On the application of Gaussian process latent force models for joint input-state-parameter estimation: With a view to Bayesian operational identification
•An output only analysis of structural systems under non-Gaussian excitation is shown.•The GPLFM is shown for joint input-state-parameter identification for wave loading.•MCMC solutions of the model recover posterior distributions of parameters in the system.•The extension of the model for use in mo...
Saved in:
Published in | Mechanical systems and signal processing Vol. 140; p. 106580 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin
Elsevier Ltd
01.06.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •An output only analysis of structural systems under non-Gaussian excitation is shown.•The GPLFM is shown for joint input-state-parameter identification for wave loading.•MCMC solutions of the model recover posterior distributions of parameters in the system.•The extension of the model for use in modal coordinates is discussed.
The problem of identifying dynamic structural systems is of key interest to modern engineering practice and is often a first step in an analysis chain, such as validation of computer models or structural health monitoring. While this topic has been well covered for tests conducted in a laboratory setting, identification of full-scale structures in place remains challenging. Additionally, during in service assessment, it is often not possible to measure the loading that a given structure is subjected to; this could be due to practical limitations or cost. Current solutions to this problem revolve around assumptions regarding the nature of the load a structure is subject to; almost exclusively this is assumed to be a white Gaussian noise. However, in many cases this assumption is insufficient and can lead to biased results in system identification. This current work presents a model which attempts the system identification task (in terms of the parametric estimation) in conjunction with estimation of the inputs to the system and the latent states—the displacements and velocities of the system. Within this paper, a Bayesian framework is presented for rigorous uncertainty quantification over both the system parameters and the unknown input signal. A Gaussian process latent force model allows a flexible Bayesian prior to be placed over the unknown forcing signal, which in conjunction with the state-space representation, allows fully Bayesian inference over the complete dynamic system and the unknown inputs. |
---|---|
AbstractList | •An output only analysis of structural systems under non-Gaussian excitation is shown.•The GPLFM is shown for joint input-state-parameter identification for wave loading.•MCMC solutions of the model recover posterior distributions of parameters in the system.•The extension of the model for use in modal coordinates is discussed.
The problem of identifying dynamic structural systems is of key interest to modern engineering practice and is often a first step in an analysis chain, such as validation of computer models or structural health monitoring. While this topic has been well covered for tests conducted in a laboratory setting, identification of full-scale structures in place remains challenging. Additionally, during in service assessment, it is often not possible to measure the loading that a given structure is subjected to; this could be due to practical limitations or cost. Current solutions to this problem revolve around assumptions regarding the nature of the load a structure is subject to; almost exclusively this is assumed to be a white Gaussian noise. However, in many cases this assumption is insufficient and can lead to biased results in system identification. This current work presents a model which attempts the system identification task (in terms of the parametric estimation) in conjunction with estimation of the inputs to the system and the latent states—the displacements and velocities of the system. Within this paper, a Bayesian framework is presented for rigorous uncertainty quantification over both the system parameters and the unknown input signal. A Gaussian process latent force model allows a flexible Bayesian prior to be placed over the unknown forcing signal, which in conjunction with the state-space representation, allows fully Bayesian inference over the complete dynamic system and the unknown inputs. The problem of identifying dynamic structural systems is of key interest to modern engineering practice and is often a first step in an analysis chain, such as validation of computer models or structural health monitoring. While this topic has been well covered for tests conducted in a laboratory setting, identification of full-scale structures in place remains challenging. Additionally, during in service assessment, it is often not possible to measure the loading that a given structure is subjected to; this could be due to practical limitations or cost. Current solutions to this problem revolve around assumptions regarding the nature of the load a structure is subject to; almost exclusively this is assumed to be a white Gaussian noise. However, in many cases this assumption is insufficient and can lead to biased results in system identification. This current work presents a model which attempts the system identification task (in terms of the parametric estimation) in conjunction with estimation of the inputs to the system and the latent states-the displacements and velocities of the system. Within this paper, a Bayesian framework is presented for rigorous uncertainty quantification over both the system parameters and the unknown input signal. A Gaussian process latent force model allows a flexible Bayesian prior to be placed over the unknown forcing signal, which in conjunction with the state-space representation, allows fully Bayesian inference over the complete dynamic system and the unknown inputs. |
ArticleNumber | 106580 |
Author | Rogers, T.J. Worden, K. Cross, E.J. |
Author_xml | – sequence: 1 givenname: T.J. surname: Rogers fullname: Rogers, T.J. email: tim.rogers@sheffield.ac.uk organization: Dynamics Research Group, Department of Mechanical Engineering, University of Sheffield, Mappin Building, Mappin Street, Sheffield S1 3JD, United Kingdom – sequence: 2 givenname: K. surname: Worden fullname: Worden, K. organization: Dynamics Research Group, Department of Mechanical Engineering, University of Sheffield, Mappin Building, Mappin Street, Sheffield S1 3JD, United Kingdom – sequence: 3 givenname: E.J. surname: Cross fullname: Cross, E.J. organization: Dynamics Research Group, Department of Mechanical Engineering, University of Sheffield, Mappin Building, Mappin Street, Sheffield S1 3JD, United Kingdom |
BookMark | eNqFUcFq3DAUFCWFbtJ-QS-Cnr3Vs7yyVOghCWkSCOSSkKOQ5Sci47VcSduyn9K_rdabUw7J6aHHzLzRzCk5mcKEhHwFtgYG4vuw3m9Tmtc1A1U2YiPZB7ICpkQFNYgTsmJSyorXLftETlMaGGOqYWJF_t1PND8jNfM8emuyDxMNjl6bXUreTHSOwWJKdDQZp0xdiBbpNvQ4psODDsGXtZ_mXa5SLqBqNtFsMWOkmLLfLpI_6JPPz9TQPx7_0hzohdnjoh9mjAvEjNT35YR3LzY-k4_OjAm_vMwz8vjr6uHyprq7v769PL-rLOeQK9G0LUjeqhZqKY3qhYVeig5RikapDRcMoDFMsrqxTnTgwG2k6tD1DXSd4Gfk21G3fPX3rnjWQ9jF4ifpuuFtw2vGZEGpI8rGkFJEp63Pi88cjR81MH1oQg96aUIfmtDHJgqXv-LOsQQT9--wfh5ZJWosuUWdrMfJYu8j2qz74N_k_wegoqi2 |
CitedBy_id | crossref_primary_10_1016_j_ymssp_2025_112494 crossref_primary_10_1017_dce_2022_38 crossref_primary_10_1016_j_cie_2024_110774 crossref_primary_10_1007_s13349_020_00418_z crossref_primary_10_1007_s40430_023_04657_1 crossref_primary_10_1017_dce_2024_33 crossref_primary_10_1016_j_ymssp_2021_108602 crossref_primary_10_1061_JENMDT_EMENG_7023 crossref_primary_10_1016_j_ymssp_2021_108368 crossref_primary_10_1016_j_ymssp_2021_108742 crossref_primary_10_1177_14759217241262972 crossref_primary_10_1016_j_ymssp_2024_111737 crossref_primary_10_1016_j_ymssp_2021_107760 crossref_primary_10_1016_j_ymssp_2023_110488 crossref_primary_10_1016_j_ymssp_2022_109758 crossref_primary_10_1016_j_renene_2024_121525 crossref_primary_10_1017_dce_2024_2 crossref_primary_10_1002_eqe_4045 crossref_primary_10_1016_j_apenergy_2023_121953 crossref_primary_10_1016_j_ymssp_2024_111852 crossref_primary_10_3390_vibration3030020 crossref_primary_10_1016_j_ymssp_2024_112088 crossref_primary_10_1016_j_ymssp_2024_111474 crossref_primary_10_1002_stc_3111 crossref_primary_10_1016_j_ymssp_2022_109471 crossref_primary_10_1017_dce_2023_12 crossref_primary_10_1016_j_ymssp_2023_110513 crossref_primary_10_1016_j_ifacol_2021_08_353 crossref_primary_10_1016_j_ymssp_2020_107472 crossref_primary_10_1016_j_engstruct_2022_113940 crossref_primary_10_1016_j_ymssp_2022_109426 crossref_primary_10_1016_j_ymssp_2023_110759 crossref_primary_10_1016_j_ymssp_2024_111303 crossref_primary_10_1063_5_0042382 crossref_primary_10_1016_j_jsv_2023_117965 crossref_primary_10_1016_j_ymssp_2023_111021 crossref_primary_10_1016_j_jobe_2023_107128 crossref_primary_10_1155_2023_8855542 crossref_primary_10_1016_j_ymssp_2024_112233 |
Cites_doi | 10.1016/S0141-1187(00)00009-2 10.1006/jsvi.2002.5334 10.1016/j.ymssp.2012.01.011 10.1115/1.1410370 10.1177/1077546315617672 10.2514/3.3166 10.1016/j.cma.2014.08.010 10.1115/1.3662552 10.1016/j.ymssp.2019.02.040 10.1016/j.automatica.2006.11.016 10.1098/rspa.2007.1834 10.1080/00401706.1993.10485354 10.1016/j.ymssp.2015.02.001 10.1016/j.probengmech.2005.08.003 10.1016/j.ymssp.2019.03.048 10.1016/j.ymssp.2019.04.048 10.1002/1096-9845(200102)30:2<149::AID-EQE1>3.0.CO;2-Z 10.1007/s11831-012-9069-x 10.1109/MLSP.2010.5589113 10.1016/S0168-874X(00)00071-8 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Jun 2020 |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Jun 2020 |
DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.ymssp.2019.106580 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1096-1216 |
ExternalDocumentID | 10_1016_j_ymssp_2019_106580 S0888327019308015 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG5 LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SPD SST SSV SSZ T5K WUQ XPP ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SC 7SP 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c331t-64771837971288a9d6c1d86bee864995360114a08024cf6b1f1f589befd41bb63 |
IEDL.DBID | .~1 |
ISSN | 0888-3270 |
IngestDate | Sun Jul 13 05:00:38 EDT 2025 Tue Jul 01 00:58:20 EDT 2025 Thu Apr 24 22:52:36 EDT 2025 Fri Feb 23 02:49:27 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Gaussian process System identification Bayesian Operational modal analysis Latent force model |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c331t-64771837971288a9d6c1d86bee864995360114a08024cf6b1f1f589befd41bb63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2437432008 |
PQPubID | 2045429 |
ParticipantIDs | proquest_journals_2437432008 crossref_citationtrail_10_1016_j_ymssp_2019_106580 crossref_primary_10_1016_j_ymssp_2019_106580 elsevier_sciencedirect_doi_10_1016_j_ymssp_2019_106580 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2020 2020-06-00 20200601 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: June 2020 |
PublicationDecade | 2020 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin |
PublicationTitle | Mechanical systems and signal processing |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Naets, Croes, Desmet (b0075) 2015; 283 O’Hagan, Kingman (b0140) 1978 Ewins (b0025) 1984; vol. 15 Gillijns, De Moor (b0065) 2007; 43 Rogers (b0150) 2018 Barber (b0125) 2012 Stein (b0145) 1999 Worden, Farrar, Manson, Park (b0005) 2007; 463 Peeters, De Roeck (b0015) 2001; 30 S.E. Azam, V. Dertimanis, E. Chatzi, C. Papadimitriou, Output-only schemes for joint input-state-parameter estimation of linear systems, in: Proceedings of the 1st ECCOMAS Thematic Conference on Uncertainty Quantification in Computational Sciences and Engineering, 2015, pp. 497–510. Rogers, Worden, Manson, Tygesen, Cross (b0100) 2018 Ching, Beck, Porter (b0060) 2006; 21 J. Hartikainen, S. Särkkä, Kalman filtering and smoothing solutions to temporal Gaussian process regression models, in: Machine Learning for Signal Processing (MLSP), 2010 IEEE International Workshop on, IEEE, 2010, pp. 379–384. Nayek, Chakraborty, Narasimhan (b0105) 2019; 128 Azam, Chatzi, Papadimitriou (b0050) 2015; 60 Rauch, Striebel, Tung (b0135) 1965; 3 Micchelli, Xu, Zhang (b0200) 2006; 7 Grewal (b0165) 2011 Brownjohn, Xia, Hao, Xia (b0020) 2001; 37 Farrar, Worden (b0010) 2012 Särkkä (b0120) 2013 Najafian, Tickell, Burrows, Bishop (b0205) 2000; 22 Kalman (b0130) 1960; 82 Särkkä, Solin (b0170) 2019 Rasmussen, Ghahramani (b0185) 2001 Rasmussen, Williams (b0110) 2005 Lourens, Papadimitriou, Gillijns, Reynders, De Roeck, Lombaert (b0040) 2012; 29 Ghahramani, Hinton (b0175) 1996 Reynders (b0035) 2012; 19 Peeters, De Roeck (b0030) 2001; 123 Ma, Chang, Lin (b0045) 2003; 259 J. Hartikainen, S. Sarkka, Sequential inference for latent force models. arXiv Alvarez, Luengo, Lawrence (b0090) 2009 Handcock, Stein (b0160) 1993; 35 Gelman, Carlin, Rubin, Vehtari, Dunson, Stern (b0180) 2013 2012. Ljung (b0115) 1998 Dertimanis, Chatzi, Azam, Papadimitriou (b0080) 2019; 126 Maes, Karlsson, Lombaert (b0085) 2019; 130 Azam, Chatzi, Papadimitriou, Smyth (b0055) 2017; 23 K.P. Murphy, Machine Learning: A Probabilistic Perspective, 2012. Brooks, Gelman, Jones, Meng (b0190) 2011 10.1016/j.ymssp.2019.106580_b0195 Barber (10.1016/j.ymssp.2019.106580_b0125) 2012 Kalman (10.1016/j.ymssp.2019.106580_b0130) 1960; 82 10.1016/j.ymssp.2019.106580_b0070 Handcock (10.1016/j.ymssp.2019.106580_b0160) 1993; 35 Dertimanis (10.1016/j.ymssp.2019.106580_b0080) 2019; 126 10.1016/j.ymssp.2019.106580_b0095 Lourens (10.1016/j.ymssp.2019.106580_b0040) 2012; 29 Peeters (10.1016/j.ymssp.2019.106580_b0015) 2001; 30 Maes (10.1016/j.ymssp.2019.106580_b0085) 2019; 130 Rogers (10.1016/j.ymssp.2019.106580_b0100) 2018 Rogers (10.1016/j.ymssp.2019.106580_b0150) 2018 Alvarez (10.1016/j.ymssp.2019.106580_b0090) 2009 Nayek (10.1016/j.ymssp.2019.106580_b0105) 2019; 128 Gelman (10.1016/j.ymssp.2019.106580_b0180) 2013 Reynders (10.1016/j.ymssp.2019.106580_b0035) 2012; 19 Särkkä (10.1016/j.ymssp.2019.106580_b0170) 2019 Worden (10.1016/j.ymssp.2019.106580_b0005) 2007; 463 Farrar (10.1016/j.ymssp.2019.106580_b0010) 2012 10.1016/j.ymssp.2019.106580_b0155 O’Hagan (10.1016/j.ymssp.2019.106580_b0140) 1978 Grewal (10.1016/j.ymssp.2019.106580_b0165) 2011 Azam (10.1016/j.ymssp.2019.106580_b0055) 2017; 23 Naets (10.1016/j.ymssp.2019.106580_b0075) 2015; 283 Särkkä (10.1016/j.ymssp.2019.106580_b0120) 2013 Stein (10.1016/j.ymssp.2019.106580_b0145) 1999 Brownjohn (10.1016/j.ymssp.2019.106580_b0020) 2001; 37 Rauch (10.1016/j.ymssp.2019.106580_b0135) 1965; 3 Ljung (10.1016/j.ymssp.2019.106580_b0115) 1998 Gillijns (10.1016/j.ymssp.2019.106580_b0065) 2007; 43 Ching (10.1016/j.ymssp.2019.106580_b0060) 2006; 21 Ghahramani (10.1016/j.ymssp.2019.106580_b0175) 1996 Rasmussen (10.1016/j.ymssp.2019.106580_b0110) 2005 Rasmussen (10.1016/j.ymssp.2019.106580_b0185) 2001 Micchelli (10.1016/j.ymssp.2019.106580_b0200) 2006; 7 Brooks (10.1016/j.ymssp.2019.106580_b0190) 2011 Ma (10.1016/j.ymssp.2019.106580_b0045) 2003; 259 Azam (10.1016/j.ymssp.2019.106580_b0050) 2015; 60 Najafian (10.1016/j.ymssp.2019.106580_b0205) 2000; 22 Ewins (10.1016/j.ymssp.2019.106580_b0025) 1984; vol. 15 Peeters (10.1016/j.ymssp.2019.106580_b0030) 2001; 123 |
References_xml | – reference: J. Hartikainen, S. Sarkka, Sequential inference for latent force models. arXiv: – volume: 283 start-page: 1167 year: 2015 end-page: 1188 ident: b0075 article-title: An online coupled state/input/parameter estimation approach for structural dynamics publication-title: Comput. Methods Appl. Mech. Eng. – year: 2012 ident: b0010 article-title: Structural Health Monitoring: A Machine Learning Perspective – volume: 259 start-page: 387 year: 2003 end-page: 407 ident: b0045 article-title: Input forces estimation of beam structures by an inverse method publication-title: J. Sound Vib. – volume: 21 start-page: 81 year: 2006 end-page: 96 ident: b0060 article-title: Bayesian state and parameter estimation of uncertain dynamical systems publication-title: Prob. Eng. Mech. – year: 2012 ident: b0125 article-title: Bayesian Reasoning and Machine Learning – year: 2018 ident: b0100 article-title: A Bayesian filtering approach to operational modal analysis with recovery of forcing signals publication-title: Proceedings of ISMA 2018 – International Conference on Noise and Vibration Engineering and USD 2018 – International Conference on Uncertainty in Structural Dynamics – year: 2013 ident: b0180 article-title: Bayesian Data Analysis – volume: 29 start-page: 310 year: 2012 end-page: 327 ident: b0040 article-title: Joint input-response estimation for structural systems based on reduced-order models and vibration data from a limited number of sensors publication-title: Mech. Syst. Signal Process. – volume: 22 start-page: 129 year: 2000 end-page: 153 ident: b0205 article-title: The UK Christchurch Bay compliant cylinder project: analysis and interpretation of Morison wave force and response data publication-title: Appl. Ocean Res. – volume: 3 start-page: 1445 year: 1965 end-page: 1450 ident: b0135 article-title: Maximum likelihood estimates of linear dynamic systems publication-title: AIAA J. – year: 2011 ident: b0190 article-title: Handbook of Markov Chain Monte Carlo – year: 1996 ident: b0175 article-title: Parameter estimation for linear dynamical systems – start-page: 1 year: 1978 end-page: 42 ident: b0140 article-title: Curve fitting and optimal design for prediction publication-title: J. R. Stat. Soc. Ser. B (Methodological) – year: 1999 ident: b0145 article-title: Interpolation of Spatial Data: Some Theory for Kriging – reference: J. Hartikainen, S. Särkkä, Kalman filtering and smoothing solutions to temporal Gaussian process regression models, in: Machine Learning for Signal Processing (MLSP), 2010 IEEE International Workshop on, IEEE, 2010, pp. 379–384. – reference: K.P. Murphy, Machine Learning: A Probabilistic Perspective, 2012. – volume: 123 start-page: 659 year: 2001 end-page: 667 ident: b0030 article-title: Stochastic system identification for operational modal analysis: a review publication-title: J. Dyn. Syst. Meas. Contr. – reference: , 2012. – year: 2005 ident: b0110 article-title: Gaussian Processes for Machine Learning – volume: 130 start-page: 755 year: 2019 end-page: 775 ident: b0085 article-title: Tracking of inputs, states and parameters of linear structural dynamic systems publication-title: Mech. Syst. Signal Process. – volume: 82 start-page: 35 year: 1960 end-page: 45 ident: b0130 article-title: A new approach to linear filtering and prediction problems publication-title: J. Basic Eng. – volume: 37 start-page: 761 year: 2001 end-page: 775 ident: b0020 article-title: Civil structure condition assessment by FE model updating: methodology and case studies publication-title: Finite Elem. Anal. Design – volume: 126 start-page: 711 year: 2019 end-page: 746 ident: b0080 article-title: Input-state-parameter estimation of structural systems from limited output information publication-title: Mech. Syst. Signal Process. – year: 1998 ident: b0115 article-title: System Identification – start-page: 294 year: 2001 end-page: 300 ident: b0185 article-title: Occam’s razor publication-title: Advances in Neural Information Processing Systems – volume: 30 start-page: 149 year: 2001 end-page: 171 ident: b0015 article-title: One-year monitoring of the Z24-Bridge: environmental effects versus damage events publication-title: Earthq. Eng. Struct. Dyn. – volume: 128 start-page: 497 year: 2019 end-page: 530 ident: b0105 article-title: A Gaussian process latent force model for joint input-state estimation in linear structural systems publication-title: Mech. Syst. Signal Process. – start-page: 705 year: 2011 end-page: 708 ident: b0165 article-title: Kalman filtering publication-title: International Encyclopedia of Statistical Science – volume: 60 start-page: 866 year: 2015 end-page: 886 ident: b0050 article-title: A dual Kalman filter approach for state estimation via output-only acceleration measurements publication-title: Mech. Syst. Signal Process. – year: 2019 ident: b0170 article-title: Applied Stochastic Differential Equations – start-page: 9 year: 2009 end-page: 16 ident: b0090 article-title: Latent force models publication-title: Artificial Intelligence and Statistics – volume: vol. 15 year: 1984 ident: b0025 publication-title: Modal Testing: Theory and Practice – reference: S.E. Azam, V. Dertimanis, E. Chatzi, C. Papadimitriou, Output-only schemes for joint input-state-parameter estimation of linear systems, in: Proceedings of the 1st ECCOMAS Thematic Conference on Uncertainty Quantification in Computational Sciences and Engineering, 2015, pp. 497–510. – volume: 463 start-page: 1639 year: 2007 end-page: 1664 ident: b0005 article-title: The fundamental axioms of structural health monitoring publication-title: Proc. R. Soc. London A – volume: 19 start-page: 51 year: 2012 end-page: 124 ident: b0035 article-title: System identification methods for (operational) modal analysis: review and comparison publication-title: Arch. Comput. Methods Eng. – year: 2013 ident: b0120 article-title: Bayesian Filtering and Smoothing – volume: 35 start-page: 403 year: 1993 end-page: 410 ident: b0160 article-title: A Bayesian analysis of Kriging publication-title: Technometrics – year: 2018 ident: b0150 article-title: Towards Bayesian system identification: with application to SHM of offshore structures – volume: 7 start-page: 2651 year: 2006 end-page: 2667 ident: b0200 article-title: Universal kernels publication-title: J. Mach. Learn. Res. – volume: 23 start-page: 2494 year: 2017 end-page: 2519 ident: b0055 article-title: Experimental validation of the Kalman-type filters for online and real-time state and input estimation publication-title: J. Vib. Control – volume: 43 start-page: 934 year: 2007 end-page: 937 ident: b0065 article-title: Unbiased minimum-variance input and state estimation for linear discrete-time systems with direct feedthrough publication-title: Automatica – year: 2011 ident: 10.1016/j.ymssp.2019.106580_b0190 – volume: 22 start-page: 129 issue: 3 year: 2000 ident: 10.1016/j.ymssp.2019.106580_b0205 article-title: The UK Christchurch Bay compliant cylinder project: analysis and interpretation of Morison wave force and response data publication-title: Appl. Ocean Res. doi: 10.1016/S0141-1187(00)00009-2 – volume: 259 start-page: 387 issue: 2 year: 2003 ident: 10.1016/j.ymssp.2019.106580_b0045 article-title: Input forces estimation of beam structures by an inverse method publication-title: J. Sound Vib. doi: 10.1006/jsvi.2002.5334 – ident: 10.1016/j.ymssp.2019.106580_b0195 – year: 2018 ident: 10.1016/j.ymssp.2019.106580_b0100 article-title: A Bayesian filtering approach to operational modal analysis with recovery of forcing signals – volume: 29 start-page: 310 year: 2012 ident: 10.1016/j.ymssp.2019.106580_b0040 article-title: Joint input-response estimation for structural systems based on reduced-order models and vibration data from a limited number of sensors publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2012.01.011 – year: 1996 ident: 10.1016/j.ymssp.2019.106580_b0175 – year: 2018 ident: 10.1016/j.ymssp.2019.106580_b0150 – volume: 123 start-page: 659 issue: 4 year: 2001 ident: 10.1016/j.ymssp.2019.106580_b0030 article-title: Stochastic system identification for operational modal analysis: a review publication-title: J. Dyn. Syst. Meas. Contr. doi: 10.1115/1.1410370 – start-page: 9 year: 2009 ident: 10.1016/j.ymssp.2019.106580_b0090 article-title: Latent force models – volume: 23 start-page: 2494 issue: 15 year: 2017 ident: 10.1016/j.ymssp.2019.106580_b0055 article-title: Experimental validation of the Kalman-type filters for online and real-time state and input estimation publication-title: J. Vib. Control doi: 10.1177/1077546315617672 – year: 2005 ident: 10.1016/j.ymssp.2019.106580_b0110 – volume: 3 start-page: 1445 issue: 8 year: 1965 ident: 10.1016/j.ymssp.2019.106580_b0135 article-title: Maximum likelihood estimates of linear dynamic systems publication-title: AIAA J. doi: 10.2514/3.3166 – start-page: 294 year: 2001 ident: 10.1016/j.ymssp.2019.106580_b0185 article-title: Occam’s razor – year: 1999 ident: 10.1016/j.ymssp.2019.106580_b0145 – volume: 283 start-page: 1167 year: 2015 ident: 10.1016/j.ymssp.2019.106580_b0075 article-title: An online coupled state/input/parameter estimation approach for structural dynamics publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2014.08.010 – ident: 10.1016/j.ymssp.2019.106580_b0070 – volume: 82 start-page: 35 issue: 1 year: 1960 ident: 10.1016/j.ymssp.2019.106580_b0130 article-title: A new approach to linear filtering and prediction problems publication-title: J. Basic Eng. doi: 10.1115/1.3662552 – volume: 126 start-page: 711 year: 2019 ident: 10.1016/j.ymssp.2019.106580_b0080 article-title: Input-state-parameter estimation of structural systems from limited output information publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2019.02.040 – ident: 10.1016/j.ymssp.2019.106580_b0095 – year: 1998 ident: 10.1016/j.ymssp.2019.106580_b0115 – year: 2013 ident: 10.1016/j.ymssp.2019.106580_b0120 – volume: 43 start-page: 934 issue: 5 year: 2007 ident: 10.1016/j.ymssp.2019.106580_b0065 article-title: Unbiased minimum-variance input and state estimation for linear discrete-time systems with direct feedthrough publication-title: Automatica doi: 10.1016/j.automatica.2006.11.016 – volume: 463 start-page: 1639 issue: 2082 year: 2007 ident: 10.1016/j.ymssp.2019.106580_b0005 article-title: The fundamental axioms of structural health monitoring publication-title: Proc. R. Soc. London A doi: 10.1098/rspa.2007.1834 – volume: 35 start-page: 403 issue: 4 year: 1993 ident: 10.1016/j.ymssp.2019.106580_b0160 article-title: A Bayesian analysis of Kriging publication-title: Technometrics doi: 10.1080/00401706.1993.10485354 – volume: 60 start-page: 866 year: 2015 ident: 10.1016/j.ymssp.2019.106580_b0050 article-title: A dual Kalman filter approach for state estimation via output-only acceleration measurements publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2015.02.001 – volume: 21 start-page: 81 issue: 1 year: 2006 ident: 10.1016/j.ymssp.2019.106580_b0060 article-title: Bayesian state and parameter estimation of uncertain dynamical systems publication-title: Prob. Eng. Mech. doi: 10.1016/j.probengmech.2005.08.003 – volume: 128 start-page: 497 year: 2019 ident: 10.1016/j.ymssp.2019.106580_b0105 article-title: A Gaussian process latent force model for joint input-state estimation in linear structural systems publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2019.03.048 – volume: 7 start-page: 2651 year: 2006 ident: 10.1016/j.ymssp.2019.106580_b0200 article-title: Universal kernels publication-title: J. Mach. Learn. Res. – year: 2012 ident: 10.1016/j.ymssp.2019.106580_b0010 – volume: 130 start-page: 755 year: 2019 ident: 10.1016/j.ymssp.2019.106580_b0085 article-title: Tracking of inputs, states and parameters of linear structural dynamic systems publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2019.04.048 – start-page: 1 year: 1978 ident: 10.1016/j.ymssp.2019.106580_b0140 article-title: Curve fitting and optimal design for prediction publication-title: J. R. Stat. Soc. Ser. B (Methodological) – volume: 30 start-page: 149 issue: 2 year: 2001 ident: 10.1016/j.ymssp.2019.106580_b0015 article-title: One-year monitoring of the Z24-Bridge: environmental effects versus damage events publication-title: Earthq. Eng. Struct. Dyn. doi: 10.1002/1096-9845(200102)30:2<149::AID-EQE1>3.0.CO;2-Z – volume: vol. 15 year: 1984 ident: 10.1016/j.ymssp.2019.106580_b0025 – year: 2019 ident: 10.1016/j.ymssp.2019.106580_b0170 – year: 2013 ident: 10.1016/j.ymssp.2019.106580_b0180 – volume: 19 start-page: 51 issue: 1 year: 2012 ident: 10.1016/j.ymssp.2019.106580_b0035 article-title: System identification methods for (operational) modal analysis: review and comparison publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-012-9069-x – year: 2012 ident: 10.1016/j.ymssp.2019.106580_b0125 – ident: 10.1016/j.ymssp.2019.106580_b0155 doi: 10.1109/MLSP.2010.5589113 – volume: 37 start-page: 761 issue: 10 year: 2001 ident: 10.1016/j.ymssp.2019.106580_b0020 article-title: Civil structure condition assessment by FE model updating: methodology and case studies publication-title: Finite Elem. Anal. Design doi: 10.1016/S0168-874X(00)00071-8 – start-page: 705 year: 2011 ident: 10.1016/j.ymssp.2019.106580_b0165 article-title: Kalman filtering |
SSID | ssj0009406 |
Score | 2.4979682 |
Snippet | •An output only analysis of structural systems under non-Gaussian excitation is shown.•The GPLFM is shown for joint input-state-parameter identification for... The problem of identifying dynamic structural systems is of key interest to modern engineering practice and is often a first step in an analysis chain, such as... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 106580 |
SubjectTerms | Bayesian Bayesian analysis Gaussian process Identification Latent force model Operational modal analysis Parameter estimation Parameter identification Random noise Signal processing State space models Statistical inference Structural health monitoring System identification |
Title | On the application of Gaussian process latent force models for joint input-state-parameter estimation: With a view to Bayesian operational identification |
URI | https://dx.doi.org/10.1016/j.ymssp.2019.106580 https://www.proquest.com/docview/2437432008 |
Volume | 140 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELYQvZQDaimo0C2aQ481u0kcJ-lti6DbVoUDRXCz7MRRs4IkItkDl75H37YzjkMpEhyQcsnIjiLPeH7smW8Y-5CFFp8g5tIWCRcmNlwXdOE4C9E4oY-QumTMHydycS6-XcaXa-xwrIWhtEqv-wed7rS1p0z9ak7bqpqe4f5AcSQ48QjdHldoLkRCUn7w-1-aRyZcf00azGn0iDzkcrxur7uOQCuDDCloi2ePWacHetoZn-NXbNN7jTAffuw1W7P1Ftu4hyX4hv05rQGdObh3Iw1NCV_0qqM6SWiHigC4Quey7gF91dyC64PT0QssmwrJVd2ueu6qjDihgl9TtgwQEsdQ4vgJLqr-F2igGwXoG_isb637ftPaG3-wCFXhc5AcYZudHx_9PFxw33eB51EU9JxqU3GnJ1mCxivVWSHzoEilsTaVGCDFkaQoSlOVrshLaYIyKOM0M7YsRGCMjHbYet3U9i2DTItZbmQsDEY-NglTaQOLaqXQqUbfJd1l4bjeKveg5NQb40qN2WdL5ZikiElqYNIu-3g3qR0wOZ4eLkdGqv9ES6HVeHriZGS78ju7UwTgKCLKGtl77nffsZchRe3uLGfC1vublX2Prk1v9p3s7rMX86_fFyd_AbHB-hw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZW5UB7QBSKWihlDhxxd5M43oQbVC0LfXBgK3qz7MRRU7VJ1GQPvfA_-LfMOE67VGIPSLlkZEeRx_OyZ75h7H0aWnyCmEubT7kwseE6pwvHSYjGCX2ExCVjnp7J2bn4dhFfjNjBUAtDaZVe9_c63WlrTxn71Rw3ZTn-gfKB25HgxCN0e6jQ_IlA8aU2Bvu_HvI8UuEabNJoTsMH6CGX5HV307aEWhmkSEFjPPmXeXqkqJ31OXrOnnm3ET71f7bJRrZ6wTaWwARfst_fK0BvDpaupKEu4ItetFQoCU1fEgDX6F1WHaCzmllwjXBaeoGrukRyWTWLjrsyI06w4DeULgMExdHXOH6En2V3CRroSgG6Gj7rO-u-Xzf21p8sQpn7JCRH2GLnR4fzgxn3jRd4FkVBx6k4FUV9mk7ReiU6zWUW5Ik01iYSI6Q4khRGaSrTFVkhTVAERZykxha5CIyR0Su2VtWV3WaQajHJjIyFwdDHTsNE2sCiXsl1otF5SXZYOKy3yjwqOTXHuFZD-tmVckxSxCTVM2mHfbif1PSgHKuHy4GR6q-9pdBsrJ64O7BdedFuFSE4iojSRl7_73ffsaez-emJOvl6dvyGrYcUwruDnV221t0u7Fv0czqz5_bxH1_J-6o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+application+of+Gaussian+process+latent+force+models+for+joint+input-state-parameter+estimation%3A+With+a+view+to+Bayesian+operational+identification&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Rogers%2C+T.J.&rft.au=Worden%2C+K.&rft.au=Cross%2C+E.J.&rft.date=2020-06-01&rft.pub=Elsevier+Ltd&rft.issn=0888-3270&rft.eissn=1096-1216&rft.volume=140&rft_id=info:doi/10.1016%2Fj.ymssp.2019.106580&rft.externalDocID=S0888327019308015 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon |