On the application of Gaussian process latent force models for joint input-state-parameter estimation: With a view to Bayesian operational identification

•An output only analysis of structural systems under non-Gaussian excitation is shown.•The GPLFM is shown for joint input-state-parameter identification for wave loading.•MCMC solutions of the model recover posterior distributions of parameters in the system.•The extension of the model for use in mo...

Full description

Saved in:
Bibliographic Details
Published inMechanical systems and signal processing Vol. 140; p. 106580
Main Authors Rogers, T.J., Worden, K., Cross, E.J.
Format Journal Article
LanguageEnglish
Published Berlin Elsevier Ltd 01.06.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •An output only analysis of structural systems under non-Gaussian excitation is shown.•The GPLFM is shown for joint input-state-parameter identification for wave loading.•MCMC solutions of the model recover posterior distributions of parameters in the system.•The extension of the model for use in modal coordinates is discussed. The problem of identifying dynamic structural systems is of key interest to modern engineering practice and is often a first step in an analysis chain, such as validation of computer models or structural health monitoring. While this topic has been well covered for tests conducted in a laboratory setting, identification of full-scale structures in place remains challenging. Additionally, during in service assessment, it is often not possible to measure the loading that a given structure is subjected to; this could be due to practical limitations or cost. Current solutions to this problem revolve around assumptions regarding the nature of the load a structure is subject to; almost exclusively this is assumed to be a white Gaussian noise. However, in many cases this assumption is insufficient and can lead to biased results in system identification. This current work presents a model which attempts the system identification task (in terms of the parametric estimation) in conjunction with estimation of the inputs to the system and the latent states—the displacements and velocities of the system. Within this paper, a Bayesian framework is presented for rigorous uncertainty quantification over both the system parameters and the unknown input signal. A Gaussian process latent force model allows a flexible Bayesian prior to be placed over the unknown forcing signal, which in conjunction with the state-space representation, allows fully Bayesian inference over the complete dynamic system and the unknown inputs.
AbstractList •An output only analysis of structural systems under non-Gaussian excitation is shown.•The GPLFM is shown for joint input-state-parameter identification for wave loading.•MCMC solutions of the model recover posterior distributions of parameters in the system.•The extension of the model for use in modal coordinates is discussed. The problem of identifying dynamic structural systems is of key interest to modern engineering practice and is often a first step in an analysis chain, such as validation of computer models or structural health monitoring. While this topic has been well covered for tests conducted in a laboratory setting, identification of full-scale structures in place remains challenging. Additionally, during in service assessment, it is often not possible to measure the loading that a given structure is subjected to; this could be due to practical limitations or cost. Current solutions to this problem revolve around assumptions regarding the nature of the load a structure is subject to; almost exclusively this is assumed to be a white Gaussian noise. However, in many cases this assumption is insufficient and can lead to biased results in system identification. This current work presents a model which attempts the system identification task (in terms of the parametric estimation) in conjunction with estimation of the inputs to the system and the latent states—the displacements and velocities of the system. Within this paper, a Bayesian framework is presented for rigorous uncertainty quantification over both the system parameters and the unknown input signal. A Gaussian process latent force model allows a flexible Bayesian prior to be placed over the unknown forcing signal, which in conjunction with the state-space representation, allows fully Bayesian inference over the complete dynamic system and the unknown inputs.
The problem of identifying dynamic structural systems is of key interest to modern engineering practice and is often a first step in an analysis chain, such as validation of computer models or structural health monitoring. While this topic has been well covered for tests conducted in a laboratory setting, identification of full-scale structures in place remains challenging. Additionally, during in service assessment, it is often not possible to measure the loading that a given structure is subjected to; this could be due to practical limitations or cost. Current solutions to this problem revolve around assumptions regarding the nature of the load a structure is subject to; almost exclusively this is assumed to be a white Gaussian noise. However, in many cases this assumption is insufficient and can lead to biased results in system identification. This current work presents a model which attempts the system identification task (in terms of the parametric estimation) in conjunction with estimation of the inputs to the system and the latent states-the displacements and velocities of the system. Within this paper, a Bayesian framework is presented for rigorous uncertainty quantification over both the system parameters and the unknown input signal. A Gaussian process latent force model allows a flexible Bayesian prior to be placed over the unknown forcing signal, which in conjunction with the state-space representation, allows fully Bayesian inference over the complete dynamic system and the unknown inputs.
ArticleNumber 106580
Author Rogers, T.J.
Worden, K.
Cross, E.J.
Author_xml – sequence: 1
  givenname: T.J.
  surname: Rogers
  fullname: Rogers, T.J.
  email: tim.rogers@sheffield.ac.uk
  organization: Dynamics Research Group, Department of Mechanical Engineering, University of Sheffield, Mappin Building, Mappin Street, Sheffield S1 3JD, United Kingdom
– sequence: 2
  givenname: K.
  surname: Worden
  fullname: Worden, K.
  organization: Dynamics Research Group, Department of Mechanical Engineering, University of Sheffield, Mappin Building, Mappin Street, Sheffield S1 3JD, United Kingdom
– sequence: 3
  givenname: E.J.
  surname: Cross
  fullname: Cross, E.J.
  organization: Dynamics Research Group, Department of Mechanical Engineering, University of Sheffield, Mappin Building, Mappin Street, Sheffield S1 3JD, United Kingdom
BookMark eNqFUcFq3DAUFCWFbtJ-QS-Cnr3Vs7yyVOghCWkSCOSSkKOQ5Sci47VcSduyn9K_rdabUw7J6aHHzLzRzCk5mcKEhHwFtgYG4vuw3m9Tmtc1A1U2YiPZB7ICpkQFNYgTsmJSyorXLftETlMaGGOqYWJF_t1PND8jNfM8emuyDxMNjl6bXUreTHSOwWJKdDQZp0xdiBbpNvQ4psODDsGXtZ_mXa5SLqBqNtFsMWOkmLLfLpI_6JPPz9TQPx7_0hzohdnjoh9mjAvEjNT35YR3LzY-k4_OjAm_vMwz8vjr6uHyprq7v769PL-rLOeQK9G0LUjeqhZqKY3qhYVeig5RikapDRcMoDFMsrqxTnTgwG2k6tD1DXSd4Gfk21G3fPX3rnjWQ9jF4ifpuuFtw2vGZEGpI8rGkFJEp63Pi88cjR81MH1oQg96aUIfmtDHJgqXv-LOsQQT9--wfh5ZJWosuUWdrMfJYu8j2qz74N_k_wegoqi2
CitedBy_id crossref_primary_10_1016_j_ymssp_2025_112494
crossref_primary_10_1017_dce_2022_38
crossref_primary_10_1016_j_cie_2024_110774
crossref_primary_10_1007_s13349_020_00418_z
crossref_primary_10_1007_s40430_023_04657_1
crossref_primary_10_1017_dce_2024_33
crossref_primary_10_1016_j_ymssp_2021_108602
crossref_primary_10_1061_JENMDT_EMENG_7023
crossref_primary_10_1016_j_ymssp_2021_108368
crossref_primary_10_1016_j_ymssp_2021_108742
crossref_primary_10_1177_14759217241262972
crossref_primary_10_1016_j_ymssp_2024_111737
crossref_primary_10_1016_j_ymssp_2021_107760
crossref_primary_10_1016_j_ymssp_2023_110488
crossref_primary_10_1016_j_ymssp_2022_109758
crossref_primary_10_1016_j_renene_2024_121525
crossref_primary_10_1017_dce_2024_2
crossref_primary_10_1002_eqe_4045
crossref_primary_10_1016_j_apenergy_2023_121953
crossref_primary_10_1016_j_ymssp_2024_111852
crossref_primary_10_3390_vibration3030020
crossref_primary_10_1016_j_ymssp_2024_112088
crossref_primary_10_1016_j_ymssp_2024_111474
crossref_primary_10_1002_stc_3111
crossref_primary_10_1016_j_ymssp_2022_109471
crossref_primary_10_1017_dce_2023_12
crossref_primary_10_1016_j_ymssp_2023_110513
crossref_primary_10_1016_j_ifacol_2021_08_353
crossref_primary_10_1016_j_ymssp_2020_107472
crossref_primary_10_1016_j_engstruct_2022_113940
crossref_primary_10_1016_j_ymssp_2022_109426
crossref_primary_10_1016_j_ymssp_2023_110759
crossref_primary_10_1016_j_ymssp_2024_111303
crossref_primary_10_1063_5_0042382
crossref_primary_10_1016_j_jsv_2023_117965
crossref_primary_10_1016_j_ymssp_2023_111021
crossref_primary_10_1016_j_jobe_2023_107128
crossref_primary_10_1155_2023_8855542
crossref_primary_10_1016_j_ymssp_2024_112233
Cites_doi 10.1016/S0141-1187(00)00009-2
10.1006/jsvi.2002.5334
10.1016/j.ymssp.2012.01.011
10.1115/1.1410370
10.1177/1077546315617672
10.2514/3.3166
10.1016/j.cma.2014.08.010
10.1115/1.3662552
10.1016/j.ymssp.2019.02.040
10.1016/j.automatica.2006.11.016
10.1098/rspa.2007.1834
10.1080/00401706.1993.10485354
10.1016/j.ymssp.2015.02.001
10.1016/j.probengmech.2005.08.003
10.1016/j.ymssp.2019.03.048
10.1016/j.ymssp.2019.04.048
10.1002/1096-9845(200102)30:2<149::AID-EQE1>3.0.CO;2-Z
10.1007/s11831-012-9069-x
10.1109/MLSP.2010.5589113
10.1016/S0168-874X(00)00071-8
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Jun 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Jun 2020
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.ymssp.2019.106580
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1096-1216
ExternalDocumentID 10_1016_j_ymssp_2019_106580
S0888327019308015
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SST
SSV
SSZ
T5K
WUQ
XPP
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
7SP
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c331t-64771837971288a9d6c1d86bee864995360114a08024cf6b1f1f589befd41bb63
IEDL.DBID .~1
ISSN 0888-3270
IngestDate Sun Jul 13 05:00:38 EDT 2025
Tue Jul 01 00:58:20 EDT 2025
Thu Apr 24 22:52:36 EDT 2025
Fri Feb 23 02:49:27 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Gaussian process
System identification
Bayesian
Operational modal analysis
Latent force model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-64771837971288a9d6c1d86bee864995360114a08024cf6b1f1f589befd41bb63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2437432008
PQPubID 2045429
ParticipantIDs proquest_journals_2437432008
crossref_citationtrail_10_1016_j_ymssp_2019_106580
crossref_primary_10_1016_j_ymssp_2019_106580
elsevier_sciencedirect_doi_10_1016_j_ymssp_2019_106580
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2020
2020-06-00
20200601
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Mechanical systems and signal processing
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Naets, Croes, Desmet (b0075) 2015; 283
O’Hagan, Kingman (b0140) 1978
Ewins (b0025) 1984; vol. 15
Gillijns, De Moor (b0065) 2007; 43
Rogers (b0150) 2018
Barber (b0125) 2012
Stein (b0145) 1999
Worden, Farrar, Manson, Park (b0005) 2007; 463
Peeters, De Roeck (b0015) 2001; 30
S.E. Azam, V. Dertimanis, E. Chatzi, C. Papadimitriou, Output-only schemes for joint input-state-parameter estimation of linear systems, in: Proceedings of the 1st ECCOMAS Thematic Conference on Uncertainty Quantification in Computational Sciences and Engineering, 2015, pp. 497–510.
Rogers, Worden, Manson, Tygesen, Cross (b0100) 2018
Ching, Beck, Porter (b0060) 2006; 21
J. Hartikainen, S. Särkkä, Kalman filtering and smoothing solutions to temporal Gaussian process regression models, in: Machine Learning for Signal Processing (MLSP), 2010 IEEE International Workshop on, IEEE, 2010, pp. 379–384.
Nayek, Chakraborty, Narasimhan (b0105) 2019; 128
Azam, Chatzi, Papadimitriou (b0050) 2015; 60
Rauch, Striebel, Tung (b0135) 1965; 3
Micchelli, Xu, Zhang (b0200) 2006; 7
Grewal (b0165) 2011
Brownjohn, Xia, Hao, Xia (b0020) 2001; 37
Farrar, Worden (b0010) 2012
Särkkä (b0120) 2013
Najafian, Tickell, Burrows, Bishop (b0205) 2000; 22
Kalman (b0130) 1960; 82
Särkkä, Solin (b0170) 2019
Rasmussen, Ghahramani (b0185) 2001
Rasmussen, Williams (b0110) 2005
Lourens, Papadimitriou, Gillijns, Reynders, De Roeck, Lombaert (b0040) 2012; 29
Ghahramani, Hinton (b0175) 1996
Reynders (b0035) 2012; 19
Peeters, De Roeck (b0030) 2001; 123
Ma, Chang, Lin (b0045) 2003; 259
J. Hartikainen, S. Sarkka, Sequential inference for latent force models. arXiv
Alvarez, Luengo, Lawrence (b0090) 2009
Handcock, Stein (b0160) 1993; 35
Gelman, Carlin, Rubin, Vehtari, Dunson, Stern (b0180) 2013
2012.
Ljung (b0115) 1998
Dertimanis, Chatzi, Azam, Papadimitriou (b0080) 2019; 126
Maes, Karlsson, Lombaert (b0085) 2019; 130
Azam, Chatzi, Papadimitriou, Smyth (b0055) 2017; 23
K.P. Murphy, Machine Learning: A Probabilistic Perspective, 2012.
Brooks, Gelman, Jones, Meng (b0190) 2011
10.1016/j.ymssp.2019.106580_b0195
Barber (10.1016/j.ymssp.2019.106580_b0125) 2012
Kalman (10.1016/j.ymssp.2019.106580_b0130) 1960; 82
10.1016/j.ymssp.2019.106580_b0070
Handcock (10.1016/j.ymssp.2019.106580_b0160) 1993; 35
Dertimanis (10.1016/j.ymssp.2019.106580_b0080) 2019; 126
10.1016/j.ymssp.2019.106580_b0095
Lourens (10.1016/j.ymssp.2019.106580_b0040) 2012; 29
Peeters (10.1016/j.ymssp.2019.106580_b0015) 2001; 30
Maes (10.1016/j.ymssp.2019.106580_b0085) 2019; 130
Rogers (10.1016/j.ymssp.2019.106580_b0100) 2018
Rogers (10.1016/j.ymssp.2019.106580_b0150) 2018
Alvarez (10.1016/j.ymssp.2019.106580_b0090) 2009
Nayek (10.1016/j.ymssp.2019.106580_b0105) 2019; 128
Gelman (10.1016/j.ymssp.2019.106580_b0180) 2013
Reynders (10.1016/j.ymssp.2019.106580_b0035) 2012; 19
Särkkä (10.1016/j.ymssp.2019.106580_b0170) 2019
Worden (10.1016/j.ymssp.2019.106580_b0005) 2007; 463
Farrar (10.1016/j.ymssp.2019.106580_b0010) 2012
10.1016/j.ymssp.2019.106580_b0155
O’Hagan (10.1016/j.ymssp.2019.106580_b0140) 1978
Grewal (10.1016/j.ymssp.2019.106580_b0165) 2011
Azam (10.1016/j.ymssp.2019.106580_b0055) 2017; 23
Naets (10.1016/j.ymssp.2019.106580_b0075) 2015; 283
Särkkä (10.1016/j.ymssp.2019.106580_b0120) 2013
Stein (10.1016/j.ymssp.2019.106580_b0145) 1999
Brownjohn (10.1016/j.ymssp.2019.106580_b0020) 2001; 37
Rauch (10.1016/j.ymssp.2019.106580_b0135) 1965; 3
Ljung (10.1016/j.ymssp.2019.106580_b0115) 1998
Gillijns (10.1016/j.ymssp.2019.106580_b0065) 2007; 43
Ching (10.1016/j.ymssp.2019.106580_b0060) 2006; 21
Ghahramani (10.1016/j.ymssp.2019.106580_b0175) 1996
Rasmussen (10.1016/j.ymssp.2019.106580_b0110) 2005
Rasmussen (10.1016/j.ymssp.2019.106580_b0185) 2001
Micchelli (10.1016/j.ymssp.2019.106580_b0200) 2006; 7
Brooks (10.1016/j.ymssp.2019.106580_b0190) 2011
Ma (10.1016/j.ymssp.2019.106580_b0045) 2003; 259
Azam (10.1016/j.ymssp.2019.106580_b0050) 2015; 60
Najafian (10.1016/j.ymssp.2019.106580_b0205) 2000; 22
Ewins (10.1016/j.ymssp.2019.106580_b0025) 1984; vol. 15
Peeters (10.1016/j.ymssp.2019.106580_b0030) 2001; 123
References_xml – reference: J. Hartikainen, S. Sarkka, Sequential inference for latent force models. arXiv:
– volume: 283
  start-page: 1167
  year: 2015
  end-page: 1188
  ident: b0075
  article-title: An online coupled state/input/parameter estimation approach for structural dynamics
  publication-title: Comput. Methods Appl. Mech. Eng.
– year: 2012
  ident: b0010
  article-title: Structural Health Monitoring: A Machine Learning Perspective
– volume: 259
  start-page: 387
  year: 2003
  end-page: 407
  ident: b0045
  article-title: Input forces estimation of beam structures by an inverse method
  publication-title: J. Sound Vib.
– volume: 21
  start-page: 81
  year: 2006
  end-page: 96
  ident: b0060
  article-title: Bayesian state and parameter estimation of uncertain dynamical systems
  publication-title: Prob. Eng. Mech.
– year: 2012
  ident: b0125
  article-title: Bayesian Reasoning and Machine Learning
– year: 2018
  ident: b0100
  article-title: A Bayesian filtering approach to operational modal analysis with recovery of forcing signals
  publication-title: Proceedings of ISMA 2018 – International Conference on Noise and Vibration Engineering and USD 2018 – International Conference on Uncertainty in Structural Dynamics
– year: 2013
  ident: b0180
  article-title: Bayesian Data Analysis
– volume: 29
  start-page: 310
  year: 2012
  end-page: 327
  ident: b0040
  article-title: Joint input-response estimation for structural systems based on reduced-order models and vibration data from a limited number of sensors
  publication-title: Mech. Syst. Signal Process.
– volume: 22
  start-page: 129
  year: 2000
  end-page: 153
  ident: b0205
  article-title: The UK Christchurch Bay compliant cylinder project: analysis and interpretation of Morison wave force and response data
  publication-title: Appl. Ocean Res.
– volume: 3
  start-page: 1445
  year: 1965
  end-page: 1450
  ident: b0135
  article-title: Maximum likelihood estimates of linear dynamic systems
  publication-title: AIAA J.
– year: 2011
  ident: b0190
  article-title: Handbook of Markov Chain Monte Carlo
– year: 1996
  ident: b0175
  article-title: Parameter estimation for linear dynamical systems
– start-page: 1
  year: 1978
  end-page: 42
  ident: b0140
  article-title: Curve fitting and optimal design for prediction
  publication-title: J. R. Stat. Soc. Ser. B (Methodological)
– year: 1999
  ident: b0145
  article-title: Interpolation of Spatial Data: Some Theory for Kriging
– reference: J. Hartikainen, S. Särkkä, Kalman filtering and smoothing solutions to temporal Gaussian process regression models, in: Machine Learning for Signal Processing (MLSP), 2010 IEEE International Workshop on, IEEE, 2010, pp. 379–384.
– reference: K.P. Murphy, Machine Learning: A Probabilistic Perspective, 2012.
– volume: 123
  start-page: 659
  year: 2001
  end-page: 667
  ident: b0030
  article-title: Stochastic system identification for operational modal analysis: a review
  publication-title: J. Dyn. Syst. Meas. Contr.
– reference: , 2012.
– year: 2005
  ident: b0110
  article-title: Gaussian Processes for Machine Learning
– volume: 130
  start-page: 755
  year: 2019
  end-page: 775
  ident: b0085
  article-title: Tracking of inputs, states and parameters of linear structural dynamic systems
  publication-title: Mech. Syst. Signal Process.
– volume: 82
  start-page: 35
  year: 1960
  end-page: 45
  ident: b0130
  article-title: A new approach to linear filtering and prediction problems
  publication-title: J. Basic Eng.
– volume: 37
  start-page: 761
  year: 2001
  end-page: 775
  ident: b0020
  article-title: Civil structure condition assessment by FE model updating: methodology and case studies
  publication-title: Finite Elem. Anal. Design
– volume: 126
  start-page: 711
  year: 2019
  end-page: 746
  ident: b0080
  article-title: Input-state-parameter estimation of structural systems from limited output information
  publication-title: Mech. Syst. Signal Process.
– year: 1998
  ident: b0115
  article-title: System Identification
– start-page: 294
  year: 2001
  end-page: 300
  ident: b0185
  article-title: Occam’s razor
  publication-title: Advances in Neural Information Processing Systems
– volume: 30
  start-page: 149
  year: 2001
  end-page: 171
  ident: b0015
  article-title: One-year monitoring of the Z24-Bridge: environmental effects versus damage events
  publication-title: Earthq. Eng. Struct. Dyn.
– volume: 128
  start-page: 497
  year: 2019
  end-page: 530
  ident: b0105
  article-title: A Gaussian process latent force model for joint input-state estimation in linear structural systems
  publication-title: Mech. Syst. Signal Process.
– start-page: 705
  year: 2011
  end-page: 708
  ident: b0165
  article-title: Kalman filtering
  publication-title: International Encyclopedia of Statistical Science
– volume: 60
  start-page: 866
  year: 2015
  end-page: 886
  ident: b0050
  article-title: A dual Kalman filter approach for state estimation via output-only acceleration measurements
  publication-title: Mech. Syst. Signal Process.
– year: 2019
  ident: b0170
  article-title: Applied Stochastic Differential Equations
– start-page: 9
  year: 2009
  end-page: 16
  ident: b0090
  article-title: Latent force models
  publication-title: Artificial Intelligence and Statistics
– volume: vol. 15
  year: 1984
  ident: b0025
  publication-title: Modal Testing: Theory and Practice
– reference: S.E. Azam, V. Dertimanis, E. Chatzi, C. Papadimitriou, Output-only schemes for joint input-state-parameter estimation of linear systems, in: Proceedings of the 1st ECCOMAS Thematic Conference on Uncertainty Quantification in Computational Sciences and Engineering, 2015, pp. 497–510.
– volume: 463
  start-page: 1639
  year: 2007
  end-page: 1664
  ident: b0005
  article-title: The fundamental axioms of structural health monitoring
  publication-title: Proc. R. Soc. London A
– volume: 19
  start-page: 51
  year: 2012
  end-page: 124
  ident: b0035
  article-title: System identification methods for (operational) modal analysis: review and comparison
  publication-title: Arch. Comput. Methods Eng.
– year: 2013
  ident: b0120
  article-title: Bayesian Filtering and Smoothing
– volume: 35
  start-page: 403
  year: 1993
  end-page: 410
  ident: b0160
  article-title: A Bayesian analysis of Kriging
  publication-title: Technometrics
– year: 2018
  ident: b0150
  article-title: Towards Bayesian system identification: with application to SHM of offshore structures
– volume: 7
  start-page: 2651
  year: 2006
  end-page: 2667
  ident: b0200
  article-title: Universal kernels
  publication-title: J. Mach. Learn. Res.
– volume: 23
  start-page: 2494
  year: 2017
  end-page: 2519
  ident: b0055
  article-title: Experimental validation of the Kalman-type filters for online and real-time state and input estimation
  publication-title: J. Vib. Control
– volume: 43
  start-page: 934
  year: 2007
  end-page: 937
  ident: b0065
  article-title: Unbiased minimum-variance input and state estimation for linear discrete-time systems with direct feedthrough
  publication-title: Automatica
– year: 2011
  ident: 10.1016/j.ymssp.2019.106580_b0190
– volume: 22
  start-page: 129
  issue: 3
  year: 2000
  ident: 10.1016/j.ymssp.2019.106580_b0205
  article-title: The UK Christchurch Bay compliant cylinder project: analysis and interpretation of Morison wave force and response data
  publication-title: Appl. Ocean Res.
  doi: 10.1016/S0141-1187(00)00009-2
– volume: 259
  start-page: 387
  issue: 2
  year: 2003
  ident: 10.1016/j.ymssp.2019.106580_b0045
  article-title: Input forces estimation of beam structures by an inverse method
  publication-title: J. Sound Vib.
  doi: 10.1006/jsvi.2002.5334
– ident: 10.1016/j.ymssp.2019.106580_b0195
– year: 2018
  ident: 10.1016/j.ymssp.2019.106580_b0100
  article-title: A Bayesian filtering approach to operational modal analysis with recovery of forcing signals
– volume: 29
  start-page: 310
  year: 2012
  ident: 10.1016/j.ymssp.2019.106580_b0040
  article-title: Joint input-response estimation for structural systems based on reduced-order models and vibration data from a limited number of sensors
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2012.01.011
– year: 1996
  ident: 10.1016/j.ymssp.2019.106580_b0175
– year: 2018
  ident: 10.1016/j.ymssp.2019.106580_b0150
– volume: 123
  start-page: 659
  issue: 4
  year: 2001
  ident: 10.1016/j.ymssp.2019.106580_b0030
  article-title: Stochastic system identification for operational modal analysis: a review
  publication-title: J. Dyn. Syst. Meas. Contr.
  doi: 10.1115/1.1410370
– start-page: 9
  year: 2009
  ident: 10.1016/j.ymssp.2019.106580_b0090
  article-title: Latent force models
– volume: 23
  start-page: 2494
  issue: 15
  year: 2017
  ident: 10.1016/j.ymssp.2019.106580_b0055
  article-title: Experimental validation of the Kalman-type filters for online and real-time state and input estimation
  publication-title: J. Vib. Control
  doi: 10.1177/1077546315617672
– year: 2005
  ident: 10.1016/j.ymssp.2019.106580_b0110
– volume: 3
  start-page: 1445
  issue: 8
  year: 1965
  ident: 10.1016/j.ymssp.2019.106580_b0135
  article-title: Maximum likelihood estimates of linear dynamic systems
  publication-title: AIAA J.
  doi: 10.2514/3.3166
– start-page: 294
  year: 2001
  ident: 10.1016/j.ymssp.2019.106580_b0185
  article-title: Occam’s razor
– year: 1999
  ident: 10.1016/j.ymssp.2019.106580_b0145
– volume: 283
  start-page: 1167
  year: 2015
  ident: 10.1016/j.ymssp.2019.106580_b0075
  article-title: An online coupled state/input/parameter estimation approach for structural dynamics
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2014.08.010
– ident: 10.1016/j.ymssp.2019.106580_b0070
– volume: 82
  start-page: 35
  issue: 1
  year: 1960
  ident: 10.1016/j.ymssp.2019.106580_b0130
  article-title: A new approach to linear filtering and prediction problems
  publication-title: J. Basic Eng.
  doi: 10.1115/1.3662552
– volume: 126
  start-page: 711
  year: 2019
  ident: 10.1016/j.ymssp.2019.106580_b0080
  article-title: Input-state-parameter estimation of structural systems from limited output information
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.02.040
– ident: 10.1016/j.ymssp.2019.106580_b0095
– year: 1998
  ident: 10.1016/j.ymssp.2019.106580_b0115
– year: 2013
  ident: 10.1016/j.ymssp.2019.106580_b0120
– volume: 43
  start-page: 934
  issue: 5
  year: 2007
  ident: 10.1016/j.ymssp.2019.106580_b0065
  article-title: Unbiased minimum-variance input and state estimation for linear discrete-time systems with direct feedthrough
  publication-title: Automatica
  doi: 10.1016/j.automatica.2006.11.016
– volume: 463
  start-page: 1639
  issue: 2082
  year: 2007
  ident: 10.1016/j.ymssp.2019.106580_b0005
  article-title: The fundamental axioms of structural health monitoring
  publication-title: Proc. R. Soc. London A
  doi: 10.1098/rspa.2007.1834
– volume: 35
  start-page: 403
  issue: 4
  year: 1993
  ident: 10.1016/j.ymssp.2019.106580_b0160
  article-title: A Bayesian analysis of Kriging
  publication-title: Technometrics
  doi: 10.1080/00401706.1993.10485354
– volume: 60
  start-page: 866
  year: 2015
  ident: 10.1016/j.ymssp.2019.106580_b0050
  article-title: A dual Kalman filter approach for state estimation via output-only acceleration measurements
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2015.02.001
– volume: 21
  start-page: 81
  issue: 1
  year: 2006
  ident: 10.1016/j.ymssp.2019.106580_b0060
  article-title: Bayesian state and parameter estimation of uncertain dynamical systems
  publication-title: Prob. Eng. Mech.
  doi: 10.1016/j.probengmech.2005.08.003
– volume: 128
  start-page: 497
  year: 2019
  ident: 10.1016/j.ymssp.2019.106580_b0105
  article-title: A Gaussian process latent force model for joint input-state estimation in linear structural systems
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.03.048
– volume: 7
  start-page: 2651
  year: 2006
  ident: 10.1016/j.ymssp.2019.106580_b0200
  article-title: Universal kernels
  publication-title: J. Mach. Learn. Res.
– year: 2012
  ident: 10.1016/j.ymssp.2019.106580_b0010
– volume: 130
  start-page: 755
  year: 2019
  ident: 10.1016/j.ymssp.2019.106580_b0085
  article-title: Tracking of inputs, states and parameters of linear structural dynamic systems
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.04.048
– start-page: 1
  year: 1978
  ident: 10.1016/j.ymssp.2019.106580_b0140
  article-title: Curve fitting and optimal design for prediction
  publication-title: J. R. Stat. Soc. Ser. B (Methodological)
– volume: 30
  start-page: 149
  issue: 2
  year: 2001
  ident: 10.1016/j.ymssp.2019.106580_b0015
  article-title: One-year monitoring of the Z24-Bridge: environmental effects versus damage events
  publication-title: Earthq. Eng. Struct. Dyn.
  doi: 10.1002/1096-9845(200102)30:2<149::AID-EQE1>3.0.CO;2-Z
– volume: vol. 15
  year: 1984
  ident: 10.1016/j.ymssp.2019.106580_b0025
– year: 2019
  ident: 10.1016/j.ymssp.2019.106580_b0170
– year: 2013
  ident: 10.1016/j.ymssp.2019.106580_b0180
– volume: 19
  start-page: 51
  issue: 1
  year: 2012
  ident: 10.1016/j.ymssp.2019.106580_b0035
  article-title: System identification methods for (operational) modal analysis: review and comparison
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-012-9069-x
– year: 2012
  ident: 10.1016/j.ymssp.2019.106580_b0125
– ident: 10.1016/j.ymssp.2019.106580_b0155
  doi: 10.1109/MLSP.2010.5589113
– volume: 37
  start-page: 761
  issue: 10
  year: 2001
  ident: 10.1016/j.ymssp.2019.106580_b0020
  article-title: Civil structure condition assessment by FE model updating: methodology and case studies
  publication-title: Finite Elem. Anal. Design
  doi: 10.1016/S0168-874X(00)00071-8
– start-page: 705
  year: 2011
  ident: 10.1016/j.ymssp.2019.106580_b0165
  article-title: Kalman filtering
SSID ssj0009406
Score 2.4979682
Snippet •An output only analysis of structural systems under non-Gaussian excitation is shown.•The GPLFM is shown for joint input-state-parameter identification for...
The problem of identifying dynamic structural systems is of key interest to modern engineering practice and is often a first step in an analysis chain, such as...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106580
SubjectTerms Bayesian
Bayesian analysis
Gaussian process
Identification
Latent force model
Operational modal analysis
Parameter estimation
Parameter identification
Random noise
Signal processing
State space models
Statistical inference
Structural health monitoring
System identification
Title On the application of Gaussian process latent force models for joint input-state-parameter estimation: With a view to Bayesian operational identification
URI https://dx.doi.org/10.1016/j.ymssp.2019.106580
https://www.proquest.com/docview/2437432008
Volume 140
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELYQvZQDaimo0C2aQ481u0kcJ-lti6DbVoUDRXCz7MRRs4IkItkDl75H37YzjkMpEhyQcsnIjiLPeH7smW8Y-5CFFp8g5tIWCRcmNlwXdOE4C9E4oY-QumTMHydycS6-XcaXa-xwrIWhtEqv-wed7rS1p0z9ak7bqpqe4f5AcSQ48QjdHldoLkRCUn7w-1-aRyZcf00azGn0iDzkcrxur7uOQCuDDCloi2ePWacHetoZn-NXbNN7jTAffuw1W7P1Ftu4hyX4hv05rQGdObh3Iw1NCV_0qqM6SWiHigC4Quey7gF91dyC64PT0QssmwrJVd2ueu6qjDihgl9TtgwQEsdQ4vgJLqr-F2igGwXoG_isb637ftPaG3-wCFXhc5AcYZudHx_9PFxw33eB51EU9JxqU3GnJ1mCxivVWSHzoEilsTaVGCDFkaQoSlOVrshLaYIyKOM0M7YsRGCMjHbYet3U9i2DTItZbmQsDEY-NglTaQOLaqXQqUbfJd1l4bjeKveg5NQb40qN2WdL5ZikiElqYNIu-3g3qR0wOZ4eLkdGqv9ES6HVeHriZGS78ju7UwTgKCLKGtl77nffsZchRe3uLGfC1vublX2Prk1v9p3s7rMX86_fFyd_AbHB-hw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZW5UB7QBSKWihlDhxxd5M43oQbVC0LfXBgK3qz7MRRU7VJ1GQPvfA_-LfMOE67VGIPSLlkZEeRx_OyZ75h7H0aWnyCmEubT7kwseE6pwvHSYjGCX2ExCVjnp7J2bn4dhFfjNjBUAtDaZVe9_c63WlrTxn71Rw3ZTn-gfKB25HgxCN0e6jQ_IlA8aU2Bvu_HvI8UuEabNJoTsMH6CGX5HV307aEWhmkSEFjPPmXeXqkqJ31OXrOnnm3ET71f7bJRrZ6wTaWwARfst_fK0BvDpaupKEu4ItetFQoCU1fEgDX6F1WHaCzmllwjXBaeoGrukRyWTWLjrsyI06w4DeULgMExdHXOH6En2V3CRroSgG6Gj7rO-u-Xzf21p8sQpn7JCRH2GLnR4fzgxn3jRd4FkVBx6k4FUV9mk7ReiU6zWUW5Ik01iYSI6Q4khRGaSrTFVkhTVAERZykxha5CIyR0Su2VtWV3WaQajHJjIyFwdDHTsNE2sCiXsl1otF5SXZYOKy3yjwqOTXHuFZD-tmVckxSxCTVM2mHfbif1PSgHKuHy4GR6q-9pdBsrJ64O7BdedFuFSE4iojSRl7_73ffsaez-emJOvl6dvyGrYcUwruDnV221t0u7Fv0czqz5_bxH1_J-6o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+application+of+Gaussian+process+latent+force+models+for+joint+input-state-parameter+estimation%3A+With+a+view+to+Bayesian+operational+identification&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Rogers%2C+T.J.&rft.au=Worden%2C+K.&rft.au=Cross%2C+E.J.&rft.date=2020-06-01&rft.pub=Elsevier+Ltd&rft.issn=0888-3270&rft.eissn=1096-1216&rft.volume=140&rft_id=info:doi/10.1016%2Fj.ymssp.2019.106580&rft.externalDocID=S0888327019308015
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon