Portable EMG Data Acquisition Module for Upper Limb Prosthesis Application

Electromyography (EMG) signals are gaining popularity to develop the prosthetics. In this paper, an efficient multi-channel EMG signal acquisition system has been proposed for upper limb prosthetic application. Various arm exercises have been performed to obtain EMG signals from five different arm m...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 18; no. 8; pp. 3436 - 3443
Main Authors Pancholi, Sidharth, Joshi, Amit M.
Format Journal Article
LanguageEnglish
Published IEEE 15.04.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electromyography (EMG) signals are gaining popularity to develop the prosthetics. In this paper, an efficient multi-channel EMG signal acquisition system has been proposed for upper limb prosthetic application. Various arm exercises have been performed to obtain EMG signals from five different arm muscles for the validation of developed hardware. The muscle's position has been selected by palpation method. Furthermore, the classification algorithms have been examined for seven different activities. Total 29 subjects have been chosen (25 intact and four Amputees) to acquire the EMG data by these activities. To classify the recorded EMG data set, nine time domain and seven frequency domain features have been extracted. A comparative analysis of different classifiers is presented for different muscle position of electrodes. The signal processing and classification algorithms have been processed in MATLAB 2016a. The accuracy of classification ranges for different classification algorithms from 57.69% to 99.92% for all subjects.
AbstractList Electromyography (EMG) signals are gaining popularity to develop the prosthetics. In this paper, an efficient multi-channel EMG signal acquisition system has been proposed for upper limb prosthetic application. Various arm exercises have been performed to obtain EMG signals from five different arm muscles for the validation of developed hardware. The muscle's position has been selected by palpation method. Furthermore, the classification algorithms have been examined for seven different activities. Total 29 subjects have been chosen (25 intact and four Amputees) to acquire the EMG data by these activities. To classify the recorded EMG data set, nine time domain and seven frequency domain features have been extracted. A comparative analysis of different classifiers is presented for different muscle position of electrodes. The signal processing and classification algorithms have been processed in MATLAB 2016a. The accuracy of classification ranges for different classification algorithms from 57.69% to 99.92% for all subjects.
Author Pancholi, Sidharth
Joshi, Amit M.
Author_xml – sequence: 1
  givenname: Sidharth
  surname: Pancholi
  fullname: Pancholi, Sidharth
  email: sid.2592@gmail.com
  organization: Dept. of Electron. & Commun. Eng., Malaviya Nat. Inst. of Technol., Jaipur, India
– sequence: 2
  givenname: Amit M.
  surname: Joshi
  fullname: Joshi, Amit M.
  email: amjoshi.ece@mnit.ac.in
  organization: Dept. of Electron. & Commun. Eng., Malaviya Nat. Inst. of Technol., Jaipur, India
BookMark eNp9kMtOwzAQRS1UJNrCByA2_oGUcfyIs6xKKVQtVIJK7CLbcYRR2gTbXfD3JLRiwYLVjHTvGY3OCA32zd4idE1gQgjkt8uX-dMkBSInqYSccXmGhoRzmZCMyUG_U0gYzd4u0CiEDwCSZzwbouWm8VHp2uL5eoHvVFR4aj4PLrjomj1eN-Why6rG423bWo9XbqfxxjchvtvgAp62be2M6suX6LxSdbBXpzlG2_v56-whWT0vHmfTVWIoJTERRAvIpU0Fp5oqIKoELkSuBZWMQilKpQRJtRXAmBaiy1WZV5VkFTWmTOkYZce7pnsjeFsVxsWfD6JXri4IFL2SoldS9EqKk5KOJH_I1rud8l__MjdHxllrf_uSQso5od-_vW6P
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1142_S0219519421500433
crossref_primary_10_1109_RBME_2019_2950897
crossref_primary_10_1002_aisy_202200063
crossref_primary_10_1080_03091902_2019_1653391
crossref_primary_10_3390_app112311199
crossref_primary_10_1109_JSEN_2021_3095118
crossref_primary_10_3390_s22155618
crossref_primary_10_1109_TNSRE_2022_3178384
crossref_primary_10_1109_TCYB_2020_3016595
crossref_primary_10_1587_elex_21_20240630
crossref_primary_10_1109_TIE_2019_2946536
crossref_primary_10_1177_09544119221074770
crossref_primary_10_1109_TMRB_2022_3216957
crossref_primary_10_1109_LSENS_2019_2906386
crossref_primary_10_34016_pjbt_2023_20_02_804
crossref_primary_10_1080_10255842_2023_2165068
crossref_primary_10_1109_TIM_2025_3545204
crossref_primary_10_1109_TIM_2022_3198443
crossref_primary_10_1016_j_medntd_2022_100165
crossref_primary_10_3390_s22165931
crossref_primary_10_1007_s00170_024_14803_1
crossref_primary_10_1109_MSP_2021_3057042
crossref_primary_10_1088_1757_899X_745_1_012094
crossref_primary_10_1109_JSEN_2022_3213868
crossref_primary_10_1007_s43154_020_00015_4
crossref_primary_10_3934_mbe_2021177
crossref_primary_10_1155_2019_3679174
crossref_primary_10_1007_s11517_023_02821_2
crossref_primary_10_3390_app10175823
crossref_primary_10_1007_s11517_021_02358_2
crossref_primary_10_1016_j_compeleceng_2025_110094
crossref_primary_10_1109_JSEN_2019_2931715
crossref_primary_10_1007_s13246_021_00972_w
crossref_primary_10_1007_s13534_019_00130_y
crossref_primary_10_1038_s41597_023_02223_x
crossref_primary_10_1016_j_bspc_2020_102393
crossref_primary_10_1016_j_ish_2024_12_006
crossref_primary_10_3390_electronics8030259
crossref_primary_10_1109_TBCAS_2019_2914476
crossref_primary_10_1109_JSEN_2020_3042510
crossref_primary_10_3389_fnsys_2022_893275
crossref_primary_10_1016_j_bspc_2020_102122
crossref_primary_10_1109_LSENS_2019_2898257
crossref_primary_10_1016_j_patrec_2022_11_021
crossref_primary_10_1109_JSEN_2025_3529841
crossref_primary_10_1146_annurev_bioeng_082222_012531
crossref_primary_10_4015_S1016237224500236
crossref_primary_10_1155_2023_8231073
crossref_primary_10_1080_10739149_2019_1655441
crossref_primary_10_1016_j_sna_2021_112699
Cites_doi 10.1016/j.jvoice.2014.09.023
10.1109/TNSRE.2014.2305111
10.1016/j.cap.2010.11.051
10.1109/TNSRE.2010.2100828
10.1016/j.eswa.2012.01.102
10.1016/S1050-6411(03)00055-5
10.1109/MED.2014.6961396
10.1016/S1053-8135(97)00057-7
10.1109/86.481972
10.1007/s10916-014-0031-3
10.1109/10.923782
10.1109/TBME.1983.325162
10.1093/brain/awp135
10.1016/S1050-6411(97)00010-2
10.1007/s10916-015-0267-6
10.1109/TNSRE.2007.910282
10.1109/TLA.2016.7786339
10.1007/s12553-015-0113-3
10.1109/TBCAS.2013.2251343
10.1109/TSMCC.2009.2032660
10.1109/TBME.2003.813539
10.1016/S1050-6411(00)00050-X
10.1016/j.bspc.2007.07.009
10.1682/JRRD.2010.09.0177
10.1109/72.991427
10.1109/TBCAS.2015.2476555
10.1145/2702123.2702133
10.1186/1743-0003-3-27
10.1016/j.jelekin.2006.03.001
10.1016/j.jbiomech.2010.01.027
10.1109/TNSRE.2011.2108667
10.1016/S1352-8661(01)00145-4
10.1251/bpo115
10.1109/INDICON.2016.7839015
10.1007/s00422-008-0278-1
10.1109/JSEN.2015.2459067
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/JSEN.2018.2809458
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 3443
ExternalDocumentID 10_1109_JSEN_2018_2809458
8302551
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c331t-61b6098e2653b3a01ad05669b638430d6daa612be6044b661adad9ff84f3ccd23
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Thu Apr 24 23:10:14 EDT 2025
Tue Jul 01 03:36:41 EDT 2025
Wed Aug 27 03:05:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-61b6098e2653b3a01ad05669b638430d6daa612be6044b661adad9ff84f3ccd23
ORCID 0000-0003-3450-9617
0000-0001-7919-1652
PageCount 8
ParticipantIDs crossref_citationtrail_10_1109_JSEN_2018_2809458
ieee_primary_8302551
crossref_primary_10_1109_JSEN_2018_2809458
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-April15,-15
2018-4-15
PublicationDateYYYYMMDD 2018-04-15
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-April15,-15
  day: 15
PublicationDecade 2010
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
References ref35
ref13
ref34
ref12
ref15
ref36
ref14
houjie (ref24) 2012; 2
ref31
ref30
ref33
ref11
ref32
ref10
ref2
(ref39) 2017
ref1
ref17
ref38
ref16
ref19
(ref41) 2017
(ref18) 2010
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
(ref40) 2017
ref9
ref4
ref3
ref6
ref5
soo (ref37) 2011; 11
References_xml – ident: ref17
  doi: 10.1016/j.jvoice.2014.09.023
– ident: ref26
  doi: 10.1109/TNSRE.2014.2305111
– volume: 11
  start-page: 740
  year: 2011
  ident: ref37
  article-title: Comparison of k-nearest neighbor, quadratic discriminant and linear discriminant analysis in classification of electromyogram signals based on the wrist-motion directions
  publication-title: Current Appl Phys
  doi: 10.1016/j.cap.2010.11.051
– ident: ref21
  doi: 10.1109/TNSRE.2010.2100828
– ident: ref23
  doi: 10.1016/j.eswa.2012.01.102
– ident: ref31
  doi: 10.1016/S1050-6411(03)00055-5
– ident: ref7
  doi: 10.1109/MED.2014.6961396
– ident: ref32
  doi: 10.1016/S1053-8135(97)00057-7
– ident: ref36
  doi: 10.1109/86.481972
– ident: ref30
  doi: 10.1007/s10916-014-0031-3
– year: 2017
  ident: ref41
  publication-title: NeXus-10-mkii
– year: 2010
  ident: ref18
  publication-title: ADS129x Low-Power 8-Channel 24-Bit Analog Front-End for Biopotential Measurements Datasheet SBAS459K
– ident: ref4
  doi: 10.1109/10.923782
– ident: ref5
  doi: 10.1109/TBME.1983.325162
– ident: ref38
  doi: 10.1093/brain/awp135
– ident: ref2
  doi: 10.1016/S1050-6411(97)00010-2
– year: 2017
  ident: ref40
  publication-title: MyoWare Muscle Sensor
– ident: ref14
  doi: 10.1007/s10916-015-0267-6
– ident: ref15
  doi: 10.1109/TNSRE.2007.910282
– ident: ref20
  doi: 10.1109/TLA.2016.7786339
– ident: ref12
  doi: 10.1007/s12553-015-0113-3
– ident: ref13
  doi: 10.1109/TBCAS.2013.2251343
– ident: ref22
  doi: 10.1109/TSMCC.2009.2032660
– volume: 2
  start-page: 12
  year: 2012
  ident: ref24
  article-title: Portable biopotential signal acquisition system of ADS1298 anolog front-end
  publication-title: Microcontrollers and Embedded systems
– ident: ref35
  doi: 10.1109/TBME.2003.813539
– ident: ref3
  doi: 10.1016/S1050-6411(00)00050-X
– ident: ref25
  doi: 10.1016/j.bspc.2007.07.009
– ident: ref6
  doi: 10.1682/JRRD.2010.09.0177
– ident: ref16
  doi: 10.1109/72.991427
– ident: ref28
  doi: 10.1109/TBCAS.2015.2476555
– ident: ref27
  doi: 10.1145/2702123.2702133
– ident: ref33
  doi: 10.1186/1743-0003-3-27
– ident: ref34
  doi: 10.1016/j.jelekin.2006.03.001
– ident: ref29
  doi: 10.1016/j.jbiomech.2010.01.027
– ident: ref19
  doi: 10.1109/TNSRE.2011.2108667
– ident: ref8
  doi: 10.1016/S1352-8661(01)00145-4
– ident: ref1
  doi: 10.1251/bpo115
– ident: ref10
  doi: 10.1109/INDICON.2016.7839015
– ident: ref9
  doi: 10.1007/s00422-008-0278-1
– year: 2017
  ident: ref39
  publication-title: PhysioLab Biosignal Module (Mini-Size Module With Isolation Power & Signal)-3 Types (PSL-iEMG 1-Channel EMG Anaglog Amplifier Module)
– ident: ref11
  doi: 10.1109/JSEN.2015.2459067
SSID ssj0019757
Score 2.4328325
Snippet Electromyography (EMG) signals are gaining popularity to develop the prosthetics. In this paper, an efficient multi-channel EMG signal acquisition system has...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 3436
SubjectTerms Acquisition
classification
Electrodes
Electromyography
Feature extraction
k-NN
LDA
Muscles
prosthetic
Prosthetics
QDA
sEMG
Skin
SVM
Wrist
Title Portable EMG Data Acquisition Module for Upper Limb Prosthesis Application
URI https://ieeexplore.ieee.org/document/8302551
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT8IwEG-QF_XBD9CIX-mDT8aNbt3G-kgUJESIiZLwtvTjFokICNuD_vW225jEGOPb0rVJc9fmfte7-x1CV4YiBWQsLVeGyvJCoSzBwbHcmAsaSAJMmKeBwTDojbz-2B9X0E1ZCwMAWfIZ2OYzi-WruUzNU1nTcFX5pl56Sztuea1WGTFgrYzVU19gYnm0NS4imA5hzf5TZ2iSuELbDbU3Y7q7b9igjaYqmU3p7qPBejd5KsmrnSbClp8_iBr_u90DtFeAS9zOT8MhqsCshnY3KAdraLvoev7yUUf9LI1UTAF3Bvf4jicct-V7OsnTuPBgrlL9T6NaPFosYIkfJm8CP5oykRdYTVa4_R38PkKjbuf5tmcVvRUsSamTaI9RBISF4AY-FZQThysNhQIm9H30KFGB4lyDHwEB8TyhjThXXLE4Dr2YSqlceoyqs_kMThCOHQ0CGWsxpaGCBhQcfCdkYRC3YkPwBQ1E1tKOZEE8bvpfTKPMASEsMgqKjIKiQkENdF0uWeSsG39NrhvZlxMLsZ_-PnyGdsxiExBy_HNUTZYpXGhckYjL7EB9AZPnyEg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYQHIADb8SbHDghOtKm7ZrjBIMx1gkJJu1W5eFqE7ANaA_w60naMiaEELeqTarITuTPsf0Z4MRSpKBKleOpSDt-JLUjBbqOlwrJQkWRS3s1EHfDVs9v94P-HJxNa2EQsUg-w5p9LGL5eqxye1V2brmqAlsvvWDsfuCW1VrTmAGvF7ye5ghTx2f1fhXDdCk_b983uzaNK6p5kfFnbH_3GSs001alsCpXqxB_radMJnms5ZmsqY8fVI3_XfAarFTwkjTK_bAOczjagOUZ0sENWKz6ng_eN6FdJJLKJyTN-JpcikyQhnrJh2UiF4nHOjffDK4lvckEX0ln-CzJnS0UGeDb8I00vsPfW9C7aj5ctJyqu4KjGHMz4zPKkPIIvTBgkgnqCm3AUMilOZE-ozrUQhj4IzGkvi-NGRdaaJ6mkZ8ypbTHtmF-NB7hDpDUNTCQ8zrXBiwYSCEwcCMehWk9tRRfuAv0S9qJqqjHbQeMp6RwQShPrIISq6CkUtAunE6nTErejb8Gb1rZTwdWYt_7_fUxLLYe4k7Suene7sOS_ZEND7nBAcxnrzkeGpSRyaNic30CNrXLkQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Portable+EMG+Data+Acquisition+Module+for+Upper+Limb+Prosthesis+Application&rft.jtitle=IEEE+sensors+journal&rft.au=Pancholi%2C+Sidharth&rft.au=Joshi%2C+Amit+M.&rft.date=2018-04-15&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=18&rft.issue=8&rft.spage=3436&rft.epage=3443&rft_id=info:doi/10.1109%2FJSEN.2018.2809458&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2018_2809458
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon