State of health estimation and remaining useful life assessment of lithium-ion batteries: A comparative study

Lithium-ion batteries are widely used due to their attractive features. They have emerged as the primary storage system for electric cars, solar power, and marine vehicles. Consequently, their internal health state estimation has attracted extensive attention. An accurate health assessment results i...

Full description

Saved in:
Bibliographic Details
Published inJournal of energy storage Vol. 51; p. 104520
Main Authors Toughzaoui, Yassine, Toosi, Safieh Bamati, Chaoui, Hicham, Louahlia, Hasna, Petrone, Raffaele, Le Masson, Stéphane, Gualous, Hamid
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lithium-ion batteries are widely used due to their attractive features. They have emerged as the primary storage system for electric cars, solar power, and marine vehicles. Consequently, their internal health state estimation has attracted extensive attention. An accurate health assessment results in a safer and more efficient battery management system (BMS), which estimates the battery's state and predicts premature failure. Recurrent neural network (RNN) has been extensively utilized to diagnose and prognosis lithium-ion batteries, as it has demonstrated superior performance. Improving the proficiency of Machine Learning (ML) algorithms has always been a subject of research. Among these attempts, various studies have proposed the combination of RNN and the convolutional neural network (CNN). In this paper, the CNN is combined with the long short-term memory (LSTM) network for the state of health estimation and remaining useful life assessment of lithium-ion batteries. To facilitate the features exploitation procedure for the ML algorithm, a K-means clustering algorithm is proposed for data classification. A comparative study of LSTM and the hybrid CNN-LSTM method is conducted to show the superiority of the proposed method. •SOH estimation and RUL prediction using recurrent and convolutional neural networks•Comparison between the results of CNN-LSTM hybrid model and LSTM neural network•Efficient tool for RUL prediction is detailed in this study.
AbstractList Lithium-ion batteries are widely used due to their attractive features. They have emerged as the primary storage system for electric cars, solar power, and marine vehicles. Consequently, their internal health state estimation has attracted extensive attention. An accurate health assessment results in a safer and more efficient battery management system (BMS), which estimates the battery's state and predicts premature failure. Recurrent neural network (RNN) has been extensively utilized to diagnose and prognosis lithium-ion batteries, as it has demonstrated superior performance. Improving the proficiency of Machine Learning (ML) algorithms has always been a subject of research. Among these attempts, various studies have proposed the combination of RNN and the convolutional neural network (CNN). In this paper, the CNN is combined with the long short-term memory (LSTM) network for the state of health estimation and remaining useful life assessment of lithium-ion batteries. To facilitate the features exploitation procedure for the ML algorithm, a K-means clustering algorithm is proposed for data classification. A comparative study of LSTM and the hybrid CNN-LSTM method is conducted to show the superiority of the proposed method. •SOH estimation and RUL prediction using recurrent and convolutional neural networks•Comparison between the results of CNN-LSTM hybrid model and LSTM neural network•Efficient tool for RUL prediction is detailed in this study.
ArticleNumber 104520
Author Gualous, Hamid
Toosi, Safieh Bamati
Toughzaoui, Yassine
Le Masson, Stéphane
Louahlia, Hasna
Petrone, Raffaele
Chaoui, Hicham
Author_xml – sequence: 1
  givenname: Yassine
  surname: Toughzaoui
  fullname: Toughzaoui, Yassine
  email: yassine.toughzaoui@unicaen.fr
  organization: LUSAC Laboratory (EA4253), Caen Normandy University, 120, rue de l'Exode, 50000 Saint-Lô, France
– sequence: 2
  givenname: Safieh Bamati
  surname: Toosi
  fullname: Toosi, Safieh Bamati
  email: safi.bamatitoosi@carleton.ca
  organization: Intelligent Robotic and Energy Systems (IRES), Carleton University, Ottawa, Ontario, Canada
– sequence: 3
  givenname: Hicham
  surname: Chaoui
  fullname: Chaoui, Hicham
  email: hicham.chaoui@carleton.ca
  organization: Intelligent Robotic and Energy Systems (IRES), Carleton University, Ottawa, Ontario, Canada
– sequence: 4
  givenname: Hasna
  surname: Louahlia
  fullname: Louahlia, Hasna
  email: hasna.louahlia@unicaen.fr
  organization: LUSAC Laboratory (EA4253), Caen Normandy University, 120, rue de l'Exode, 50000 Saint-Lô, France
– sequence: 5
  givenname: Raffaele
  surname: Petrone
  fullname: Petrone, Raffaele
  email: raffaele.petrone@unicaen.fr
  organization: LUSAC Laboratory (EA4253), Caen Normandy University, 120, rue de l'Exode, 50000 Saint-Lô, France
– sequence: 6
  givenname: Stéphane
  surname: Le Masson
  fullname: Le Masson, Stéphane
  email: stephane.lemasson@orange.com
  organization: Energy & Environment, Dept at Orange Labs, Lannion, Bretagne, France
– sequence: 7
  givenname: Hamid
  surname: Gualous
  fullname: Gualous, Hamid
  email: hamid.gualous@unicaen.fr
  organization: LUSAC Laboratory (EA4253), Caen Normandy University, 120, rue de l'Exode, 50000 Saint-Lô, France
BackLink https://hal.science/hal-05156167$$DView record in HAL
BookMark eNp9kE1PAjEURRuDiYj8AHfduhjs60xnQFeEqJiQuFATd01p30jJfJC2Q8K_tyPqwgWrfuSe-_LOJRk0bYOEXAObAIP8djtBHyaccR7fmeDsjAx5KngCIp0O_u7844KMvd8yFiEBMMuHpH4NKiBtS7pBVYUNjU22VsG2DVWNoQ5rZRvbfNLOY9lVtLIlUuU9el9jE3qysmFjuzrpmbUKAZ1Ff0fnVLf1TrlYtkfqQ2cOV-S8VJXH8c85Iu-PD2-LZbJ6eXpezFeJTlMIieAzrnOluZkWrESzRoYAeZZhKQpUYAQXpihT0KDTXBuVGQCRF4zjlKkppCNyc-zdqEruXFzIHWSrrFzOV7L_YyLmIS_2fbY4ZrVrvXdYSm3Dt4DglK0kMNlLllsZ1chesjxKjiT8I39HnWLujwzG9fcWnfTaYqPRWIc6SNPaE_QXvf6XkQ
CitedBy_id crossref_primary_10_1039_D2RA06004C
crossref_primary_10_1109_TTE_2024_3376515
crossref_primary_10_1063_5_0195048
crossref_primary_10_1016_j_est_2025_115316
crossref_primary_10_1109_TVT_2022_3226686
crossref_primary_10_1016_j_est_2023_110330
crossref_primary_10_1016_j_est_2023_109069
crossref_primary_10_1007_s00202_024_02608_0
crossref_primary_10_25046_aj070520
crossref_primary_10_1016_j_ress_2022_109046
crossref_primary_10_1016_j_apenergy_2023_120808
crossref_primary_10_1016_j_egyai_2023_100319
crossref_primary_10_1016_j_est_2022_106323
crossref_primary_10_1016_j_egyai_2024_100419
crossref_primary_10_1115_1_4065538
crossref_primary_10_1016_j_energy_2024_130764
crossref_primary_10_1002_ese3_1982
crossref_primary_10_1007_s42979_024_03046_2
crossref_primary_10_1002_oca_3248
crossref_primary_10_1016_j_energy_2023_129690
crossref_primary_10_1016_j_est_2023_110248
crossref_primary_10_1016_j_est_2023_108083
crossref_primary_10_1016_j_est_2023_108046
crossref_primary_10_1016_j_est_2023_109498
crossref_primary_10_1007_s11227_023_05648_8
crossref_primary_10_3390_batteries9050264
crossref_primary_10_1016_j_jpowsour_2024_234808
crossref_primary_10_1088_1742_6596_2615_1_012016
crossref_primary_10_1016_j_egyai_2024_100413
crossref_primary_10_1007_s41939_023_00359_2
crossref_primary_10_1016_j_array_2024_100367
crossref_primary_10_1016_j_rser_2023_114262
crossref_primary_10_1016_j_ensm_2023_102785
crossref_primary_10_1016_j_est_2022_106571
crossref_primary_10_3390_batteries11010031
crossref_primary_10_1016_j_apenergy_2024_125116
crossref_primary_10_1016_j_electacta_2022_141404
crossref_primary_10_1016_j_est_2023_107063
crossref_primary_10_1016_j_est_2024_113388
crossref_primary_10_54097_fcis_v5i1_11535
crossref_primary_10_1109_TVT_2023_3337855
crossref_primary_10_3390_s22249637
crossref_primary_10_1016_j_est_2023_109884
crossref_primary_10_3390_en18030746
crossref_primary_10_3390_wevj14060145
crossref_primary_10_1007_s10489_023_04777_0
crossref_primary_10_1016_j_jpowsour_2024_235713
crossref_primary_10_1051_e3sconf_202338801021
crossref_primary_10_3390_sym16040436
crossref_primary_10_1109_TPEL_2024_3496758
crossref_primary_10_3390_batteries10110384
crossref_primary_10_1016_j_energy_2023_127408
crossref_primary_10_1109_TIM_2025_3538072
crossref_primary_10_3390_batteries9070351
Cites_doi 10.1109/TVT.2018.2864688
10.1016/j.neucom.2019.09.074
10.1109/TII.2017.2684821
10.1016/j.est.2018.12.011
10.1016/j.apenergy.2019.113626
10.1109/TII.2020.2974907
10.1016/j.ress.2021.108082
10.1016/j.apm.2019.09.011
10.1109/TTE.2020.3029295
10.1109/TPEL.2020.2987383
10.1109/ACCESS.2020.3007046
10.1109/TIE.2019.2916389
10.1016/j.apenergy.2019.114408
10.1109/TII.2019.2941747
10.1016/j.rser.2019.109405
10.1016/j.jpowsour.2020.227700
10.1016/j.energy.2019.01.083
10.1109/TIA.2018.2881183
10.1109/TVT.2018.2805189
10.1016/j.ress.2019.02.011
10.1109/TII.2019.2948018
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
DOI 10.1016/j.est.2022.104520
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2352-1538
ExternalDocumentID oai_HAL_hal_05156167v1
10_1016_j_est_2022_104520
S2352152X22005400
GroupedDBID --M
0R~
457
4G.
7-5
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AFKWA
AFTJW
AGHFR
AGUBO
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EJD
FDB
FIRID
FYGXN
KOM
O9-
OAUVE
ROL
SPC
SPCBC
SSB
SSD
SSR
SST
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
1XC
ID FETCH-LOGICAL-c331t-5292c6ac2d870fedbe0e11644ef57ea1d525d7f31c1c36cda4d1156702e80a813
IEDL.DBID AIKHN
ISSN 2352-152X
IngestDate Sat Jul 12 06:20:15 EDT 2025
Thu Apr 24 22:56:30 EDT 2025
Tue Jul 01 03:34:34 EDT 2025
Sat Apr 27 15:45:03 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Lithium-ion batteries (LIBs)
Remaining useful life (RUL)
Convolutional neural network (CNN)
State of health (SOH)
Long short-term memory (LSTM)
Recurrent neural network (RNN)
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-5292c6ac2d870fedbe0e11644ef57ea1d525d7f31c1c36cda4d1156702e80a813
ORCID 0000-0002-9249-2422
ParticipantIDs hal_primary_oai_HAL_hal_05156167v1
crossref_citationtrail_10_1016_j_est_2022_104520
crossref_primary_10_1016_j_est_2022_104520
elsevier_sciencedirect_doi_10_1016_j_est_2022_104520
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2022
2022-07-00
2022-07
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: July 2022
PublicationDecade 2020
PublicationTitle Journal of energy storage
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Gou, Xu, Feng (bb0185) Jun. 2021; 7
Chang, Fang (bb0085) 2019
Richardson, Birkl, Osborne, Howey (bb0070) 2017; 15
Cai, Meng, Stroe, Peng, Luo, Teodorescu (bb0080) 2020
Xu (bb0030) 2020
Yang, Zhang, Li, Miao (bb0105) 2020
Tang, Yuan (bb0190) 2022; 217
Zhou, Li, Zhu, Zhang, Hou (bb0090) 2020
Choi, Ryu, Park, Kim (bb0120) 2019
Liu, Shang, Ouyang, Widanage (bb0140) 2020
Xiong, Zhang, Wang, He, Peng, Pecht (bb0050) 2019
Tang, Liu, Liu, Xie, Zhou, Li (bb0040) 2019
Zhang, Xiong, He, Pecht (bb0045) 2018; 67
Feng, Xue, Han, Han, Du (bb0035) 2020
Meng, Li (bb0005) 2019
Yao, Jia, Zhao, Cheng, Guo (bb0055) 2020
Liu, Li, Hu, Lucu, Widanage (bb0075) 2020; 16
Xue, Zhang, Cheng, Ma (bb0100) 2020; 376
Li, Zhang, Wang, Dong (bb0145) 2019
Qiu, Wu, Wang (bb0015) 2020
Kim (bb0010) 2019
Zhai, Ye (bb0065) 2017; 13
Wen, Li, Zhang, Chen (bb0170) 2019
Liu, Zhao, Peng (bb0135) 2019
TL, Lin (bb0095) 2003; 9
Li, Xiong, Vilathgamuwa, Wei, Xie, Zou (bb0020) 2021; 17
Park, Choi, Choi, Ryu, Kim (bb0125) 2020
Wu, Xue, Shen, Lei, Chen, Liu (bb0150) 2020
Chen, Lin, Wang (bb0175) 2019
Song, Liu, Liao, Peng (bb0060) 2020
Bole, Kulkarni, Daigle (bb0180) 2014
Qu, Liu, Ma, Fan (bb0130) 2019
Ma, Zhang, Cheng, Zhou, Hu, Yuan (bb0165) 2019
Yang, Song, Dong, Tsui (bb0155) 2019; 171
Fang, Li, Peng (bb0025) 2019
Crocioni, Pau, Delorme, Gruosso (bb0115) 2020
Dong, Yang, Wei, Wei, Tsui (bb0110) 2020; 16
Ren, Dong, Wang, Meng, Zhao, Deen (bb0160) 2020
Zhai (10.1016/j.est.2022.104520_bb0065) 2017; 13
Yang (10.1016/j.est.2022.104520_bb0155) 2019; 171
Tang (10.1016/j.est.2022.104520_bb0190) 2022; 217
Fang (10.1016/j.est.2022.104520_bb0025) 2019
Tang (10.1016/j.est.2022.104520_bb0040) 2019
Xue (10.1016/j.est.2022.104520_bb0100) 2020; 376
Park (10.1016/j.est.2022.104520_bb0125) 2020
TL (10.1016/j.est.2022.104520_bb0095) 2003; 9
Chen (10.1016/j.est.2022.104520_bb0175) 2019
Yao (10.1016/j.est.2022.104520_bb0055) 2020
Li (10.1016/j.est.2022.104520_bb0020) 2021; 17
Wu (10.1016/j.est.2022.104520_bb0150) 2020
Ma (10.1016/j.est.2022.104520_bb0165) 2019
Xu (10.1016/j.est.2022.104520_bb0030) 2020
Cai (10.1016/j.est.2022.104520_bb0080) 2020
Choi (10.1016/j.est.2022.104520_bb0120) 2019
Liu (10.1016/j.est.2022.104520_bb0135) 2019
Liu (10.1016/j.est.2022.104520_bb0075) 2020; 16
Yang (10.1016/j.est.2022.104520_bb0105) 2020
Li (10.1016/j.est.2022.104520_bb0145) 2019
Zhang (10.1016/j.est.2022.104520_bb0045) 2018; 67
Bole (10.1016/j.est.2022.104520_bb0180) 2014
Meng (10.1016/j.est.2022.104520_bb0005) 2019
Chang (10.1016/j.est.2022.104520_bb0085) 2019
Gou (10.1016/j.est.2022.104520_bb0185) 2021; 7
Crocioni (10.1016/j.est.2022.104520_bb0115) 2020
Liu (10.1016/j.est.2022.104520_bb0140) 2020
Feng (10.1016/j.est.2022.104520_bb0035) 2020
Song (10.1016/j.est.2022.104520_bb0060) 2020
Ren (10.1016/j.est.2022.104520_bb0160) 2020
Xiong (10.1016/j.est.2022.104520_bb0050) 2019
Zhou (10.1016/j.est.2022.104520_bb0090) 2020
Kim (10.1016/j.est.2022.104520_bb0010) 2019
Qiu (10.1016/j.est.2022.104520_bb0015) 2020
Richardson (10.1016/j.est.2022.104520_bb0070) 2017; 15
Dong (10.1016/j.est.2022.104520_bb0110) 2020; 16
Qu (10.1016/j.est.2022.104520_bb0130) 2019
Wen (10.1016/j.est.2022.104520_bb0170) 2019
References_xml – year: 2019
  ident: bb0145
  article-title: Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and Elman neural networks
  publication-title: J. Energy Storage
– volume: 16
  start-page: 3767
  year: 2020
  end-page: 3777
  ident: bb0075
  article-title: Gaussian process regression with automatic relevance determination kernel for calendar aging prediction of lithium-ion batteries
  publication-title: IEEE Trans. Ind. Informatics
– year: 2020
  ident: bb0160
  article-title: A data-driven auto-CNN-LSTM prediction model for lithium-ion battery remaining useful life
  publication-title: IEEE Trans. Ind. Informatics
– volume: 17
  start-page: 240
  year: 2021
  end-page: 250
  ident: bb0020
  article-title: Constrained ensemble Kalman filter for distributed electrochemical state estimation of lithium-ion batteries
  publication-title: IEEE Trans. Ind. Informatics
– year: 2020
  ident: bb0150
  article-title: State of health estimation for lithium-ion batteries based on healthy features and long short-term memory
  publication-title: IEEE Access
– year: 2020
  ident: bb0105
  article-title: State-of-charge estimation of lithium-ion batteries using LSTM and UKF
  publication-title: Energy
– year: 2020
  ident: bb0115
  article-title: Li-ion batteries parameter estimation with tiny neural networks embedded on intelligent IoT microcontrollers
  publication-title: IEEE Access
– volume: 171
  start-page: 1173
  year: 2019
  end-page: 1182
  ident: bb0155
  article-title: A coulombic efficiency-based model for prognostics and health estimation of lithium-ion batteries
  publication-title: Energy
– volume: 217
  year: 2022
  ident: bb0190
  article-title: A hybrid approach based on decomposition algorithm and neural network for remaining useful life prediction of lithium-ion battery
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 7
  start-page: 422
  year: Jun. 2021
  end-page: 436
  ident: bb0185
  article-title: An ensemble learning-based data-driven method for online state-of-health estimation of lithium-ion batteries
  publication-title: IEEE Trans. Transp. Electrif.
– year: 2019
  ident: bb0040
  article-title: A health monitoring method based on multiple indicators to eliminate influences of estimation dispersion for lithium-ion batteries
  publication-title: IEEE Access
– year: 2019
  ident: bb0010
  article-title: An on-board model-based condition monitoring for lithium-ion batteries
  publication-title: IEEE Trans. Ind. Appl.
– volume: 376
  start-page: 95
  year: 2020
  end-page: 102
  ident: bb0100
  article-title: Remaining useful life prediction of lithium-ion batteries with adaptive unscented Kalman filter and optimized support vector regression
  publication-title: Neurocomputing
– year: 2019
  ident: bb0135
  article-title: Deep learning prognostics for lithium-ion battery based on ensembled long short-term memory networks
  publication-title: IEEE Access
– year: 2019
  ident: bb0025
  article-title: Online Estimation and Error Analysis of Both SOC and SOH of Lithium-ion Battery Based on DEKF Method
– year: 2020
  ident: bb0055
  article-title: Novel lithium-ion battery state-of-health estimation method using a genetic programming model
  publication-title: IEEE Access
– year: 2020
  ident: bb0090
  article-title: State of health monitoring and remaining useful life prediction of lithium-ion batteries based on temporal convolutional network
  publication-title: IEEE Access
– year: 2019
  ident: bb0130
  article-title: A neural-network-based method for RUL prediction and SOH monitoring of lithium-ion battery
  publication-title: IEEE Access
– year: 2019
  ident: bb0175
  article-title: A dual-attention-based stock Price trend prediction model with dual features
  publication-title: IEEE Access
– year: 2014
  ident: bb0180
  article-title: Adaptation of an Electrochemistry-based Li-ion Battery Model to Account for Deterioration Observed Under Randomized Use
– year: 2019
  ident: bb0085
  article-title: A hybrid prognostic method for system degradation based on particle filter and relevance vector machine
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 9
  start-page: 157
  year: 2003
  end-page: 189
  ident: bb0095
  article-title: Estimation of battery state of health using probabilistic neural network
  publication-title: Neural Netw. Intell. Signal Process
– volume: 15
  start-page: 127
  year: 2017
  end-page: 138
  ident: bb0070
  article-title: Gaussian process regression for in-situ capacity estimation of lithium-ion batteries
  publication-title: arXiv
– volume: 13
  start-page: 2911
  year: 2017
  end-page: 2921
  ident: bb0065
  article-title: RUL prediction of deteriorating products using an adaptive wiener process model
  publication-title: IEEE Trans. Ind. Informatics
– year: 2019
  ident: bb0165
  article-title: Remaining useful life prediction of lithium-ion batteries based on false nearest neighbors and a hybrid neural network
  publication-title: Appl. Energy
– year: 2019
  ident: bb0005
  article-title: A review on prognostics and health management (PHM) methods of lithium-ion batteries
  publication-title: Renew. Sust. Energ. Rev.
– year: 2019
  ident: bb0170
  article-title: Stock market trend prediction using high-order information of time series
  publication-title: IEEE Access
– year: 2020
  ident: bb0080
  article-title: Multiobjective optimization of data-driven model for lithium-ion battery SOH estimation with short-term feature
  publication-title: IEEE Trans. Power Electron.
– volume: 67
  start-page: 5695
  year: 2018
  end-page: 5705
  ident: bb0045
  article-title: Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries
  publication-title: IEEE Trans. Veh. Technol.
– year: 2019
  ident: bb0120
  article-title: Machine learning-based lithium-ion battery capacity estimation exploiting multi-channel charging profiles
  publication-title: IEEE Access
– year: 2020
  ident: bb0140
  article-title: A data-driven approach with uncertainty quantification for predicting future capacities and remaining useful life of lithium-ion battery
  publication-title: IEEE Trans. Ind. Electron.
– volume: 16
  start-page: 4736
  year: 2020
  end-page: 4746
  ident: bb0110
  article-title: Data-driven battery health prognosis using adaptive Brownian motion model
  publication-title: IEEE Trans. Ind. Informatics
– year: 2020
  ident: bb0060
  article-title: A hybrid statistical data-driven method for on-line joint state estimation of lithium-ion batteries
  publication-title: Appl. Energy
– year: 2020
  ident: bb0030
  article-title: State of charge estimation for lithium-ion batteries based on adaptive dual Kalman filter
  publication-title: Appl. Math. Model.
– year: 2020
  ident: bb0015
  article-title: Remaining useful life prediction of lithium-ion battery based on improved cuckoo search particle filter and a novel state of charge estimation method
  publication-title: J. Power Sources
– year: 2019
  ident: bb0050
  article-title: Lithium-ion battery health prognosis based on a real battery management system used in electric vehicles
  publication-title: IEEE Trans. Veh. Technol.
– year: 2020
  ident: bb0125
  article-title: LSTM-based battery remaining useful life prediction with multi-channel charging profiles
  publication-title: IEEE Access
– year: 2020
  ident: bb0035
  article-title: Robust estimation for state-of-charge and state-of-health of lithium-ion batteries using integral-type terminal sliding-mode observers
  publication-title: IEEE Trans. Ind. Electron.
– year: 2019
  ident: 10.1016/j.est.2022.104520_bb0050
  article-title: Lithium-ion battery health prognosis based on a real battery management system used in electric vehicles
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2018.2864688
– year: 2020
  ident: 10.1016/j.est.2022.104520_bb0160
  article-title: A data-driven auto-CNN-LSTM prediction model for lithium-ion battery remaining useful life
  publication-title: IEEE Trans. Ind. Informatics
– volume: 376
  start-page: 95
  year: 2020
  ident: 10.1016/j.est.2022.104520_bb0100
  article-title: Remaining useful life prediction of lithium-ion batteries with adaptive unscented Kalman filter and optimized support vector regression
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.09.074
– volume: 13
  start-page: 2911
  issue: 6
  year: 2017
  ident: 10.1016/j.est.2022.104520_bb0065
  article-title: RUL prediction of deteriorating products using an adaptive wiener process model
  publication-title: IEEE Trans. Ind. Informatics
  doi: 10.1109/TII.2017.2684821
– year: 2019
  ident: 10.1016/j.est.2022.104520_bb0145
  article-title: Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and Elman neural networks
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2018.12.011
– year: 2020
  ident: 10.1016/j.est.2022.104520_bb0150
  article-title: State of health estimation for lithium-ion batteries based on healthy features and long short-term memory
  publication-title: IEEE Access
– year: 2019
  ident: 10.1016/j.est.2022.104520_bb0165
  article-title: Remaining useful life prediction of lithium-ion batteries based on false nearest neighbors and a hybrid neural network
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.113626
– volume: 17
  start-page: 240
  issue: 1
  year: 2021
  ident: 10.1016/j.est.2022.104520_bb0020
  article-title: Constrained ensemble Kalman filter for distributed electrochemical state estimation of lithium-ion batteries
  publication-title: IEEE Trans. Ind. Informatics
  doi: 10.1109/TII.2020.2974907
– volume: 217
  year: 2022
  ident: 10.1016/j.est.2022.104520_bb0190
  article-title: A hybrid approach based on decomposition algorithm and neural network for remaining useful life prediction of lithium-ion battery
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2021.108082
– year: 2020
  ident: 10.1016/j.est.2022.104520_bb0030
  article-title: State of charge estimation for lithium-ion batteries based on adaptive dual Kalman filter
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2019.09.011
– volume: 7
  start-page: 422
  issue: 2
  year: 2021
  ident: 10.1016/j.est.2022.104520_bb0185
  article-title: An ensemble learning-based data-driven method for online state-of-health estimation of lithium-ion batteries
  publication-title: IEEE Trans. Transp. Electrif.
  doi: 10.1109/TTE.2020.3029295
– year: 2020
  ident: 10.1016/j.est.2022.104520_bb0090
  article-title: State of health monitoring and remaining useful life prediction of lithium-ion batteries based on temporal convolutional network
  publication-title: IEEE Access
– year: 2014
  ident: 10.1016/j.est.2022.104520_bb0180
– year: 2020
  ident: 10.1016/j.est.2022.104520_bb0080
  article-title: Multiobjective optimization of data-driven model for lithium-ion battery SOH estimation with short-term feature
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2020.2987383
– year: 2019
  ident: 10.1016/j.est.2022.104520_bb0040
  article-title: A health monitoring method based on multiple indicators to eliminate influences of estimation dispersion for lithium-ion batteries
  publication-title: IEEE Access
– year: 2020
  ident: 10.1016/j.est.2022.104520_bb0115
  article-title: Li-ion batteries parameter estimation with tiny neural networks embedded on intelligent IoT microcontrollers
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3007046
– year: 2019
  ident: 10.1016/j.est.2022.104520_bb0135
  article-title: Deep learning prognostics for lithium-ion battery based on ensembled long short-term memory networks
  publication-title: IEEE Access
– year: 2020
  ident: 10.1016/j.est.2022.104520_bb0105
  article-title: State-of-charge estimation of lithium-ion batteries using LSTM and UKF
  publication-title: Energy
– volume: 15
  start-page: 127
  issue: 1
  year: 2017
  ident: 10.1016/j.est.2022.104520_bb0070
  article-title: Gaussian process regression for in-situ capacity estimation of lithium-ion batteries
  publication-title: arXiv
– year: 2020
  ident: 10.1016/j.est.2022.104520_bb0035
  article-title: Robust estimation for state-of-charge and state-of-health of lithium-ion batteries using integral-type terminal sliding-mode observers
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2019.2916389
– year: 2020
  ident: 10.1016/j.est.2022.104520_bb0140
  article-title: A data-driven approach with uncertainty quantification for predicting future capacities and remaining useful life of lithium-ion battery
  publication-title: IEEE Trans. Ind. Electron.
– volume: 9
  start-page: 157
  issue: 2
  year: 2003
  ident: 10.1016/j.est.2022.104520_bb0095
  article-title: Estimation of battery state of health using probabilistic neural network
  publication-title: Neural Netw. Intell. Signal Process
– year: 2020
  ident: 10.1016/j.est.2022.104520_bb0060
  article-title: A hybrid statistical data-driven method for on-line joint state estimation of lithium-ion batteries
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.114408
– volume: 16
  start-page: 3767
  issue: 6
  year: 2020
  ident: 10.1016/j.est.2022.104520_bb0075
  article-title: Gaussian process regression with automatic relevance determination kernel for calendar aging prediction of lithium-ion batteries
  publication-title: IEEE Trans. Ind. Informatics
  doi: 10.1109/TII.2019.2941747
– year: 2019
  ident: 10.1016/j.est.2022.104520_bb0005
  article-title: A review on prognostics and health management (PHM) methods of lithium-ion batteries
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2019.109405
– year: 2019
  ident: 10.1016/j.est.2022.104520_bb0025
– year: 2019
  ident: 10.1016/j.est.2022.104520_bb0130
  article-title: A neural-network-based method for RUL prediction and SOH monitoring of lithium-ion battery
  publication-title: IEEE Access
– year: 2020
  ident: 10.1016/j.est.2022.104520_bb0125
  article-title: LSTM-based battery remaining useful life prediction with multi-channel charging profiles
  publication-title: IEEE Access
– year: 2019
  ident: 10.1016/j.est.2022.104520_bb0170
  article-title: Stock market trend prediction using high-order information of time series
  publication-title: IEEE Access
– year: 2020
  ident: 10.1016/j.est.2022.104520_bb0015
  article-title: Remaining useful life prediction of lithium-ion battery based on improved cuckoo search particle filter and a novel state of charge estimation method
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.227700
– volume: 171
  start-page: 1173
  year: 2019
  ident: 10.1016/j.est.2022.104520_bb0155
  article-title: A coulombic efficiency-based model for prognostics and health estimation of lithium-ion batteries
  publication-title: Energy
  doi: 10.1016/j.energy.2019.01.083
– year: 2019
  ident: 10.1016/j.est.2022.104520_bb0120
  article-title: Machine learning-based lithium-ion battery capacity estimation exploiting multi-channel charging profiles
  publication-title: IEEE Access
– year: 2019
  ident: 10.1016/j.est.2022.104520_bb0175
  article-title: A dual-attention-based stock Price trend prediction model with dual features
  publication-title: IEEE Access
– year: 2019
  ident: 10.1016/j.est.2022.104520_bb0010
  article-title: An on-board model-based condition monitoring for lithium-ion batteries
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2018.2881183
– volume: 67
  start-page: 5695
  issue: 7
  year: 2018
  ident: 10.1016/j.est.2022.104520_bb0045
  article-title: Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2018.2805189
– year: 2020
  ident: 10.1016/j.est.2022.104520_bb0055
  article-title: Novel lithium-ion battery state-of-health estimation method using a genetic programming model
  publication-title: IEEE Access
– year: 2019
  ident: 10.1016/j.est.2022.104520_bb0085
  article-title: A hybrid prognostic method for system degradation based on particle filter and relevance vector machine
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2019.02.011
– volume: 16
  start-page: 4736
  issue: 7
  year: 2020
  ident: 10.1016/j.est.2022.104520_bb0110
  article-title: Data-driven battery health prognosis using adaptive Brownian motion model
  publication-title: IEEE Trans. Ind. Informatics
  doi: 10.1109/TII.2019.2948018
SSID ssj0001651196
Score 2.461491
Snippet Lithium-ion batteries are widely used due to their attractive features. They have emerged as the primary storage system for electric cars, solar power, and...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 104520
SubjectTerms Artificial Intelligence
Computer Science
Convolutional neural network (CNN)
Engineering Sciences
Lithium-ion batteries (LIBs)
Long short-term memory (LSTM)
Recurrent neural network (RNN)
Remaining useful life (RUL)
State of health (SOH)
Title State of health estimation and remaining useful life assessment of lithium-ion batteries: A comparative study
URI https://dx.doi.org/10.1016/j.est.2022.104520
https://hal.science/hal-05156167
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8MwDDZde9kOY0_WvTBjp0Fo7MROulspK92rl63QW7BjhXb0Rdfu90-Ok3aD0cOOMZEJsiN9suRPhNxqMEobJb1mxKUXIgTwdGxiDy0iACI6aOZ0Ta892e2HTwMxqJB2eRfGllUWtt_Z9NxaFyONQpuN-WjUeOOIHdD7DDjPcQfG7TWO3tWvklrr8bnb2xy1SJssc23mBPesTJnfzCu90PxioMi5zXcK2_j7bw-1MyzPWnPf0zkg-wVopC33XYekAtMjsveDSvCYTHLUSGcZdTcbqWXPcNcSqZoauoCJ6wVBV5-QrcZ0PMqAqjUvp5VERD4crSaeldE57yaG0fe0RdMNRTjN-WhPSL_z8N7uekUrBS8NArbEcLPJU6lSbvD_zMBo8IFhpBRCJiJQzAguTJQFLGVpIFOjQoNQUUY-h9hXMQtOSXU6m8IZoUaIKAuV8gWgAYhDbQQK6ACnZBoBSZ34pfqStOAZt-0uxklZUPaRoAoSq_HEabxO7tYic0eyse3lsFyT5NdOSdAJbBO7wfVbT29Ztbutl8SO2TY3ksnoi53_b-4LsmufXBXvJakuFyu4Qqyy1NfFXvwGmtrmqg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI54HIAD4ineRIgTUrUmbdKO2zSBCoxd2KTdoqRxxdA2EGz8fpymHSChHbimdVQ5qf05dj4TcmnAamO1DJoJl0GMECAwqU0DtIgAiOigWdI1PXZl1o_vB2KwRNr1XRhXVlnZfm_TS2tdjTQqbTbehsPGE0fsgN5nwHmJOzBuX3XsVLjNV1t3D1n3-6hFumSZbzMneOBk6vxmWemF5hcDRc5dvlO4xt9_e6jl5_qstfQ9t1tkswKNtOW_a5sswWSHbPygEtwl4xI10teC-puN1LFn-GuJVE8sfYex7wVBZx9QzEZ0NCyA6jkvp5NERP48nI0DJ2NK3k0Mo69pi-bfFOG05KPdI_3bm147C6pWCkEeRWyK4WaT51Ln3OL_WYA1EALDSCmGQiSgmRVc2KSIWM7ySOZWxxahokxCDmmoUxbtk5XJ6wQOCLVCJEWsdSgADUAaGytQwEQ4JTMISA5JWKtP5RXPuGt3MVJ1QdmLQhUop3HlNX5IruYib55kY9HLcb0m6tdOUegEFold4PrNp3es2lmro9yYa3MjmUw-2dH_5j4na1nvsaM6d92HY7LunviK3hOyMn2fwSnilqk5q_blF5iS6Zk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State+of+health+estimation+and+remaining+useful+life+assessment+of+lithium-ion+batteries%3A+A+comparative+study&rft.jtitle=Journal+of+energy+storage&rft.au=Toughzaoui%2C+Yassine&rft.au=Toosi%2C+Safieh+Bamati&rft.au=Chaoui%2C+Hicham&rft.au=Louahlia%2C+Hasna&rft.date=2022-07-01&rft.issn=2352-152X&rft.volume=51&rft.spage=104520&rft_id=info:doi/10.1016%2Fj.est.2022.104520&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_est_2022_104520
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-152X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-152X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-152X&client=summon