The predictive Lasso
We propose a shrinkage procedure for simultaneous variable selection and estimation in generalized linear models (GLMs) with an explicit predictive motivation. The procedure estimates the coefficients by minimizing the Kullback-Leibler divergence of a set of predictive distributions to the correspon...
Saved in:
Published in | Statistics and computing Vol. 22; no. 5; pp. 1069 - 1084 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Boston
Springer US
01.09.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 0960-3174 1573-1375 |
DOI | 10.1007/s11222-011-9279-3 |
Cover
Abstract | We propose a shrinkage procedure for simultaneous variable selection and estimation in generalized linear models (GLMs) with an explicit predictive motivation. The procedure estimates the coefficients by minimizing the Kullback-Leibler divergence of a set of predictive distributions to the corresponding predictive distributions for the full model, subject to an
l
1
constraint on the coefficient vector. This results in selection of a parsimonious model with similar predictive performance to the full model. Thanks to its similar form to the original Lasso problem for GLMs, our procedure can benefit from available
l
1
-regularization path algorithms. Simulation studies and real data examples confirm the efficiency of our method in terms of predictive performance on future observations. |
---|---|
AbstractList | We propose a shrinkage procedure for simultaneous variable selection and estimation in generalized linear models (GLMs) with an explicit predictive motivation. The procedure estimates the coefficients by minimizing the Kullback-Leibler divergence of a set of predictive distributions to the corresponding predictive distributions for the full model, subject to an
l
1
constraint on the coefficient vector. This results in selection of a parsimonious model with similar predictive performance to the full model. Thanks to its similar form to the original Lasso problem for GLMs, our procedure can benefit from available
l
1
-regularization path algorithms. Simulation studies and real data examples confirm the efficiency of our method in terms of predictive performance on future observations. |
Author | Tran, Minh-Ngoc Leng, Chenlei Nott, David J. |
Author_xml | – sequence: 1 givenname: Minh-Ngoc surname: Tran fullname: Tran, Minh-Ngoc email: ngoctm@nus.edu.sg, minh-ngoc.tran@unsw.edu.au organization: Department of Statistics and Applied Probability, National University of Singapore, Australian School of Business, University of New South Wales – sequence: 2 givenname: David J. surname: Nott fullname: Nott, David J. organization: Department of Statistics and Applied Probability, National University of Singapore – sequence: 3 givenname: Chenlei surname: Leng fullname: Leng, Chenlei organization: Department of Statistics and Applied Probability, National University of Singapore |
BookMark | eNp9j71OwzAYRS1UJNLCxsLWFzB8nx3b8Ygq_qRILGW2HP-Aq5JUdkDi7UkVJoZOd7nn6p4lWfRDHwi5QbhFAHVXEBljFBCpZkpTfkYqFIpT5EosSAVaAuWo6guyLGUHU1HyuiLX24-wPuTgkxvTd1i3tpThkpxHuy_h6i9X5O3xYbt5pu3r08vmvqWOcxypkKoLlkkvGt9F32hfQxNig0EKqDFa1JIz4TwEjVKJKITXncC6Ae14lHxF1Lzr8lBKDtG4NNoxDf2YbdobBHOUM7OcmT6bo5zhE4n_yENOnzb_nGTYzJSp27-HbHbDV-4nwRPQL2GsYRk |
CitedBy_id | crossref_primary_10_1007_s11222_016_9649_y crossref_primary_10_1146_annurev_statistics_040522_015915 crossref_primary_10_1016_j_jcp_2023_112210 crossref_primary_10_1002_sim_6433 crossref_primary_10_1214_12_SS102 crossref_primary_10_1007_s12561_020_09286_z crossref_primary_10_1214_24_STS949 crossref_primary_10_1214_20_EJS1711 crossref_primary_10_1016_j_oceaneng_2022_112826 crossref_primary_10_1080_01621459_2021_1891926 |
Cites_doi | 10.1198/016214508000000337 10.1080/03610920903486798 10.1093/biomet/62.3.547 10.1016/S0378-3758(02)00286-0 10.1214/ss/1009212519 10.1111/j.1467-9868.2005.00503.x 10.1016/j.csda.2010.01.036 10.1198/016214506000001437 10.1214/08-AOAS191 10.1198/016214506000000735 10.1111/1467-9868.00348 10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2 10.1111/j.2517-6161.1968.tb01505.x 10.1080/01621459.1997.10473615 10.1007/978-1-4899-4467-2 10.5296/jse.v4i1.4306 10.1111/j.2517-6161.1996.tb02080.x 10.1111/j.2517-6161.1952.tb00104.x |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC 2011 |
Copyright_xml | – notice: Springer Science+Business Media, LLC 2011 |
DBID | AAYXX CITATION |
DOI | 10.1007/s11222-011-9279-3 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics Computer Science |
EISSN | 1573-1375 |
EndPage | 1084 |
ExternalDocumentID | 10_1007_s11222_011_9279_3 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7U Z7W Z7X Z7Y Z81 Z83 Z87 Z88 Z8O Z8R Z8U Z8W Z91 Z92 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION |
ID | FETCH-LOGICAL-c331t-567bea26d58dbfd89d408ef81e65041fa196325cd0e91675f55d9b514809c3f63 |
IEDL.DBID | AGYKE |
ISSN | 0960-3174 |
IngestDate | Tue Jul 01 05:31:11 EDT 2025 Thu Apr 24 22:55:00 EDT 2025 Fri Feb 21 02:34:29 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Kullback-Leibler divergence Optimal prediction Lasso Generalized linear models Variable selection |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c331t-567bea26d58dbfd89d408ef81e65041fa196325cd0e91675f55d9b514809c3f63 |
OpenAccessLink | http://scholarbank.nus.edu.sg/handle/10635/105428 |
PageCount | 16 |
ParticipantIDs | crossref_citationtrail_10_1007_s11222_011_9279_3 crossref_primary_10_1007_s11222_011_9279_3 springer_journals_10_1007_s11222_011_9279_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20120900 2012-9-00 |
PublicationDateYYYYMMDD | 2012-09-01 |
PublicationDate_xml | – month: 9 year: 2012 text: 20120900 |
PublicationDecade | 2010 |
PublicationPlace | Boston |
PublicationPlace_xml | – name: Boston |
PublicationTitle | Statistics and computing |
PublicationTitleAbbrev | Stat Comput |
PublicationYear | 2012 |
Publisher | Springer US |
Publisher_xml | – name: Springer US |
References | Johnson (CR14) 1996; 4 Chen, Ibrahim (CR5) 2003; 13 Aitchison (CR1) 1975; 62 Zellner (CR24) 1986 CR15 Hoeting, Madigan, Raftery, Volinsky (CR13) 1999; 14 Geisser (CR7) 1980; 143 Good (CR11) 1952; 14 Park, Casella (CR19) 2008; 103 Dupuis, Robert (CR6) 2003; 111 Bailey (CR2) 1994 O’Hagan, Forster (CR18) 2004 Geisser (CR8) 1993 Tibshirani (CR21) 1996; 58 Raftery, Madigan, Hoeting (CR20) 1997; 92 Gneiting, Raftery (CR10) 2007; 102 Hersbach (CR12) 2000; 15 Nott, Leng (CR17) 2010; 54 Lindley (CR16) 1968; 30 CR23 Zhao, Yu (CR25) 2006; 7 Burnham, Anderson (CR4) 2002 Zou (CR26) 2006; 101 Brown, Vannucci, Fearn (CR3) 2002; 64 Gelman, Jakulin, Grazia, Su (CR9) 2008; 2 Tran (CR22) 2011; 40 Zou, Hastie (CR27) 2005; 67 A. Zellner (9279_CR24) 1986 R. Tibshirani (9279_CR21) 1996; 58 H. Zou (9279_CR27) 2005; 67 H. Hersbach (9279_CR12) 2000; 15 A. O’Hagan (9279_CR18) 2004 I.J. Good (9279_CR11) 1952; 14 S. Geisser (9279_CR8) 1993 P. Zhao (9279_CR25) 2006; 7 J. Aitchison (9279_CR1) 1975; 62 H. Zou (9279_CR26) 2006; 101 9279_CR15 D.J. Nott (9279_CR17) 2010; 54 C. Bailey (9279_CR2) 1994 T. Park (9279_CR19) 2008; 103 R.W. Johnson (9279_CR14) 1996; 4 K.P. Burnham (9279_CR4) 2002 D.V. Lindley (9279_CR16) 1968; 30 M.H. Chen (9279_CR5) 2003; 13 J.A. Dupuis (9279_CR6) 2003; 111 A. Gelman (9279_CR9) 2008; 2 J.A. Hoeting (9279_CR13) 1999; 14 S. Geisser (9279_CR7) 1980; 143 T. Gneiting (9279_CR10) 2007; 102 A.E. Raftery (9279_CR20) 1997; 92 M.N. Tran (9279_CR22) 2011; 40 9279_CR23 P.J. Brown (9279_CR3) 2002; 64 |
References_xml | – year: 1993 ident: CR8 publication-title: Predictive Inference: An Introduction – volume: 103 start-page: 681 year: 2008 end-page: 686 ident: CR19 article-title: The Bayesian Lasso publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214508000000337 – volume: 13 start-page: 461 year: 2003 end-page: 476 ident: CR5 article-title: Conjugate priors for generalized linear models publication-title: Stat. Sin. – year: 2004 ident: CR18 publication-title: The Advanced Theory of Statistics – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: CR21 article-title: Regression shrinkage and selection via the Lasso publication-title: J. R. Stat. Soc. B – volume: 40 start-page: 893 year: 2011 end-page: 906 ident: CR22 article-title: A criterion for optimal predictive model selection publication-title: Commun. Stat., Theory Methods doi: 10.1080/03610920903486798 – volume: 143 start-page: 416 year: 1980 end-page: 417 ident: CR7 article-title: Discussion of “Sampling and Bayes’ inference in scientific modelling and robustness'' by G.E.P. Box publication-title: J. R. Stat. Soc., Ser. A – volume: 62 start-page: 547 year: 1975 end-page: 554 ident: CR1 article-title: Goodness of prediction fit publication-title: Biometrika doi: 10.1093/biomet/62.3.547 – year: 2002 ident: CR4 publication-title: Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach – volume: 92 start-page: 179 year: 1997 end-page: 191 ident: CR20 article-title: Bayesian model averaging for linear regression models publication-title: J. Am. Stat. Assoc. – volume: 111 start-page: 77 year: 2003 end-page: 94 ident: CR6 article-title: Variable selection in qualitative models via an entropic explanatory power publication-title: J. Stat. Plan. Inference doi: 10.1016/S0378-3758(02)00286-0 – volume: 14 start-page: 382 year: 1999 end-page: 417 ident: CR13 article-title: Bayesian model averaging: a tutorial publication-title: Stat. Sci. doi: 10.1214/ss/1009212519 – volume: 30 start-page: 31 year: 1968 end-page: 66 ident: CR16 article-title: The choice of variables in multiple regression (with discussion) publication-title: J. R. Stat. Soc. B – ident: CR23 – volume: 67 start-page: 301 year: 2005 end-page: 320 ident: CR27 article-title: Regularization and variable selection via the elastic net publication-title: J. R. Stat. Soc. B doi: 10.1111/j.1467-9868.2005.00503.x – volume: 54 start-page: 3227 year: 2010 end-page: 3241 ident: CR17 article-title: Bayesian projection approaches to variable selection in generalized linear models publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2010.01.036 – volume: 102 start-page: 359 year: 2007 end-page: 378 ident: CR10 article-title: Strictly proper scoring rules, prediction, and estimation publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214506000001437 – ident: CR15 – volume: 2 start-page: 1360 year: 2008 end-page: 1383 ident: CR9 article-title: A weakly informative default prior distribution for logistic and other regression models publication-title: Ann. Appl. Stat. doi: 10.1214/08-AOAS191 – volume: 101 start-page: 1418 year: 2006 end-page: 1429 ident: CR26 article-title: The adaptive Lasso and its oracle properties publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214506000000735 – start-page: 233 year: 1986 end-page: 243 ident: CR24 article-title: On assessing prior distributions and Bayesian regression analysis with g-prior distributions publication-title: Bayesian Inference and Decision Techniques: Essays in Honour of Bruno De Finetti – year: 1994 ident: CR2 publication-title: Smart Exercise: Burning Fat, Getting Fit – volume: 64 start-page: 519 year: 2002 end-page: 536 ident: CR3 article-title: Bayes model averaging with selection of regressors publication-title: J. R. Stat. Soc. B doi: 10.1111/1467-9868.00348 – volume: 15 start-page: 559 year: 2000 end-page: 570 ident: CR12 article-title: Decomposition of the continuous ranked probability score for ensemble prediction systems publication-title: Weather Forecast. doi: 10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2 – volume: 14 start-page: 107 year: 1952 end-page: 114 ident: CR11 article-title: Rational decisions publication-title: J. R. Stat. Soc. B – volume: 4 start-page: 1 year: 1996 ident: CR14 article-title: Fitting percentage of body fat to simple body measurements publication-title: J. Stat. Educ. – volume: 7 start-page: 2541 year: 2006 end-page: 2563 ident: CR25 article-title: On model selection consistency of Lasso publication-title: J. Mach. Learn. Res. – volume-title: Smart Exercise: Burning Fat, Getting Fit year: 1994 ident: 9279_CR2 – volume: 143 start-page: 416 year: 1980 ident: 9279_CR7 publication-title: J. R. Stat. Soc., Ser. A – volume: 54 start-page: 3227 year: 2010 ident: 9279_CR17 publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2010.01.036 – volume: 101 start-page: 1418 year: 2006 ident: 9279_CR26 publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214506000000735 – volume: 103 start-page: 681 year: 2008 ident: 9279_CR19 publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214508000000337 – start-page: 233 volume-title: Bayesian Inference and Decision Techniques: Essays in Honour of Bruno De Finetti year: 1986 ident: 9279_CR24 – volume: 111 start-page: 77 year: 2003 ident: 9279_CR6 publication-title: J. Stat. Plan. Inference doi: 10.1016/S0378-3758(02)00286-0 – volume: 30 start-page: 31 year: 1968 ident: 9279_CR16 publication-title: J. R. Stat. Soc. B doi: 10.1111/j.2517-6161.1968.tb01505.x – volume: 40 start-page: 893 year: 2011 ident: 9279_CR22 publication-title: Commun. Stat., Theory Methods doi: 10.1080/03610920903486798 – volume-title: Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach year: 2002 ident: 9279_CR4 – volume: 67 start-page: 301 year: 2005 ident: 9279_CR27 publication-title: J. R. Stat. Soc. B doi: 10.1111/j.1467-9868.2005.00503.x – volume: 64 start-page: 519 year: 2002 ident: 9279_CR3 publication-title: J. R. Stat. Soc. B doi: 10.1111/1467-9868.00348 – volume: 102 start-page: 359 year: 2007 ident: 9279_CR10 publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214506000001437 – ident: 9279_CR23 – volume: 92 start-page: 179 year: 1997 ident: 9279_CR20 publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1997.10473615 – volume: 62 start-page: 547 year: 1975 ident: 9279_CR1 publication-title: Biometrika doi: 10.1093/biomet/62.3.547 – volume: 2 start-page: 1360 year: 2008 ident: 9279_CR9 publication-title: Ann. Appl. Stat. doi: 10.1214/08-AOAS191 – volume-title: Predictive Inference: An Introduction year: 1993 ident: 9279_CR8 doi: 10.1007/978-1-4899-4467-2 – volume-title: The Advanced Theory of Statistics year: 2004 ident: 9279_CR18 – volume: 7 start-page: 2541 year: 2006 ident: 9279_CR25 publication-title: J. Mach. Learn. Res. – volume: 15 start-page: 559 year: 2000 ident: 9279_CR12 publication-title: Weather Forecast. doi: 10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2 – volume: 13 start-page: 461 year: 2003 ident: 9279_CR5 publication-title: Stat. Sin. – ident: 9279_CR15 – volume: 4 start-page: 1 year: 1996 ident: 9279_CR14 publication-title: J. Stat. Educ. doi: 10.5296/jse.v4i1.4306 – volume: 58 start-page: 267 year: 1996 ident: 9279_CR21 publication-title: J. R. Stat. Soc. B doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 14 start-page: 382 year: 1999 ident: 9279_CR13 publication-title: Stat. Sci. doi: 10.1214/ss/1009212519 – volume: 14 start-page: 107 year: 1952 ident: 9279_CR11 publication-title: J. R. Stat. Soc. B doi: 10.1111/j.2517-6161.1952.tb00104.x |
SSID | ssj0011634 |
Score | 2.0440595 |
Snippet | We propose a shrinkage procedure for simultaneous variable selection and estimation in generalized linear models (GLMs) with an explicit predictive motivation.... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1069 |
SubjectTerms | Artificial Intelligence Mathematics and Statistics Probability and Statistics in Computer Science Statistical Theory and Methods Statistics Statistics and Computing/Statistics Programs |
Title | The predictive Lasso |
URI | https://link.springer.com/article/10.1007/s11222-011-9279-3 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07b8IwED4VWOhQWmjVJ8rQqVVQHMeJPaIKivqaQKJTlNjO0goQhKW_vuckBlG1lVgynS3rco8vufN3ALf4lSGoMtPLEoYPj0qXa0pcFaWUaEyy6FKm2-ItHE2CpymbVve4V7bb3ZYki0i9vexGMJe55pee8CPh0ho0GOGC16HRf3x_HmyKBwgxCtYoBOcYYqLAFjN_22Q3He3WQosUM2zB2B6u7Cz56K3ztCe_fvA27nn6YziqIKfTL23kBA70rA0tO87Bqby7DYevGwrXVRuaBoaWLM4d6KA1OYulKeqY8Oi8IOSen8JkOBg_jNxqnoIrKSW5y8Io1YkfKsZVmikuVOBxnXGiEaYFJEuMN_pMKk8jaIxYxpgSKSIq7glJs5CeQX02n-lzcKQf8jCSCVfmsmri4WuQgklKEkE0JsML8KxaY1mRjZuZF5_xlibZKCRGhcRGITEuudssWZRMG_8J31s1x5XTrf6WvtxL-gqaiIr8spHsGur5cq1vEHnkabeytC7UJn7_G9kiyss |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgHBgHHhuINz1wAkVqmqZNjhNiKrDttEm7RW2SntA2beX_4_Q1TQIkLj05leLU9pfa_gzwiLcMyYybXpZyfPhME2EZJSbOGLUYZNGkXLXFJEpm4fucz-s-7k1T7d6kJEtPvW12oxjLiPulJ4NYErYPB4gFhBtbMAsGbeoAAUbJGYXQHB1MHDapzJ9esRuMdjOhZYAZnsJxjQy9QXWUZ7BnFz04aaYueLUR9uBo3DKtbnrQdWixIlvuQx8P3VutXe7FeTFvhMh4eQ6z4ev0JSH12AOiGaMF4VGc2TSIDBcmy42QJvSFzQW1iKZCmqfOaAKujW8R28U859zIDIGP8KVmecQuoLNYLuwleDqIRBTrVBjXU5r6QgotuWY0ldRizLoCv9m_0jUnuBtN8am2bMZOZQpVppzKFC55apesKkKMv4SfG6Wq2jY2v0tf_0v6AQ6T6XikRm-TjxvoIpAJqtqvW-gU6y97h2ChyO7Lj-MbkdCwAA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60gtSDj1bxbQ6elKXZbDbZPRa1VK3Fg4XelmR3c5K0NPH_O9skLQUVvOQ0G8hkHl8yM98A3OJXhmTGbS9LOF58pomwjBITp4xaTLLoUq7bYhwNJ-HLlE_rPadF0-3elCSrmQbH0pSXvbnJeuvBN4p5jbjfezKIJWHbsIPRmDpDnwT9VRkBwcaSPwphOgabOGzKmj_dYjMxbVZFl8lmcAj7NUr0-tVrPYItm3fgoNnA4NUO2YG9txXratGBtkOOFfFyF7poAN584eowLqJ5I0TJs2OYDJ4-HoakXoFANGO0JDyKU5sEkeHCpJkR0oS-sJmgFpFVSLPEOVDAtfEt4ryYZ5wbmSIIEr7ULIvYCbTyWW5PwdNBJKJYJ8K4-dLEF1JoyTWjiaQW89cZ-M3zK13zg7s1FZ9qzWzsVKZQZcqpTOGRu9WReUWO8ZfwfaNUVftJ8bv0-b-kb2D3_XGgRs_j1wtoI6YJqjawS2iViy97hbihTK-XtvENagi0PA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+predictive+Lasso&rft.jtitle=Statistics+and+computing&rft.au=Tran%2C+Minh-Ngoc&rft.au=Nott%2C+David+J.&rft.au=Leng%2C+Chenlei&rft.date=2012-09-01&rft.issn=0960-3174&rft.eissn=1573-1375&rft.volume=22&rft.issue=5&rft.spage=1069&rft.epage=1084&rft_id=info:doi/10.1007%2Fs11222-011-9279-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11222_011_9279_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-3174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-3174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-3174&client=summon |