FGYOLO: An Integrated Feature Enhancement Lightweight Unmanned Aerial Vehicle Forest Fire Detection Framework Based on YOLOv8n

To address the challenges of complex backgrounds and small, easily confused fire and smoke targets in Unmanned Aerial Vehicle (UAV)-based forest fire detection, we propose an improved forest smoke and fire detection algorithm based on YOLOv8. Considering the limited computational resources of UAVs a...

Full description

Saved in:
Bibliographic Details
Published inForests Vol. 15; no. 10; p. 1823
Main Authors Zheng, Yangyang, Tao, Fazhan, Gao, Zhengyang, Li, Jingyan
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2024
Subjects
Online AccessGet full text
ISSN1999-4907
1999-4907
DOI10.3390/f15101823

Cover

Loading…
Abstract To address the challenges of complex backgrounds and small, easily confused fire and smoke targets in Unmanned Aerial Vehicle (UAV)-based forest fire detection, we propose an improved forest smoke and fire detection algorithm based on YOLOv8. Considering the limited computational resources of UAVs and the lightweight property of YOLOv8n, the original model of YOLOv8n is improved, the Bottleneck module is reconstructed using Group Shuffle Convolution (GSConv), and the residual structure is improved, thereby enhancing the model’s detection capability while reducing network parameters. The GBFPN module is proposed to optimize the neck layer network structure and fusion method, enabling the more effective extraction and fusion of pyrotechnic features. Recognizing the difficulty in capturing the prominent characteristics of fire and smoke in a complex, tree-heavy environment, we implemented the BiFormer attention mechanism to boost the model’s ability to acquire multi-scale properties while retaining fine-grained features. Additionally, the Inner-MPDIoU loss function is implemented to replace the original CIoU loss function, thereby improving the model’s capacity for detecting small targets. The experimental results of the customized G-Fire dataset reveal that FGYOLO achieves a 3.3% improvement in mean Average Precision (mAP), reaching 98.8%, while reducing the number of parameters by 26.4% compared to the original YOLOv8n.
AbstractList To address the challenges of complex backgrounds and small, easily confused fire and smoke targets in Unmanned Aerial Vehicle (UAV)-based forest fire detection, we propose an improved forest smoke and fire detection algorithm based on YOLOv8. Considering the limited computational resources of UAVs and the lightweight property of YOLOv8n, the original model of YOLOv8n is improved, the Bottleneck module is reconstructed using Group Shuffle Convolution (GSConv), and the residual structure is improved, thereby enhancing the model’s detection capability while reducing network parameters. The GBFPN module is proposed to optimize the neck layer network structure and fusion method, enabling the more effective extraction and fusion of pyrotechnic features. Recognizing the difficulty in capturing the prominent characteristics of fire and smoke in a complex, tree-heavy environment, we implemented the BiFormer attention mechanism to boost the model’s ability to acquire multi-scale properties while retaining fine-grained features. Additionally, the Inner-MPDIoU loss function is implemented to replace the original CIoU loss function, thereby improving the model’s capacity for detecting small targets. The experimental results of the customized G-Fire dataset reveal that FGYOLO achieves a 3.3% improvement in mean Average Precision (mAP), reaching 98.8%, while reducing the number of parameters by 26.4% compared to the original YOLOv8n.
Audience Academic
Author Li, Jingyan
Gao, Zhengyang
Tao, Fazhan
Zheng, Yangyang
Author_xml – sequence: 1
  givenname: Yangyang
  orcidid: 0009-0002-1191-2171
  surname: Zheng
  fullname: Zheng, Yangyang
– sequence: 2
  givenname: Fazhan
  orcidid: 0000-0001-6721-5354
  surname: Tao
  fullname: Tao, Fazhan
– sequence: 3
  givenname: Zhengyang
  surname: Gao
  fullname: Gao, Zhengyang
– sequence: 4
  givenname: Jingyan
  surname: Li
  fullname: Li, Jingyan
BookMark eNptkUtPAjEQgBuDiYgc_AdNPHkA-thXvSGySELCRUw8bbrdWSjudrFbJF787ZZgjDG2SdtMvm-m7VyijmkMIHRNyZBzQUYlDSmhCeNnqEuFEINAkLjz63yB-m27JX6EcSJY0EWf6exluVje4bHBc-NgbaWDAqcg3d4CnpqNNApqMA4v9HrjDnBc8crU0hgPjsFqWeFn2GhVAU4bC63DqfbuAzhQTjcGp1bWcGjsK76XrZd86Fj0PTFX6LyUVQv9772HVun0afI4WCxn88l4MVCcUzcI80gyHhMZK57nUUkET2hBkyjJacwVA0YDAYQByDDmQnHKilCJoAiKnHIW8x66OeXd2eZt76-YbZu9Nb5k5lkShQHnzFPDE7WWFWTalI2zUvlZQK2V_-tS-_g4oQGlcRJEXhidBGWbtrVQZko7eXyzF3WVUZIdG5P9NMYbt3-MndW1tB__sF_Vj40r
CitedBy_id crossref_primary_10_3390_f15111975
Cites_doi 10.3390/rs16122177
10.1109/CVPR52729.2023.00721
10.1109/ICCV.2017.322
10.1109/ICCV.2015.169
10.3390/f14091812
10.1007/978-3-319-46448-0_2
10.1109/ICCV48922.2021.00349
10.3390/s23020783
10.1016/j.neucom.2022.07.042
10.1016/j.comnet.2021.108001
10.1371/journal.pone.0299058
10.3390/app132011548
10.1109/CVPR.2017.690
10.1016/j.ecoinf.2023.102401
10.3390/su14094930
10.3390/electronics12010228
10.1109/TPAMI.2016.2577031
10.1109/CVPR.2019.00075
10.3390/s23208374
10.1109/CVPR42600.2020.01079
10.1109/CVPR.2016.91
10.14569/IJACSA.2020.0110564
10.1007/s44267-024-00053-y
10.3390/s22239384
10.3390/rs15235527
10.1016/j.proeng.2017.12.034
10.1609/aaai.v34i07.6999
10.1109/ACCESS.2023.3322143
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SN
7SS
7X2
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
GNUQQ
HCIFZ
M0K
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
DOI 10.3390/f15101823
DatabaseName CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Entomology Abstracts (Full archive)
Agricultural Science Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Agricultural & Environmental Science & Pollution Managment
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
ProQuest Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Agricultural Science Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest SciTech Collection
Ecology Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef

Agricultural Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Forestry
EISSN 1999-4907
ExternalDocumentID A814117846
10_3390_f15101823
GroupedDBID 2XV
5VS
7X2
7XC
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
AENEX
AEUYN
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ATCPS
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
CITATION
ECGQY
EDH
HCIFZ
IAG
IAO
IEP
ITC
ITG
ITH
KQ8
LK5
M0K
M7R
MODMG
M~E
OK1
OZF
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PYCSY
TR2
PMFND
3V.
7SN
7SS
8FK
ABUWG
AZQEC
C1K
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c331t-5b6a2370a7c3bb6f09381d1868b173c2e2149e02eea5739c312d5c94d4db13273
IEDL.DBID BENPR
ISSN 1999-4907
IngestDate Mon Jun 30 12:29:56 EDT 2025
Tue Jun 10 21:11:12 EDT 2025
Tue Jul 01 01:38:55 EDT 2025
Thu Apr 24 23:00:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-5b6a2370a7c3bb6f09381d1868b173c2e2149e02eea5739c312d5c94d4db13273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0002-1191-2171
0000-0001-6721-5354
OpenAccessLink https://www.proquest.com/docview/3120654332?pq-origsite=%requestingapplication%
PQID 3120654332
PQPubID 2032398
ParticipantIDs proquest_journals_3120654332
gale_infotracacademiconefile_A814117846
crossref_citationtrail_10_3390_f15101823
crossref_primary_10_3390_f15101823
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Forests
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_14
ref_36
ref_13
ref_34
ref_11
ref_33
ref_10
ref_32
ref_31
Qin (ref_1) 2020; 24
ref_19
ref_17
ref_16
ref_37
Liu (ref_28) 2024; 79
Shamsoshoara (ref_35) 2021; 193
Cao (ref_12) 2023; 11
ref_25
ref_24
Zhang (ref_15) 2018; 211
ref_23
ref_22
ref_21
ref_20
ref_3
Ren (ref_4) 2016; 39
ref_2
ref_29
ref_27
ref_26
ref_9
ref_8
Zhang (ref_30) 2022; 506
ref_5
ref_7
Cao (ref_18) 2024; 2
ref_6
References_xml – ident: ref_17
  doi: 10.3390/rs16122177
– ident: ref_9
– ident: ref_24
  doi: 10.1109/CVPR52729.2023.00721
– ident: ref_2
  doi: 10.1109/ICCV.2017.322
– ident: ref_3
  doi: 10.1109/ICCV.2015.169
– ident: ref_34
– ident: ref_22
  doi: 10.3390/f14091812
– ident: ref_5
  doi: 10.1007/978-3-319-46448-0_2
– ident: ref_26
  doi: 10.1109/ICCV48922.2021.00349
– volume: 24
  start-page: 511
  year: 2020
  ident: ref_1
  article-title: Forest fire early warning and monitoring techniques using satellite remote sensing in China
  publication-title: J. Remote Sens.
– ident: ref_10
  doi: 10.3390/s23020783
– ident: ref_37
– volume: 506
  start-page: 146
  year: 2022
  ident: ref_30
  article-title: Focal and efficient IOU loss for accurate bounding box regression
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.07.042
– volume: 193
  start-page: 108001
  year: 2021
  ident: ref_35
  article-title: Aerial imagery pile burn detection using deep learning: The FLAME dataset
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2021.108001
– ident: ref_16
  doi: 10.1371/journal.pone.0299058
– ident: ref_13
  doi: 10.3390/app132011548
– ident: ref_8
– ident: ref_7
  doi: 10.1109/CVPR.2017.690
– ident: ref_31
– ident: ref_29
– ident: ref_33
– volume: 79
  start-page: 102401
  year: 2024
  ident: ref_28
  article-title: YWnet: A convolutional block attention-based fusion deep learning method for complex underwater small target detection
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2023.102401
– ident: ref_19
  doi: 10.3390/su14094930
– ident: ref_14
  doi: 10.3390/electronics12010228
– volume: 39
  start-page: 1137
  year: 2016
  ident: ref_4
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref_32
  doi: 10.1109/CVPR.2019.00075
– ident: ref_20
  doi: 10.3390/s23208374
– ident: ref_27
  doi: 10.1109/CVPR42600.2020.01079
– ident: ref_6
  doi: 10.1109/CVPR.2016.91
– ident: ref_11
  doi: 10.14569/IJACSA.2020.0110564
– volume: 2
  start-page: 20
  year: 2024
  ident: ref_18
  article-title: Efficient forest fire detection based on an improved YOLO model
  publication-title: Vis. Intell.
  doi: 10.1007/s44267-024-00053-y
– ident: ref_21
  doi: 10.3390/s22239384
– ident: ref_23
  doi: 10.3390/rs15235527
– ident: ref_36
– volume: 211
  start-page: 441
  year: 2018
  ident: ref_15
  article-title: Wildland forest fire smoke detection based on faster R-CNN using synthetic smoke images
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2017.12.034
– ident: ref_25
  doi: 10.1609/aaai.v34i07.6999
– volume: 11
  start-page: 111079
  year: 2023
  ident: ref_12
  article-title: YOLO-SF: YOLO for fire segmentation detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3322143
SSID ssj0000578924
Score 2.3325608
Snippet To address the challenges of complex backgrounds and small, easily confused fire and smoke targets in Unmanned Aerial Vehicle (UAV)-based forest fire...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1823
SubjectTerms Accuracy
Algorithms
Datasets
Deep learning
Drone aircraft
Forest & brush fires
Forest fire detection
Forest fires
Modules
Parameters
Satellites
Smoke
Target detection
Target recognition
Unmanned aerial vehicles
Title FGYOLO: An Integrated Feature Enhancement Lightweight Unmanned Aerial Vehicle Forest Fire Detection Framework Based on YOLOv8n
URI https://www.proquest.com/docview/3120654332
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA66gngRn7i-CCLopdgmfaRepOrWB74QV_RUmkfZg3Z1rXrztzvTpiuCeG1DWmaSmfkmk28I2ZbK5KEomBMWOWargsCRXq4driLGlQ5iUTPeXF6Fp33__CF4sAm3N1tW2drE2lDrocIc-R73WH0PkrODl1cHu0bh6aptoTFJpsAECwBfU4e9q5vbcZYFohEBCKOhFOKA7_cKryapYvyXI_rbHNc-Jp0jszY4pEmjzXkyYcoFMo3dM7El2yL5Sk8ery-u92lS0rOW50FTDOPeR4b2ygHqEPN99AJB92ed96T98jlHc0qTernRezPA-WkzMU3B6tFjU9VFWSVN23IteggeTlN4hB_9EOUS6ae9u6NTxzZQcBTnXuUEMswZj9w8UlzKsHBj8M8aCfKlF3HFDAN8ZFxmTB5EPFYgYx2o2Ne-loBSI75MOuWwNCuECoQ2hat8oTggSC2YNgAtC6GYkn7hdsluK81MWXZxbHLxlAHKQMFnY8F3ydZ46EtDqfHXoB1USYbbDOZRub0tAH-DhFVZIjzf8yKInrpkvdVaZvffW_azWlb_f71GZhiEKU153jrpVKN3swFhRiU37VraJJOXX71vZd_SfQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK7gkqgXIqBxBbFCJHqZMNM9j14TYxbZcVeWxRjW4Gmcfkw46ICwSLjwk_yNVM1jiQnxxnWmUz2prq6ur6b6K4DX2rg8VoXw4iLnbFUUeTrIrSdNIqSxUU9VjDf7k3g4DT8fRUcL8Le9C8Nlla1PrBy1PTGcI9-WgajuQUrx4fS3x12j-O9q20KjNos9d3VJkO38_WiX1ndLiHRw-HHoNV0FPCNlMPMiHedCJn6eGKl1XBCkp5iNWeN1kEgjnCDQ4HzhXB4lsmdoYhuZXmhDqwm6JZLkPoDFUBKU6cDizmDy5es8q0PRjyJEU1MYSdnzt4ugIsUS8p-D7273X51p6RNYaoJR7NfWswwLrlyBh9ytk1vArcJ1-un7wfjgHfZLHLW8EhY5bLw4czgoj9lmOL-IYwb5l1WeFaflr5zdN_Yr88Zv7pjlYy0YU_KyuOtmVRFYiWlbHoY7dKJapEc86R9VPoXpvaj2GXTKk9I9B1QMpQrfhMpIQqxWCesIyhbKCKPDwu_C21abmWnYzLmpxs-MUA0rPpsrvgub86GnNYXHXYPe8JJkvK1Jjsmb2wn0NUyQlfVVEAZBQtFaF9bbVcua_X6e3Vrni_-_fgWPhof742w8muytwWNBIVJdGrgOndnZhXtJIc5MbzR2hfDjvk35BpX4DLY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK7gkhAvRlDjAmKFaPQy2ZnuefSaGLOwO7KyLsS4Bk7D9GPCQQaEReLFH-avs2oea0iIN64znZpOd3VVfTXVXwG80sblsSqEFxc5Z6uiyNNBbj1pEiGNjfqqYrz5PI33ZuGno-hoCf60d2G4rLK1iZWhtueGc-Q9GYjqHqQUvaIpizgcph8ufnjcQYr_tLbtNGoV2Xe_bgi-Xb0fD2mvXwuRjr7u7nlNhwHPSBnMvUjHuZCJnydGah0XBO8pfmMGeR0k0ggnCEA4XziXR4nsG5qEjUw_tKHVBOMSSXIfwHJCqMjvwPLOaHr4ZZHhoUhIEbqp6Yyk7Pu9IqgIsoS85QTvdgWVf0sfw6MmMMVBrUmrsOTKNVjhzp3cDu4J_E4_Hh9MDt7hoMRxyzFhkUPI60uHo_KU9YdzjThhwH9T5VxxVp7lbMpxUKk6fnOnLB9rwZiSxcWhm1cFYSWmbakY7pB3tUiP-KM_VfkUZveytM-gU56X7jmgYlhV-CZURhJ6tUpYR7C2UEYYHRZ-F962q5mZhtmcG2x8zwjh8MJni4XvwvZi6EVN53HXoDe8JRkfcZJj8uamAs2GybKygQrCIEgocuvCZrtrWXP2r7J_mrr-_9cvYYVUOJuMp_sb8FBQtFRXCW5CZ3557V5QtDPXW41aIZzctyb_BfqwEOs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FGYOLO%3A+An+Integrated+Feature+Enhancement+Lightweight+Unmanned+Aerial+Vehicle+Forest+Fire+Detection+Framework+Based+on+YOLOv8n&rft.jtitle=Forests&rft.au=Zheng%2C+Yangyang&rft.au=Tao%2C+Fazhan&rft.au=Gao%2C+Zhengyang&rft.au=Li%2C+Jingyan&rft.date=2024-10-01&rft.issn=1999-4907&rft.eissn=1999-4907&rft.volume=15&rft.issue=10&rft.spage=1823&rft_id=info:doi/10.3390%2Ff15101823&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_f15101823
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4907&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4907&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4907&client=summon