The predictive Lasso

We propose a shrinkage procedure for simultaneous variable selection and estimation in generalized linear models (GLMs) with an explicit predictive motivation. The procedure estimates the coefficients by minimizing the Kullback-Leibler divergence of a set of predictive distributions to the correspon...

Full description

Saved in:
Bibliographic Details
Published inStatistics and computing Vol. 22; no. 5; pp. 1069 - 1084
Main Authors Tran, Minh-Ngoc, Nott, David J., Leng, Chenlei
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.09.2012
Subjects
Online AccessGet full text
ISSN0960-3174
1573-1375
DOI10.1007/s11222-011-9279-3

Cover

Abstract We propose a shrinkage procedure for simultaneous variable selection and estimation in generalized linear models (GLMs) with an explicit predictive motivation. The procedure estimates the coefficients by minimizing the Kullback-Leibler divergence of a set of predictive distributions to the corresponding predictive distributions for the full model, subject to an l 1 constraint on the coefficient vector. This results in selection of a parsimonious model with similar predictive performance to the full model. Thanks to its similar form to the original Lasso problem for GLMs, our procedure can benefit from available l 1 -regularization path algorithms. Simulation studies and real data examples confirm the efficiency of our method in terms of predictive performance on future observations.
AbstractList We propose a shrinkage procedure for simultaneous variable selection and estimation in generalized linear models (GLMs) with an explicit predictive motivation. The procedure estimates the coefficients by minimizing the Kullback-Leibler divergence of a set of predictive distributions to the corresponding predictive distributions for the full model, subject to an l 1 constraint on the coefficient vector. This results in selection of a parsimonious model with similar predictive performance to the full model. Thanks to its similar form to the original Lasso problem for GLMs, our procedure can benefit from available l 1 -regularization path algorithms. Simulation studies and real data examples confirm the efficiency of our method in terms of predictive performance on future observations.
Author Tran, Minh-Ngoc
Leng, Chenlei
Nott, David J.
Author_xml – sequence: 1
  givenname: Minh-Ngoc
  surname: Tran
  fullname: Tran, Minh-Ngoc
  email: ngoctm@nus.edu.sg, minh-ngoc.tran@unsw.edu.au
  organization: Department of Statistics and Applied Probability, National University of Singapore, Australian School of Business, University of New South Wales
– sequence: 2
  givenname: David J.
  surname: Nott
  fullname: Nott, David J.
  organization: Department of Statistics and Applied Probability, National University of Singapore
– sequence: 3
  givenname: Chenlei
  surname: Leng
  fullname: Leng, Chenlei
  organization: Department of Statistics and Applied Probability, National University of Singapore
BookMark eNp9j71OwzAYRS1UJNLCxsLWFzB8nx3b8Ygq_qRILGW2HP-Aq5JUdkDi7UkVJoZOd7nn6p4lWfRDHwi5QbhFAHVXEBljFBCpZkpTfkYqFIpT5EosSAVaAuWo6guyLGUHU1HyuiLX24-wPuTgkxvTd1i3tpThkpxHuy_h6i9X5O3xYbt5pu3r08vmvqWOcxypkKoLlkkvGt9F32hfQxNig0EKqDFa1JIz4TwEjVKJKITXncC6Ae14lHxF1Lzr8lBKDtG4NNoxDf2YbdobBHOUM7OcmT6bo5zhE4n_yENOnzb_nGTYzJSp27-HbHbDV-4nwRPQL2GsYRk
CitedBy_id crossref_primary_10_1007_s11222_016_9649_y
crossref_primary_10_1146_annurev_statistics_040522_015915
crossref_primary_10_1016_j_jcp_2023_112210
crossref_primary_10_1002_sim_6433
crossref_primary_10_1214_12_SS102
crossref_primary_10_1007_s12561_020_09286_z
crossref_primary_10_1214_24_STS949
crossref_primary_10_1214_20_EJS1711
crossref_primary_10_1016_j_oceaneng_2022_112826
crossref_primary_10_1080_01621459_2021_1891926
Cites_doi 10.1198/016214508000000337
10.1080/03610920903486798
10.1093/biomet/62.3.547
10.1016/S0378-3758(02)00286-0
10.1214/ss/1009212519
10.1111/j.1467-9868.2005.00503.x
10.1016/j.csda.2010.01.036
10.1198/016214506000001437
10.1214/08-AOAS191
10.1198/016214506000000735
10.1111/1467-9868.00348
10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2
10.1111/j.2517-6161.1968.tb01505.x
10.1080/01621459.1997.10473615
10.1007/978-1-4899-4467-2
10.5296/jse.v4i1.4306
10.1111/j.2517-6161.1996.tb02080.x
10.1111/j.2517-6161.1952.tb00104.x
ContentType Journal Article
Copyright Springer Science+Business Media, LLC 2011
Copyright_xml – notice: Springer Science+Business Media, LLC 2011
DBID AAYXX
CITATION
DOI 10.1007/s11222-011-9279-3
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1573-1375
EndPage 1084
ExternalDocumentID 10_1007_s11222_011_9279_3
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7U
Z7W
Z7X
Z7Y
Z81
Z83
Z87
Z88
Z8O
Z8R
Z8U
Z8W
Z91
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c331t-567bea26d58dbfd89d408ef81e65041fa196325cd0e91675f55d9b514809c3f63
IEDL.DBID AGYKE
ISSN 0960-3174
IngestDate Tue Jul 01 05:31:11 EDT 2025
Thu Apr 24 22:55:00 EDT 2025
Fri Feb 21 02:34:29 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Kullback-Leibler divergence
Optimal prediction
Lasso
Generalized linear models
Variable selection
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-567bea26d58dbfd89d408ef81e65041fa196325cd0e91675f55d9b514809c3f63
OpenAccessLink http://scholarbank.nus.edu.sg/handle/10635/105428
PageCount 16
ParticipantIDs crossref_citationtrail_10_1007_s11222_011_9279_3
crossref_primary_10_1007_s11222_011_9279_3
springer_journals_10_1007_s11222_011_9279_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20120900
2012-9-00
PublicationDateYYYYMMDD 2012-09-01
PublicationDate_xml – month: 9
  year: 2012
  text: 20120900
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
PublicationTitle Statistics and computing
PublicationTitleAbbrev Stat Comput
PublicationYear 2012
Publisher Springer US
Publisher_xml – name: Springer US
References Johnson (CR14) 1996; 4
Chen, Ibrahim (CR5) 2003; 13
Aitchison (CR1) 1975; 62
Zellner (CR24) 1986
CR15
Hoeting, Madigan, Raftery, Volinsky (CR13) 1999; 14
Geisser (CR7) 1980; 143
Good (CR11) 1952; 14
Park, Casella (CR19) 2008; 103
Dupuis, Robert (CR6) 2003; 111
Bailey (CR2) 1994
O’Hagan, Forster (CR18) 2004
Geisser (CR8) 1993
Tibshirani (CR21) 1996; 58
Raftery, Madigan, Hoeting (CR20) 1997; 92
Gneiting, Raftery (CR10) 2007; 102
Hersbach (CR12) 2000; 15
Nott, Leng (CR17) 2010; 54
Lindley (CR16) 1968; 30
CR23
Zhao, Yu (CR25) 2006; 7
Burnham, Anderson (CR4) 2002
Zou (CR26) 2006; 101
Brown, Vannucci, Fearn (CR3) 2002; 64
Gelman, Jakulin, Grazia, Su (CR9) 2008; 2
Tran (CR22) 2011; 40
Zou, Hastie (CR27) 2005; 67
A. Zellner (9279_CR24) 1986
R. Tibshirani (9279_CR21) 1996; 58
H. Zou (9279_CR27) 2005; 67
H. Hersbach (9279_CR12) 2000; 15
A. O’Hagan (9279_CR18) 2004
I.J. Good (9279_CR11) 1952; 14
S. Geisser (9279_CR8) 1993
P. Zhao (9279_CR25) 2006; 7
J. Aitchison (9279_CR1) 1975; 62
H. Zou (9279_CR26) 2006; 101
9279_CR15
D.J. Nott (9279_CR17) 2010; 54
C. Bailey (9279_CR2) 1994
T. Park (9279_CR19) 2008; 103
R.W. Johnson (9279_CR14) 1996; 4
K.P. Burnham (9279_CR4) 2002
D.V. Lindley (9279_CR16) 1968; 30
M.H. Chen (9279_CR5) 2003; 13
J.A. Dupuis (9279_CR6) 2003; 111
A. Gelman (9279_CR9) 2008; 2
J.A. Hoeting (9279_CR13) 1999; 14
S. Geisser (9279_CR7) 1980; 143
T. Gneiting (9279_CR10) 2007; 102
A.E. Raftery (9279_CR20) 1997; 92
M.N. Tran (9279_CR22) 2011; 40
9279_CR23
P.J. Brown (9279_CR3) 2002; 64
References_xml – year: 1993
  ident: CR8
  publication-title: Predictive Inference: An Introduction
– volume: 103
  start-page: 681
  year: 2008
  end-page: 686
  ident: CR19
  article-title: The Bayesian Lasso
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214508000000337
– volume: 13
  start-page: 461
  year: 2003
  end-page: 476
  ident: CR5
  article-title: Conjugate priors for generalized linear models
  publication-title: Stat. Sin.
– year: 2004
  ident: CR18
  publication-title: The Advanced Theory of Statistics
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: CR21
  article-title: Regression shrinkage and selection via the Lasso
  publication-title: J. R. Stat. Soc. B
– volume: 40
  start-page: 893
  year: 2011
  end-page: 906
  ident: CR22
  article-title: A criterion for optimal predictive model selection
  publication-title: Commun. Stat., Theory Methods
  doi: 10.1080/03610920903486798
– volume: 143
  start-page: 416
  year: 1980
  end-page: 417
  ident: CR7
  article-title: Discussion of “Sampling and Bayes’ inference in scientific modelling and robustness'' by G.E.P. Box
  publication-title: J. R. Stat. Soc., Ser. A
– volume: 62
  start-page: 547
  year: 1975
  end-page: 554
  ident: CR1
  article-title: Goodness of prediction fit
  publication-title: Biometrika
  doi: 10.1093/biomet/62.3.547
– year: 2002
  ident: CR4
  publication-title: Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach
– volume: 92
  start-page: 179
  year: 1997
  end-page: 191
  ident: CR20
  article-title: Bayesian model averaging for linear regression models
  publication-title: J. Am. Stat. Assoc.
– volume: 111
  start-page: 77
  year: 2003
  end-page: 94
  ident: CR6
  article-title: Variable selection in qualitative models via an entropic explanatory power
  publication-title: J. Stat. Plan. Inference
  doi: 10.1016/S0378-3758(02)00286-0
– volume: 14
  start-page: 382
  year: 1999
  end-page: 417
  ident: CR13
  article-title: Bayesian model averaging: a tutorial
  publication-title: Stat. Sci.
  doi: 10.1214/ss/1009212519
– volume: 30
  start-page: 31
  year: 1968
  end-page: 66
  ident: CR16
  article-title: The choice of variables in multiple regression (with discussion)
  publication-title: J. R. Stat. Soc. B
– ident: CR23
– volume: 67
  start-page: 301
  year: 2005
  end-page: 320
  ident: CR27
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 54
  start-page: 3227
  year: 2010
  end-page: 3241
  ident: CR17
  article-title: Bayesian projection approaches to variable selection in generalized linear models
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2010.01.036
– volume: 102
  start-page: 359
  year: 2007
  end-page: 378
  ident: CR10
  article-title: Strictly proper scoring rules, prediction, and estimation
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214506000001437
– ident: CR15
– volume: 2
  start-page: 1360
  year: 2008
  end-page: 1383
  ident: CR9
  article-title: A weakly informative default prior distribution for logistic and other regression models
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/08-AOAS191
– volume: 101
  start-page: 1418
  year: 2006
  end-page: 1429
  ident: CR26
  article-title: The adaptive Lasso and its oracle properties
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214506000000735
– start-page: 233
  year: 1986
  end-page: 243
  ident: CR24
  article-title: On assessing prior distributions and Bayesian regression analysis with g-prior distributions
  publication-title: Bayesian Inference and Decision Techniques: Essays in Honour of Bruno De Finetti
– year: 1994
  ident: CR2
  publication-title: Smart Exercise: Burning Fat, Getting Fit
– volume: 64
  start-page: 519
  year: 2002
  end-page: 536
  ident: CR3
  article-title: Bayes model averaging with selection of regressors
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/1467-9868.00348
– volume: 15
  start-page: 559
  year: 2000
  end-page: 570
  ident: CR12
  article-title: Decomposition of the continuous ranked probability score for ensemble prediction systems
  publication-title: Weather Forecast.
  doi: 10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2
– volume: 14
  start-page: 107
  year: 1952
  end-page: 114
  ident: CR11
  article-title: Rational decisions
  publication-title: J. R. Stat. Soc. B
– volume: 4
  start-page: 1
  year: 1996
  ident: CR14
  article-title: Fitting percentage of body fat to simple body measurements
  publication-title: J. Stat. Educ.
– volume: 7
  start-page: 2541
  year: 2006
  end-page: 2563
  ident: CR25
  article-title: On model selection consistency of Lasso
  publication-title: J. Mach. Learn. Res.
– volume-title: Smart Exercise: Burning Fat, Getting Fit
  year: 1994
  ident: 9279_CR2
– volume: 143
  start-page: 416
  year: 1980
  ident: 9279_CR7
  publication-title: J. R. Stat. Soc., Ser. A
– volume: 54
  start-page: 3227
  year: 2010
  ident: 9279_CR17
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2010.01.036
– volume: 101
  start-page: 1418
  year: 2006
  ident: 9279_CR26
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214506000000735
– volume: 103
  start-page: 681
  year: 2008
  ident: 9279_CR19
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214508000000337
– start-page: 233
  volume-title: Bayesian Inference and Decision Techniques: Essays in Honour of Bruno De Finetti
  year: 1986
  ident: 9279_CR24
– volume: 111
  start-page: 77
  year: 2003
  ident: 9279_CR6
  publication-title: J. Stat. Plan. Inference
  doi: 10.1016/S0378-3758(02)00286-0
– volume: 30
  start-page: 31
  year: 1968
  ident: 9279_CR16
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/j.2517-6161.1968.tb01505.x
– volume: 40
  start-page: 893
  year: 2011
  ident: 9279_CR22
  publication-title: Commun. Stat., Theory Methods
  doi: 10.1080/03610920903486798
– volume-title: Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach
  year: 2002
  ident: 9279_CR4
– volume: 67
  start-page: 301
  year: 2005
  ident: 9279_CR27
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 64
  start-page: 519
  year: 2002
  ident: 9279_CR3
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/1467-9868.00348
– volume: 102
  start-page: 359
  year: 2007
  ident: 9279_CR10
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214506000001437
– ident: 9279_CR23
– volume: 92
  start-page: 179
  year: 1997
  ident: 9279_CR20
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1997.10473615
– volume: 62
  start-page: 547
  year: 1975
  ident: 9279_CR1
  publication-title: Biometrika
  doi: 10.1093/biomet/62.3.547
– volume: 2
  start-page: 1360
  year: 2008
  ident: 9279_CR9
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/08-AOAS191
– volume-title: Predictive Inference: An Introduction
  year: 1993
  ident: 9279_CR8
  doi: 10.1007/978-1-4899-4467-2
– volume-title: The Advanced Theory of Statistics
  year: 2004
  ident: 9279_CR18
– volume: 7
  start-page: 2541
  year: 2006
  ident: 9279_CR25
  publication-title: J. Mach. Learn. Res.
– volume: 15
  start-page: 559
  year: 2000
  ident: 9279_CR12
  publication-title: Weather Forecast.
  doi: 10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2
– volume: 13
  start-page: 461
  year: 2003
  ident: 9279_CR5
  publication-title: Stat. Sin.
– ident: 9279_CR15
– volume: 4
  start-page: 1
  year: 1996
  ident: 9279_CR14
  publication-title: J. Stat. Educ.
  doi: 10.5296/jse.v4i1.4306
– volume: 58
  start-page: 267
  year: 1996
  ident: 9279_CR21
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 14
  start-page: 382
  year: 1999
  ident: 9279_CR13
  publication-title: Stat. Sci.
  doi: 10.1214/ss/1009212519
– volume: 14
  start-page: 107
  year: 1952
  ident: 9279_CR11
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/j.2517-6161.1952.tb00104.x
SSID ssj0011634
Score 2.0440595
Snippet We propose a shrinkage procedure for simultaneous variable selection and estimation in generalized linear models (GLMs) with an explicit predictive motivation....
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 1069
SubjectTerms Artificial Intelligence
Mathematics and Statistics
Probability and Statistics in Computer Science
Statistical Theory and Methods
Statistics
Statistics and Computing/Statistics Programs
Title The predictive Lasso
URI https://link.springer.com/article/10.1007/s11222-011-9279-3
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07b8IwED4VWOhQWmjVJ8rQqVVQHMeJPaIKivqaQKJTlNjO0goQhKW_vuckBlG1lVgynS3rco8vufN3ALf4lSGoMtPLEoYPj0qXa0pcFaWUaEyy6FKm2-ItHE2CpymbVve4V7bb3ZYki0i9vexGMJe55pee8CPh0ho0GOGC16HRf3x_HmyKBwgxCtYoBOcYYqLAFjN_22Q3He3WQosUM2zB2B6u7Cz56K3ztCe_fvA27nn6YziqIKfTL23kBA70rA0tO87Bqby7DYevGwrXVRuaBoaWLM4d6KA1OYulKeqY8Oi8IOSen8JkOBg_jNxqnoIrKSW5y8Io1YkfKsZVmikuVOBxnXGiEaYFJEuMN_pMKk8jaIxYxpgSKSIq7glJs5CeQX02n-lzcKQf8jCSCVfmsmri4WuQgklKEkE0JsML8KxaY1mRjZuZF5_xlibZKCRGhcRGITEuudssWZRMG_8J31s1x5XTrf6WvtxL-gqaiIr8spHsGur5cq1vEHnkabeytC7UJn7_G9kiyss
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgHBgHHhuINz1wAkVqmqZNjhNiKrDttEm7RW2SntA2beX_4_Q1TQIkLj05leLU9pfa_gzwiLcMyYybXpZyfPhME2EZJSbOGLUYZNGkXLXFJEpm4fucz-s-7k1T7d6kJEtPvW12oxjLiPulJ4NYErYPB4gFhBtbMAsGbeoAAUbJGYXQHB1MHDapzJ9esRuMdjOhZYAZnsJxjQy9QXWUZ7BnFz04aaYueLUR9uBo3DKtbnrQdWixIlvuQx8P3VutXe7FeTFvhMh4eQ6z4ev0JSH12AOiGaMF4VGc2TSIDBcmy42QJvSFzQW1iKZCmqfOaAKujW8R28U859zIDIGP8KVmecQuoLNYLuwleDqIRBTrVBjXU5r6QgotuWY0ldRizLoCv9m_0jUnuBtN8am2bMZOZQpVppzKFC55apesKkKMv4SfG6Wq2jY2v0tf_0v6AQ6T6XikRm-TjxvoIpAJqtqvW-gU6y97h2ChyO7Lj-MbkdCwAA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60gtSDj1bxbQ6elKXZbDbZPRa1VK3Fg4XelmR3c5K0NPH_O9skLQUVvOQ0G8hkHl8yM98A3OJXhmTGbS9LOF58pomwjBITp4xaTLLoUq7bYhwNJ-HLlE_rPadF0-3elCSrmQbH0pSXvbnJeuvBN4p5jbjfezKIJWHbsIPRmDpDnwT9VRkBwcaSPwphOgabOGzKmj_dYjMxbVZFl8lmcAj7NUr0-tVrPYItm3fgoNnA4NUO2YG9txXratGBtkOOFfFyF7poAN584eowLqJ5I0TJs2OYDJ4-HoakXoFANGO0JDyKU5sEkeHCpJkR0oS-sJmgFpFVSLPEOVDAtfEt4ryYZ5wbmSIIEr7ULIvYCbTyWW5PwdNBJKJYJ8K4-dLEF1JoyTWjiaQW89cZ-M3zK13zg7s1FZ9qzWzsVKZQZcqpTOGRu9WReUWO8ZfwfaNUVftJ8bv0-b-kb2D3_XGgRs_j1wtoI6YJqjawS2iViy97hbihTK-XtvENagi0PA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+predictive+Lasso&rft.jtitle=Statistics+and+computing&rft.au=Tran%2C+Minh-Ngoc&rft.au=Nott%2C+David+J.&rft.au=Leng%2C+Chenlei&rft.date=2012-09-01&rft.issn=0960-3174&rft.eissn=1573-1375&rft.volume=22&rft.issue=5&rft.spage=1069&rft.epage=1084&rft_id=info:doi/10.1007%2Fs11222-011-9279-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11222_011_9279_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-3174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-3174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-3174&client=summon