Grey system theory-based models in time series prediction
Being able to forecast time series accurately has been quite a popular subject for researchers both in the past and at present. However, the lack of ability of conventional analysis methods to forecast time series that are not smooth leads the scientists and researchers to resort to various forecast...
Saved in:
Published in | Expert systems with applications Vol. 37; no. 2; pp. 1784 - 1789 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.03.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Being able to forecast time series accurately has been quite a popular subject for researchers both in the past and at present. However, the lack of ability of conventional analysis methods to forecast time series that are not smooth leads the scientists and researchers to resort to various forecasting models that have different mathematical backgrounds, such as artificial neural networks, fuzzy predictors, evolutionary and genetic algorithms. In this paper, the accuracies of different grey models such as GM(1,1), Grey Verhulst model, modified grey models using Fourier Series is investigated. Highly noisy data, the United States dollar to Euro parity between the dates 01.01.2005 and 30.12.2007, are used to compare the performances of the different models. The simulation results show that modified grey models have higher performances not only on model fitting but also on forecasting. Among these grey models, the modified GM(1,1) using Fourier series in time is the best in model fitting and forecasting. |
---|---|
AbstractList | Being able to forecast time series accurately has been quite a popular subject for researchers both in the past and at present. However, the lack of ability of conventional analysis methods to forecast time series that are not smooth leads the scientists and researchers to resort to various forecasting models that have different mathematical backgrounds, such as artificial neural networks, fuzzy predictors, evolutionary and genetic algorithms. In this paper, the accuracies of different grey models such as GM(1,1), Grey Verhulst model, modified grey models using Fourier Series is investigated. Highly noisy data, the United States dollar to Euro parity between the dates 01.01.2005 and 30.12.2007, are used to compare the performances of the different models. The simulation results show that modified grey models have higher performances not only on model fitting but also on forecasting. Among these grey models, the modified GM(1,1) using Fourier series in time is the best in model fitting and forecasting. |
Author | Kaynak, Okyay Ulutas, Baris Kayacan, Erdal |
Author_xml | – sequence: 1 givenname: Erdal surname: Kayacan fullname: Kayacan, Erdal email: erdal.kayacan@ieee.org organization: Bogazici University, Electric and Electronics Engineering Department, Bebek, 34342 Istanbul, Turkey – sequence: 2 givenname: Baris surname: Ulutas fullname: Ulutas, Baris email: bulutas@uvic.ca organization: University of Victoria, Department of Mechanical Engineering, P.O. Box 3055, Stn. CSC, Victoria, BC, V8W 3P6 Canada – sequence: 3 givenname: Okyay surname: Kaynak fullname: Kaynak, Okyay email: okyay.kaynak@boun.edu.tr organization: Bogazici University, Electric and Electronics Engineering Department, Bebek, 34342 Istanbul, Turkey |
BookMark | eNp9kD1PwzAURS1UJNrCH2DKxJbwHKd-icSCKihIlVhgtlz7RbjKR7FdUP49icrE0OkO756nq7Ngs67viLFbDhkHLu_3GYUfneUAVQaYgSwu2JyXKFKJlZixOVQrTAuOxRVbhLAH4AiAc1ZtPA1JGEKkNomf1Psh3elANml7S01IXJdE11ISyDsKycGTdSa6vrtml7VuAt385ZJ9PD-9r1_S7dvmdf24TY0QPKZYS1FKabmQiAIxt7VBQVijhQKKkluu5c4IDbYSEqzAcjWeVztb5GC5EUt2d_p78P3XkUJUrQuGmkZ31B-DEkVVriAXY7E8FY3vQ_BUK-OinqZGr12jOKjJldqryZWaXClANboa0fwfevCu1X44Dz2coFETfTvyKhhHnRkFeTJR2d6dw38BQnaEgg |
CitedBy_id | crossref_primary_10_1007_s40866_020_00094_4 crossref_primary_10_1016_j_biosystemseng_2018_09_017 crossref_primary_10_1016_j_tourman_2015_07_005 crossref_primary_10_1111_mice_12074 crossref_primary_10_1016_j_promfg_2015_07_025 crossref_primary_10_1016_j_eswa_2021_114972 crossref_primary_10_1016_j_knosys_2013_12_014 crossref_primary_10_1109_TITS_2015_2499838 crossref_primary_10_1016_j_mechatronics_2018_04_010 crossref_primary_10_53443_anadoluibfd_1253057 crossref_primary_10_2339_politeknik_866070 crossref_primary_10_3390_en11010091 crossref_primary_10_22581_muet1982_1802_19 crossref_primary_10_3390_su70810664 crossref_primary_10_1108_GS_12_2019_0059 crossref_primary_10_1108_20439371211197640 crossref_primary_10_1007_s00170_014_5644_7 crossref_primary_10_1364_OE_491953 crossref_primary_10_1016_j_epsr_2020_106852 crossref_primary_10_1016_j_ijforecast_2021_11_001 crossref_primary_10_1520_JTE20120102 crossref_primary_10_1016_j_ceramint_2022_06_158 crossref_primary_10_3390_su132011175 crossref_primary_10_1016_j_knosys_2016_10_019 crossref_primary_10_1016_j_comcom_2023_03_023 crossref_primary_10_1108_GS_05_2015_0026 crossref_primary_10_3390_rs8030179 crossref_primary_10_1016_j_rser_2015_09_067 crossref_primary_10_3390_ijgi6040113 crossref_primary_10_1007_s11071_016_3213_3 crossref_primary_10_29002_asujse_1087288 crossref_primary_10_1016_j_isatra_2020_07_017 crossref_primary_10_1016_j_amc_2014_08_049 crossref_primary_10_1080_15481603_2023_2264582 crossref_primary_10_1016_j_techfore_2016_09_030 crossref_primary_10_1007_s11634_017_0300_3 crossref_primary_10_1016_j_jart_2015_06_009 crossref_primary_10_1016_j_measurement_2019_107337 crossref_primary_10_3390_su6042281 crossref_primary_10_1109_JSEN_2014_2305438 crossref_primary_10_1016_j_amc_2013_08_094 crossref_primary_10_1049_iet_gtd_2018_5472 crossref_primary_10_1051_matecconf_201710002037 crossref_primary_10_4236_jss_2016_411005 crossref_primary_10_1016_j_microrel_2015_10_027 crossref_primary_10_1007_s00500_014_1281_1 crossref_primary_10_5004_dwt_2022_28337 crossref_primary_10_1155_2022_8392759 crossref_primary_10_1016_j_enconman_2019_05_045 crossref_primary_10_1061__ASCE_CO_1943_7862_0000238 crossref_primary_10_37376_jsh_vi73_5744 crossref_primary_10_1016_j_jag_2024_104002 crossref_primary_10_1021_acssusresmgt_3c00055 crossref_primary_10_3233_JIFS_17794 crossref_primary_10_17531_ein_2018_1_19 crossref_primary_10_1007_s00170_012_4181_5 crossref_primary_10_1007_s13042_021_01302_y crossref_primary_10_1016_j_chaos_2022_112417 crossref_primary_10_1007_s00477_012_0672_z crossref_primary_10_3390_su11205713 crossref_primary_10_1108_GS_06_2022_0059 crossref_primary_10_1515_jisys_2019_0082 crossref_primary_10_1007_s40314_024_03013_w crossref_primary_10_1007_s42521_020_00019_x crossref_primary_10_1016_j_eswa_2020_113207 crossref_primary_10_1177_0142331220961576 crossref_primary_10_1177_0954405413485365 crossref_primary_10_1177_1475921715599050 crossref_primary_10_1016_j_eswa_2021_114771 crossref_primary_10_1142_S2196888822500129 crossref_primary_10_1016_j_compbiomed_2014_02_008 crossref_primary_10_25287_ohuiibf_741258 crossref_primary_10_3390_ijerph14111307 crossref_primary_10_1080_01605682_2018_1447251 crossref_primary_10_1007_s13246_015_0362_5 crossref_primary_10_1177_01445987231219766 crossref_primary_10_1016_j_eswa_2011_01_111 crossref_primary_10_1002_ceat_201600025 crossref_primary_10_1016_j_eswa_2021_115618 crossref_primary_10_1109_ACCESS_2020_3037117 crossref_primary_10_1016_j_ins_2012_03_015 crossref_primary_10_1016_j_ymssp_2014_08_013 crossref_primary_10_1063_5_0164859 crossref_primary_10_1016_j_isatra_2017_06_026 crossref_primary_10_1016_j_mechmachtheory_2018_01_015 crossref_primary_10_1088_2053_1591_abbd07 crossref_primary_10_1155_2015_610307 crossref_primary_10_1177_0954406214526584 crossref_primary_10_1016_j_wasman_2021_11_016 crossref_primary_10_1109_TIE_2012_2213552 crossref_primary_10_1155_2013_472065 crossref_primary_10_1108_GS_04_2016_0009 crossref_primary_10_1007_s00500_021_06345_5 crossref_primary_10_3846_16111699_2017_1337045 crossref_primary_10_1109_TDSC_2020_2967724 crossref_primary_10_1016_j_energy_2017_05_067 crossref_primary_10_3182_20140824_6_ZA_1003_02148 crossref_primary_10_1007_s11069_012_0248_8 crossref_primary_10_1088_1755_1315_108_3_032048 crossref_primary_10_1016_j_cnsns_2012_11_017 crossref_primary_10_1007_s12571_015_0458_5 crossref_primary_10_4028_www_scientific_net_AMM_380_384_1525 crossref_primary_10_1016_j_fcr_2025_109786 crossref_primary_10_1007_s11760_016_1021_3 crossref_primary_10_1016_j_jclepro_2022_132993 crossref_primary_10_1016_j_eswa_2011_02_176 crossref_primary_10_1016_j_ssci_2019_02_013 crossref_primary_10_3390_su71115772 crossref_primary_10_1007_s00500_019_04276_w crossref_primary_10_1049_iet_pel_2015_0182 crossref_primary_10_1108_GS_12_2015_0079 crossref_primary_10_1016_j_jclepro_2014_07_015 crossref_primary_10_1109_TCC_2020_2989631 crossref_primary_10_1016_j_jenvman_2017_12_067 crossref_primary_10_1080_03081060_2012_745721 crossref_primary_10_1007_s11276_016_1242_y crossref_primary_10_1016_j_ijtst_2019_05_008 crossref_primary_10_1016_j_omega_2011_10_003 crossref_primary_10_1016_j_eswa_2011_01_143 crossref_primary_10_1016_j_enggeo_2019_105215 crossref_primary_10_1016_j_biosystemseng_2019_10_025 crossref_primary_10_3390_s21051712 crossref_primary_10_1016_j_ecolmodel_2012_12_032 crossref_primary_10_3233_IDA_150250 crossref_primary_10_1016_j_conengprac_2016_03_018 crossref_primary_10_3390_ijerph110504799 crossref_primary_10_1108_GS_02_2016_0004 crossref_primary_10_3233_JIFS_179368 crossref_primary_10_52547_jsdp_19_1_39 crossref_primary_10_3390_su17062764 crossref_primary_10_1016_j_landusepol_2022_105991 crossref_primary_10_1007_s10614_023_10406_2 crossref_primary_10_1155_2015_740272 crossref_primary_10_1016_j_eswa_2023_121673 crossref_primary_10_26745_ahbvuibfd_1190046 crossref_primary_10_1002_cjce_22246 crossref_primary_10_1108_GS_04_2021_0057 crossref_primary_10_1155_2022_3241171 crossref_primary_10_1016_j_jclepro_2024_142336 crossref_primary_10_1108_20439371211260144 crossref_primary_10_1108_GS_10_2015_0072 crossref_primary_10_1155_2014_465208 crossref_primary_10_1016_j_compbiomed_2011_03_007 crossref_primary_10_1007_s41207_024_00618_9 crossref_primary_10_1109_TPWRD_2014_2386696 crossref_primary_10_3390_math8060866 crossref_primary_10_1108_GS_02_2018_0011 crossref_primary_10_1017_dmp_2019_83 crossref_primary_10_1080_02533839_2019_1708802 crossref_primary_10_1080_15472450_2017_1283989 crossref_primary_10_54097_jid_v4i1_10760 crossref_primary_10_1080_00036846_2021_1887447 crossref_primary_10_17093_alphanumeric_1507101 crossref_primary_10_1002_qre_3674 crossref_primary_10_1016_j_chaos_2022_112024 crossref_primary_10_1080_00207543_2013_857057 crossref_primary_10_1088_1742_6596_1897_1_012001 crossref_primary_10_1016_j_earscirev_2024_104948 crossref_primary_10_3390_su15043802 crossref_primary_10_1155_2016_9786107 crossref_primary_10_1016_j_segan_2024_101336 crossref_primary_10_1093_jcde_qwab009 crossref_primary_10_3390_jrfm17120558 crossref_primary_10_1016_j_energy_2013_10_054 crossref_primary_10_1016_j_jclepro_2019_04_336 crossref_primary_10_1155_2013_769270 crossref_primary_10_1155_2022_1306602 crossref_primary_10_1016_j_measurement_2014_08_006 crossref_primary_10_1016_j_jtrangeo_2016_03_005 crossref_primary_10_1016_j_cherd_2016_08_033 crossref_primary_10_1016_j_jclepro_2018_03_119 crossref_primary_10_1155_2019_8159506 crossref_primary_10_37394_23207_2023_20_235 crossref_primary_10_3390_agriculture13061133 crossref_primary_10_1080_08839514_2013_848753 crossref_primary_10_3390_su9122367 crossref_primary_10_3390_s18010079 crossref_primary_10_21833_ijaas_2018_10_002 crossref_primary_10_1177_21582440211027574 crossref_primary_10_1061__ASCE_HZ_2153_5515_0000422 crossref_primary_10_1016_j_eswa_2012_01_002 crossref_primary_10_4028_www_scientific_net_AMM_764_765_975 crossref_primary_10_1007_s10346_018_01127_x crossref_primary_10_1016_j_sigpro_2011_09_010 crossref_primary_10_1016_j_eswa_2023_122680 crossref_primary_10_1108_JEIM_02_2020_0043 crossref_primary_10_1111_exsy_12129 crossref_primary_10_32709_akusosbil_1109545 crossref_primary_10_21833_ijaas_2017_09_005 crossref_primary_10_1007_s12239_020_0040_9 crossref_primary_10_17093_alphanumeric_1504096 crossref_primary_10_1155_2014_832851 crossref_primary_10_3390_su9071181 crossref_primary_10_51290_dpusbe_1160349 crossref_primary_10_1111_j_1752_1688_2012_00640_x crossref_primary_10_1080_19427867_2018_1502505 crossref_primary_10_4028_www_scientific_net_AMM_311_343 crossref_primary_10_1016_j_eja_2023_127034 crossref_primary_10_1108_JES_12_2023_0723 crossref_primary_10_1007_s10163_018_0743_4 crossref_primary_10_1007_s11269_018_1909_5 crossref_primary_10_1007_s12083_020_01027_9 crossref_primary_10_4028_www_scientific_net_AMM_580_583_1143 crossref_primary_10_1155_2015_830606 crossref_primary_10_3390_app11167550 crossref_primary_10_1016_j_rineng_2024_102773 crossref_primary_10_1109_ACCESS_2020_2976509 crossref_primary_10_1016_j_cirpj_2015_05_003 crossref_primary_10_1007_s00500_020_04904_w crossref_primary_10_4028_www_scientific_net_AMM_236_237_1333 crossref_primary_10_1016_j_energy_2019_05_101 crossref_primary_10_1016_j_energy_2022_124930 crossref_primary_10_1016_j_eswa_2012_02_180 crossref_primary_10_1016_j_cnsns_2011_06_003 crossref_primary_10_3390_s23020809 crossref_primary_10_1016_j_eswa_2018_01_021 crossref_primary_10_1007_s11045_017_0521_9 crossref_primary_10_1016_j_ejor_2013_03_004 crossref_primary_10_1016_j_future_2019_04_018 crossref_primary_10_1016_j_cie_2013_11_002 crossref_primary_10_3390_fractalfract5020038 crossref_primary_10_34172_EHEM_2024_46 crossref_primary_10_1016_j_econmod_2014_11_011 crossref_primary_10_1109_TSG_2016_2523504 crossref_primary_10_4028_www_scientific_net_AMM_284_287_2975 crossref_primary_10_3390_math10203888 crossref_primary_10_1016_j_scs_2020_102483 crossref_primary_10_1016_j_eswa_2014_10_012 crossref_primary_10_1080_23248378_2025_2469301 crossref_primary_10_1016_j_engappai_2021_104297 crossref_primary_10_1371_journal_pone_0060601 crossref_primary_10_1016_j_energy_2015_07_129 crossref_primary_10_1108_GS_03_2021_0041 crossref_primary_10_1088_1361_6501_ad060a crossref_primary_10_1016_j_eswa_2013_02_014 crossref_primary_10_1016_j_yofte_2024_103980 crossref_primary_10_1007_s00521_015_1853_8 crossref_primary_10_3390_w8090367 crossref_primary_10_3390_axioms11110599 crossref_primary_10_3390_en14082314 crossref_primary_10_1016_j_knosys_2011_08_002 crossref_primary_10_1016_j_jmst_2016_02_006 crossref_primary_10_1108_K_03_2014_0050 crossref_primary_10_1016_j_jclepro_2019_119600 crossref_primary_10_1088_1742_6596_1053_1_012127 crossref_primary_10_1016_j_energy_2016_05_008 crossref_primary_10_1016_j_tre_2025_104072 crossref_primary_10_4028_www_scientific_net_AMM_404_398 crossref_primary_10_1007_s44163_023_00085_1 crossref_primary_10_1155_2019_3262591 crossref_primary_10_1016_j_wasman_2016_10_009 crossref_primary_10_1002_sec_428 crossref_primary_10_3390_buildings14051316 crossref_primary_10_1016_j_enggeo_2014_11_008 crossref_primary_10_1108_GS_02_2015_0003 crossref_primary_10_4028_www_scientific_net_AMM_409_410_1098 crossref_primary_10_1007_s10346_019_01320_6 crossref_primary_10_1177_09544062231153095 crossref_primary_10_1186_1687_1499_2013_256 crossref_primary_10_1007_s00477_015_1081_x crossref_primary_10_1007_s12221_013_1184_2 crossref_primary_10_1016_j_cie_2017_05_002 crossref_primary_10_1109_TVT_2015_2431371 crossref_primary_10_1016_j_imavis_2018_03_005 crossref_primary_10_1016_j_microrel_2017_02_003 crossref_primary_10_1016_j_eswa_2016_06_032 crossref_primary_10_11648_j_sr_20241206_13 crossref_primary_10_1177_03611981211009219 crossref_primary_10_21923_jesd_989253 crossref_primary_10_1016_j_jup_2020_101113 crossref_primary_10_36543_kauiibfd_2021_033 crossref_primary_10_4028_www_scientific_net_AMR_374_377_90 crossref_primary_10_1016_S1003_6326_11_61043_1 crossref_primary_10_1155_2014_641514 crossref_primary_10_1038_s41598_025_89861_w crossref_primary_10_3390_antibiotics10060692 crossref_primary_10_1016_j_petrol_2015_03_005 crossref_primary_10_3390_s22197275 crossref_primary_10_3390_agronomy14071580 crossref_primary_10_1007_s10661_018_6593_7 crossref_primary_10_1080_15481603_2017_1331511 crossref_primary_10_4018_ijmtie_2013070102 crossref_primary_10_1016_j_oceaneng_2023_115687 crossref_primary_10_1142_S0219622020500303 crossref_primary_10_1177_0954405413509079 crossref_primary_10_1002_cpe_7481 crossref_primary_10_1080_00396265_2016_1236162 crossref_primary_10_1108_GS_08_2018_0032 crossref_primary_10_1017_S0263574715001137 crossref_primary_10_18037_ausbd_700349 crossref_primary_10_1016_j_ecolmodel_2013_07_023 crossref_primary_10_1088_1742_6596_52_1_012072 crossref_primary_10_1007_s11356_020_09572_9 crossref_primary_10_1051_itmconf_20160709003 crossref_primary_10_1016_j_asoc_2020_106543 crossref_primary_10_1109_ACCESS_2018_2814054 crossref_primary_10_3390_en11051044 crossref_primary_10_1016_j_apm_2021_09_008 crossref_primary_10_1016_j_apenergy_2013_07_054 crossref_primary_10_1108_GS_04_2015_0014 crossref_primary_10_3390_math9030202 crossref_primary_10_1016_j_rser_2016_06_001 crossref_primary_10_1007_s11356_021_12478_9 crossref_primary_10_1007_s11235_016_0245_4 crossref_primary_10_1111_risa_13470 crossref_primary_10_1016_j_ijforecast_2021_07_010 crossref_primary_10_1007_s40092_017_0236_4 crossref_primary_10_1016_j_proenv_2013_04_030 crossref_primary_10_1080_03610918_2021_1944642 crossref_primary_10_1016_j_mechatronics_2015_01_004 crossref_primary_10_1155_2014_148432 crossref_primary_10_1007_s00500_019_04248_0 crossref_primary_10_1007_s11192_019_03256_z crossref_primary_10_1155_2015_704143 crossref_primary_10_3233_JIFS_210726 crossref_primary_10_1007_s12517_020_06292_9 crossref_primary_10_1016_j_scitotenv_2023_165648 crossref_primary_10_1007_s11356_022_19178_y crossref_primary_10_3390_sym11050604 crossref_primary_10_1155_2021_6654288 crossref_primary_10_3390_atmos14050798 crossref_primary_10_1109_ACCESS_2018_2843774 crossref_primary_10_1002_atr_1368 crossref_primary_10_1016_j_neucom_2015_11_032 crossref_primary_10_1016_j_knosys_2020_106105 crossref_primary_10_1007_s40314_020_01315_3 crossref_primary_10_3390_ijerph20064835 crossref_primary_10_1080_17517575_2018_1526321 crossref_primary_10_1016_j_scs_2021_102924 crossref_primary_10_1080_09720529_2018_1449320 crossref_primary_10_1016_j_energy_2020_119078 crossref_primary_10_1177_0144598720903797 crossref_primary_10_1063_1_4939543 crossref_primary_10_1080_08982112_2017_1318920 crossref_primary_10_1109_TIM_2013_2276473 crossref_primary_10_3390_su16135481 crossref_primary_10_3390_ma10070715 crossref_primary_10_1016_j_procs_2016_07_147 crossref_primary_10_1016_j_resourpol_2016_06_012 crossref_primary_10_1016_j_procir_2019_01_045 crossref_primary_10_1016_j_techfore_2023_122473 crossref_primary_10_3390_en15072593 crossref_primary_10_1155_2021_5595277 crossref_primary_10_3390_electronics11040608 crossref_primary_10_3390_en14041091 crossref_primary_10_1007_s12403_020_00355_8 crossref_primary_10_1108_EC_01_2013_0016 crossref_primary_10_2174_2405463105666210114121456 crossref_primary_10_3390_agronomy12040860 crossref_primary_10_4028_www_scientific_net_AMR_726_731_4142 crossref_primary_10_1016_j_energy_2017_09_037 crossref_primary_10_1016_j_eswa_2011_04_203 crossref_primary_10_1007_s00500_020_05313_9 crossref_primary_10_1108_K_08_2023_1416 crossref_primary_10_1155_2014_405924 crossref_primary_10_1016_j_resconrec_2023_107063 crossref_primary_10_1016_j_energy_2020_118085 crossref_primary_10_1016_j_compag_2016_01_019 crossref_primary_10_1016_j_jmrt_2024_11_053 crossref_primary_10_1016_j_ijepes_2021_107465 crossref_primary_10_3390_ijerph14030262 crossref_primary_10_1038_s41598_025_88085_2 crossref_primary_10_1016_j_fiae_2015_05_006 crossref_primary_10_1155_2020_8893064 crossref_primary_10_1007_s00477_020_01824_x crossref_primary_10_1016_j_jairtraman_2019_101736 crossref_primary_10_1016_j_wasman_2013_02_012 crossref_primary_10_1016_j_enpol_2014_08_031 crossref_primary_10_1007_s11069_023_06322_1 crossref_primary_10_1088_1361_6501_aa8396 crossref_primary_10_1049_iet_gtd_2013_0698 crossref_primary_10_1016_j_enggeo_2015_03_002 crossref_primary_10_1016_j_aei_2023_102070 crossref_primary_10_1111_coin_12059 crossref_primary_10_1061__ASCE_CO_1943_7862_0002239 crossref_primary_10_4028_www_scientific_net_AMR_356_360_2634 crossref_primary_10_1007_s12555_014_0309_8 crossref_primary_10_1007_s11205_018_1951_y crossref_primary_10_3390_en12020254 crossref_primary_10_1061__ASCE_IR_1943_4774_0000940 crossref_primary_10_1109_TII_2018_2799081 crossref_primary_10_1371_journal_pone_0215334 crossref_primary_10_1155_2013_625028 crossref_primary_10_1007_s12221_013_1179_z crossref_primary_10_1109_TIE_2016_2580124 crossref_primary_10_1177_0954409715610603 crossref_primary_10_5370_JEET_2015_10_5_1921 crossref_primary_10_3390_pr8010055 crossref_primary_10_1016_j_eswa_2011_04_192 crossref_primary_10_21733_ibad_815477 crossref_primary_10_1007_s10098_015_1017_7 crossref_primary_10_1016_j_eswa_2011_11_025 crossref_primary_10_1371_journal_pone_0251436 crossref_primary_10_1016_j_apenergy_2010_05_018 crossref_primary_10_1108_IJICC_10_2018_0145 crossref_primary_10_1007_s11356_022_24020_6 crossref_primary_10_1007_s12205_019_0114_2 crossref_primary_10_1016_j_ssci_2019_04_038 crossref_primary_10_1007_s11069_011_0051_y crossref_primary_10_1007_s00181_021_02039_x crossref_primary_10_1016_j_eswa_2023_122067 crossref_primary_10_1016_j_inpa_2017_11_002 crossref_primary_10_1108_JEIM_01_2021_0015 crossref_primary_10_1007_s10346_023_02104_9 crossref_primary_10_7240_jeps_1165607 crossref_primary_10_1016_j_jksuci_2012_11_003 crossref_primary_10_1111_mice_12221 crossref_primary_10_3390_su10082627 crossref_primary_10_1016_j_cnsns_2023_107409 crossref_primary_10_1016_j_eswa_2011_11_038 crossref_primary_10_1016_j_asoc_2017_04_022 crossref_primary_10_1016_j_upstre_2020_100015 crossref_primary_10_1016_j_eswa_2022_117302 crossref_primary_10_1016_j_knosys_2024_111581 crossref_primary_10_1016_j_energy_2019_03_056 crossref_primary_10_1016_j_proeng_2015_08_848 crossref_primary_10_1177_0142331218770500 crossref_primary_10_1080_00036846_2017_1313954 crossref_primary_10_3923_jas_2011_3034_3038 crossref_primary_10_1155_2019_3620120 crossref_primary_10_4028_www_scientific_net_AMM_409_410_69 crossref_primary_10_3390_su11215921 crossref_primary_10_1016_j_econmod_2013_07_005 crossref_primary_10_1155_2014_572173 crossref_primary_10_1177_1687814015620073 crossref_primary_10_1007_s11277_016_3535_y crossref_primary_10_3390_batteries3030021 crossref_primary_10_1016_j_asoc_2013_06_003 crossref_primary_10_1142_S1793536912500021 crossref_primary_10_1016_j_jclepro_2017_06_167 crossref_primary_10_3233_JVR_160823 crossref_primary_10_1016_j_jclepro_2018_08_176 crossref_primary_10_4028_www_scientific_net_AMR_403_408_1918 crossref_primary_10_1080_01605682_2017_1390529 crossref_primary_10_3390_s23208638 crossref_primary_10_3389_ffgc_2024_1298804 crossref_primary_10_1061_AJRUA6_0001221 crossref_primary_10_1007_s10586_018_1740_z crossref_primary_10_3846_1648715X_2016_1249535 crossref_primary_10_1016_j_najef_2020_101181 crossref_primary_10_3390_math12101444 crossref_primary_10_1007_s00521_014_1605_1 crossref_primary_10_1142_S0219877023300021 crossref_primary_10_1155_2016_3861825 crossref_primary_10_1039_D3SE00479A crossref_primary_10_1007_s11771_016_3357_9 crossref_primary_10_1016_j_petrol_2021_108979 crossref_primary_10_1080_13669877_2014_913667 crossref_primary_10_1016_j_compag_2013_03_009 crossref_primary_10_1088_1755_1315_831_1_012004 crossref_primary_10_1016_j_eswa_2024_124690 crossref_primary_10_1017_S0373463318000760 crossref_primary_10_1155_2019_1576817 crossref_primary_10_1016_j_isatra_2021_05_002 crossref_primary_10_1680_jensu_21_00085 crossref_primary_10_3233_JIFS_17108 crossref_primary_10_1016_j_resconrec_2018_08_020 crossref_primary_10_1109_TIE_2015_2410765 crossref_primary_10_3923_tasr_2011_1287_1292 crossref_primary_10_1007_s00267_016_0756_5 crossref_primary_10_1007_s11356_022_24954_x crossref_primary_10_1177_1420326X15592940 crossref_primary_10_1007_s10661_022_10585_9 crossref_primary_10_1016_j_chaos_2020_110480 crossref_primary_10_1177_0143624418774738 crossref_primary_10_1007_s11063_017_9685_4 crossref_primary_10_1007_s11356_021_12658_7 crossref_primary_10_1016_j_simpat_2012_01_005 crossref_primary_10_1016_j_jobe_2020_101315 crossref_primary_10_1080_00207543_2019_1566656 crossref_primary_10_1016_j_cie_2024_110788 crossref_primary_10_1016_j_ijpe_2018_07_010 crossref_primary_10_1155_2013_526806 crossref_primary_10_4028_www_scientific_net_AMR_796_259 crossref_primary_10_1080_00207543_2020_1788733 crossref_primary_10_3846_1648715X_2015_1004564 crossref_primary_10_1016_j_asoc_2021_107220 crossref_primary_10_1016_j_neucom_2016_09_064 crossref_primary_10_1109_COMST_2017_2662212 crossref_primary_10_1016_j_asr_2021_05_025 |
Cites_doi | 10.1016/j.eswa.2004.05.018 10.1016/S0957-4174(99)00041-X 10.1016/S0925-2312(02)00577-5 10.1109/HICSS.1996.495431 10.1016/j.eswa.2006.10.034 10.1109/ICCA.2003.1595075 10.1109/5.18626 10.1016/j.eswa.2007.11.062 10.1016/j.eswa.2007.08.038 10.1016/j.eswa.2006.09.007 10.1016/j.eswa.2008.06.103 10.1016/S0957-4174(01)00047-1 10.1016/S0167-6911(82)80025-X |
ContentType | Journal Article |
Copyright | 2009 Elsevier Ltd |
Copyright_xml | – notice: 2009 Elsevier Ltd |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.eswa.2009.07.064 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-6793 |
EndPage | 1789 |
ExternalDocumentID | 10_1016_j_eswa_2009_07_064 S0957417409007258 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABBOA ABFNM ABKBG ABMAC ABMVD ABUCO ABXDB ABYKQ ACDAQ ACGFS ACHRH ACNNM ACNTT ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c331t-7f63866d136773772dfc73e7f7d040481d1a6bc3a0d9360d37853e75bd420d1c3 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 |
IngestDate | Fri Jul 11 02:11:11 EDT 2025 Thu Apr 24 23:01:13 EDT 2025 Tue Jul 01 03:12:03 EDT 2025 Fri Feb 23 02:30:21 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Error corrected grey models Grey models Time series prediction GM(1,1) |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c331t-7f63866d136773772dfc73e7f7d040481d1a6bc3a0d9360d37853e75bd420d1c3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 34985023 |
PQPubID | 23500 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_34985023 crossref_citationtrail_10_1016_j_eswa_2009_07_064 crossref_primary_10_1016_j_eswa_2009_07_064 elsevier_sciencedirect_doi_10_1016_j_eswa_2009_07_064 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-03-01 |
PublicationDateYYYYMMDD | 2010-03-01 |
PublicationDate_xml | – month: 03 year: 2010 text: 2010-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Expert systems with applications |
PublicationYear | 2010 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Jo, T. C., 2003. The effect of virtual term generation on the neural based approaches to time series prediction. In Rabiner (bib18) 1989; 77 Lin, Y., & Liu, S. (2004). A historical introduction to grey systems theory. In Wen, K. L., & Huang, Y. F. (2004). The development of grey Verhulst toolbox and the analysis of population saturation state in taiwan–fukien. In (Vol. 1, pp. 867–890). (pp. 93–101). (Vol. 1, pp. 2403–2408). Wang (bib23) 2002; 22 (Vol. 2, pp. 454–460). Ma, J., & Teng, J. F. (2004). Predict chaotic time-series using unscented Kalman filter. In Quah, Srinivasan (bib17) 1999; 17 Huang, Jane (bib7) 2009; 36 Tan, C. L., & Chang, S. P. (1996). Residual correction method of fourier series to GM(1,1) model. In Hussain, Knowles, Lisboa, El-Deredy (bib9) 2008; 35 Lee, Wang, Chen (bib12) 2008; 34 Wen (bib25) 2004 Deng (bib5) 1989; 1 Versace, Bhatt, Hinds, Shiffer (bib22) 2004; 27 (pp. 157–162). Cao (bib2) 2003; 51 (Vol. 3, pp. 516–520). Guo, Song, Ye (bib6) 2005; 6 Box, Jenkins (bib1) 1976 Liu, Lin (bib14) 1998 Deng (bib4) 1982; 1 Magdon-ismail, Nicholson, Abu-mustafa (bib16) 1998; 86 (Vol. 6, pp. 5007–5012). Tan, C. L., & Lu, B. F. (1996). Grey markov chain forecasting model. In Chang, Tsai (bib3) 2008; 34 Roman, J., & Jameel, A. (1996). Backpropagation and recurrent neural networks in financial analysis of multiple stock market returns. In Huang, Tsai (bib8) 2009; 36 Kandel (bib11) 1991 Deng (10.1016/j.eswa.2009.07.064_bib4) 1982; 1 Huang (10.1016/j.eswa.2009.07.064_bib7) 2009; 36 Hussain (10.1016/j.eswa.2009.07.064_bib9) 2008; 35 Quah (10.1016/j.eswa.2009.07.064_bib17) 1999; 17 Versace (10.1016/j.eswa.2009.07.064_bib22) 2004; 27 Magdon-ismail (10.1016/j.eswa.2009.07.064_bib16) 1998; 86 Wang (10.1016/j.eswa.2009.07.064_bib23) 2002; 22 Kandel (10.1016/j.eswa.2009.07.064_bib11) 1991 Lee (10.1016/j.eswa.2009.07.064_bib12) 2008; 34 10.1016/j.eswa.2009.07.064_bib24 10.1016/j.eswa.2009.07.064_bib21 10.1016/j.eswa.2009.07.064_bib20 Huang (10.1016/j.eswa.2009.07.064_bib8) 2009; 36 Chang (10.1016/j.eswa.2009.07.064_bib3) 2008; 34 Liu (10.1016/j.eswa.2009.07.064_bib14) 1998 Deng (10.1016/j.eswa.2009.07.064_bib5) 1989; 1 Wen (10.1016/j.eswa.2009.07.064_bib25) 2004 Rabiner (10.1016/j.eswa.2009.07.064_bib18) 1989; 77 Box (10.1016/j.eswa.2009.07.064_bib1) 1976 Guo (10.1016/j.eswa.2009.07.064_bib6) 2005; 6 10.1016/j.eswa.2009.07.064_bib19 10.1016/j.eswa.2009.07.064_bib15 Cao (10.1016/j.eswa.2009.07.064_bib2) 2003; 51 10.1016/j.eswa.2009.07.064_bib13 10.1016/j.eswa.2009.07.064_bib10 |
References_xml | – reference: (Vol. 3, pp. 516–520). – reference: Jo, T. C., 2003. The effect of virtual term generation on the neural based approaches to time series prediction. In – volume: 34 start-page: 328 year: 2008 end-page: 336 ident: bib12 article-title: Temperature prediction and TAIFEX forecasting based on high-order fuzzy logical relationships and genetic simulated annealing techniques publication-title: Expert Systems with Applications – reference: Tan, C. L., & Chang, S. P. (1996). Residual correction method of fourier series to GM(1,1) model. In – reference: (Vol. 6, pp. 5007–5012). – year: 1998 ident: bib14 article-title: An introduction to grey systems – reference: Wen, K. L., & Huang, Y. F. (2004). The development of grey Verhulst toolbox and the analysis of population saturation state in taiwan–fukien. In – volume: 51 start-page: 321 year: 2003 end-page: 339 ident: bib2 article-title: Support vector machines experts for time series forecasting publication-title: Neurocomputing – volume: 36 start-page: 5387 year: 2009 end-page: 5392 ident: bib7 article-title: A hybrid model for stock market forecasting and portfolio selection based on ARX, grey system and RS theories publication-title: Expert Systems with Applications – volume: 27 start-page: 417 year: 2004 end-page: 425 ident: bib22 article-title: Predicting the exchange traded fund DIA with a combination of genetic algorithms and neural networks publication-title: Expert Systems with Applications – year: 2004 ident: bib25 article-title: Grey systems – volume: 17 start-page: 295 year: 1999 end-page: 301 ident: bib17 article-title: Improving returns on stock investment through neural network selection publication-title: Expert Systems with Applications – reference: Roman, J., & Jameel, A. (1996). Backpropagation and recurrent neural networks in financial analysis of multiple stock market returns. In – reference: (Vol. 1, pp. 867–890). – reference: (Vol. 1, pp. 2403–2408). – year: 1976 ident: bib1 article-title: Time series analysis: Forecasting and control – volume: 1 start-page: 1 year: 1989 end-page: 24 ident: bib5 article-title: Introduction to grey system theory publication-title: The Journal of Grey System – volume: 6 start-page: 881 year: 2005 end-page: 891 ident: bib6 article-title: A Verhulst model on time series error corrected for port throughput forecasting publication-title: Journal of the Eastern Asia Society for Transportation Studies – volume: 1 start-page: 288 year: 1982 end-page: 294 ident: bib4 article-title: Control problems of grey system publication-title: Systems & Control Letters – reference: Lin, Y., & Liu, S. (2004). A historical introduction to grey systems theory. In – volume: 86 start-page: 2184 year: 1998 end-page: 2195 ident: bib16 article-title: Financial markets: Very noisy information processing publication-title: IEEE Special Issue on Information Processing – volume: 22 start-page: 33 year: 2002 end-page: 39 ident: bib23 article-title: Predicting stock price using fuzzy grey prediction system publication-title: Expert Systems with Applications – volume: 36 start-page: 1529 year: 2009 end-page: 1539 ident: bib8 article-title: A hybrid SOFM–SVR with a filter-based feature selection for stock market forecasting publication-title: Expert Systems with Applications – year: 1991 ident: bib11 article-title: Fuzzy expert systems – volume: 35 start-page: 1186 year: 2008 end-page: 1199 ident: bib9 article-title: Financial time series prediction using polynomial pipelined neural networks publication-title: Expert Systems With Applications – volume: 34 start-page: 925 year: 2008 end-page: 934 ident: bib3 article-title: Forecast approach using neural network adaptation to support vector regression grey model and generalized auto-regressive conditional heteroscedasticity publication-title: Expert Systems with Applications – reference: Ma, J., & Teng, J. F. (2004). Predict chaotic time-series using unscented Kalman filter. In – reference: (Vol. 2, pp. 454–460). – volume: 77 start-page: 257 year: 1989 end-page: 286 ident: bib18 article-title: A tutorial on hidden markov models and selected applications in speech recognition publication-title: Proceedings of the IEEE – reference: (pp. 93–101). – reference: (pp. 157–162). – reference: Tan, C. L., & Lu, B. F. (1996). Grey markov chain forecasting model. In – volume: 27 start-page: 417 year: 2004 ident: 10.1016/j.eswa.2009.07.064_bib22 article-title: Predicting the exchange traded fund DIA with a combination of genetic algorithms and neural networks publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2004.05.018 – volume: 17 start-page: 295 year: 1999 ident: 10.1016/j.eswa.2009.07.064_bib17 article-title: Improving returns on stock investment through neural network selection publication-title: Expert Systems with Applications doi: 10.1016/S0957-4174(99)00041-X – volume: 86 start-page: 2184 year: 1998 ident: 10.1016/j.eswa.2009.07.064_bib16 article-title: Financial markets: Very noisy information processing publication-title: IEEE Special Issue on Information Processing – ident: 10.1016/j.eswa.2009.07.064_bib21 – ident: 10.1016/j.eswa.2009.07.064_bib15 – volume: 6 start-page: 881 year: 2005 ident: 10.1016/j.eswa.2009.07.064_bib6 article-title: A Verhulst model on time series error corrected for port throughput forecasting publication-title: Journal of the Eastern Asia Society for Transportation Studies – ident: 10.1016/j.eswa.2009.07.064_bib13 – volume: 51 start-page: 321 year: 2003 ident: 10.1016/j.eswa.2009.07.064_bib2 article-title: Support vector machines experts for time series forecasting publication-title: Neurocomputing doi: 10.1016/S0925-2312(02)00577-5 – year: 1976 ident: 10.1016/j.eswa.2009.07.064_bib1 – ident: 10.1016/j.eswa.2009.07.064_bib19 doi: 10.1109/HICSS.1996.495431 – volume: 34 start-page: 925 year: 2008 ident: 10.1016/j.eswa.2009.07.064_bib3 article-title: Forecast approach using neural network adaptation to support vector regression grey model and generalized auto-regressive conditional heteroscedasticity publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2006.10.034 – ident: 10.1016/j.eswa.2009.07.064_bib10 doi: 10.1109/ICCA.2003.1595075 – volume: 77 start-page: 257 year: 1989 ident: 10.1016/j.eswa.2009.07.064_bib18 article-title: A tutorial on hidden markov models and selected applications in speech recognition publication-title: Proceedings of the IEEE doi: 10.1109/5.18626 – volume: 36 start-page: 1529 year: 2009 ident: 10.1016/j.eswa.2009.07.064_bib8 article-title: A hybrid SOFM–SVR with a filter-based feature selection for stock market forecasting publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2007.11.062 – volume: 35 start-page: 1186 year: 2008 ident: 10.1016/j.eswa.2009.07.064_bib9 article-title: Financial time series prediction using polynomial pipelined neural networks publication-title: Expert Systems With Applications doi: 10.1016/j.eswa.2007.08.038 – volume: 34 start-page: 328 year: 2008 ident: 10.1016/j.eswa.2009.07.064_bib12 article-title: Temperature prediction and TAIFEX forecasting based on high-order fuzzy logical relationships and genetic simulated annealing techniques publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2006.09.007 – volume: 36 start-page: 5387 year: 2009 ident: 10.1016/j.eswa.2009.07.064_bib7 article-title: A hybrid model for stock market forecasting and portfolio selection based on ARX, grey system and RS theories publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2008.06.103 – ident: 10.1016/j.eswa.2009.07.064_bib24 – year: 1998 ident: 10.1016/j.eswa.2009.07.064_bib14 – year: 1991 ident: 10.1016/j.eswa.2009.07.064_bib11 – volume: 22 start-page: 33 year: 2002 ident: 10.1016/j.eswa.2009.07.064_bib23 article-title: Predicting stock price using fuzzy grey prediction system publication-title: Expert Systems with Applications doi: 10.1016/S0957-4174(01)00047-1 – ident: 10.1016/j.eswa.2009.07.064_bib20 – volume: 1 start-page: 1 year: 1989 ident: 10.1016/j.eswa.2009.07.064_bib5 article-title: Introduction to grey system theory publication-title: The Journal of Grey System – year: 2004 ident: 10.1016/j.eswa.2009.07.064_bib25 – volume: 1 start-page: 288 year: 1982 ident: 10.1016/j.eswa.2009.07.064_bib4 article-title: Control problems of grey system publication-title: Systems & Control Letters doi: 10.1016/S0167-6911(82)80025-X |
SSID | ssj0017007 |
Score | 2.5164359 |
Snippet | Being able to forecast time series accurately has been quite a popular subject for researchers both in the past and at present. However, the lack of ability of... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1784 |
SubjectTerms | Error corrected grey models GM(1,1) Grey models Time series prediction |
Title | Grey system theory-based models in time series prediction |
URI | https://dx.doi.org/10.1016/j.eswa.2009.07.064 https://www.proquest.com/docview/34985023 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXrz4W5w_Zg7eJFu7JE17HMMxFXfRwW4haVKYSDfWDdnFv928Nh0ouIPXkpTykvfel-a970PojgumjIoZiW1kCdNWEcWygIRMZTpMdCI0_Id8GUejCXua8mkDDepeGCir9LG_iulltPZPut6a3cVs1n114MClQ-EOKEB_zaHhlzEBu7zztS3zAPo5UfHtCQKjfeNMVeNli0_lOStFJ4jYX8npV5guc8_wCB140Ij71Xcdo4bNT9BhLciAvX-eosQd-De4ImfGZYvihkCaMrgUvCnwLMcgJo9h39kCL5ZwTQNLc4Ymw4e3wYh4bQSSUhquiMic40SRAcY1QR1ENlkqqBWZMM4tmUOhoYp0SlVgEhoFhgqXl63g2rBeYMKUnqNmPs_tBcJKcZGCKzo0yIymSeySOij1RT2dWMpbKKyNIlNPHA76FR-yrhB7l2BIULRMZCCkM2QL3W_nLCrajJ2jeW1r-WPxpYvrO-fd1gsjnVfAVYfK7XxdSMqSmDs4cvnPN1-h_apMAIrNrlFztVzbG4c-Vrpdbq822us_Po_G3w751_E |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV09T-QwEB1xUHDNAQcnuOPDBVchs8naiZOCAvG1fDaAROezY0dahMKKLEI096f4g8wkDhJIUCDRRnEUjV9mnuPxewDriZLGmUzyzKeeS-sNN7KMeCxNaePc5srSf8jTs3RwKY-ukqsJeOrOwlBbZcj9bU5vsnW40gvR7I2Gw945kgMshwoXKCR_nWShs_LYPz7guq3eOtzFSf7b7-_vXewMeLAW4IUQ8ZirEnGXpo4Ey5RAhunKQgmvSuUQ1RJJXGxSWwgTuVykkRMKy5pXiXWyH7m4EPjcbzAlMV2QbcLm_5e-EtK7U63An-L0euGkTttU5usHE0Qy1WaUyveq4Zu60BS7_Vn4EVgq224DMQcTvvoJM50DBAsJYR7yA0QCa9WgWXMm8pFTXXSscdip2bBi5F7PCOi-ZqM72hciLCzA5ZdE7BdMVreVXwRmTKIK-vaRfkpnRZ4hiyBrwLRvcy-SJYi7oOgiKJWTYcaN7lrSrjUFkiw0cx0pjYFcgo2XMaNWp-PDu5Mu1voV2jQWkg_HrXUTo_EzpL0VU_nb-1oLmWcJ8p_fn3zyGkwPLk5P9Mnh2fEf-N72KFCn2zJMju_u_QpSn7FdbaDG4N9XY_sZttQR6g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Grey+system+theory-based+models+in+time+series+prediction&rft.jtitle=Expert+systems+with+applications&rft.au=Kayacan%2C+Erdal&rft.au=Ulutas%2C+Baris&rft.au=Kaynak%2C+Okyay&rft.date=2010-03-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=37&rft.issue=2&rft.spage=1784&rft.epage=1789&rft_id=info:doi/10.1016%2Fj.eswa.2009.07.064&rft.externalDocID=S0957417409007258 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |