State of health estimation and remaining useful life assessment of lithium-ion batteries: A comparative study
Lithium-ion batteries are widely used due to their attractive features. They have emerged as the primary storage system for electric cars, solar power, and marine vehicles. Consequently, their internal health state estimation has attracted extensive attention. An accurate health assessment results i...
Saved in:
Published in | Journal of energy storage Vol. 51; p. 104520 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2022
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium-ion batteries are widely used due to their attractive features. They have emerged as the primary storage system for electric cars, solar power, and marine vehicles. Consequently, their internal health state estimation has attracted extensive attention. An accurate health assessment results in a safer and more efficient battery management system (BMS), which estimates the battery's state and predicts premature failure. Recurrent neural network (RNN) has been extensively utilized to diagnose and prognosis lithium-ion batteries, as it has demonstrated superior performance. Improving the proficiency of Machine Learning (ML) algorithms has always been a subject of research. Among these attempts, various studies have proposed the combination of RNN and the convolutional neural network (CNN). In this paper, the CNN is combined with the long short-term memory (LSTM) network for the state of health estimation and remaining useful life assessment of lithium-ion batteries. To facilitate the features exploitation procedure for the ML algorithm, a K-means clustering algorithm is proposed for data classification. A comparative study of LSTM and the hybrid CNN-LSTM method is conducted to show the superiority of the proposed method.
•SOH estimation and RUL prediction using recurrent and convolutional neural networks•Comparison between the results of CNN-LSTM hybrid model and LSTM neural network•Efficient tool for RUL prediction is detailed in this study. |
---|---|
AbstractList | Lithium-ion batteries are widely used due to their attractive features. They have emerged as the primary storage system for electric cars, solar power, and marine vehicles. Consequently, their internal health state estimation has attracted extensive attention. An accurate health assessment results in a safer and more efficient battery management system (BMS), which estimates the battery's state and predicts premature failure. Recurrent neural network (RNN) has been extensively utilized to diagnose and prognosis lithium-ion batteries, as it has demonstrated superior performance. Improving the proficiency of Machine Learning (ML) algorithms has always been a subject of research. Among these attempts, various studies have proposed the combination of RNN and the convolutional neural network (CNN). In this paper, the CNN is combined with the long short-term memory (LSTM) network for the state of health estimation and remaining useful life assessment of lithium-ion batteries. To facilitate the features exploitation procedure for the ML algorithm, a K-means clustering algorithm is proposed for data classification. A comparative study of LSTM and the hybrid CNN-LSTM method is conducted to show the superiority of the proposed method.
•SOH estimation and RUL prediction using recurrent and convolutional neural networks•Comparison between the results of CNN-LSTM hybrid model and LSTM neural network•Efficient tool for RUL prediction is detailed in this study. |
ArticleNumber | 104520 |
Author | Gualous, Hamid Toosi, Safieh Bamati Toughzaoui, Yassine Le Masson, Stéphane Louahlia, Hasna Petrone, Raffaele Chaoui, Hicham |
Author_xml | – sequence: 1 givenname: Yassine surname: Toughzaoui fullname: Toughzaoui, Yassine email: yassine.toughzaoui@unicaen.fr organization: LUSAC Laboratory (EA4253), Caen Normandy University, 120, rue de l'Exode, 50000 Saint-Lô, France – sequence: 2 givenname: Safieh Bamati surname: Toosi fullname: Toosi, Safieh Bamati email: safi.bamatitoosi@carleton.ca organization: Intelligent Robotic and Energy Systems (IRES), Carleton University, Ottawa, Ontario, Canada – sequence: 3 givenname: Hicham surname: Chaoui fullname: Chaoui, Hicham email: hicham.chaoui@carleton.ca organization: Intelligent Robotic and Energy Systems (IRES), Carleton University, Ottawa, Ontario, Canada – sequence: 4 givenname: Hasna surname: Louahlia fullname: Louahlia, Hasna email: hasna.louahlia@unicaen.fr organization: LUSAC Laboratory (EA4253), Caen Normandy University, 120, rue de l'Exode, 50000 Saint-Lô, France – sequence: 5 givenname: Raffaele surname: Petrone fullname: Petrone, Raffaele email: raffaele.petrone@unicaen.fr organization: LUSAC Laboratory (EA4253), Caen Normandy University, 120, rue de l'Exode, 50000 Saint-Lô, France – sequence: 6 givenname: Stéphane surname: Le Masson fullname: Le Masson, Stéphane email: stephane.lemasson@orange.com organization: Energy & Environment, Dept at Orange Labs, Lannion, Bretagne, France – sequence: 7 givenname: Hamid surname: Gualous fullname: Gualous, Hamid email: hamid.gualous@unicaen.fr organization: LUSAC Laboratory (EA4253), Caen Normandy University, 120, rue de l'Exode, 50000 Saint-Lô, France |
BackLink | https://hal.science/hal-05156167$$DView record in HAL |
BookMark | eNp9kE1PAjEURRuDiYj8AHfduhjs60xnQFeEqJiQuFATd01p30jJfJC2Q8K_tyPqwgWrfuSe-_LOJRk0bYOEXAObAIP8djtBHyaccR7fmeDsjAx5KngCIp0O_u7844KMvd8yFiEBMMuHpH4NKiBtS7pBVYUNjU22VsG2DVWNoQ5rZRvbfNLOY9lVtLIlUuU9el9jE3qysmFjuzrpmbUKAZ1Ff0fnVLf1TrlYtkfqQ2cOV-S8VJXH8c85Iu-PD2-LZbJ6eXpezFeJTlMIieAzrnOluZkWrESzRoYAeZZhKQpUYAQXpihT0KDTXBuVGQCRF4zjlKkppCNyc-zdqEruXFzIHWSrrFzOV7L_YyLmIS_2fbY4ZrVrvXdYSm3Dt4DglK0kMNlLllsZ1chesjxKjiT8I39HnWLujwzG9fcWnfTaYqPRWIc6SNPaE_QXvf6XkQ |
CitedBy_id | crossref_primary_10_1039_D2RA06004C crossref_primary_10_1109_TTE_2024_3376515 crossref_primary_10_1063_5_0195048 crossref_primary_10_1016_j_est_2025_115316 crossref_primary_10_1109_TVT_2022_3226686 crossref_primary_10_1016_j_est_2023_110330 crossref_primary_10_1016_j_est_2023_109069 crossref_primary_10_1007_s00202_024_02608_0 crossref_primary_10_25046_aj070520 crossref_primary_10_1016_j_ress_2022_109046 crossref_primary_10_1016_j_apenergy_2023_120808 crossref_primary_10_1016_j_egyai_2023_100319 crossref_primary_10_1016_j_est_2022_106323 crossref_primary_10_1016_j_egyai_2024_100419 crossref_primary_10_1115_1_4065538 crossref_primary_10_1016_j_energy_2024_130764 crossref_primary_10_1002_ese3_1982 crossref_primary_10_1007_s42979_024_03046_2 crossref_primary_10_1002_oca_3248 crossref_primary_10_1016_j_energy_2023_129690 crossref_primary_10_1016_j_est_2023_110248 crossref_primary_10_1016_j_est_2023_108083 crossref_primary_10_1016_j_est_2023_108046 crossref_primary_10_1016_j_est_2023_109498 crossref_primary_10_1007_s11227_023_05648_8 crossref_primary_10_3390_batteries9050264 crossref_primary_10_1016_j_jpowsour_2024_234808 crossref_primary_10_1088_1742_6596_2615_1_012016 crossref_primary_10_1016_j_egyai_2024_100413 crossref_primary_10_1007_s41939_023_00359_2 crossref_primary_10_1016_j_array_2024_100367 crossref_primary_10_1016_j_rser_2023_114262 crossref_primary_10_1016_j_ensm_2023_102785 crossref_primary_10_1016_j_est_2022_106571 crossref_primary_10_3390_batteries11010031 crossref_primary_10_1016_j_apenergy_2024_125116 crossref_primary_10_1016_j_electacta_2022_141404 crossref_primary_10_1016_j_est_2023_107063 crossref_primary_10_1016_j_est_2024_113388 crossref_primary_10_54097_fcis_v5i1_11535 crossref_primary_10_1109_TVT_2023_3337855 crossref_primary_10_3390_s22249637 crossref_primary_10_1016_j_est_2023_109884 crossref_primary_10_3390_en18030746 crossref_primary_10_3390_wevj14060145 crossref_primary_10_1007_s10489_023_04777_0 crossref_primary_10_1016_j_jpowsour_2024_235713 crossref_primary_10_1051_e3sconf_202338801021 crossref_primary_10_3390_sym16040436 crossref_primary_10_1109_TPEL_2024_3496758 crossref_primary_10_3390_batteries10110384 crossref_primary_10_1016_j_energy_2023_127408 crossref_primary_10_1109_TIM_2025_3538072 crossref_primary_10_3390_batteries9070351 |
Cites_doi | 10.1109/TVT.2018.2864688 10.1016/j.neucom.2019.09.074 10.1109/TII.2017.2684821 10.1016/j.est.2018.12.011 10.1016/j.apenergy.2019.113626 10.1109/TII.2020.2974907 10.1016/j.ress.2021.108082 10.1016/j.apm.2019.09.011 10.1109/TTE.2020.3029295 10.1109/TPEL.2020.2987383 10.1109/ACCESS.2020.3007046 10.1109/TIE.2019.2916389 10.1016/j.apenergy.2019.114408 10.1109/TII.2019.2941747 10.1016/j.rser.2019.109405 10.1016/j.jpowsour.2020.227700 10.1016/j.energy.2019.01.083 10.1109/TIA.2018.2881183 10.1109/TVT.2018.2805189 10.1016/j.ress.2019.02.011 10.1109/TII.2019.2948018 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC |
DOI | 10.1016/j.est.2022.104520 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 2352-1538 |
ExternalDocumentID | oai_HAL_hal_05156167v1 10_1016_j_est_2022_104520 S2352152X22005400 |
GroupedDBID | --M 0R~ 457 4G. 7-5 AACTN AAEDT AAEDW AAHCO AAIAV AAKOC AALRI AAOAW AAQFI AARIN AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AFKWA AFTJW AGHFR AGUBO AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM AXJTR BELTK BJAXD BKOJK BLXMC EBS EFJIC EJD FDB FIRID FYGXN KOM O9- OAUVE ROL SPC SPCBC SSB SSD SSR SST SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH 1XC |
ID | FETCH-LOGICAL-c331t-5292c6ac2d870fedbe0e11644ef57ea1d525d7f31c1c36cda4d1156702e80a813 |
IEDL.DBID | AIKHN |
ISSN | 2352-152X |
IngestDate | Sat Jul 12 06:20:15 EDT 2025 Thu Apr 24 22:56:30 EDT 2025 Tue Jul 01 03:34:34 EDT 2025 Sat Apr 27 15:45:03 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lithium-ion batteries (LIBs) Remaining useful life (RUL) Convolutional neural network (CNN) State of health (SOH) Long short-term memory (LSTM) Recurrent neural network (RNN) |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c331t-5292c6ac2d870fedbe0e11644ef57ea1d525d7f31c1c36cda4d1156702e80a813 |
ORCID | 0000-0002-9249-2422 |
ParticipantIDs | hal_primary_oai_HAL_hal_05156167v1 crossref_citationtrail_10_1016_j_est_2022_104520 crossref_primary_10_1016_j_est_2022_104520 elsevier_sciencedirect_doi_10_1016_j_est_2022_104520 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2022 2022-07-00 2022-07 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: July 2022 |
PublicationDecade | 2020 |
PublicationTitle | Journal of energy storage |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Gou, Xu, Feng (bb0185) Jun. 2021; 7 Chang, Fang (bb0085) 2019 Richardson, Birkl, Osborne, Howey (bb0070) 2017; 15 Cai, Meng, Stroe, Peng, Luo, Teodorescu (bb0080) 2020 Xu (bb0030) 2020 Yang, Zhang, Li, Miao (bb0105) 2020 Tang, Yuan (bb0190) 2022; 217 Zhou, Li, Zhu, Zhang, Hou (bb0090) 2020 Choi, Ryu, Park, Kim (bb0120) 2019 Liu, Shang, Ouyang, Widanage (bb0140) 2020 Xiong, Zhang, Wang, He, Peng, Pecht (bb0050) 2019 Tang, Liu, Liu, Xie, Zhou, Li (bb0040) 2019 Zhang, Xiong, He, Pecht (bb0045) 2018; 67 Feng, Xue, Han, Han, Du (bb0035) 2020 Meng, Li (bb0005) 2019 Yao, Jia, Zhao, Cheng, Guo (bb0055) 2020 Liu, Li, Hu, Lucu, Widanage (bb0075) 2020; 16 Xue, Zhang, Cheng, Ma (bb0100) 2020; 376 Li, Zhang, Wang, Dong (bb0145) 2019 Qiu, Wu, Wang (bb0015) 2020 Kim (bb0010) 2019 Zhai, Ye (bb0065) 2017; 13 Wen, Li, Zhang, Chen (bb0170) 2019 Liu, Zhao, Peng (bb0135) 2019 TL, Lin (bb0095) 2003; 9 Li, Xiong, Vilathgamuwa, Wei, Xie, Zou (bb0020) 2021; 17 Park, Choi, Choi, Ryu, Kim (bb0125) 2020 Wu, Xue, Shen, Lei, Chen, Liu (bb0150) 2020 Chen, Lin, Wang (bb0175) 2019 Song, Liu, Liao, Peng (bb0060) 2020 Bole, Kulkarni, Daigle (bb0180) 2014 Qu, Liu, Ma, Fan (bb0130) 2019 Ma, Zhang, Cheng, Zhou, Hu, Yuan (bb0165) 2019 Yang, Song, Dong, Tsui (bb0155) 2019; 171 Fang, Li, Peng (bb0025) 2019 Crocioni, Pau, Delorme, Gruosso (bb0115) 2020 Dong, Yang, Wei, Wei, Tsui (bb0110) 2020; 16 Ren, Dong, Wang, Meng, Zhao, Deen (bb0160) 2020 Zhai (10.1016/j.est.2022.104520_bb0065) 2017; 13 Yang (10.1016/j.est.2022.104520_bb0155) 2019; 171 Tang (10.1016/j.est.2022.104520_bb0190) 2022; 217 Fang (10.1016/j.est.2022.104520_bb0025) 2019 Tang (10.1016/j.est.2022.104520_bb0040) 2019 Xue (10.1016/j.est.2022.104520_bb0100) 2020; 376 Park (10.1016/j.est.2022.104520_bb0125) 2020 TL (10.1016/j.est.2022.104520_bb0095) 2003; 9 Chen (10.1016/j.est.2022.104520_bb0175) 2019 Yao (10.1016/j.est.2022.104520_bb0055) 2020 Li (10.1016/j.est.2022.104520_bb0020) 2021; 17 Wu (10.1016/j.est.2022.104520_bb0150) 2020 Ma (10.1016/j.est.2022.104520_bb0165) 2019 Xu (10.1016/j.est.2022.104520_bb0030) 2020 Cai (10.1016/j.est.2022.104520_bb0080) 2020 Choi (10.1016/j.est.2022.104520_bb0120) 2019 Liu (10.1016/j.est.2022.104520_bb0135) 2019 Liu (10.1016/j.est.2022.104520_bb0075) 2020; 16 Yang (10.1016/j.est.2022.104520_bb0105) 2020 Li (10.1016/j.est.2022.104520_bb0145) 2019 Zhang (10.1016/j.est.2022.104520_bb0045) 2018; 67 Bole (10.1016/j.est.2022.104520_bb0180) 2014 Meng (10.1016/j.est.2022.104520_bb0005) 2019 Chang (10.1016/j.est.2022.104520_bb0085) 2019 Gou (10.1016/j.est.2022.104520_bb0185) 2021; 7 Crocioni (10.1016/j.est.2022.104520_bb0115) 2020 Liu (10.1016/j.est.2022.104520_bb0140) 2020 Feng (10.1016/j.est.2022.104520_bb0035) 2020 Song (10.1016/j.est.2022.104520_bb0060) 2020 Ren (10.1016/j.est.2022.104520_bb0160) 2020 Xiong (10.1016/j.est.2022.104520_bb0050) 2019 Zhou (10.1016/j.est.2022.104520_bb0090) 2020 Kim (10.1016/j.est.2022.104520_bb0010) 2019 Qiu (10.1016/j.est.2022.104520_bb0015) 2020 Richardson (10.1016/j.est.2022.104520_bb0070) 2017; 15 Dong (10.1016/j.est.2022.104520_bb0110) 2020; 16 Qu (10.1016/j.est.2022.104520_bb0130) 2019 Wen (10.1016/j.est.2022.104520_bb0170) 2019 |
References_xml | – year: 2019 ident: bb0145 article-title: Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and Elman neural networks publication-title: J. Energy Storage – volume: 16 start-page: 3767 year: 2020 end-page: 3777 ident: bb0075 article-title: Gaussian process regression with automatic relevance determination kernel for calendar aging prediction of lithium-ion batteries publication-title: IEEE Trans. Ind. Informatics – year: 2020 ident: bb0160 article-title: A data-driven auto-CNN-LSTM prediction model for lithium-ion battery remaining useful life publication-title: IEEE Trans. Ind. Informatics – volume: 17 start-page: 240 year: 2021 end-page: 250 ident: bb0020 article-title: Constrained ensemble Kalman filter for distributed electrochemical state estimation of lithium-ion batteries publication-title: IEEE Trans. Ind. Informatics – year: 2020 ident: bb0150 article-title: State of health estimation for lithium-ion batteries based on healthy features and long short-term memory publication-title: IEEE Access – year: 2020 ident: bb0105 article-title: State-of-charge estimation of lithium-ion batteries using LSTM and UKF publication-title: Energy – year: 2020 ident: bb0115 article-title: Li-ion batteries parameter estimation with tiny neural networks embedded on intelligent IoT microcontrollers publication-title: IEEE Access – volume: 171 start-page: 1173 year: 2019 end-page: 1182 ident: bb0155 article-title: A coulombic efficiency-based model for prognostics and health estimation of lithium-ion batteries publication-title: Energy – volume: 217 year: 2022 ident: bb0190 article-title: A hybrid approach based on decomposition algorithm and neural network for remaining useful life prediction of lithium-ion battery publication-title: Reliab. Eng. Syst. Saf. – volume: 7 start-page: 422 year: Jun. 2021 end-page: 436 ident: bb0185 article-title: An ensemble learning-based data-driven method for online state-of-health estimation of lithium-ion batteries publication-title: IEEE Trans. Transp. Electrif. – year: 2019 ident: bb0040 article-title: A health monitoring method based on multiple indicators to eliminate influences of estimation dispersion for lithium-ion batteries publication-title: IEEE Access – year: 2019 ident: bb0010 article-title: An on-board model-based condition monitoring for lithium-ion batteries publication-title: IEEE Trans. Ind. Appl. – volume: 376 start-page: 95 year: 2020 end-page: 102 ident: bb0100 article-title: Remaining useful life prediction of lithium-ion batteries with adaptive unscented Kalman filter and optimized support vector regression publication-title: Neurocomputing – year: 2019 ident: bb0135 article-title: Deep learning prognostics for lithium-ion battery based on ensembled long short-term memory networks publication-title: IEEE Access – year: 2019 ident: bb0025 article-title: Online Estimation and Error Analysis of Both SOC and SOH of Lithium-ion Battery Based on DEKF Method – year: 2020 ident: bb0055 article-title: Novel lithium-ion battery state-of-health estimation method using a genetic programming model publication-title: IEEE Access – year: 2020 ident: bb0090 article-title: State of health monitoring and remaining useful life prediction of lithium-ion batteries based on temporal convolutional network publication-title: IEEE Access – year: 2019 ident: bb0130 article-title: A neural-network-based method for RUL prediction and SOH monitoring of lithium-ion battery publication-title: IEEE Access – year: 2019 ident: bb0175 article-title: A dual-attention-based stock Price trend prediction model with dual features publication-title: IEEE Access – year: 2014 ident: bb0180 article-title: Adaptation of an Electrochemistry-based Li-ion Battery Model to Account for Deterioration Observed Under Randomized Use – year: 2019 ident: bb0085 article-title: A hybrid prognostic method for system degradation based on particle filter and relevance vector machine publication-title: Reliab. Eng. Syst. Saf. – volume: 9 start-page: 157 year: 2003 end-page: 189 ident: bb0095 article-title: Estimation of battery state of health using probabilistic neural network publication-title: Neural Netw. Intell. Signal Process – volume: 15 start-page: 127 year: 2017 end-page: 138 ident: bb0070 article-title: Gaussian process regression for in-situ capacity estimation of lithium-ion batteries publication-title: arXiv – volume: 13 start-page: 2911 year: 2017 end-page: 2921 ident: bb0065 article-title: RUL prediction of deteriorating products using an adaptive wiener process model publication-title: IEEE Trans. Ind. Informatics – year: 2019 ident: bb0165 article-title: Remaining useful life prediction of lithium-ion batteries based on false nearest neighbors and a hybrid neural network publication-title: Appl. Energy – year: 2019 ident: bb0005 article-title: A review on prognostics and health management (PHM) methods of lithium-ion batteries publication-title: Renew. Sust. Energ. Rev. – year: 2019 ident: bb0170 article-title: Stock market trend prediction using high-order information of time series publication-title: IEEE Access – year: 2020 ident: bb0080 article-title: Multiobjective optimization of data-driven model for lithium-ion battery SOH estimation with short-term feature publication-title: IEEE Trans. Power Electron. – volume: 67 start-page: 5695 year: 2018 end-page: 5705 ident: bb0045 article-title: Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries publication-title: IEEE Trans. Veh. Technol. – year: 2019 ident: bb0120 article-title: Machine learning-based lithium-ion battery capacity estimation exploiting multi-channel charging profiles publication-title: IEEE Access – year: 2020 ident: bb0140 article-title: A data-driven approach with uncertainty quantification for predicting future capacities and remaining useful life of lithium-ion battery publication-title: IEEE Trans. Ind. Electron. – volume: 16 start-page: 4736 year: 2020 end-page: 4746 ident: bb0110 article-title: Data-driven battery health prognosis using adaptive Brownian motion model publication-title: IEEE Trans. Ind. Informatics – year: 2020 ident: bb0060 article-title: A hybrid statistical data-driven method for on-line joint state estimation of lithium-ion batteries publication-title: Appl. Energy – year: 2020 ident: bb0030 article-title: State of charge estimation for lithium-ion batteries based on adaptive dual Kalman filter publication-title: Appl. Math. Model. – year: 2020 ident: bb0015 article-title: Remaining useful life prediction of lithium-ion battery based on improved cuckoo search particle filter and a novel state of charge estimation method publication-title: J. Power Sources – year: 2019 ident: bb0050 article-title: Lithium-ion battery health prognosis based on a real battery management system used in electric vehicles publication-title: IEEE Trans. Veh. Technol. – year: 2020 ident: bb0125 article-title: LSTM-based battery remaining useful life prediction with multi-channel charging profiles publication-title: IEEE Access – year: 2020 ident: bb0035 article-title: Robust estimation for state-of-charge and state-of-health of lithium-ion batteries using integral-type terminal sliding-mode observers publication-title: IEEE Trans. Ind. Electron. – year: 2019 ident: 10.1016/j.est.2022.104520_bb0050 article-title: Lithium-ion battery health prognosis based on a real battery management system used in electric vehicles publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2018.2864688 – year: 2020 ident: 10.1016/j.est.2022.104520_bb0160 article-title: A data-driven auto-CNN-LSTM prediction model for lithium-ion battery remaining useful life publication-title: IEEE Trans. Ind. Informatics – volume: 376 start-page: 95 year: 2020 ident: 10.1016/j.est.2022.104520_bb0100 article-title: Remaining useful life prediction of lithium-ion batteries with adaptive unscented Kalman filter and optimized support vector regression publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.09.074 – volume: 13 start-page: 2911 issue: 6 year: 2017 ident: 10.1016/j.est.2022.104520_bb0065 article-title: RUL prediction of deteriorating products using an adaptive wiener process model publication-title: IEEE Trans. Ind. Informatics doi: 10.1109/TII.2017.2684821 – year: 2019 ident: 10.1016/j.est.2022.104520_bb0145 article-title: Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and Elman neural networks publication-title: J. Energy Storage doi: 10.1016/j.est.2018.12.011 – year: 2020 ident: 10.1016/j.est.2022.104520_bb0150 article-title: State of health estimation for lithium-ion batteries based on healthy features and long short-term memory publication-title: IEEE Access – year: 2019 ident: 10.1016/j.est.2022.104520_bb0165 article-title: Remaining useful life prediction of lithium-ion batteries based on false nearest neighbors and a hybrid neural network publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.113626 – volume: 17 start-page: 240 issue: 1 year: 2021 ident: 10.1016/j.est.2022.104520_bb0020 article-title: Constrained ensemble Kalman filter for distributed electrochemical state estimation of lithium-ion batteries publication-title: IEEE Trans. Ind. Informatics doi: 10.1109/TII.2020.2974907 – volume: 217 year: 2022 ident: 10.1016/j.est.2022.104520_bb0190 article-title: A hybrid approach based on decomposition algorithm and neural network for remaining useful life prediction of lithium-ion battery publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2021.108082 – year: 2020 ident: 10.1016/j.est.2022.104520_bb0030 article-title: State of charge estimation for lithium-ion batteries based on adaptive dual Kalman filter publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2019.09.011 – volume: 7 start-page: 422 issue: 2 year: 2021 ident: 10.1016/j.est.2022.104520_bb0185 article-title: An ensemble learning-based data-driven method for online state-of-health estimation of lithium-ion batteries publication-title: IEEE Trans. Transp. Electrif. doi: 10.1109/TTE.2020.3029295 – year: 2020 ident: 10.1016/j.est.2022.104520_bb0090 article-title: State of health monitoring and remaining useful life prediction of lithium-ion batteries based on temporal convolutional network publication-title: IEEE Access – year: 2014 ident: 10.1016/j.est.2022.104520_bb0180 – year: 2020 ident: 10.1016/j.est.2022.104520_bb0080 article-title: Multiobjective optimization of data-driven model for lithium-ion battery SOH estimation with short-term feature publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2020.2987383 – year: 2019 ident: 10.1016/j.est.2022.104520_bb0040 article-title: A health monitoring method based on multiple indicators to eliminate influences of estimation dispersion for lithium-ion batteries publication-title: IEEE Access – year: 2020 ident: 10.1016/j.est.2022.104520_bb0115 article-title: Li-ion batteries parameter estimation with tiny neural networks embedded on intelligent IoT microcontrollers publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3007046 – year: 2019 ident: 10.1016/j.est.2022.104520_bb0135 article-title: Deep learning prognostics for lithium-ion battery based on ensembled long short-term memory networks publication-title: IEEE Access – year: 2020 ident: 10.1016/j.est.2022.104520_bb0105 article-title: State-of-charge estimation of lithium-ion batteries using LSTM and UKF publication-title: Energy – volume: 15 start-page: 127 issue: 1 year: 2017 ident: 10.1016/j.est.2022.104520_bb0070 article-title: Gaussian process regression for in-situ capacity estimation of lithium-ion batteries publication-title: arXiv – year: 2020 ident: 10.1016/j.est.2022.104520_bb0035 article-title: Robust estimation for state-of-charge and state-of-health of lithium-ion batteries using integral-type terminal sliding-mode observers publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2019.2916389 – year: 2020 ident: 10.1016/j.est.2022.104520_bb0140 article-title: A data-driven approach with uncertainty quantification for predicting future capacities and remaining useful life of lithium-ion battery publication-title: IEEE Trans. Ind. Electron. – volume: 9 start-page: 157 issue: 2 year: 2003 ident: 10.1016/j.est.2022.104520_bb0095 article-title: Estimation of battery state of health using probabilistic neural network publication-title: Neural Netw. Intell. Signal Process – year: 2020 ident: 10.1016/j.est.2022.104520_bb0060 article-title: A hybrid statistical data-driven method for on-line joint state estimation of lithium-ion batteries publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.114408 – volume: 16 start-page: 3767 issue: 6 year: 2020 ident: 10.1016/j.est.2022.104520_bb0075 article-title: Gaussian process regression with automatic relevance determination kernel for calendar aging prediction of lithium-ion batteries publication-title: IEEE Trans. Ind. Informatics doi: 10.1109/TII.2019.2941747 – year: 2019 ident: 10.1016/j.est.2022.104520_bb0005 article-title: A review on prognostics and health management (PHM) methods of lithium-ion batteries publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2019.109405 – year: 2019 ident: 10.1016/j.est.2022.104520_bb0025 – year: 2019 ident: 10.1016/j.est.2022.104520_bb0130 article-title: A neural-network-based method for RUL prediction and SOH monitoring of lithium-ion battery publication-title: IEEE Access – year: 2020 ident: 10.1016/j.est.2022.104520_bb0125 article-title: LSTM-based battery remaining useful life prediction with multi-channel charging profiles publication-title: IEEE Access – year: 2019 ident: 10.1016/j.est.2022.104520_bb0170 article-title: Stock market trend prediction using high-order information of time series publication-title: IEEE Access – year: 2020 ident: 10.1016/j.est.2022.104520_bb0015 article-title: Remaining useful life prediction of lithium-ion battery based on improved cuckoo search particle filter and a novel state of charge estimation method publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.227700 – volume: 171 start-page: 1173 year: 2019 ident: 10.1016/j.est.2022.104520_bb0155 article-title: A coulombic efficiency-based model for prognostics and health estimation of lithium-ion batteries publication-title: Energy doi: 10.1016/j.energy.2019.01.083 – year: 2019 ident: 10.1016/j.est.2022.104520_bb0120 article-title: Machine learning-based lithium-ion battery capacity estimation exploiting multi-channel charging profiles publication-title: IEEE Access – year: 2019 ident: 10.1016/j.est.2022.104520_bb0175 article-title: A dual-attention-based stock Price trend prediction model with dual features publication-title: IEEE Access – year: 2019 ident: 10.1016/j.est.2022.104520_bb0010 article-title: An on-board model-based condition monitoring for lithium-ion batteries publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2018.2881183 – volume: 67 start-page: 5695 issue: 7 year: 2018 ident: 10.1016/j.est.2022.104520_bb0045 article-title: Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2018.2805189 – year: 2020 ident: 10.1016/j.est.2022.104520_bb0055 article-title: Novel lithium-ion battery state-of-health estimation method using a genetic programming model publication-title: IEEE Access – year: 2019 ident: 10.1016/j.est.2022.104520_bb0085 article-title: A hybrid prognostic method for system degradation based on particle filter and relevance vector machine publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2019.02.011 – volume: 16 start-page: 4736 issue: 7 year: 2020 ident: 10.1016/j.est.2022.104520_bb0110 article-title: Data-driven battery health prognosis using adaptive Brownian motion model publication-title: IEEE Trans. Ind. Informatics doi: 10.1109/TII.2019.2948018 |
SSID | ssj0001651196 |
Score | 2.461491 |
Snippet | Lithium-ion batteries are widely used due to their attractive features. They have emerged as the primary storage system for electric cars, solar power, and... |
SourceID | hal crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 104520 |
SubjectTerms | Artificial Intelligence Computer Science Convolutional neural network (CNN) Engineering Sciences Lithium-ion batteries (LIBs) Long short-term memory (LSTM) Recurrent neural network (RNN) Remaining useful life (RUL) State of health (SOH) |
Title | State of health estimation and remaining useful life assessment of lithium-ion batteries: A comparative study |
URI | https://dx.doi.org/10.1016/j.est.2022.104520 https://hal.science/hal-05156167 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8MwDDZde9kOY0_WvTBjp0Fo7MROulspK92rl63QW7BjhXb0Rdfu90-Ok3aD0cOOMZEJsiN9suRPhNxqMEobJb1mxKUXIgTwdGxiDy0iACI6aOZ0Ta892e2HTwMxqJB2eRfGllUWtt_Z9NxaFyONQpuN-WjUeOOIHdD7DDjPcQfG7TWO3tWvklrr8bnb2xy1SJssc23mBPesTJnfzCu90PxioMi5zXcK2_j7bw-1MyzPWnPf0zkg-wVopC33XYekAtMjsveDSvCYTHLUSGcZdTcbqWXPcNcSqZoauoCJ6wVBV5-QrcZ0PMqAqjUvp5VERD4crSaeldE57yaG0fe0RdMNRTjN-WhPSL_z8N7uekUrBS8NArbEcLPJU6lSbvD_zMBo8IFhpBRCJiJQzAguTJQFLGVpIFOjQoNQUUY-h9hXMQtOSXU6m8IZoUaIKAuV8gWgAYhDbQQK6ACnZBoBSZ34pfqStOAZt-0uxklZUPaRoAoSq_HEabxO7tYic0eyse3lsFyT5NdOSdAJbBO7wfVbT29Ztbutl8SO2TY3ksnoi53_b-4LsmufXBXvJakuFyu4Qqyy1NfFXvwGmtrmqg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI54HIAD4ineRIgTUrUmbdKO2zSBCoxd2KTdoqRxxdA2EGz8fpymHSChHbimdVQ5qf05dj4TcmnAamO1DJoJl0GMECAwqU0DtIgAiOigWdI1PXZl1o_vB2KwRNr1XRhXVlnZfm_TS2tdjTQqbTbehsPGE0fsgN5nwHmJOzBuX3XsVLjNV1t3D1n3-6hFumSZbzMneOBk6vxmWemF5hcDRc5dvlO4xt9_e6jl5_qstfQ9t1tkswKNtOW_a5sswWSHbPygEtwl4xI10teC-puN1LFn-GuJVE8sfYex7wVBZx9QzEZ0NCyA6jkvp5NERP48nI0DJ2NK3k0Mo69pi-bfFOG05KPdI_3bm147C6pWCkEeRWyK4WaT51Ln3OL_WYA1EALDSCmGQiSgmRVc2KSIWM7ySOZWxxahokxCDmmoUxbtk5XJ6wQOCLVCJEWsdSgADUAaGytQwEQ4JTMISA5JWKtP5RXPuGt3MVJ1QdmLQhUop3HlNX5IruYib55kY9HLcb0m6tdOUegEFold4PrNp3es2lmro9yYa3MjmUw-2dH_5j4na1nvsaM6d92HY7LunviK3hOyMn2fwSnilqk5q_blF5iS6Zk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State+of+health+estimation+and+remaining+useful+life+assessment+of+lithium-ion+batteries%3A+A+comparative+study&rft.jtitle=Journal+of+energy+storage&rft.au=Toughzaoui%2C+Yassine&rft.au=Toosi%2C+Safieh+Bamati&rft.au=Chaoui%2C+Hicham&rft.au=Louahlia%2C+Hasna&rft.date=2022-07-01&rft.issn=2352-152X&rft.volume=51&rft.spage=104520&rft_id=info:doi/10.1016%2Fj.est.2022.104520&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_est_2022_104520 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-152X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-152X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-152X&client=summon |