 article-title: Knowledge management and innovation in knowledge-based and high-tech industrial markets: The role of openness and absorptive capacity publication-title: Ind. Mark. Manage. doi: 10.1016/j.indmarman.2015.02.032 – volume: 69 start-page: 208 year: 2014 ident: 10.1016/j.cam.2019.112597_b22 article-title: Interquantile shrinkage and variable selection in quantile regression publication-title: Comput. Statist. Data Anal. doi: 10.1016/j.csda.2013.08.006 – volume: 44 start-page: 270 issue: 03 year: 2015 ident: 10.1016/j.cam.2019.112597_b23 article-title: Two-step variable selection in quantile regression models publication-title: J. Shanghai Normal Univ. (Nat. Sci.) – volume: 28 start-page: 2861 issue: 6 year: 2013 ident: 10.1016/j.cam.2019.112597_b26 article-title: BayesIan lasso binary quantile regression publication-title: Comput. Stat. doi: 10.1007/s00180-013-0439-0 – volume: 62 start-page: 63 year: 2016 ident: 10.1016/j.cam.2019.112597_b2 article-title: A multilevel and multistage efficiency evaluation of innovation systems: A multiobjective DEA approach publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.06.017 – volume: 58 start-page: 267 issue: 1 year: 1996 ident: 10.1016/j.cam.2019.112597_b19 article-title: Regression shrinkage and selection via the lasso: a retrospective publication-title: J. R. Stat. Soc. doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 36 start-page: 451 issue: 2 year: 2003 ident: 10.1016/j.cam.2019.112597_b28 article-title: The global k-means clustering algorithm publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(02)00060-2 – year: 2017 ident: 10.1016/j.cam.2019.112597_b12 article-title: Measuring efficiency of innovation using combined data envelopment analysis and structural equation modeling: empirical study in EU regions publication-title: Ann. Oper. Res. – volume: 39 start-page: 799 issue: 4 year: 2012 ident: 10.1016/j.cam.2019.112597_b21 article-title: Variable selection in quantile regression via Gibbs sampling publication-title: J. Appl. Stat. doi: 10.1080/02664763.2011.620082 – volume: 31 start-page: 125 issue: 02 year: 2014 ident: 10.1016/j.cam.2019.112597_b16 article-title: Individual credit risk prediction method: Application of a lasso-logistic model publication-title: J. Quant. Tech. Econ. – volume: 14 issue: 1 year: 2014 ident: 10.1016/j.cam.2019.112597_b17 publication-title: BMC Med. Res. Methodol. doi: 10.1186/1471-2288-14-99 – volume: 10 start-page: 375 issue: 3 year: 2016 ident: 10.1016/j.cam.2019.112597_b24 article-title: Quantile regression with group lasso for classification publication-title: Adv. Data Anal. Classif. doi: 10.1007/s11634-015-0206-x – volume: 13 start-page: 10504 issue: 12 year: 2016 ident: 10.1016/j.cam.2019.112597_b6 article-title: Study on stage impacts of factor price distortion on chinese technology innovation based on data mining publication-title: J. Comput. Theor. Nanosci. doi: 10.1166/jctn.2016.6189 – volume: 36 start-page: 558 issue: 03 year: 2018 ident: 10.1016/j.cam.2019.112597_b8 article-title: The innovative effect of financial factor distortion and its regional differences publication-title: Stud. Sci. Sci. – volume: 39 start-page: 634 year: 2016 ident: 10.1016/j.cam.2019.112597_b18 article-title: The logistic lasso and ridge regression in predicting corporate failure publication-title: Procedia Econ. Finance doi: 10.1016/S2212-5671(16)30310-0 – volume: 22 start-page: 343 issue: 4 year: 2011 ident: 10.1016/j.cam.2019.112597_b5 article-title: Measuring efficiency of Brazilian courts with data envelopment analysis (DEA) publication-title: IMA J. Manag. Math. – start-page: 25 issue: 12 year: 2017 ident: 10.1016/j.cam.2019.112597_b7 article-title: How does financial factor distortion affect enterprise innovation investment?——Analysis from the perspective of financing constraints publication-title: Stud. Int. Finance – volume: 5 start-page: 201 issue: 2 year: 2014 ident: 10.1016/j.cam.2019.112597_b25 article-title: Sparse group Lasso based uncertain feature selection publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-013-0156-6 – start-page: 76 issue: 01 year: 2016 ident: 10.1016/j.cam.2019.112597_b29 article-title: Science and technology system reform and innovation driven impact: 1998–2013 publication-title: Reform. – start-page: 78 issue: 02 year: 2019 ident: 10.1016/j.cam.2019.112597_b1 article-title: Analysis of innovation efficiency of high-tech industry in China in stages – based on three-stage DEA model publication-title: Macroecon. Res. – start-page: 1 year: 2018 ident: 10.1016/j.cam.2019.112597_b20 article-title: Sparse group Lasso for multiclass functional logistic regression models publication-title: Comm. Statist. Simulation Comput. – volume: 28 start-page: 3449 issue: 107 year: 2019 ident: 10.1016/j.cam.2019.112597_b9 article-title: The impact of financial factor market distortion on green innovation efficiency of high-tech industry publication-title: Ekoloji – start-page: 103 issue: 9 year: 2012 ident: 10.1016/j.cam.2019.112597_b15 article-title: Portfolio construction using variable selection: Based on LASSO method publication-title: Econ. Probl. – volume: 130 start-page: 498 issue: 3 year: 2001 ident: 10.1016/j.cam.2019.112597_b27 article-title: A slacks-based measure of efficiency in data envelopment analysis publication-title: Eur. J. Oper. Res. doi: 10.1016/S0377-2217(99)00407-5 – volume: 88 start-page: 38 year: 2017 ident: 10.1016/j.cam.2019.112597_b33 article-title: The spatial distribution of green buildings in china: regional imbalance, economic fundamentals, and policy incentives publication-title: Appl. Geography doi: 10.1016/j.apgeog.2017.08.022 – ident: 10.1016/j.cam.2019.112597_b32 doi: 10.1057/9780230362420_2 – year: 2015 ident: 10.1016/j.cam.2019.112597_b4 article-title: Efficiency of Mexico’s regional innovation systems: an evaluation applying data envelopment analysis (DEA) publication-title: Afr. J. Sci. Technol. Innov. Dev. – year: 2016 ident: 10.1016/j.cam.2019.112597_b13 article-title: Do government grants promote innovation efficiency in China’s high-tech industries? publication-title: Technovation doi: 10.1016/j.technovation.2016.06.001 – volume: 129 start-page: 113 issue: 1 year: 2016 ident: 10.1016/j.cam.2019.112597_b3 article-title: Analysis of the efficiency determinants of health systems in OECD countries by DEA and panel tobit publication-title: Soc. Indic. Res. doi: 10.1007/s11205-015-1094-3 – volume: 31 start-page: 899 issue: 6 year: 2000 ident: 10.1016/j.cam.2019.112597_b31 article-title: The determinants of national innovative capacity publication-title: Res. Policy doi: 10.1016/S0048-7333(01)00152-4 – volume: 34 issue: 2 year: 2017 ident: 10.1016/j.cam.2019.112597_b11 article-title: Research on innovation efficiency and technology gap in China economic development publication-title: Asia Pac. J. Oper. Res. doi: 10.1142/S0217595917500051 – year: 2018 ident: 10.1016/j.cam.2019.112597_b10 article-title: Analyzing the trend of O2O commerce by bilingual text mining on social media publication-title: Comput. Hum. Behav. |
SSID | ssj0006914 |
Score | 2.6165001 |
Snippet | Through the K-means clustering analysis, it divides the regions of China into four clusters according to the differences in high-tech industry development... |
SourceID | hal crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 112597 |
SubjectTerms | Engineering Sciences Influencing factors Innovation efficiency Regional differences |
Title | Research on regional differences and influencing factors of green technology innovation efficiency of China’s high-tech industry |
URI | https://dx.doi.org/10.1016/j.cam.2019.112597 https://centralesupelec.hal.science/hal-03197864 |
Volume | 369 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZ5XNJDSJOGbh6LCDkFlLUtybKPm6VhmxehTWBvRpbkdEvwhmQTyKWU_ov-vfySzMiWoVByyMkgj4TRiJnReOb7CNlXLpUqzyRTZVIxARaP5cpFzOm81DrREJFgvuP8Ih1fi5OJnCyQUeiFwbLK1vY3Nt1b63Zk0O7m4G46HXyPuFLIFAEhSJSCmwQ7zEXmm_gmR501TvMG3xuEGUqHP5u-xstobEaPc2ykkYj79H_ftPgjZFm91zleI6ttuEiHzRd9JAuuXicfzjus1YcN8icUz9FZTZFnAWNrGohPwAxQXVs6bclIwFPRlmOHzip6g2U3dN7l10EusKRS59ElsDUTJT3R9svvvw8UEY4ZTgFhz_vx_IlcH3-5Go1Zy6zADOfxnOElxQorRRWXUghTaiOkhS2CaCmWFTasWmcrJaSOjXVZrvOoyiWmiRy813yTLNWz2n0mlHOrTZImRiJsjMx0yUHQWcPjMklV1CNR2NPCtLDjyH5xW4T6sp8FqKFANRSNGnrkoJty12BuvCUsgqKKfw5OAT7hrWl7oNRueQTZHg_PChzDvi6VpeIp3nrf2ttkJcFbuS-L3CFL8_tHtwuhy7zsk8XDX3GfLA9H384u8fn1dHzR9yf2FWzP8LA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-DupBfOLbIJ6EsH0kzfa4Lsqqu15U2FtIk1RXpCu6Ct7Ef-Hf85c40zYFQTx4TSahZMLMZDrzfYQcSpcImbYFk1mUMw4Wj6XSBczpNNM60hCRYL5jcJn0bvj5UAynSNf3wmBZZW37K5teWut6pFWfZutxNGpdBbGUyBQBIUiQgJucJrMQDUjkbzgbHjfmOEkrgG-QZijuf22WRV5GYzd6mGInjUDgp9-d0_SdT7OWbud0iSzW8SLtVJ-0TKZcsUIWBg3Y6vMq-fDVc3RcUCRawOCaeuYTsANUF5aOajYScFW0Jtmh45zeYt0NnTQJdpDzNKnUlfAS2JuJkiXT9tf75zNFiGOGS0C4JP54WyM3pyfX3R6rqRWYieNwwvCVYrkVPA8zwbnJtOHCwhFBuBSKHDtWrbO55EKHxrp2qtMgTwXmiRzM63idzBTjwm0QGsdWmyiJjEDcGNHWWQyCzpo4zCJQxyYJ_JkqU-OOI_3Fg_IFZvcK1KBQDapSwyY5apY8VqAbfwlzryj14-YocAp_LTsApTbbI8p2r9NXOIaNXbKd8Ndw639775O53vWgr_pnlxfbZD7CJ3pZI7lDZiZPL24X4phJtlfe02_Vlu-u |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+regional+differences+and+influencing+factors+of+green+technology+innovation+efficiency+of+China%E2%80%99s+high-tech+industry&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Liu%2C+Chunyang&rft.au=Gao%2C+Xingyu&rft.au=Ma%2C+Wanli&rft.au=Chen%2C+Xiangtuo&rft.date=2020-05-01&rft.pub=Elsevier+B.V&rft.issn=0377-0427&rft.eissn=1879-1778&rft.volume=369&rft_id=info:doi/10.1016%2Fj.cam.2019.112597&rft.externalDocID=S0377042719306028 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon |