Learning Value Functions in Interactive Evolutionary Multiobjective Optimization
This paper proposes an interactive multiobjective evolutionary algorithm (MOEA) that attempts to learn a value function capturing the users' true preferences. At regular intervals, the user is asked to rank a single pair of solutions. This information is used to update the algorithm's inte...
Saved in:
Published in | IEEE transactions on evolutionary computation Vol. 19; no. 1; pp. 88 - 102 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.02.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper proposes an interactive multiobjective evolutionary algorithm (MOEA) that attempts to learn a value function capturing the users' true preferences. At regular intervals, the user is asked to rank a single pair of solutions. This information is used to update the algorithm's internal value function model, and the model is used in subsequent generations to rank solutions incomparable according to dominance. This speeds up evolution toward the region of the Pareto front that is most desirable to the user. We take into account the most general additive value function as a preference model and we empirically compare different ways to identify the value function that seems to be the most representative with respect to the given preference information, different types of user preferences, and different ways to use the learned value function in the MOEA. Results on a number of different scenarios suggest that the proposed algorithm works well over a range of benchmark problems and types of user preferences. |
---|---|
AbstractList | This paper proposes an interactive multiobjective evolutionary algorithm (MOEA) that attempts to learn a value function capturing the users' true preferences. At regular intervals, the user is asked to rank a single pair of solutions. This information is used to update the algorithm's internal value function model, and the model is used in subsequent generations to rank solutions incomparable according to dominance. This speeds up evolution toward the region of the Pareto front that is most desirable to the user. We take into account the most general additive value function as a preference model and we empirically compare different ways to identify the value function that seems to be the most representative with respect to the given preference information, different types of user preferences, and different ways to use the learned value function in the MOEA. Results on a number of different scenarios suggest that the proposed algorithm works well over a range of benchmark problems and types of user preferences. |
Author | Greco, Salvatore Branke, Jurgen Zielniewicz, Piotr Slowinski, Roman |
Author_xml | – sequence: 1 givenname: Jurgen surname: Branke fullname: Branke, Jurgen email: juergen.branke@wbs.ac.uk organization: Bus. Sch., Univ. of Warwick, Coventry, UK – sequence: 2 givenname: Salvatore surname: Greco fullname: Greco, Salvatore email: salgreco@unict.it organization: Dept. of Econ. & Bus., Univ. of Catania, Catania, Italy – sequence: 3 givenname: Roman surname: Slowinski fullname: Slowinski, Roman email: roman.slowinski@cs.put.poznan.pl organization: Inst. of Comput. Sci., Poznan Univ. of Technol., Poznan, Poland – sequence: 4 givenname: Piotr surname: Zielniewicz fullname: Zielniewicz, Piotr email: piotr.zielniewicz@cs.put.poznan.pl organization: Inst. of Comput. Sci., Poznan Univ. of Technol., Poznan, Poland |
BookMark | eNp9UEFOwzAQtFCRaAsPQFzygZR17CT2EVUtrVRUDqXiFtnuBrlKncpJKsHrcWjFgQOnndXMrHZmRAaudkjIPYUJpSAfN7PtdJIA5ZOEAcsFuyJDKjmNAZJsEDAIGee5eL8ho6bZQ1CmVA7J6wqVd9Z9RFtVdRjNO2daW7smsi5auha9CvsJo9mprrqeUf4zeumqAPUez9z62NqD_VI9fUuuS1U1eHeZY_I2n22mi3i1fl5On1axYYy2cSZBl0Ki5pgxjkabhHPBldwhM5ornUoVBCoTCFwDU2nGFYgSEyh3ISAbk_x81_i6aTyWhbHtzwetV7YqKBR9MUVfTNEXU1yKCU76x3n09hBi_et5OHssIv7qszyRkKbsG0gccyA |
CODEN | ITEVF5 |
CitedBy_id | crossref_primary_10_1109_TCYB_2018_2859363 crossref_primary_10_1016_j_ejor_2015_10_027 crossref_primary_10_1109_TAI_2024_3444736 crossref_primary_10_1109_TNNLS_2018_2847412 crossref_primary_10_1016_j_eswa_2020_113563 crossref_primary_10_1109_TFUZZ_2018_2880700 crossref_primary_10_1109_TEVC_2015_2512930 crossref_primary_10_1016_j_omega_2017_06_013 crossref_primary_10_1016_j_ins_2018_06_034 crossref_primary_10_1109_TEVC_2020_2987559 crossref_primary_10_3390_mca27060112 crossref_primary_10_1109_TEVC_2019_2915767 crossref_primary_10_1016_j_omega_2016_07_003 crossref_primary_10_1109_MCI_2015_2405275 crossref_primary_10_1016_j_swevo_2019_100602 crossref_primary_10_1007_s10726_016_9506_6 crossref_primary_10_1016_j_procs_2020_08_030 crossref_primary_10_1145_3448301 crossref_primary_10_1145_3582004 crossref_primary_10_1016_j_ejor_2019_11_023 crossref_primary_10_1016_j_swevo_2018_04_009 crossref_primary_10_1142_S0219622020500510 crossref_primary_10_1016_j_cor_2019_04_008 crossref_primary_10_1109_ACCESS_2018_2856832 crossref_primary_10_1016_j_ins_2022_10_064 crossref_primary_10_1016_j_asoc_2024_111950 crossref_primary_10_1109_TEVC_2016_2605501 crossref_primary_10_1108_K_07_2024_1780 crossref_primary_10_1016_j_trb_2025_103162 crossref_primary_10_1007_s11831_021_09562_1 crossref_primary_10_1007_s10726_024_09915_8 crossref_primary_10_1016_j_omega_2022_102715 crossref_primary_10_3846_tede_2019_9475 crossref_primary_10_1016_j_cie_2023_109546 crossref_primary_10_3390_technologies10010024 crossref_primary_10_1016_j_omega_2024_103203 crossref_primary_10_1007_s11047_018_9685_y crossref_primary_10_1038_nature14544 crossref_primary_10_20965_jaciii_2017_p0284 crossref_primary_10_1016_j_cie_2022_108022 crossref_primary_10_1109_TEVC_2018_2865495 crossref_primary_10_1016_j_ejor_2023_01_062 crossref_primary_10_1109_TEVC_2019_2925175 crossref_primary_10_1016_j_ins_2020_11_030 crossref_primary_10_1631_jzus_A1600034 crossref_primary_10_1016_j_omega_2023_102925 crossref_primary_10_1109_TEVC_2016_2521868 crossref_primary_10_1002_mcda_1599 crossref_primary_10_1007_s11573_015_0801_5 crossref_primary_10_1109_TEVC_2023_3234269 crossref_primary_10_1016_j_knosys_2023_110871 crossref_primary_10_1007_s00500_016_2099_9 crossref_primary_10_1016_j_asoc_2020_106432 crossref_primary_10_1109_ACCESS_2018_2797879 crossref_primary_10_1016_j_ejdp_2024_100047 |
Cites_doi | 10.1016/S0965-9978(00)00110-1 10.1287/mnsc.49.12.1726.25117 10.1007/0-387-23081-5_8 10.1007/978-3-642-01020-0_43 10.1145/2001576.2001675 10.1109/CEC.2002.1007032 10.1016/j.ejor.2008.02.006 10.2478/v10175-010-0033-3 10.1016/j.asoc.2009.08.019 10.1016/S0377-2217(00)00167-3 10.1109/4235.996017 10.1109/CEC.2000.870272 10.1016/S0377-2217(00)00042-4 10.1007/978-1-4757-5184-0 10.1109/TEVC.2005.861417 10.1007/978-3-642-13800-3_35 10.1007/978-1-4419-5904-1_9 10.1287/mnsc.30.11.1336 10.1007/BF02291490 10.1007/978-3-540-88908-3 10.1287/mnsc.20.8.1217 10.1109/GEFS.2008.4484566 10.1109/TEVC.2010.2064323 10.1007/978-3-540-88908-3_6 10.1109/TEVC.2010.2070070 10.1016/0377-2217(82)90155-2 10.1007/b100605 10.1109/TEVC.2010.2058119 10.1016/j.ejor.2010.02.027 10.1016/j.ejor.2007.08.013 10.1109/TEVC.2010.2041060 10.2307/3003600 10.1007/s001580050111 10.1109/TEVC.2010.2058118 10.1007/978-3-642-37140-0_10 10.1162/106365600568202 10.1023/A:1008210427517 10.1016/0167-9236(94)90049-3 10.1109/TSMC.1984.6313205 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/TEVC.2014.2303783 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science Business |
EISSN | 1941-0026 |
EndPage | 102 |
ExternalDocumentID | 10_1109_TEVC_2014_2303783 6729055 |
Genre | orig-research |
GrantInformation_xml | – fundername: Polish National Science Center grantid: DEC-2011/01/B/ST6/07318 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYOK AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c331t-690bf89eb4e634ecbc24484a9de3cb4ab59abf8a68e04b03a564a08fe20fd0373 |
IEDL.DBID | RIE |
ISSN | 1089-778X |
IngestDate | Tue Jul 01 01:56:20 EDT 2025 Thu Apr 24 23:07:32 EDT 2025 Tue Aug 26 16:40:05 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | ordinal regression interactive procedure Evolutionary multiobjective optimization preference learning |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c331t-690bf89eb4e634ecbc24484a9de3cb4ab59abf8a68e04b03a564a08fe20fd0373 |
PageCount | 15 |
ParticipantIDs | crossref_citationtrail_10_1109_TEVC_2014_2303783 ieee_primary_6729055 crossref_primary_10_1109_TEVC_2014_2303783 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-Feb. 2015-2-00 |
PublicationDateYYYYMMDD | 2015-02-01 |
PublicationDate_xml | – month: 02 year: 2015 text: 2015-Feb. |
PublicationDecade | 2010 |
PublicationTitle | IEEE transactions on evolutionary computation |
PublicationTitleAbbrev | TEVC |
PublicationYear | 2015 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref12 ref15 ref14 ref52 ref11 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 barbosa (ref37) 2001 ref48 ref47 ref41 ref43 rachmawati (ref35) 2006 ref49 ref7 ref9 ref6 branke (ref5) 2008 ref40 steuer (ref3) 1986 fonseca (ref23) 1993 ref34 ref36 ref31 ref30 ref33 ref32 ref1 jaimes (ref24) 2011 todd (ref39) 1999 ref38 jaszkiewicz (ref42) 2007; 32 branke (ref44) 2004 greco (ref22) 2011 keeney (ref20) 1976 figueira (ref8) 2005 ref26 ref25 miettinen (ref2) 1999 ref21 vincke (ref4) 1992 ref27 ref29 greenwood (ref28) 1997 |
References_xml | – ident: ref26 doi: 10.1016/S0965-9978(00)00110-1 – ident: ref36 doi: 10.1287/mnsc.49.12.1726.25117 – ident: ref13 doi: 10.1007/0-387-23081-5_8 – ident: ref6 doi: 10.1007/978-3-642-01020-0_43 – year: 1992 ident: ref4 publication-title: Multicriteria Decision Aid – ident: ref31 doi: 10.1145/2001576.2001675 – ident: ref51 doi: 10.1109/CEC.2002.1007032 – ident: ref17 doi: 10.1016/j.ejor.2008.02.006 – volume: 32 start-page: 15 year: 2007 ident: ref42 article-title: Interactive multiobjective optimization with the Pareto memetic algorithm publication-title: Found Comput Decision Sci – ident: ref7 doi: 10.2478/v10175-010-0033-3 – ident: ref29 doi: 10.1016/j.asoc.2009.08.019 – start-page: 1605 year: 2011 ident: ref24 article-title: Preference incorporation to solve many-ojective airfoil design problems publication-title: Proc Congr Evol Comput – ident: ref16 doi: 10.1016/S0377-2217(00)00167-3 – year: 1999 ident: ref2 publication-title: Nonlinear Multiobjective Optimization – ident: ref49 doi: 10.1109/4235.996017 – ident: ref34 doi: 10.1109/CEC.2000.870272 – ident: ref21 doi: 10.1016/S0377-2217(00)00042-4 – ident: ref33 doi: 10.1007/978-1-4757-5184-0 – start-page: 1738 year: 1999 ident: ref39 article-title: Directed multiple objective search of design spaces using genetic algorithms and neural networks publication-title: Proc Genetic Evol Comput Conf – year: 1976 ident: ref20 publication-title: Decisions With Multiple Objectives Preferences and Value Tradeoffs – ident: ref52 doi: 10.1109/TEVC.2005.861417 – ident: ref41 doi: 10.1007/978-3-642-13800-3_35 – ident: ref19 doi: 10.1007/978-1-4419-5904-1_9 – ident: ref47 doi: 10.1287/mnsc.30.11.1336 – ident: ref10 doi: 10.1007/BF02291490 – year: 1986 ident: ref3 publication-title: Multiple Criteria Optimization Theory Computation and Application – year: 2008 ident: ref5 publication-title: Multiobjective Optimization Interactive and Evolutionary Approaches doi: 10.1007/978-3-540-88908-3 – ident: ref11 doi: 10.1287/mnsc.20.8.1217 – ident: ref1 doi: 10.1109/GEFS.2008.4484566 – ident: ref38 doi: 10.1109/TEVC.2010.2064323 – ident: ref32 doi: 10.1007/978-3-540-88908-3_6 – ident: ref30 doi: 10.1109/TEVC.2010.2070070 – year: 2011 ident: ref22 article-title: Parsimonious preference models for robust ordinal regression publication-title: Proc EWG-MCDA – start-page: 416 year: 1993 ident: ref23 article-title: Genetic algorithms for multiobjective optimization: Formulation, discussion, and generalization publication-title: Proc 5th Int Conf Genetic Algorithms – ident: ref12 doi: 10.1016/0377-2217(82)90155-2 – year: 2005 ident: ref8 publication-title: Multiple Criteria Decision Analysis State of the Art Surveys doi: 10.1007/b100605 – ident: ref27 doi: 10.1109/TEVC.2010.2058119 – ident: ref48 doi: 10.1016/j.ejor.2010.02.027 – ident: ref18 doi: 10.1016/j.ejor.2007.08.013 – ident: ref25 doi: 10.1109/TEVC.2010.2041060 – start-page: 437 year: 1997 ident: ref28 article-title: Fitness functions for multiple objective optimization problems: Combining preferences with Pareto rankings publication-title: Foundations of Genetic Algorithms – ident: ref9 doi: 10.2307/3003600 – start-page: 722 year: 2004 ident: ref44 article-title: Finding knees in multi-objective optimization publication-title: Proc PPSN – ident: ref45 doi: 10.1007/s001580050111 – start-page: 203 year: 2001 ident: ref37 article-title: An interactive genetic algorithm with co-evolution of weights for multiobjective problems publication-title: Proc Genetic Evol Comput Conf – ident: ref40 doi: 10.1109/TEVC.2010.2058118 – ident: ref46 doi: 10.1007/978-3-642-37140-0_10 – ident: ref50 doi: 10.1162/106365600568202 – ident: ref15 doi: 10.1023/A:1008210427517 – ident: ref14 doi: 10.1016/0167-9236(94)90049-3 – start-page: 3385 year: 2006 ident: ref35 article-title: Preference incorporation in multiobjective evolutionary algorithms: A survey publication-title: Proc Congr Evol Comput – ident: ref43 doi: 10.1109/TSMC.1984.6313205 |
SSID | ssj0014519 |
Score | 2.449448 |
Snippet | This paper proposes an interactive multiobjective evolutionary algorithm (MOEA) that attempts to learn a value function capturing the users' true preferences.... |
SourceID | crossref ieee |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 88 |
SubjectTerms | Additives Business Computational modeling Educational institutions Electronic mail Linear programming Optimization |
Title | Learning Value Functions in Interactive Evolutionary Multiobjective Optimization |
URI | https://ieeexplore.ieee.org/document/6729055 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5sD6IHH63imxw8idvGTXa7OUppKYKPQ1t6W5LsrPhqRVpBf71JNrtUEfG2LBMIO7PzSL75BuCUhcYrah4GkvFOwEPJAhUzU_OgiQ05irCD9rzj-iYejPjVJJqswHnVC4OIDnyGLfvo7vKzmV7Yo7J2bDJBGkU1qJnCrejVqm4MLE1KAaYXJmNMJv4G84KK9rA37loQF7eoZ9ZJ2LcYtDRUxcWU_iZcl7spoCRPrcVctfTnD6LG_253CzZ8ckkuC2vYhhWcNmC1xLY3YLOc4UD8L92A9SVCwibcebrVezKWzwskfRP1nGGShylxh4fS-UfSe_cmK98-iGvinanHwneSW-OFXnx75w6M-r1hdxD4mQuBZuxiHphiWeWJQMUxZhy10ib-J1yKDJlWXKpISCMg4wQpV5TJKOaSJjmGNM_Mx2W7UJ_OprgHBLXscMlMxomay8zyyiuKochDzFioxD7QUgup9oTkdi7Gc-oKEypSq7jUKi71ituHs2rJa8HG8Zdw0-qkEvTqOPj99SGsmcVRAcg-gvr8bYHHJt-YqxNnaF8adNJu |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZ4SDwOPAaINzlwQnQLSdo1R4Q2jceAw0C7VUnqIl4bQhsS_HqSNJsAIcStqtwqql3bcT5_BtjnzHpFI1ikuKhHgike6YTbPQ_a2FCgZHV09Y72ZdK6EWfduDsBh-NeGET04DOsukt_lp_3zdCVymqJzQRpHE_CtI37MSu7tcZnBo4opYTTS5szpt1whnlEZa3TuD1xMC7hcM-8nvJvUejLWBUfVZqL0B6tpwSTPFaHA101Hz-oGv-74CVYCOklOS7tYRkmsFeBmRG6vQKLoykOJPzUFZj_Qkm4AteBcPWO3KqnIZKmjXveNMl9j_jyofIekjTegtGq13fi23j7-qH0nuTK-qHn0OC5CjfNRuekFYWpC5Hh_GgQ2e2yLlKJWmDCBRptbAaQCiVz5EYLpWOprIBKUqRCU67iRCiaFshokduPy9dgqtfv4ToQNKouFLc5JxqhcscsrykyWTDMOdNyA-hIC5kJlORuMsZT5rcmVGZOcZlTXBYUtwEH40deSj6Ov4RXnE7GgkEdm7_f3oPZVqd9kV2cXp5vwZx9UVzCs7dhavA6xB2bfQz0rje6Tz-41bg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Value+Functions+in+Interactive+Evolutionary+Multiobjective+Optimization&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Branke%2C+Jurgen&rft.au=Greco%2C+Salvatore&rft.au=Slowinski%2C+Roman&rft.au=Zielniewicz%2C+Piotr&rft.date=2015-02-01&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=19&rft.issue=1&rft.spage=88&rft.epage=102&rft_id=info:doi/10.1109%2FTEVC.2014.2303783&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2014_2303783 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |