Grey system theory-based models in time series prediction

Being able to forecast time series accurately has been quite a popular subject for researchers both in the past and at present. However, the lack of ability of conventional analysis methods to forecast time series that are not smooth leads the scientists and researchers to resort to various forecast...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 37; no. 2; pp. 1784 - 1789
Main Authors Kayacan, Erdal, Ulutas, Baris, Kaynak, Okyay
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Being able to forecast time series accurately has been quite a popular subject for researchers both in the past and at present. However, the lack of ability of conventional analysis methods to forecast time series that are not smooth leads the scientists and researchers to resort to various forecasting models that have different mathematical backgrounds, such as artificial neural networks, fuzzy predictors, evolutionary and genetic algorithms. In this paper, the accuracies of different grey models such as GM(1,1), Grey Verhulst model, modified grey models using Fourier Series is investigated. Highly noisy data, the United States dollar to Euro parity between the dates 01.01.2005 and 30.12.2007, are used to compare the performances of the different models. The simulation results show that modified grey models have higher performances not only on model fitting but also on forecasting. Among these grey models, the modified GM(1,1) using Fourier series in time is the best in model fitting and forecasting.
AbstractList Being able to forecast time series accurately has been quite a popular subject for researchers both in the past and at present. However, the lack of ability of conventional analysis methods to forecast time series that are not smooth leads the scientists and researchers to resort to various forecasting models that have different mathematical backgrounds, such as artificial neural networks, fuzzy predictors, evolutionary and genetic algorithms. In this paper, the accuracies of different grey models such as GM(1,1), Grey Verhulst model, modified grey models using Fourier Series is investigated. Highly noisy data, the United States dollar to Euro parity between the dates 01.01.2005 and 30.12.2007, are used to compare the performances of the different models. The simulation results show that modified grey models have higher performances not only on model fitting but also on forecasting. Among these grey models, the modified GM(1,1) using Fourier series in time is the best in model fitting and forecasting.
Author Kaynak, Okyay
Ulutas, Baris
Kayacan, Erdal
Author_xml – sequence: 1
  givenname: Erdal
  surname: Kayacan
  fullname: Kayacan, Erdal
  email: erdal.kayacan@ieee.org
  organization: Bogazici University, Electric and Electronics Engineering Department, Bebek, 34342 Istanbul, Turkey
– sequence: 2
  givenname: Baris
  surname: Ulutas
  fullname: Ulutas, Baris
  email: bulutas@uvic.ca
  organization: University of Victoria, Department of Mechanical Engineering, P.O. Box 3055, Stn. CSC, Victoria, BC, V8W 3P6 Canada
– sequence: 3
  givenname: Okyay
  surname: Kaynak
  fullname: Kaynak, Okyay
  email: okyay.kaynak@boun.edu.tr
  organization: Bogazici University, Electric and Electronics Engineering Department, Bebek, 34342 Istanbul, Turkey
BookMark eNp9kD1PwzAURS1UJNrCH2DKxJbwHKd-icSCKihIlVhgtlz7RbjKR7FdUP49icrE0OkO756nq7Ngs67viLFbDhkHLu_3GYUfneUAVQaYgSwu2JyXKFKJlZixOVQrTAuOxRVbhLAH4AiAc1ZtPA1JGEKkNomf1Psh3elANml7S01IXJdE11ISyDsKycGTdSa6vrtml7VuAt385ZJ9PD-9r1_S7dvmdf24TY0QPKZYS1FKabmQiAIxt7VBQVijhQKKkluu5c4IDbYSEqzAcjWeVztb5GC5EUt2d_p78P3XkUJUrQuGmkZ31B-DEkVVriAXY7E8FY3vQ_BUK-OinqZGr12jOKjJldqryZWaXClANboa0fwfevCu1X44Dz2coFETfTvyKhhHnRkFeTJR2d6dw38BQnaEgg
CitedBy_id crossref_primary_10_1007_s40866_020_00094_4
crossref_primary_10_1016_j_biosystemseng_2018_09_017
crossref_primary_10_1016_j_tourman_2015_07_005
crossref_primary_10_1111_mice_12074
crossref_primary_10_1016_j_promfg_2015_07_025
crossref_primary_10_1016_j_eswa_2021_114972
crossref_primary_10_1016_j_knosys_2013_12_014
crossref_primary_10_1109_TITS_2015_2499838
crossref_primary_10_1016_j_mechatronics_2018_04_010
crossref_primary_10_53443_anadoluibfd_1253057
crossref_primary_10_2339_politeknik_866070
crossref_primary_10_3390_en11010091
crossref_primary_10_22581_muet1982_1802_19
crossref_primary_10_3390_su70810664
crossref_primary_10_1108_GS_12_2019_0059
crossref_primary_10_1108_20439371211197640
crossref_primary_10_1007_s00170_014_5644_7
crossref_primary_10_1364_OE_491953
crossref_primary_10_1016_j_epsr_2020_106852
crossref_primary_10_1016_j_ijforecast_2021_11_001
crossref_primary_10_1520_JTE20120102
crossref_primary_10_1016_j_ceramint_2022_06_158
crossref_primary_10_3390_su132011175
crossref_primary_10_1016_j_knosys_2016_10_019
crossref_primary_10_1016_j_comcom_2023_03_023
crossref_primary_10_1108_GS_05_2015_0026
crossref_primary_10_3390_rs8030179
crossref_primary_10_1016_j_rser_2015_09_067
crossref_primary_10_3390_ijgi6040113
crossref_primary_10_1007_s11071_016_3213_3
crossref_primary_10_29002_asujse_1087288
crossref_primary_10_1016_j_isatra_2020_07_017
crossref_primary_10_1016_j_amc_2014_08_049
crossref_primary_10_1080_15481603_2023_2264582
crossref_primary_10_1016_j_techfore_2016_09_030
crossref_primary_10_1007_s11634_017_0300_3
crossref_primary_10_1016_j_jart_2015_06_009
crossref_primary_10_1016_j_measurement_2019_107337
crossref_primary_10_3390_su6042281
crossref_primary_10_1109_JSEN_2014_2305438
crossref_primary_10_1016_j_amc_2013_08_094
crossref_primary_10_1049_iet_gtd_2018_5472
crossref_primary_10_1051_matecconf_201710002037
crossref_primary_10_4236_jss_2016_411005
crossref_primary_10_1016_j_microrel_2015_10_027
crossref_primary_10_1007_s00500_014_1281_1
crossref_primary_10_5004_dwt_2022_28337
crossref_primary_10_1155_2022_8392759
crossref_primary_10_1016_j_enconman_2019_05_045
crossref_primary_10_1061__ASCE_CO_1943_7862_0000238
crossref_primary_10_37376_jsh_vi73_5744
crossref_primary_10_1016_j_jag_2024_104002
crossref_primary_10_1021_acssusresmgt_3c00055
crossref_primary_10_3233_JIFS_17794
crossref_primary_10_17531_ein_2018_1_19
crossref_primary_10_1007_s00170_012_4181_5
crossref_primary_10_1007_s13042_021_01302_y
crossref_primary_10_1016_j_chaos_2022_112417
crossref_primary_10_1007_s00477_012_0672_z
crossref_primary_10_3390_su11205713
crossref_primary_10_1108_GS_06_2022_0059
crossref_primary_10_1515_jisys_2019_0082
crossref_primary_10_1007_s40314_024_03013_w
crossref_primary_10_1007_s42521_020_00019_x
crossref_primary_10_1016_j_eswa_2020_113207
crossref_primary_10_1177_0142331220961576
crossref_primary_10_1177_0954405413485365
crossref_primary_10_1177_1475921715599050
crossref_primary_10_1016_j_eswa_2021_114771
crossref_primary_10_1142_S2196888822500129
crossref_primary_10_1016_j_compbiomed_2014_02_008
crossref_primary_10_25287_ohuiibf_741258
crossref_primary_10_3390_ijerph14111307
crossref_primary_10_1080_01605682_2018_1447251
crossref_primary_10_1007_s13246_015_0362_5
crossref_primary_10_1177_01445987231219766
crossref_primary_10_1016_j_eswa_2011_01_111
crossref_primary_10_1002_ceat_201600025
crossref_primary_10_1016_j_eswa_2021_115618
crossref_primary_10_1109_ACCESS_2020_3037117
crossref_primary_10_1016_j_ins_2012_03_015
crossref_primary_10_1016_j_ymssp_2014_08_013
crossref_primary_10_1063_5_0164859
crossref_primary_10_1016_j_isatra_2017_06_026
crossref_primary_10_1016_j_mechmachtheory_2018_01_015
crossref_primary_10_1088_2053_1591_abbd07
crossref_primary_10_1155_2015_610307
crossref_primary_10_1177_0954406214526584
crossref_primary_10_1016_j_wasman_2021_11_016
crossref_primary_10_1109_TIE_2012_2213552
crossref_primary_10_1155_2013_472065
crossref_primary_10_1108_GS_04_2016_0009
crossref_primary_10_1007_s00500_021_06345_5
crossref_primary_10_3846_16111699_2017_1337045
crossref_primary_10_1109_TDSC_2020_2967724
crossref_primary_10_1016_j_energy_2017_05_067
crossref_primary_10_3182_20140824_6_ZA_1003_02148
crossref_primary_10_1007_s11069_012_0248_8
crossref_primary_10_1088_1755_1315_108_3_032048
crossref_primary_10_1016_j_cnsns_2012_11_017
crossref_primary_10_1007_s12571_015_0458_5
crossref_primary_10_4028_www_scientific_net_AMM_380_384_1525
crossref_primary_10_1016_j_fcr_2025_109786
crossref_primary_10_1007_s11760_016_1021_3
crossref_primary_10_1016_j_jclepro_2022_132993
crossref_primary_10_1016_j_eswa_2011_02_176
crossref_primary_10_1016_j_ssci_2019_02_013
crossref_primary_10_3390_su71115772
crossref_primary_10_1007_s00500_019_04276_w
crossref_primary_10_1049_iet_pel_2015_0182
crossref_primary_10_1108_GS_12_2015_0079
crossref_primary_10_1016_j_jclepro_2014_07_015
crossref_primary_10_1109_TCC_2020_2989631
crossref_primary_10_1016_j_jenvman_2017_12_067
crossref_primary_10_1080_03081060_2012_745721
crossref_primary_10_1007_s11276_016_1242_y
crossref_primary_10_1016_j_ijtst_2019_05_008
crossref_primary_10_1016_j_omega_2011_10_003
crossref_primary_10_1016_j_eswa_2011_01_143
crossref_primary_10_1016_j_enggeo_2019_105215
crossref_primary_10_1016_j_biosystemseng_2019_10_025
crossref_primary_10_3390_s21051712
crossref_primary_10_1016_j_ecolmodel_2012_12_032
crossref_primary_10_3233_IDA_150250
crossref_primary_10_1016_j_conengprac_2016_03_018
crossref_primary_10_3390_ijerph110504799
crossref_primary_10_1108_GS_02_2016_0004
crossref_primary_10_3233_JIFS_179368
crossref_primary_10_52547_jsdp_19_1_39
crossref_primary_10_3390_su17062764
crossref_primary_10_1016_j_landusepol_2022_105991
crossref_primary_10_1007_s10614_023_10406_2
crossref_primary_10_1155_2015_740272
crossref_primary_10_1016_j_eswa_2023_121673
crossref_primary_10_26745_ahbvuibfd_1190046
crossref_primary_10_1002_cjce_22246
crossref_primary_10_1108_GS_04_2021_0057
crossref_primary_10_1155_2022_3241171
crossref_primary_10_1016_j_jclepro_2024_142336
crossref_primary_10_1108_20439371211260144
crossref_primary_10_1108_GS_10_2015_0072
crossref_primary_10_1155_2014_465208
crossref_primary_10_1016_j_compbiomed_2011_03_007
crossref_primary_10_1007_s41207_024_00618_9
crossref_primary_10_1109_TPWRD_2014_2386696
crossref_primary_10_3390_math8060866
crossref_primary_10_1108_GS_02_2018_0011
crossref_primary_10_1017_dmp_2019_83
crossref_primary_10_1080_02533839_2019_1708802
crossref_primary_10_1080_15472450_2017_1283989
crossref_primary_10_54097_jid_v4i1_10760
crossref_primary_10_1080_00036846_2021_1887447
crossref_primary_10_17093_alphanumeric_1507101
crossref_primary_10_1002_qre_3674
crossref_primary_10_1016_j_chaos_2022_112024
crossref_primary_10_1080_00207543_2013_857057
crossref_primary_10_1088_1742_6596_1897_1_012001
crossref_primary_10_1016_j_earscirev_2024_104948
crossref_primary_10_3390_su15043802
crossref_primary_10_1155_2016_9786107
crossref_primary_10_1016_j_segan_2024_101336
crossref_primary_10_1093_jcde_qwab009
crossref_primary_10_3390_jrfm17120558
crossref_primary_10_1016_j_energy_2013_10_054
crossref_primary_10_1016_j_jclepro_2019_04_336
crossref_primary_10_1155_2013_769270
crossref_primary_10_1155_2022_1306602
crossref_primary_10_1016_j_measurement_2014_08_006
crossref_primary_10_1016_j_jtrangeo_2016_03_005
crossref_primary_10_1016_j_cherd_2016_08_033
crossref_primary_10_1016_j_jclepro_2018_03_119
crossref_primary_10_1155_2019_8159506
crossref_primary_10_37394_23207_2023_20_235
crossref_primary_10_3390_agriculture13061133
crossref_primary_10_1080_08839514_2013_848753
crossref_primary_10_3390_su9122367
crossref_primary_10_3390_s18010079
crossref_primary_10_21833_ijaas_2018_10_002
crossref_primary_10_1177_21582440211027574
crossref_primary_10_1061__ASCE_HZ_2153_5515_0000422
crossref_primary_10_1016_j_eswa_2012_01_002
crossref_primary_10_4028_www_scientific_net_AMM_764_765_975
crossref_primary_10_1007_s10346_018_01127_x
crossref_primary_10_1016_j_sigpro_2011_09_010
crossref_primary_10_1016_j_eswa_2023_122680
crossref_primary_10_1108_JEIM_02_2020_0043
crossref_primary_10_1111_exsy_12129
crossref_primary_10_32709_akusosbil_1109545
crossref_primary_10_21833_ijaas_2017_09_005
crossref_primary_10_1007_s12239_020_0040_9
crossref_primary_10_17093_alphanumeric_1504096
crossref_primary_10_1155_2014_832851
crossref_primary_10_3390_su9071181
crossref_primary_10_51290_dpusbe_1160349
crossref_primary_10_1111_j_1752_1688_2012_00640_x
crossref_primary_10_1080_19427867_2018_1502505
crossref_primary_10_4028_www_scientific_net_AMM_311_343
crossref_primary_10_1016_j_eja_2023_127034
crossref_primary_10_1108_JES_12_2023_0723
crossref_primary_10_1007_s10163_018_0743_4
crossref_primary_10_1007_s11269_018_1909_5
crossref_primary_10_1007_s12083_020_01027_9
crossref_primary_10_4028_www_scientific_net_AMM_580_583_1143
crossref_primary_10_1155_2015_830606
crossref_primary_10_3390_app11167550
crossref_primary_10_1016_j_rineng_2024_102773
crossref_primary_10_1109_ACCESS_2020_2976509
crossref_primary_10_1016_j_cirpj_2015_05_003
crossref_primary_10_1007_s00500_020_04904_w
crossref_primary_10_4028_www_scientific_net_AMM_236_237_1333
crossref_primary_10_1016_j_energy_2019_05_101
crossref_primary_10_1016_j_energy_2022_124930
crossref_primary_10_1016_j_eswa_2012_02_180
crossref_primary_10_1016_j_cnsns_2011_06_003
crossref_primary_10_3390_s23020809
crossref_primary_10_1016_j_eswa_2018_01_021
crossref_primary_10_1007_s11045_017_0521_9
crossref_primary_10_1016_j_ejor_2013_03_004
crossref_primary_10_1016_j_future_2019_04_018
crossref_primary_10_1016_j_cie_2013_11_002
crossref_primary_10_3390_fractalfract5020038
crossref_primary_10_34172_EHEM_2024_46
crossref_primary_10_1016_j_econmod_2014_11_011
crossref_primary_10_1109_TSG_2016_2523504
crossref_primary_10_4028_www_scientific_net_AMM_284_287_2975
crossref_primary_10_3390_math10203888
crossref_primary_10_1016_j_scs_2020_102483
crossref_primary_10_1016_j_eswa_2014_10_012
crossref_primary_10_1080_23248378_2025_2469301
crossref_primary_10_1016_j_engappai_2021_104297
crossref_primary_10_1371_journal_pone_0060601
crossref_primary_10_1016_j_energy_2015_07_129
crossref_primary_10_1108_GS_03_2021_0041
crossref_primary_10_1088_1361_6501_ad060a
crossref_primary_10_1016_j_eswa_2013_02_014
crossref_primary_10_1016_j_yofte_2024_103980
crossref_primary_10_1007_s00521_015_1853_8
crossref_primary_10_3390_w8090367
crossref_primary_10_3390_axioms11110599
crossref_primary_10_3390_en14082314
crossref_primary_10_1016_j_knosys_2011_08_002
crossref_primary_10_1016_j_jmst_2016_02_006
crossref_primary_10_1108_K_03_2014_0050
crossref_primary_10_1016_j_jclepro_2019_119600
crossref_primary_10_1088_1742_6596_1053_1_012127
crossref_primary_10_1016_j_energy_2016_05_008
crossref_primary_10_1016_j_tre_2025_104072
crossref_primary_10_4028_www_scientific_net_AMM_404_398
crossref_primary_10_1007_s44163_023_00085_1
crossref_primary_10_1155_2019_3262591
crossref_primary_10_1016_j_wasman_2016_10_009
crossref_primary_10_1002_sec_428
crossref_primary_10_3390_buildings14051316
crossref_primary_10_1016_j_enggeo_2014_11_008
crossref_primary_10_1108_GS_02_2015_0003
crossref_primary_10_4028_www_scientific_net_AMM_409_410_1098
crossref_primary_10_1007_s10346_019_01320_6
crossref_primary_10_1177_09544062231153095
crossref_primary_10_1186_1687_1499_2013_256
crossref_primary_10_1007_s00477_015_1081_x
crossref_primary_10_1007_s12221_013_1184_2
crossref_primary_10_1016_j_cie_2017_05_002
crossref_primary_10_1109_TVT_2015_2431371
crossref_primary_10_1016_j_imavis_2018_03_005
crossref_primary_10_1016_j_microrel_2017_02_003
crossref_primary_10_1016_j_eswa_2016_06_032
crossref_primary_10_11648_j_sr_20241206_13
crossref_primary_10_1177_03611981211009219
crossref_primary_10_21923_jesd_989253
crossref_primary_10_1016_j_jup_2020_101113
crossref_primary_10_36543_kauiibfd_2021_033
crossref_primary_10_4028_www_scientific_net_AMR_374_377_90
crossref_primary_10_1016_S1003_6326_11_61043_1
crossref_primary_10_1155_2014_641514
crossref_primary_10_1038_s41598_025_89861_w
crossref_primary_10_3390_antibiotics10060692
crossref_primary_10_1016_j_petrol_2015_03_005
crossref_primary_10_3390_s22197275
crossref_primary_10_3390_agronomy14071580
crossref_primary_10_1007_s10661_018_6593_7
crossref_primary_10_1080_15481603_2017_1331511
crossref_primary_10_4018_ijmtie_2013070102
crossref_primary_10_1016_j_oceaneng_2023_115687
crossref_primary_10_1142_S0219622020500303
crossref_primary_10_1177_0954405413509079
crossref_primary_10_1002_cpe_7481
crossref_primary_10_1080_00396265_2016_1236162
crossref_primary_10_1108_GS_08_2018_0032
crossref_primary_10_1017_S0263574715001137
crossref_primary_10_18037_ausbd_700349
crossref_primary_10_1016_j_ecolmodel_2013_07_023
crossref_primary_10_1088_1742_6596_52_1_012072
crossref_primary_10_1007_s11356_020_09572_9
crossref_primary_10_1051_itmconf_20160709003
crossref_primary_10_1016_j_asoc_2020_106543
crossref_primary_10_1109_ACCESS_2018_2814054
crossref_primary_10_3390_en11051044
crossref_primary_10_1016_j_apm_2021_09_008
crossref_primary_10_1016_j_apenergy_2013_07_054
crossref_primary_10_1108_GS_04_2015_0014
crossref_primary_10_3390_math9030202
crossref_primary_10_1016_j_rser_2016_06_001
crossref_primary_10_1007_s11356_021_12478_9
crossref_primary_10_1007_s11235_016_0245_4
crossref_primary_10_1111_risa_13470
crossref_primary_10_1016_j_ijforecast_2021_07_010
crossref_primary_10_1007_s40092_017_0236_4
crossref_primary_10_1016_j_proenv_2013_04_030
crossref_primary_10_1080_03610918_2021_1944642
crossref_primary_10_1016_j_mechatronics_2015_01_004
crossref_primary_10_1155_2014_148432
crossref_primary_10_1007_s00500_019_04248_0
crossref_primary_10_1007_s11192_019_03256_z
crossref_primary_10_1155_2015_704143
crossref_primary_10_3233_JIFS_210726
crossref_primary_10_1007_s12517_020_06292_9
crossref_primary_10_1016_j_scitotenv_2023_165648
crossref_primary_10_1007_s11356_022_19178_y
crossref_primary_10_3390_sym11050604
crossref_primary_10_1155_2021_6654288
crossref_primary_10_3390_atmos14050798
crossref_primary_10_1109_ACCESS_2018_2843774
crossref_primary_10_1002_atr_1368
crossref_primary_10_1016_j_neucom_2015_11_032
crossref_primary_10_1016_j_knosys_2020_106105
crossref_primary_10_1007_s40314_020_01315_3
crossref_primary_10_3390_ijerph20064835
crossref_primary_10_1080_17517575_2018_1526321
crossref_primary_10_1016_j_scs_2021_102924
crossref_primary_10_1080_09720529_2018_1449320
crossref_primary_10_1016_j_energy_2020_119078
crossref_primary_10_1177_0144598720903797
crossref_primary_10_1063_1_4939543
crossref_primary_10_1080_08982112_2017_1318920
crossref_primary_10_1109_TIM_2013_2276473
crossref_primary_10_3390_su16135481
crossref_primary_10_3390_ma10070715
crossref_primary_10_1016_j_procs_2016_07_147
crossref_primary_10_1016_j_resourpol_2016_06_012
crossref_primary_10_1016_j_procir_2019_01_045
crossref_primary_10_1016_j_techfore_2023_122473
crossref_primary_10_3390_en15072593
crossref_primary_10_1155_2021_5595277
crossref_primary_10_3390_electronics11040608
crossref_primary_10_3390_en14041091
crossref_primary_10_1007_s12403_020_00355_8
crossref_primary_10_1108_EC_01_2013_0016
crossref_primary_10_2174_2405463105666210114121456
crossref_primary_10_3390_agronomy12040860
crossref_primary_10_4028_www_scientific_net_AMR_726_731_4142
crossref_primary_10_1016_j_energy_2017_09_037
crossref_primary_10_1016_j_eswa_2011_04_203
crossref_primary_10_1007_s00500_020_05313_9
crossref_primary_10_1108_K_08_2023_1416
crossref_primary_10_1155_2014_405924
crossref_primary_10_1016_j_resconrec_2023_107063
crossref_primary_10_1016_j_energy_2020_118085
crossref_primary_10_1016_j_compag_2016_01_019
crossref_primary_10_1016_j_jmrt_2024_11_053
crossref_primary_10_1016_j_ijepes_2021_107465
crossref_primary_10_3390_ijerph14030262
crossref_primary_10_1038_s41598_025_88085_2
crossref_primary_10_1016_j_fiae_2015_05_006
crossref_primary_10_1155_2020_8893064
crossref_primary_10_1007_s00477_020_01824_x
crossref_primary_10_1016_j_jairtraman_2019_101736
crossref_primary_10_1016_j_wasman_2013_02_012
crossref_primary_10_1016_j_enpol_2014_08_031
crossref_primary_10_1007_s11069_023_06322_1
crossref_primary_10_1088_1361_6501_aa8396
crossref_primary_10_1049_iet_gtd_2013_0698
crossref_primary_10_1016_j_enggeo_2015_03_002
crossref_primary_10_1016_j_aei_2023_102070
crossref_primary_10_1111_coin_12059
crossref_primary_10_1061__ASCE_CO_1943_7862_0002239
crossref_primary_10_4028_www_scientific_net_AMR_356_360_2634
crossref_primary_10_1007_s12555_014_0309_8
crossref_primary_10_1007_s11205_018_1951_y
crossref_primary_10_3390_en12020254
crossref_primary_10_1061__ASCE_IR_1943_4774_0000940
crossref_primary_10_1109_TII_2018_2799081
crossref_primary_10_1371_journal_pone_0215334
crossref_primary_10_1155_2013_625028
crossref_primary_10_1007_s12221_013_1179_z
crossref_primary_10_1109_TIE_2016_2580124
crossref_primary_10_1177_0954409715610603
crossref_primary_10_5370_JEET_2015_10_5_1921
crossref_primary_10_3390_pr8010055
crossref_primary_10_1016_j_eswa_2011_04_192
crossref_primary_10_21733_ibad_815477
crossref_primary_10_1007_s10098_015_1017_7
crossref_primary_10_1016_j_eswa_2011_11_025
crossref_primary_10_1371_journal_pone_0251436
crossref_primary_10_1016_j_apenergy_2010_05_018
crossref_primary_10_1108_IJICC_10_2018_0145
crossref_primary_10_1007_s11356_022_24020_6
crossref_primary_10_1007_s12205_019_0114_2
crossref_primary_10_1016_j_ssci_2019_04_038
crossref_primary_10_1007_s11069_011_0051_y
crossref_primary_10_1007_s00181_021_02039_x
crossref_primary_10_1016_j_eswa_2023_122067
crossref_primary_10_1016_j_inpa_2017_11_002
crossref_primary_10_1108_JEIM_01_2021_0015
crossref_primary_10_1007_s10346_023_02104_9
crossref_primary_10_7240_jeps_1165607
crossref_primary_10_1016_j_jksuci_2012_11_003
crossref_primary_10_1111_mice_12221
crossref_primary_10_3390_su10082627
crossref_primary_10_1016_j_cnsns_2023_107409
crossref_primary_10_1016_j_eswa_2011_11_038
crossref_primary_10_1016_j_asoc_2017_04_022
crossref_primary_10_1016_j_upstre_2020_100015
crossref_primary_10_1016_j_eswa_2022_117302
crossref_primary_10_1016_j_knosys_2024_111581
crossref_primary_10_1016_j_energy_2019_03_056
crossref_primary_10_1016_j_proeng_2015_08_848
crossref_primary_10_1177_0142331218770500
crossref_primary_10_1080_00036846_2017_1313954
crossref_primary_10_3923_jas_2011_3034_3038
crossref_primary_10_1155_2019_3620120
crossref_primary_10_4028_www_scientific_net_AMM_409_410_69
crossref_primary_10_3390_su11215921
crossref_primary_10_1016_j_econmod_2013_07_005
crossref_primary_10_1155_2014_572173
crossref_primary_10_1177_1687814015620073
crossref_primary_10_1007_s11277_016_3535_y
crossref_primary_10_3390_batteries3030021
crossref_primary_10_1016_j_asoc_2013_06_003
crossref_primary_10_1142_S1793536912500021
crossref_primary_10_1016_j_jclepro_2017_06_167
crossref_primary_10_3233_JVR_160823
crossref_primary_10_1016_j_jclepro_2018_08_176
crossref_primary_10_4028_www_scientific_net_AMR_403_408_1918
crossref_primary_10_1080_01605682_2017_1390529
crossref_primary_10_3390_s23208638
crossref_primary_10_3389_ffgc_2024_1298804
crossref_primary_10_1061_AJRUA6_0001221
crossref_primary_10_1007_s10586_018_1740_z
crossref_primary_10_3846_1648715X_2016_1249535
crossref_primary_10_1016_j_najef_2020_101181
crossref_primary_10_3390_math12101444
crossref_primary_10_1007_s00521_014_1605_1
crossref_primary_10_1142_S0219877023300021
crossref_primary_10_1155_2016_3861825
crossref_primary_10_1039_D3SE00479A
crossref_primary_10_1007_s11771_016_3357_9
crossref_primary_10_1016_j_petrol_2021_108979
crossref_primary_10_1080_13669877_2014_913667
crossref_primary_10_1016_j_compag_2013_03_009
crossref_primary_10_1088_1755_1315_831_1_012004
crossref_primary_10_1016_j_eswa_2024_124690
crossref_primary_10_1017_S0373463318000760
crossref_primary_10_1155_2019_1576817
crossref_primary_10_1016_j_isatra_2021_05_002
crossref_primary_10_1680_jensu_21_00085
crossref_primary_10_3233_JIFS_17108
crossref_primary_10_1016_j_resconrec_2018_08_020
crossref_primary_10_1109_TIE_2015_2410765
crossref_primary_10_3923_tasr_2011_1287_1292
crossref_primary_10_1007_s00267_016_0756_5
crossref_primary_10_1007_s11356_022_24954_x
crossref_primary_10_1177_1420326X15592940
crossref_primary_10_1007_s10661_022_10585_9
crossref_primary_10_1016_j_chaos_2020_110480
crossref_primary_10_1177_0143624418774738
crossref_primary_10_1007_s11063_017_9685_4
crossref_primary_10_1007_s11356_021_12658_7
crossref_primary_10_1016_j_simpat_2012_01_005
crossref_primary_10_1016_j_jobe_2020_101315
crossref_primary_10_1080_00207543_2019_1566656
crossref_primary_10_1016_j_cie_2024_110788
crossref_primary_10_1016_j_ijpe_2018_07_010
crossref_primary_10_1155_2013_526806
crossref_primary_10_4028_www_scientific_net_AMR_796_259
crossref_primary_10_1080_00207543_2020_1788733
crossref_primary_10_3846_1648715X_2015_1004564
crossref_primary_10_1016_j_asoc_2021_107220
crossref_primary_10_1016_j_neucom_2016_09_064
crossref_primary_10_1109_COMST_2017_2662212
crossref_primary_10_1016_j_asr_2021_05_025
Cites_doi 10.1016/j.eswa.2004.05.018
10.1016/S0957-4174(99)00041-X
10.1016/S0925-2312(02)00577-5
10.1109/HICSS.1996.495431
10.1016/j.eswa.2006.10.034
10.1109/ICCA.2003.1595075
10.1109/5.18626
10.1016/j.eswa.2007.11.062
10.1016/j.eswa.2007.08.038
10.1016/j.eswa.2006.09.007
10.1016/j.eswa.2008.06.103
10.1016/S0957-4174(01)00047-1
10.1016/S0167-6911(82)80025-X
ContentType Journal Article
Copyright 2009 Elsevier Ltd
Copyright_xml – notice: 2009 Elsevier Ltd
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2009.07.064
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
EndPage 1789
ExternalDocumentID 10_1016_j_eswa_2009_07_064
S0957417409007258
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABKBG
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNNM
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c331t-7f63866d136773772dfc73e7f7d040481d1a6bc3a0d9360d37853e75bd420d1c3
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Fri Jul 11 02:11:11 EDT 2025
Thu Apr 24 23:01:13 EDT 2025
Tue Jul 01 03:12:03 EDT 2025
Fri Feb 23 02:30:21 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Error corrected grey models
Grey models
Time series prediction
GM(1,1)
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-7f63866d136773772dfc73e7f7d040481d1a6bc3a0d9360d37853e75bd420d1c3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 34985023
PQPubID 23500
PageCount 6
ParticipantIDs proquest_miscellaneous_34985023
crossref_citationtrail_10_1016_j_eswa_2009_07_064
crossref_primary_10_1016_j_eswa_2009_07_064
elsevier_sciencedirect_doi_10_1016_j_eswa_2009_07_064
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-03-01
PublicationDateYYYYMMDD 2010-03-01
PublicationDate_xml – month: 03
  year: 2010
  text: 2010-03-01
  day: 01
PublicationDecade 2010
PublicationTitle Expert systems with applications
PublicationYear 2010
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Jo, T. C., 2003. The effect of virtual term generation on the neural based approaches to time series prediction. In
Rabiner (bib18) 1989; 77
Lin, Y., & Liu, S. (2004). A historical introduction to grey systems theory. In
Wen, K. L., & Huang, Y. F. (2004). The development of grey Verhulst toolbox and the analysis of population saturation state in taiwan–fukien. In
(Vol. 1, pp. 867–890).
(pp. 93–101).
(Vol. 1, pp. 2403–2408).
Wang (bib23) 2002; 22
(Vol. 2, pp. 454–460).
Ma, J., & Teng, J. F. (2004). Predict chaotic time-series using unscented Kalman filter. In
Quah, Srinivasan (bib17) 1999; 17
Huang, Jane (bib7) 2009; 36
Tan, C. L., & Chang, S. P. (1996). Residual correction method of fourier series to GM(1,1) model. In
Hussain, Knowles, Lisboa, El-Deredy (bib9) 2008; 35
Lee, Wang, Chen (bib12) 2008; 34
Wen (bib25) 2004
Deng (bib5) 1989; 1
Versace, Bhatt, Hinds, Shiffer (bib22) 2004; 27
(pp. 157–162).
Cao (bib2) 2003; 51
(Vol. 3, pp. 516–520).
Guo, Song, Ye (bib6) 2005; 6
Box, Jenkins (bib1) 1976
Liu, Lin (bib14) 1998
Deng (bib4) 1982; 1
Magdon-ismail, Nicholson, Abu-mustafa (bib16) 1998; 86
(Vol. 6, pp. 5007–5012).
Tan, C. L., & Lu, B. F. (1996). Grey markov chain forecasting model. In
Chang, Tsai (bib3) 2008; 34
Roman, J., & Jameel, A. (1996). Backpropagation and recurrent neural networks in financial analysis of multiple stock market returns. In
Huang, Tsai (bib8) 2009; 36
Kandel (bib11) 1991
Deng (10.1016/j.eswa.2009.07.064_bib4) 1982; 1
Huang (10.1016/j.eswa.2009.07.064_bib7) 2009; 36
Hussain (10.1016/j.eswa.2009.07.064_bib9) 2008; 35
Quah (10.1016/j.eswa.2009.07.064_bib17) 1999; 17
Versace (10.1016/j.eswa.2009.07.064_bib22) 2004; 27
Magdon-ismail (10.1016/j.eswa.2009.07.064_bib16) 1998; 86
Wang (10.1016/j.eswa.2009.07.064_bib23) 2002; 22
Kandel (10.1016/j.eswa.2009.07.064_bib11) 1991
Lee (10.1016/j.eswa.2009.07.064_bib12) 2008; 34
10.1016/j.eswa.2009.07.064_bib24
10.1016/j.eswa.2009.07.064_bib21
10.1016/j.eswa.2009.07.064_bib20
Huang (10.1016/j.eswa.2009.07.064_bib8) 2009; 36
Chang (10.1016/j.eswa.2009.07.064_bib3) 2008; 34
Liu (10.1016/j.eswa.2009.07.064_bib14) 1998
Deng (10.1016/j.eswa.2009.07.064_bib5) 1989; 1
Wen (10.1016/j.eswa.2009.07.064_bib25) 2004
Rabiner (10.1016/j.eswa.2009.07.064_bib18) 1989; 77
Box (10.1016/j.eswa.2009.07.064_bib1) 1976
Guo (10.1016/j.eswa.2009.07.064_bib6) 2005; 6
10.1016/j.eswa.2009.07.064_bib19
10.1016/j.eswa.2009.07.064_bib15
Cao (10.1016/j.eswa.2009.07.064_bib2) 2003; 51
10.1016/j.eswa.2009.07.064_bib13
10.1016/j.eswa.2009.07.064_bib10
References_xml – reference: (Vol. 3, pp. 516–520).
– reference: Jo, T. C., 2003. The effect of virtual term generation on the neural based approaches to time series prediction. In
– volume: 34
  start-page: 328
  year: 2008
  end-page: 336
  ident: bib12
  article-title: Temperature prediction and TAIFEX forecasting based on high-order fuzzy logical relationships and genetic simulated annealing techniques
  publication-title: Expert Systems with Applications
– reference: Tan, C. L., & Chang, S. P. (1996). Residual correction method of fourier series to GM(1,1) model. In
– reference: (Vol. 6, pp. 5007–5012).
– year: 1998
  ident: bib14
  article-title: An introduction to grey systems
– reference: Wen, K. L., & Huang, Y. F. (2004). The development of grey Verhulst toolbox and the analysis of population saturation state in taiwan–fukien. In
– volume: 51
  start-page: 321
  year: 2003
  end-page: 339
  ident: bib2
  article-title: Support vector machines experts for time series forecasting
  publication-title: Neurocomputing
– volume: 36
  start-page: 5387
  year: 2009
  end-page: 5392
  ident: bib7
  article-title: A hybrid model for stock market forecasting and portfolio selection based on ARX, grey system and RS theories
  publication-title: Expert Systems with Applications
– volume: 27
  start-page: 417
  year: 2004
  end-page: 425
  ident: bib22
  article-title: Predicting the exchange traded fund DIA with a combination of genetic algorithms and neural networks
  publication-title: Expert Systems with Applications
– year: 2004
  ident: bib25
  article-title: Grey systems
– volume: 17
  start-page: 295
  year: 1999
  end-page: 301
  ident: bib17
  article-title: Improving returns on stock investment through neural network selection
  publication-title: Expert Systems with Applications
– reference: Roman, J., & Jameel, A. (1996). Backpropagation and recurrent neural networks in financial analysis of multiple stock market returns. In
– reference: (Vol. 1, pp. 867–890).
– reference: (Vol. 1, pp. 2403–2408).
– year: 1976
  ident: bib1
  article-title: Time series analysis: Forecasting and control
– volume: 1
  start-page: 1
  year: 1989
  end-page: 24
  ident: bib5
  article-title: Introduction to grey system theory
  publication-title: The Journal of Grey System
– volume: 6
  start-page: 881
  year: 2005
  end-page: 891
  ident: bib6
  article-title: A Verhulst model on time series error corrected for port throughput forecasting
  publication-title: Journal of the Eastern Asia Society for Transportation Studies
– volume: 1
  start-page: 288
  year: 1982
  end-page: 294
  ident: bib4
  article-title: Control problems of grey system
  publication-title: Systems & Control Letters
– reference: Lin, Y., & Liu, S. (2004). A historical introduction to grey systems theory. In
– volume: 86
  start-page: 2184
  year: 1998
  end-page: 2195
  ident: bib16
  article-title: Financial markets: Very noisy information processing
  publication-title: IEEE Special Issue on Information Processing
– volume: 22
  start-page: 33
  year: 2002
  end-page: 39
  ident: bib23
  article-title: Predicting stock price using fuzzy grey prediction system
  publication-title: Expert Systems with Applications
– volume: 36
  start-page: 1529
  year: 2009
  end-page: 1539
  ident: bib8
  article-title: A hybrid SOFM–SVR with a filter-based feature selection for stock market forecasting
  publication-title: Expert Systems with Applications
– year: 1991
  ident: bib11
  article-title: Fuzzy expert systems
– volume: 35
  start-page: 1186
  year: 2008
  end-page: 1199
  ident: bib9
  article-title: Financial time series prediction using polynomial pipelined neural networks
  publication-title: Expert Systems With Applications
– volume: 34
  start-page: 925
  year: 2008
  end-page: 934
  ident: bib3
  article-title: Forecast approach using neural network adaptation to support vector regression grey model and generalized auto-regressive conditional heteroscedasticity
  publication-title: Expert Systems with Applications
– reference: Ma, J., & Teng, J. F. (2004). Predict chaotic time-series using unscented Kalman filter. In
– reference: (Vol. 2, pp. 454–460).
– volume: 77
  start-page: 257
  year: 1989
  end-page: 286
  ident: bib18
  article-title: A tutorial on hidden markov models and selected applications in speech recognition
  publication-title: Proceedings of the IEEE
– reference: (pp. 93–101).
– reference: (pp. 157–162).
– reference: Tan, C. L., & Lu, B. F. (1996). Grey markov chain forecasting model. In
– volume: 27
  start-page: 417
  year: 2004
  ident: 10.1016/j.eswa.2009.07.064_bib22
  article-title: Predicting the exchange traded fund DIA with a combination of genetic algorithms and neural networks
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2004.05.018
– volume: 17
  start-page: 295
  year: 1999
  ident: 10.1016/j.eswa.2009.07.064_bib17
  article-title: Improving returns on stock investment through neural network selection
  publication-title: Expert Systems with Applications
  doi: 10.1016/S0957-4174(99)00041-X
– volume: 86
  start-page: 2184
  year: 1998
  ident: 10.1016/j.eswa.2009.07.064_bib16
  article-title: Financial markets: Very noisy information processing
  publication-title: IEEE Special Issue on Information Processing
– ident: 10.1016/j.eswa.2009.07.064_bib21
– ident: 10.1016/j.eswa.2009.07.064_bib15
– volume: 6
  start-page: 881
  year: 2005
  ident: 10.1016/j.eswa.2009.07.064_bib6
  article-title: A Verhulst model on time series error corrected for port throughput forecasting
  publication-title: Journal of the Eastern Asia Society for Transportation Studies
– ident: 10.1016/j.eswa.2009.07.064_bib13
– volume: 51
  start-page: 321
  year: 2003
  ident: 10.1016/j.eswa.2009.07.064_bib2
  article-title: Support vector machines experts for time series forecasting
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(02)00577-5
– year: 1976
  ident: 10.1016/j.eswa.2009.07.064_bib1
– ident: 10.1016/j.eswa.2009.07.064_bib19
  doi: 10.1109/HICSS.1996.495431
– volume: 34
  start-page: 925
  year: 2008
  ident: 10.1016/j.eswa.2009.07.064_bib3
  article-title: Forecast approach using neural network adaptation to support vector regression grey model and generalized auto-regressive conditional heteroscedasticity
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2006.10.034
– ident: 10.1016/j.eswa.2009.07.064_bib10
  doi: 10.1109/ICCA.2003.1595075
– volume: 77
  start-page: 257
  year: 1989
  ident: 10.1016/j.eswa.2009.07.064_bib18
  article-title: A tutorial on hidden markov models and selected applications in speech recognition
  publication-title: Proceedings of the IEEE
  doi: 10.1109/5.18626
– volume: 36
  start-page: 1529
  year: 2009
  ident: 10.1016/j.eswa.2009.07.064_bib8
  article-title: A hybrid SOFM–SVR with a filter-based feature selection for stock market forecasting
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2007.11.062
– volume: 35
  start-page: 1186
  year: 2008
  ident: 10.1016/j.eswa.2009.07.064_bib9
  article-title: Financial time series prediction using polynomial pipelined neural networks
  publication-title: Expert Systems With Applications
  doi: 10.1016/j.eswa.2007.08.038
– volume: 34
  start-page: 328
  year: 2008
  ident: 10.1016/j.eswa.2009.07.064_bib12
  article-title: Temperature prediction and TAIFEX forecasting based on high-order fuzzy logical relationships and genetic simulated annealing techniques
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2006.09.007
– volume: 36
  start-page: 5387
  year: 2009
  ident: 10.1016/j.eswa.2009.07.064_bib7
  article-title: A hybrid model for stock market forecasting and portfolio selection based on ARX, grey system and RS theories
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.06.103
– ident: 10.1016/j.eswa.2009.07.064_bib24
– year: 1998
  ident: 10.1016/j.eswa.2009.07.064_bib14
– year: 1991
  ident: 10.1016/j.eswa.2009.07.064_bib11
– volume: 22
  start-page: 33
  year: 2002
  ident: 10.1016/j.eswa.2009.07.064_bib23
  article-title: Predicting stock price using fuzzy grey prediction system
  publication-title: Expert Systems with Applications
  doi: 10.1016/S0957-4174(01)00047-1
– ident: 10.1016/j.eswa.2009.07.064_bib20
– volume: 1
  start-page: 1
  year: 1989
  ident: 10.1016/j.eswa.2009.07.064_bib5
  article-title: Introduction to grey system theory
  publication-title: The Journal of Grey System
– year: 2004
  ident: 10.1016/j.eswa.2009.07.064_bib25
– volume: 1
  start-page: 288
  year: 1982
  ident: 10.1016/j.eswa.2009.07.064_bib4
  article-title: Control problems of grey system
  publication-title: Systems & Control Letters
  doi: 10.1016/S0167-6911(82)80025-X
SSID ssj0017007
Score 2.5164359
Snippet Being able to forecast time series accurately has been quite a popular subject for researchers both in the past and at present. However, the lack of ability of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1784
SubjectTerms Error corrected grey models
GM(1,1)
Grey models
Time series prediction
Title Grey system theory-based models in time series prediction
URI https://dx.doi.org/10.1016/j.eswa.2009.07.064
https://www.proquest.com/docview/34985023
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXrz4W5w_Zg7eJFu7JE17HMMxFXfRwW4haVKYSDfWDdnFv928Nh0ouIPXkpTykvfel-a970PojgumjIoZiW1kCdNWEcWygIRMZTpMdCI0_Id8GUejCXua8mkDDepeGCir9LG_iulltPZPut6a3cVs1n114MClQ-EOKEB_zaHhlzEBu7zztS3zAPo5UfHtCQKjfeNMVeNli0_lOStFJ4jYX8npV5guc8_wCB140Ij71Xcdo4bNT9BhLciAvX-eosQd-De4ImfGZYvihkCaMrgUvCnwLMcgJo9h39kCL5ZwTQNLc4Ymw4e3wYh4bQSSUhquiMic40SRAcY1QR1ENlkqqBWZMM4tmUOhoYp0SlVgEhoFhgqXl63g2rBeYMKUnqNmPs_tBcJKcZGCKzo0yIymSeySOij1RT2dWMpbKKyNIlNPHA76FR-yrhB7l2BIULRMZCCkM2QL3W_nLCrajJ2jeW1r-WPxpYvrO-fd1gsjnVfAVYfK7XxdSMqSmDs4cvnPN1-h_apMAIrNrlFztVzbG4c-Vrpdbq822us_Po_G3w751_E
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV09T-QwEB1xUHDNAQcnuOPDBVchs8naiZOCAvG1fDaAROezY0dahMKKLEI096f4g8wkDhJIUCDRRnEUjV9mnuPxewDriZLGmUzyzKeeS-sNN7KMeCxNaePc5srSf8jTs3RwKY-ukqsJeOrOwlBbZcj9bU5vsnW40gvR7I2Gw945kgMshwoXKCR_nWShs_LYPz7guq3eOtzFSf7b7-_vXewMeLAW4IUQ8ZirEnGXpo4Ey5RAhunKQgmvSuUQ1RJJXGxSWwgTuVykkRMKy5pXiXWyH7m4EPjcbzAlMV2QbcLm_5e-EtK7U63An-L0euGkTttU5usHE0Qy1WaUyveq4Zu60BS7_Vn4EVgq224DMQcTvvoJM50DBAsJYR7yA0QCa9WgWXMm8pFTXXSscdip2bBi5F7PCOi-ZqM72hciLCzA5ZdE7BdMVreVXwRmTKIK-vaRfkpnRZ4hiyBrwLRvcy-SJYi7oOgiKJWTYcaN7lrSrjUFkiw0cx0pjYFcgo2XMaNWp-PDu5Mu1voV2jQWkg_HrXUTo_EzpL0VU_nb-1oLmWcJ8p_fn3zyGkwPLk5P9Mnh2fEf-N72KFCn2zJMju_u_QpSn7FdbaDG4N9XY_sZttQR6g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Grey+system+theory-based+models+in+time+series+prediction&rft.jtitle=Expert+systems+with+applications&rft.au=Kayacan%2C+Erdal&rft.au=Ulutas%2C+Baris&rft.au=Kaynak%2C+Okyay&rft.date=2010-03-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=37&rft.issue=2&rft.spage=1784&rft.epage=1789&rft_id=info:doi/10.1016%2Fj.eswa.2009.07.064&rft.externalDocID=S0957417409007258
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon