FGYOLO: An Integrated Feature Enhancement Lightweight Unmanned Aerial Vehicle Forest Fire Detection Framework Based on YOLOv8n
To address the challenges of complex backgrounds and small, easily confused fire and smoke targets in Unmanned Aerial Vehicle (UAV)-based forest fire detection, we propose an improved forest smoke and fire detection algorithm based on YOLOv8. Considering the limited computational resources of UAVs a...
Saved in:
Published in | Forests Vol. 15; no. 10; p. 1823 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.10.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1999-4907 1999-4907 |
DOI | 10.3390/f15101823 |
Cover
Loading…
Abstract | To address the challenges of complex backgrounds and small, easily confused fire and smoke targets in Unmanned Aerial Vehicle (UAV)-based forest fire detection, we propose an improved forest smoke and fire detection algorithm based on YOLOv8. Considering the limited computational resources of UAVs and the lightweight property of YOLOv8n, the original model of YOLOv8n is improved, the Bottleneck module is reconstructed using Group Shuffle Convolution (GSConv), and the residual structure is improved, thereby enhancing the model’s detection capability while reducing network parameters. The GBFPN module is proposed to optimize the neck layer network structure and fusion method, enabling the more effective extraction and fusion of pyrotechnic features. Recognizing the difficulty in capturing the prominent characteristics of fire and smoke in a complex, tree-heavy environment, we implemented the BiFormer attention mechanism to boost the model’s ability to acquire multi-scale properties while retaining fine-grained features. Additionally, the Inner-MPDIoU loss function is implemented to replace the original CIoU loss function, thereby improving the model’s capacity for detecting small targets. The experimental results of the customized G-Fire dataset reveal that FGYOLO achieves a 3.3% improvement in mean Average Precision (mAP), reaching 98.8%, while reducing the number of parameters by 26.4% compared to the original YOLOv8n. |
---|---|
AbstractList | To address the challenges of complex backgrounds and small, easily confused fire and smoke targets in Unmanned Aerial Vehicle (UAV)-based forest fire detection, we propose an improved forest smoke and fire detection algorithm based on YOLOv8. Considering the limited computational resources of UAVs and the lightweight property of YOLOv8n, the original model of YOLOv8n is improved, the Bottleneck module is reconstructed using Group Shuffle Convolution (GSConv), and the residual structure is improved, thereby enhancing the model’s detection capability while reducing network parameters. The GBFPN module is proposed to optimize the neck layer network structure and fusion method, enabling the more effective extraction and fusion of pyrotechnic features. Recognizing the difficulty in capturing the prominent characteristics of fire and smoke in a complex, tree-heavy environment, we implemented the BiFormer attention mechanism to boost the model’s ability to acquire multi-scale properties while retaining fine-grained features. Additionally, the Inner-MPDIoU loss function is implemented to replace the original CIoU loss function, thereby improving the model’s capacity for detecting small targets. The experimental results of the customized G-Fire dataset reveal that FGYOLO achieves a 3.3% improvement in mean Average Precision (mAP), reaching 98.8%, while reducing the number of parameters by 26.4% compared to the original YOLOv8n. |
Audience | Academic |
Author | Li, Jingyan Gao, Zhengyang Tao, Fazhan Zheng, Yangyang |
Author_xml | – sequence: 1 givenname: Yangyang orcidid: 0009-0002-1191-2171 surname: Zheng fullname: Zheng, Yangyang – sequence: 2 givenname: Fazhan orcidid: 0000-0001-6721-5354 surname: Tao fullname: Tao, Fazhan – sequence: 3 givenname: Zhengyang surname: Gao fullname: Gao, Zhengyang – sequence: 4 givenname: Jingyan surname: Li fullname: Li, Jingyan |
BookMark | eNptkUtPAjEQgBuDiYgc_AdNPHkA-thXvSGySELCRUw8bbrdWSjudrFbJF787ZZgjDG2SdtMvm-m7VyijmkMIHRNyZBzQUYlDSmhCeNnqEuFEINAkLjz63yB-m27JX6EcSJY0EWf6exluVje4bHBc-NgbaWDAqcg3d4CnpqNNApqMA4v9HrjDnBc8crU0hgPjsFqWeFn2GhVAU4bC63DqfbuAzhQTjcGp1bWcGjsK76XrZd86Fj0PTFX6LyUVQv9772HVun0afI4WCxn88l4MVCcUzcI80gyHhMZK57nUUkET2hBkyjJacwVA0YDAYQByDDmQnHKilCJoAiKnHIW8x66OeXd2eZt76-YbZu9Nb5k5lkShQHnzFPDE7WWFWTalI2zUvlZQK2V_-tS-_g4oQGlcRJEXhidBGWbtrVQZko7eXyzF3WVUZIdG5P9NMYbt3-MndW1tB__sF_Vj40r |
CitedBy_id | crossref_primary_10_3390_f15111975 |
Cites_doi | 10.3390/rs16122177 10.1109/CVPR52729.2023.00721 10.1109/ICCV.2017.322 10.1109/ICCV.2015.169 10.3390/f14091812 10.1007/978-3-319-46448-0_2 10.1109/ICCV48922.2021.00349 10.3390/s23020783 10.1016/j.neucom.2022.07.042 10.1016/j.comnet.2021.108001 10.1371/journal.pone.0299058 10.3390/app132011548 10.1109/CVPR.2017.690 10.1016/j.ecoinf.2023.102401 10.3390/su14094930 10.3390/electronics12010228 10.1109/TPAMI.2016.2577031 10.1109/CVPR.2019.00075 10.3390/s23208374 10.1109/CVPR42600.2020.01079 10.1109/CVPR.2016.91 10.14569/IJACSA.2020.0110564 10.1007/s44267-024-00053-y 10.3390/s22239384 10.3390/rs15235527 10.1016/j.proeng.2017.12.034 10.1609/aaai.v34i07.6999 10.1109/ACCESS.2023.3322143 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SN 7SS 7X2 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO GNUQQ HCIFZ M0K PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS PYCSY |
DOI | 10.3390/f15101823 |
DatabaseName | CrossRef ProQuest Central (Corporate) Ecology Abstracts Entomology Abstracts (Full archive) Agricultural Science Collection ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Agricultural & Environmental Science & Pollution Managment ProQuest Central Essentials ProQuest Central Natural Science Collection ProQuest Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Agricultural Science Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest SciTech Collection Ecology Abstracts Environmental Science Collection Entomology Abstracts ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Agricultural Science Database |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Forestry |
EISSN | 1999-4907 |
ExternalDocumentID | A814117846 10_3390_f15101823 |
GroupedDBID | 2XV 5VS 7X2 7XC 8FE 8FH AADQD AAFWJ AAHBH AAYXX ADBBV AENEX AEUYN AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ATCPS BCNDV BENPR BHPHI BKSAR CCPQU CITATION ECGQY EDH HCIFZ IAG IAO IEP ITC ITG ITH KQ8 LK5 M0K M7R MODMG M~E OK1 OZF PATMY PCBAR PHGZM PHGZT PIMPY PROAC PYCSY TR2 PMFND 3V. 7SN 7SS 8FK ABUWG AZQEC C1K DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c331t-5b6a2370a7c3bb6f09381d1868b173c2e2149e02eea5739c312d5c94d4db13273 |
IEDL.DBID | BENPR |
ISSN | 1999-4907 |
IngestDate | Mon Jun 30 12:29:56 EDT 2025 Tue Jun 10 21:11:12 EDT 2025 Tue Jul 01 01:38:55 EDT 2025 Thu Apr 24 23:00:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c331t-5b6a2370a7c3bb6f09381d1868b173c2e2149e02eea5739c312d5c94d4db13273 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0002-1191-2171 0000-0001-6721-5354 |
OpenAccessLink | https://www.proquest.com/docview/3120654332?pq-origsite=%requestingapplication% |
PQID | 3120654332 |
PQPubID | 2032398 |
ParticipantIDs | proquest_journals_3120654332 gale_infotracacademiconefile_A814117846 crossref_citationtrail_10_3390_f15101823 crossref_primary_10_3390_f15101823 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Forests |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_14 ref_36 ref_13 ref_34 ref_11 ref_33 ref_10 ref_32 ref_31 Qin (ref_1) 2020; 24 ref_19 ref_17 ref_16 ref_37 Liu (ref_28) 2024; 79 Shamsoshoara (ref_35) 2021; 193 Cao (ref_12) 2023; 11 ref_25 ref_24 Zhang (ref_15) 2018; 211 ref_23 ref_22 ref_21 ref_20 ref_3 Ren (ref_4) 2016; 39 ref_2 ref_29 ref_27 ref_26 ref_9 ref_8 Zhang (ref_30) 2022; 506 ref_5 ref_7 Cao (ref_18) 2024; 2 ref_6 |
References_xml | – ident: ref_17 doi: 10.3390/rs16122177 – ident: ref_9 – ident: ref_24 doi: 10.1109/CVPR52729.2023.00721 – ident: ref_2 doi: 10.1109/ICCV.2017.322 – ident: ref_3 doi: 10.1109/ICCV.2015.169 – ident: ref_34 – ident: ref_22 doi: 10.3390/f14091812 – ident: ref_5 doi: 10.1007/978-3-319-46448-0_2 – ident: ref_26 doi: 10.1109/ICCV48922.2021.00349 – volume: 24 start-page: 511 year: 2020 ident: ref_1 article-title: Forest fire early warning and monitoring techniques using satellite remote sensing in China publication-title: J. Remote Sens. – ident: ref_10 doi: 10.3390/s23020783 – ident: ref_37 – volume: 506 start-page: 146 year: 2022 ident: ref_30 article-title: Focal and efficient IOU loss for accurate bounding box regression publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.07.042 – volume: 193 start-page: 108001 year: 2021 ident: ref_35 article-title: Aerial imagery pile burn detection using deep learning: The FLAME dataset publication-title: Comput. Netw. doi: 10.1016/j.comnet.2021.108001 – ident: ref_16 doi: 10.1371/journal.pone.0299058 – ident: ref_13 doi: 10.3390/app132011548 – ident: ref_8 – ident: ref_7 doi: 10.1109/CVPR.2017.690 – ident: ref_31 – ident: ref_29 – ident: ref_33 – volume: 79 start-page: 102401 year: 2024 ident: ref_28 article-title: YWnet: A convolutional block attention-based fusion deep learning method for complex underwater small target detection publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2023.102401 – ident: ref_19 doi: 10.3390/su14094930 – ident: ref_14 doi: 10.3390/electronics12010228 – volume: 39 start-page: 1137 year: 2016 ident: ref_4 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 – ident: ref_32 doi: 10.1109/CVPR.2019.00075 – ident: ref_20 doi: 10.3390/s23208374 – ident: ref_27 doi: 10.1109/CVPR42600.2020.01079 – ident: ref_6 doi: 10.1109/CVPR.2016.91 – ident: ref_11 doi: 10.14569/IJACSA.2020.0110564 – volume: 2 start-page: 20 year: 2024 ident: ref_18 article-title: Efficient forest fire detection based on an improved YOLO model publication-title: Vis. Intell. doi: 10.1007/s44267-024-00053-y – ident: ref_21 doi: 10.3390/s22239384 – ident: ref_23 doi: 10.3390/rs15235527 – ident: ref_36 – volume: 211 start-page: 441 year: 2018 ident: ref_15 article-title: Wildland forest fire smoke detection based on faster R-CNN using synthetic smoke images publication-title: Procedia Eng. doi: 10.1016/j.proeng.2017.12.034 – ident: ref_25 doi: 10.1609/aaai.v34i07.6999 – volume: 11 start-page: 111079 year: 2023 ident: ref_12 article-title: YOLO-SF: YOLO for fire segmentation detection publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3322143 |
SSID | ssj0000578924 |
Score | 2.3325608 |
Snippet | To address the challenges of complex backgrounds and small, easily confused fire and smoke targets in Unmanned Aerial Vehicle (UAV)-based forest fire... |
SourceID | proquest gale crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 1823 |
SubjectTerms | Accuracy Algorithms Datasets Deep learning Drone aircraft Forest & brush fires Forest fire detection Forest fires Modules Parameters Satellites Smoke Target detection Target recognition Unmanned aerial vehicles |
Title | FGYOLO: An Integrated Feature Enhancement Lightweight Unmanned Aerial Vehicle Forest Fire Detection Framework Based on YOLOv8n |
URI | https://www.proquest.com/docview/3120654332 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA66gngRn7i-CCLopdgmfaRepOrWB74QV_RUmkfZg3Z1rXrztzvTpiuCeG1DWmaSmfkmk28I2ZbK5KEomBMWOWargsCRXq4driLGlQ5iUTPeXF6Fp33__CF4sAm3N1tW2drE2lDrocIc-R73WH0PkrODl1cHu0bh6aptoTFJpsAECwBfU4e9q5vbcZYFohEBCKOhFOKA7_cKryapYvyXI_rbHNc-Jp0jszY4pEmjzXkyYcoFMo3dM7El2yL5Sk8ery-u92lS0rOW50FTDOPeR4b2ygHqEPN99AJB92ed96T98jlHc0qTernRezPA-WkzMU3B6tFjU9VFWSVN23IteggeTlN4hB_9EOUS6ae9u6NTxzZQcBTnXuUEMswZj9w8UlzKsHBj8M8aCfKlF3HFDAN8ZFxmTB5EPFYgYx2o2Ne-loBSI75MOuWwNCuECoQ2hat8oTggSC2YNgAtC6GYkn7hdsluK81MWXZxbHLxlAHKQMFnY8F3ydZ46EtDqfHXoB1USYbbDOZRub0tAH-DhFVZIjzf8yKInrpkvdVaZvffW_azWlb_f71GZhiEKU153jrpVKN3swFhRiU37VraJJOXX71vZd_SfQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK7gkqgXIqBxBbFCJHqZMNM9j14TYxbZcVeWxRjW4Gmcfkw46ICwSLjwk_yNVM1jiQnxxnWmUz2prq6ur6b6K4DX2rg8VoXw4iLnbFUUeTrIrSdNIqSxUU9VjDf7k3g4DT8fRUcL8Le9C8Nlla1PrBy1PTGcI9-WgajuQUrx4fS3x12j-O9q20KjNos9d3VJkO38_WiX1ndLiHRw-HHoNV0FPCNlMPMiHedCJn6eGKl1XBCkp5iNWeN1kEgjnCDQ4HzhXB4lsmdoYhuZXmhDqwm6JZLkPoDFUBKU6cDizmDy5es8q0PRjyJEU1MYSdnzt4ugIsUS8p-D7273X51p6RNYaoJR7NfWswwLrlyBh9ytk1vArcJ1-un7wfjgHfZLHLW8EhY5bLw4czgoj9lmOL-IYwb5l1WeFaflr5zdN_Yr88Zv7pjlYy0YU_KyuOtmVRFYiWlbHoY7dKJapEc86R9VPoXpvaj2GXTKk9I9B1QMpQrfhMpIQqxWCesIyhbKCKPDwu_C21abmWnYzLmpxs-MUA0rPpsrvgub86GnNYXHXYPe8JJkvK1Jjsmb2wn0NUyQlfVVEAZBQtFaF9bbVcua_X6e3Vrni_-_fgWPhof742w8muytwWNBIVJdGrgOndnZhXtJIc5MbzR2hfDjvk35BpX4DLY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK7gkhAvRlDjAmKFaPQy2ZnuefSaGLOwO7KyLsS4Bk7D9GPCQQaEReLFH-avs2oea0iIN64znZpOd3VVfTXVXwG80sblsSqEFxc5Z6uiyNNBbj1pEiGNjfqqYrz5PI33ZuGno-hoCf60d2G4rLK1iZWhtueGc-Q9GYjqHqQUvaIpizgcph8ufnjcQYr_tLbtNGoV2Xe_bgi-Xb0fD2mvXwuRjr7u7nlNhwHPSBnMvUjHuZCJnydGah0XBO8pfmMGeR0k0ggnCEA4XziXR4nsG5qEjUw_tKHVBOMSSXIfwHJCqMjvwPLOaHr4ZZHhoUhIEbqp6Yyk7Pu9IqgIsoS85QTvdgWVf0sfw6MmMMVBrUmrsOTKNVjhzp3cDu4J_E4_Hh9MDt7hoMRxyzFhkUPI60uHo_KU9YdzjThhwH9T5VxxVp7lbMpxUKk6fnOnLB9rwZiSxcWhm1cFYSWmbakY7pB3tUiP-KM_VfkUZveytM-gU56X7jmgYlhV-CZURhJ6tUpYR7C2UEYYHRZ-F962q5mZhtmcG2x8zwjh8MJni4XvwvZi6EVN53HXoDe8JRkfcZJj8uamAs2GybKygQrCIEgocuvCZrtrWXP2r7J_mrr-_9cvYYVUOJuMp_sb8FBQtFRXCW5CZ3557V5QtDPXW41aIZzctyb_BfqwEOs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FGYOLO%3A+An+Integrated+Feature+Enhancement+Lightweight+Unmanned+Aerial+Vehicle+Forest+Fire+Detection+Framework+Based+on+YOLOv8n&rft.jtitle=Forests&rft.au=Zheng%2C+Yangyang&rft.au=Tao%2C+Fazhan&rft.au=Gao%2C+Zhengyang&rft.au=Li%2C+Jingyan&rft.date=2024-10-01&rft.issn=1999-4907&rft.eissn=1999-4907&rft.volume=15&rft.issue=10&rft.spage=1823&rft_id=info:doi/10.3390%2Ff15101823&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_f15101823 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4907&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4907&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4907&client=summon |