On two elastodynamic homogenization methods for periodic composites
•A constructive link between Willis’ method and the two-scale asymptotic method.•Effective impedance tensor characterizing Willis’ effective elastodynamic law.•Recursion formula for solving the hierarchical motion equations issuing from asymptotic analysis. Two-scale asymptotic method and Willis’ me...
Saved in:
Published in | Applied mathematical modelling Vol. 113; pp. 109 - 128 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.01.2023
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A constructive link between Willis’ method and the two-scale asymptotic method.•Effective impedance tensor characterizing Willis’ effective elastodynamic law.•Recursion formula for solving the hierarchical motion equations issuing from asymptotic analysis.
Two-scale asymptotic method and Willis’ method are jointly examined for the elastodynamic homogenization of periodic composites. The effective elastodynamic constitutive law given by Willis’ method, non-local both in time and space, is first reformulated so as to make appear a compact expression for the effective impedance tensor characterizing it. The two-scale asymptotic method is then revisited by exploiting the fact that the results obtained by it constitute an approximation to the general ones delivered by Willis’ method. The solutions for the hierarchical motion equations issuing from asymptotic analysis are shown to admit a compact recursive representation. A generic compact expression is derived for the effective impedance tensor associated with the nth-order approximation of asymptotic analysis. Remarkably, this expression turns out to be formally identical to the one of the effective impedance tensor obtained via Willis’ method. As an example of illustration, the elastodynamic homogenization of a layered composite undergoing anti-plane shear is investigated in detail. |
---|---|
AbstractList | •A constructive link between Willis’ method and the two-scale asymptotic method.•Effective impedance tensor characterizing Willis’ effective elastodynamic law.•Recursion formula for solving the hierarchical motion equations issuing from asymptotic analysis.
Two-scale asymptotic method and Willis’ method are jointly examined for the elastodynamic homogenization of periodic composites. The effective elastodynamic constitutive law given by Willis’ method, non-local both in time and space, is first reformulated so as to make appear a compact expression for the effective impedance tensor characterizing it. The two-scale asymptotic method is then revisited by exploiting the fact that the results obtained by it constitute an approximation to the general ones delivered by Willis’ method. The solutions for the hierarchical motion equations issuing from asymptotic analysis are shown to admit a compact recursive representation. A generic compact expression is derived for the effective impedance tensor associated with the nth-order approximation of asymptotic analysis. Remarkably, this expression turns out to be formally identical to the one of the effective impedance tensor obtained via Willis’ method. As an example of illustration, the elastodynamic homogenization of a layered composite undergoing anti-plane shear is investigated in detail. |
Author | Le Quang, Hung Luo, Wei-Zhi He, Qi-Chang |
Author_xml | – sequence: 1 givenname: Wei-Zhi surname: Luo fullname: Luo, Wei-Zhi – sequence: 2 givenname: Qi-Chang orcidid: 0000-0003-2311-1929 surname: He fullname: He, Qi-Chang email: qi-chang.he@u-pem.fr – sequence: 3 givenname: Hung surname: Le Quang fullname: Le Quang, Hung |
BackLink | https://univ-eiffel.hal.science/hal-04404278$$DView record in HAL |
BookMark | eNp9kE9LAzEQxYNUsK1-AG979bDrJJvuHzyVolYo9KLgLWSTWZuyuylJqNRPb2r14qGXGebxfjPMm5DRYAck5JZCRoEW99tM7vqMAWMZVBnkcEHGtCpZWvEKRmQclTKtgb9fkYn3WwCYxWlMFushCZ82wU76YPVhkL1Rycb29gMH8yWDsUPSY9hY7ZPWumSHzlgdPcr2O-tNQH9NLlvZebz57VPy9vT4ulimq_Xzy2K-SlWe05DyFmnFGl1ILYtmxmPlpaq1ZKzkLaAqZF3XRVMrnjcFaAlSNwVnOKMNzes2n5K7096N7MTOmV66g7DSiOV8JY4acA6cldWeRm958ipnvXfYCmXCzzfBSdMJCuKYm9iKmJs45iagEjGlSNJ_5N-pc8zDicH4_t6gE14ZHBRq41AFoa05Q38DjtyI2g |
CitedBy_id | crossref_primary_10_1016_j_mechrescom_2023_104127 crossref_primary_10_1007_s10338_023_00444_6 crossref_primary_10_1016_j_jmps_2025_106048 |
Cites_doi | 10.1016/j.jmps.2015.12.020 10.1016/j.mechmat.2009.01.009 10.1016/j.jmps.2015.03.001 10.1115/1.3090830 10.1016/0165-2125(81)90008-1 10.1016/0022-5096(80)90022-8 10.1115/1.4035364 10.1016/j.jmps.2018.10.014 10.1007/s11012-014-9906-0 10.1002/nme.423 10.1002/nme.424 10.1016/j.jmps.2018.06.015 10.1016/j.ijsolstr.2013.12.001 10.1115/1.1357165 10.1016/j.ijmecsci.2022.107228 10.1115/1.4001911 10.1061/(ASCE)0733-9399(2001)127:12(1223) 10.1016/j.mechmat.2021.103743 10.1016/j.metmat.2007.09.002 10.1016/j.mechmat.2009.01.010 10.1016/j.ijmecsci.2021.106566 10.1016/j.jmps.2014.12.011 10.1016/j.jmps.2017.11.017 10.1016/0022-5096(80)90021-6 10.1103/PhysRevB.83.104103 10.1016/0020-7683(95)00089-5 10.1016/j.ijsolstr.2019.09.009 10.1016/j.jmps.2012.07.003 10.1016/j.jmps.2017.01.010 10.1016/j.crme.2007.10.012 10.1016/0020-7683(85)90084-8 10.1016/0020-7225(93)90082-6 10.1137/0523084 10.1016/j.wavemoti.2011.03.002 10.1088/1367-2630/8/10/248 10.1016/j.cma.2018.07.037 10.1126/science.289.5485.1734 10.1016/j.jmps.2011.07.008 |
ContentType | Journal Article |
Copyright | 2022 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2022 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC |
DOI | 10.1016/j.apm.2022.08.030 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1872-8480 |
EndPage | 128 |
ExternalDocumentID | oai_HAL_hal_04404278v1 10_1016_j_apm_2022_08_030 S0307904X22004218 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AEXQZ AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HZ~ IHE IXB J1W JJJVA KOM LG9 LY7 M26 M41 MHUIS MO0 MVM N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSW SSZ T5K TN5 WH7 WUQ XJT XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 1XC |
ID | FETCH-LOGICAL-c331t-4fe182bd6ada6b54da647c9da2274f0ec6a9996b9c43b60da0adb642e51b139f3 |
IEDL.DBID | .~1 |
ISSN | 0307-904X |
IngestDate | Fri May 09 12:22:37 EDT 2025 Tue Jul 01 04:24:07 EDT 2025 Thu Apr 24 22:50:07 EDT 2025 Fri Feb 23 02:39:56 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Homogenization Composites Asymptotic analysis Dynamics Dispersion relation |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c331t-4fe182bd6ada6b54da647c9da2274f0ec6a9996b9c43b60da0adb642e51b139f3 |
ORCID | 0000-0003-2311-1929 |
PageCount | 20 |
ParticipantIDs | hal_primary_oai_HAL_hal_04404278v1 crossref_citationtrail_10_1016_j_apm_2022_08_030 crossref_primary_10_1016_j_apm_2022_08_030 elsevier_sciencedirect_doi_10_1016_j_apm_2022_08_030 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2023 2023-01-00 2023-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
PublicationDecade | 2020 |
PublicationTitle | Applied mathematical modelling |
PublicationYear | 2023 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Amirkhizi, Nemat-Nasser (bib0036) 2008; 336 Chen, Fish (bib0005) 2001; 68 Bacigalupo (bib0016) 2014; 49 Willis (bib0026) 1980; 28 Sridhar, Kouznetsova, Geers (bib0044) 2018; 111 Boutin, Auriault (bib0003) 1993; 31 Smyshlyaev (bib0008) 2009; 41 Nassar, He, Auffray (bib0042) 2016; 88 Hu, Oskay (bib0018) 2017; 84 Kalamkarov, Andrianov, Danishevs’kyy (bib0024) 2009; 62 Guzina, Meng, Oudghiri-Idrissi (bib0013) 2019; 475 Willis (bib0048) 2011; 467 Shuvalov, Kutsenko, Norris, Poncelet (bib0039) 2011; 467 Willis (bib0027) 1980; 28 Andrianov, Bolshakov, Danishevs’kyy, Weichert (bib0011) 2008; 464 Norris, Shuvalov, Kutsenko (bib0041) 2012; 468 Meng, Guzina (bib0021) 2018; 474 Liu, Zhang, Mao, Zhu, Yang, Chan, Sheng (bib0032) 2000; 289 Fish, Chen, Nagai (bib0007) 2002; 54 Fantoni, Bacigalupo (bib0023) 2022; 223 Willis (bib0031) 1997 Meng, Oudghiri-Idrissi, Guzina (bib0014) 2021 Charalambakis (bib0025) 2010; 63 Willis (bib0029) 1981; 3 Bensoussan, Lions, Papanicolaou (bib0001) 2011 Cornaggia, Guzina (bib0012) 2020; 188–189 Willis (bib0030) 1985; 21 Nemat-Nasser, Willis, Srivastava, Amirkhizi (bib0037) 2011; 83 Wautier, Guzina (bib0009) 2015; 78 Srivastava, Nemat-Nasser (bib0040) 2012; 468 Allaire (bib0002) 1992; 23 Fish, Chen (bib0010) 2001; 127 Nemat-Nasser, Srivastava (bib0038) 2013; 61 Nemat-Nasser, Srivastava (bib0049) 2011; 59 Nassar, He, Auffray (bib0050) 2015; 77 Sridhar, Liu, Kouznetsova, Geers (bib0045) 2018; 119 Simovski (bib0034) 2007; 1 Bacigalupo, Gambarotta (bib0015) 2014; 51 Willis (bib0028) 1981; 21 Boutin (bib0004) 1996; 33 Préve, Bacigalupo, Paggi (bib0022) 2021; 205 Norris, Shuvalov (bib0035) 2011; 48 Ganghoffer, Reda (bib0017) 2021; 158 Hu, Oskay (bib0020) 2019; 124 Milton, Briane, Willis (bib0033) 2006; 8 Willis (bib0047) 2009; 41 Fish, Chen, Nagai (bib0006) 2002; 54 Nassar, Xu, Norris, Huang (bib0043) 2017; 101 Hu, Oskay (bib0019) 2018; 342 Milton, Willis (bib0046) 2007; 463 Préve (10.1016/j.apm.2022.08.030_bib0022) 2021; 205 Milton (10.1016/j.apm.2022.08.030_bib0046) 2007; 463 Srivastava (10.1016/j.apm.2022.08.030_bib0040) 2012; 468 Boutin (10.1016/j.apm.2022.08.030_bib0003) 1993; 31 Sridhar (10.1016/j.apm.2022.08.030_bib0044) 2018; 111 Hu (10.1016/j.apm.2022.08.030_bib0019) 2018; 342 Allaire (10.1016/j.apm.2022.08.030_bib0002) 1992; 23 Charalambakis (10.1016/j.apm.2022.08.030_bib0025) 2010; 63 Simovski (10.1016/j.apm.2022.08.030_bib0034) 2007; 1 Amirkhizi (10.1016/j.apm.2022.08.030_bib0036) 2008; 336 Fish (10.1016/j.apm.2022.08.030_bib0007) 2002; 54 Willis (10.1016/j.apm.2022.08.030_bib0028) 1981; 21 Hu (10.1016/j.apm.2022.08.030_bib0020) 2019; 124 Milton (10.1016/j.apm.2022.08.030_bib0033) 2006; 8 Meng (10.1016/j.apm.2022.08.030_bib0014) 2021 Norris (10.1016/j.apm.2022.08.030_bib0041) 2012; 468 Nemat-Nasser (10.1016/j.apm.2022.08.030_bib0049) 2011; 59 Wautier (10.1016/j.apm.2022.08.030_bib0009) 2015; 78 Shuvalov (10.1016/j.apm.2022.08.030_bib0039) 2011; 467 Willis (10.1016/j.apm.2022.08.030_bib0030) 1985; 21 Liu (10.1016/j.apm.2022.08.030_bib0032) 2000; 289 Nemat-Nasser (10.1016/j.apm.2022.08.030_bib0038) 2013; 61 Nemat-Nasser (10.1016/j.apm.2022.08.030_bib0037) 2011; 83 Norris (10.1016/j.apm.2022.08.030_bib0035) 2011; 48 Meng (10.1016/j.apm.2022.08.030_bib0021) 2018; 474 Fantoni (10.1016/j.apm.2022.08.030_bib0023) 2022; 223 Kalamkarov (10.1016/j.apm.2022.08.030_bib0024) 2009; 62 Fish (10.1016/j.apm.2022.08.030_bib0006) 2002; 54 Nassar (10.1016/j.apm.2022.08.030_bib0050) 2015; 77 Willis (10.1016/j.apm.2022.08.030_bib0026) 1980; 28 Willis (10.1016/j.apm.2022.08.030_bib0031) 1997 Willis (10.1016/j.apm.2022.08.030_bib0047) 2009; 41 Hu (10.1016/j.apm.2022.08.030_bib0018) 2017; 84 Boutin (10.1016/j.apm.2022.08.030_bib0004) 1996; 33 Fish (10.1016/j.apm.2022.08.030_bib0010) 2001; 127 Bacigalupo (10.1016/j.apm.2022.08.030_bib0015) 2014; 51 Chen (10.1016/j.apm.2022.08.030_bib0005) 2001; 68 Bacigalupo (10.1016/j.apm.2022.08.030_bib0016) 2014; 49 Nassar (10.1016/j.apm.2022.08.030_bib0043) 2017; 101 Nassar (10.1016/j.apm.2022.08.030_bib0042) 2016; 88 Cornaggia (10.1016/j.apm.2022.08.030_bib0012) 2020; 188–189 Bensoussan (10.1016/j.apm.2022.08.030_bib0001) 2011 Sridhar (10.1016/j.apm.2022.08.030_bib0045) 2018; 119 Willis (10.1016/j.apm.2022.08.030_bib0027) 1980; 28 Willis (10.1016/j.apm.2022.08.030_bib0048) 2011; 467 Willis (10.1016/j.apm.2022.08.030_bib0029) 1981; 3 Andrianov (10.1016/j.apm.2022.08.030_bib0011) 2008; 464 Guzina (10.1016/j.apm.2022.08.030_bib0013) 2019; 475 Ganghoffer (10.1016/j.apm.2022.08.030_bib0017) 2021; 158 Smyshlyaev (10.1016/j.apm.2022.08.030_bib0008) 2009; 41 |
References_xml | – volume: 158 start-page: 103743 year: 2021 ident: bib0017 article-title: A variational approach of homogenization of heterogeneous materials towards second gradient continua publication-title: Mech. Mater. – volume: 21 start-page: 805 year: 1985 end-page: 817 ident: bib0030 article-title: The nonlocal influence of density variations in a composite publication-title: Int. J. Solids Struct. – volume: 54 start-page: 347 year: 2002 end-page: 363 ident: bib0006 article-title: Non-local dispersive model for wave propagation in heterogeneous media: multi-dimensional case publication-title: Int. J. Numer. Methods Eng. – volume: 464 start-page: 1181 year: 2008 end-page: 1201 ident: bib0011 article-title: Higher order asymptotic homogenization and wave propagation in periodic composite materials publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci. – volume: 188–189 start-page: 88 year: 2020 end-page: 102 ident: bib0012 article-title: Second-order homogenization of boundary and transmission conditions for one-dimensional waves in periodic media publication-title: Int. J. Solids Struct. – volume: 223 start-page: 107228 year: 2022 ident: bib0023 article-title: Multifield constitutive identification of non-conventional thermo-viscoelastic periodic Cauchy materials publication-title: Int. J. Mech. Sci. – volume: 3 start-page: 1 year: 1981 end-page: 11 ident: bib0029 article-title: Variational principles for dynamic problems for inhomogeneous elastic media publication-title: Wave Motion – volume: 1 start-page: 62 year: 2007 end-page: 80 ident: bib0034 article-title: Bloch material parameters of magneto-dielectric metamaterials and the concept of Bloch lattices publication-title: Metamaterials – volume: 49 start-page: 1407 year: 2014 end-page: 1425 ident: bib0016 article-title: Second-order homogenization of periodic materials based on asymptotic approximation of the strain energy: formulation and validity limits publication-title: Meccanica – volume: 127 start-page: 1223 year: 2001 end-page: 1230 ident: bib0010 article-title: Higher-order homogenization of initial/boundary-value problem publication-title: J. Eng. Mech. – volume: 77 start-page: 158 year: 2015 end-page: 178 ident: bib0050 article-title: Willis elastodynamic homogenization theory revisited for periodic media publication-title: J. Mech. Phys. Solids – volume: 342 start-page: 1 year: 2018 end-page: 31 ident: bib0019 article-title: Spatial temporal nonlocal homogenization model for transient anti-plane shear wave propagation in periodic viscoelastic composites publication-title: Comput. Methods Appl. Mech. Eng. – volume: 124 start-page: 220 year: 2019 end-page: 243 ident: bib0020 article-title: Multiscale nonlocal effective medium model for in-plane elastic wave dispersion and attenuation in periodic composites publication-title: J. Mech. Phys. Solids – volume: 119 start-page: 104 year: 2018 end-page: 117 ident: bib0045 article-title: Homogenized enriched continuum analysis of acoustic metamaterials with negative stiffness and double negative effects publication-title: J. Mech. Phys. Solids – volume: 28 start-page: 307 year: 1980 end-page: 327 ident: bib0027 article-title: A polarization approach to the scattering of elastic waves-II. Multiple scattering from inclusions publication-title: J. Mech. Phys. Solids – year: 2011 ident: bib0001 article-title: Asymptotic analysis for periodic structures – volume: 62 start-page: 1 year: 2009 end-page: 20 ident: bib0024 article-title: Asymptotic homogenization of composite materials and structures publication-title: Appl. Mech. Rev. – volume: 41 start-page: 434 year: 2009 end-page: 447 ident: bib0008 article-title: Propagation and localization of elastic waves in highly anisotropic periodic composites via two-scale homogenization publication-title: Mech. Mater. – volume: 21 start-page: 1 year: 1981 end-page: 78 ident: bib0028 article-title: Variational and related methods for the overall properties of composites publication-title: Adv. Appl. Mech. – volume: 468 start-page: 269 year: 2012 end-page: 287 ident: bib0040 article-title: Overall dynamic properties of three-dimensional periodic elastic composites publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci. – volume: 54 start-page: 331 year: 2002 end-page: 346 ident: bib0007 article-title: Non-local dispersive model for wave propagation in heterogeneous media: one-dimensional case publication-title: Int. J. Numer. Methods Eng. – volume: 467 start-page: 1749 year: 2011 end-page: 1769 ident: bib0039 article-title: Effective Willis constitutive equations for periodically stratified anisotropic elastic media publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci. – volume: 33 start-page: 1023 year: 1996 end-page: 1051 ident: bib0004 article-title: Microstructural effects in elastic composites publication-title: Int. J. Solids Struct. – volume: 63 start-page: 1 year: 2010 end-page: 10 ident: bib0025 article-title: Homogenization techniques and micromechanics. A survey and perspectives publication-title: Appl. Mech. Rev. – volume: 31 start-page: 1669 year: 1993 end-page: 1689 ident: bib0003 article-title: Rayleigh scattering in elastic composite materials publication-title: Int. J. Eng. Sci. – volume: 23 start-page: 1482 year: 1992 end-page: 1518 ident: bib0002 article-title: Homogenization and two-scale convergence publication-title: SIAM J. Math. Anal. – volume: 467 start-page: 1865 year: 2011 end-page: 1879 ident: bib0048 article-title: Effective constitutive relations for waves in composites and metamaterials publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci. – start-page: 1 year: 2021 end-page: 34 ident: bib0014 article-title: A convergent low-wavenumber, high-frequency homogenization of the wave equation in periodic media with a source term publication-title: Appl. Anal. – volume: 463 start-page: 855 year: 2007 end-page: 880 ident: bib0046 article-title: On modifications of Newton’s second law and linear continuum elastodynamics publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci. – volume: 28 start-page: 287 year: 1980 end-page: 305 ident: bib0026 article-title: A polarization approach to the scattering of elastic waves-I. Scattering by a single inclusion publication-title: J. Mech. Phys. Solids – volume: 59 start-page: 1953 year: 2011 end-page: 1965 ident: bib0049 article-title: Overall dynamic constitutive relations of layered elastic composites publication-title: J. Mech. Phys. Solids – volume: 84 year: 2017 ident: bib0018 article-title: Nonlocal homogenization model for wave dispersion and attenuation in elastic and viscoelastic periodic layered media publication-title: J. Appl. Mech. – volume: 78 start-page: 382 year: 2015 end-page: 414 ident: bib0009 article-title: On the second-order homogenization of wave motion in periodic media and the sound of a chessboard publication-title: J. Mech. Phys. Solids – volume: 48 start-page: 525 year: 2011 end-page: 538 ident: bib0035 article-title: Elastic cloaking theory publication-title: Wave Motion – volume: 205 start-page: 106566 year: 2021 ident: bib0022 article-title: Variational-asymptotic homogenization of thermoelastic periodic materials with thermal relaxation publication-title: Int. J. Mech. Sci. – volume: 468 start-page: 1629 year: 2012 end-page: 1651 ident: bib0041 article-title: Analytical formulation of three-dimensional dynamic homogenization for periodic elastic systems publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci. – volume: 61 start-page: 254 year: 2013 end-page: 264 ident: bib0038 article-title: Bounds on effective dynamic properties of elastic composites publication-title: J. Mech. Phys. Solids – volume: 88 start-page: 274 year: 2016 end-page: 290 ident: bib0042 article-title: On asymptotic elastodynamic homogenization approaches for periodic media publication-title: J. Mech. Phys. Solids – volume: 111 start-page: 414 year: 2018 end-page: 433 ident: bib0044 article-title: A general multiscale framework for the emergent effective elastodynamics of metamaterials publication-title: J. Mech. Phys. Solids – volume: 474 start-page: 20170638 year: 2018 ident: bib0021 article-title: On the dynamic homogenization of periodic media: Willis’ approach publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci. – volume: 68 start-page: 153 year: 2001 end-page: 161 ident: bib0005 article-title: A dispersive model for wave propagation in periodic heterogeneous media based on homogenization with multiple spatial and temporal scales publication-title: J. Appl. Mech. – volume: 51 start-page: 1052 year: 2014 end-page: 1065 ident: bib0015 article-title: Second-gradient homogenized model for wave propagation in heterogeneous periodic media publication-title: Int. J. Solids Struct. – volume: 41 start-page: 385 year: 2009 end-page: 393 ident: bib0047 article-title: Exact effective relations for dynamics of a laminated body publication-title: Mech. Mater. – volume: 289 start-page: 1734 year: 2000 end-page: 1736 ident: bib0032 article-title: Locally resonant sonic materials publication-title: Science (80-.). – volume: 8 start-page: 248 year: 2006 ident: bib0033 article-title: On cloaking for elasticity and physical equations with a transformation invariant form publication-title: New J. Phys. – volume: 83 start-page: 104103 year: 2011 ident: bib0037 article-title: Homogenization of periodic elastic composites and locally resonant sonic materials publication-title: Phys. Rev. B – volume: 101 start-page: 10 year: 2017 end-page: 29 ident: bib0043 article-title: Modulated phononic crystals: non-reciprocal wave propagation and Willis materials publication-title: J. Mech. Phys. Solids – volume: 475 start-page: 20180547 year: 2019 ident: bib0013 article-title: A rational framework for dynamic homogenization at finite wavelengths and frequencies publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci. – start-page: 265 year: 1997 end-page: 290 ident: bib0031 article-title: Dynamics of composites publication-title: Contin. Micromechanics – volume: 336 start-page: 24 year: 2008 end-page: 33 ident: bib0036 article-title: Microstructurally-based homogenization of electromagnetic properties of periodic media publication-title: Comptes Rendus Mécanique – volume: 88 start-page: 274 year: 2016 ident: 10.1016/j.apm.2022.08.030_bib0042 article-title: On asymptotic elastodynamic homogenization approaches for periodic media publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2015.12.020 – volume: 41 start-page: 434 issue: 4 year: 2009 ident: 10.1016/j.apm.2022.08.030_bib0008 article-title: Propagation and localization of elastic waves in highly anisotropic periodic composites via two-scale homogenization publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2009.01.009 – volume: 78 start-page: 382 year: 2015 ident: 10.1016/j.apm.2022.08.030_bib0009 article-title: On the second-order homogenization of wave motion in periodic media and the sound of a chessboard publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2015.03.001 – volume: 62 start-page: 1 issue: 3 year: 2009 ident: 10.1016/j.apm.2022.08.030_bib0024 article-title: Asymptotic homogenization of composite materials and structures publication-title: Appl. Mech. Rev. doi: 10.1115/1.3090830 – volume: 3 start-page: 1 issue: 1 year: 1981 ident: 10.1016/j.apm.2022.08.030_bib0029 article-title: Variational principles for dynamic problems for inhomogeneous elastic media publication-title: Wave Motion doi: 10.1016/0165-2125(81)90008-1 – volume: 28 start-page: 307 issue: 5–6 year: 1980 ident: 10.1016/j.apm.2022.08.030_bib0027 article-title: A polarization approach to the scattering of elastic waves-II. Multiple scattering from inclusions publication-title: J. Mech. Phys. Solids doi: 10.1016/0022-5096(80)90022-8 – volume: 84 issue: 3 year: 2017 ident: 10.1016/j.apm.2022.08.030_bib0018 article-title: Nonlocal homogenization model for wave dispersion and attenuation in elastic and viscoelastic periodic layered media publication-title: J. Appl. Mech. doi: 10.1115/1.4035364 – volume: 124 start-page: 220 year: 2019 ident: 10.1016/j.apm.2022.08.030_bib0020 article-title: Multiscale nonlocal effective medium model for in-plane elastic wave dispersion and attenuation in periodic composites publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2018.10.014 – volume: 467 start-page: 1865 issue: 2131 year: 2011 ident: 10.1016/j.apm.2022.08.030_bib0048 article-title: Effective constitutive relations for waves in composites and metamaterials publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci. – volume: 49 start-page: 1407 issue: 6 year: 2014 ident: 10.1016/j.apm.2022.08.030_bib0016 article-title: Second-order homogenization of periodic materials based on asymptotic approximation of the strain energy: formulation and validity limits publication-title: Meccanica doi: 10.1007/s11012-014-9906-0 – volume: 54 start-page: 331 issue: 3 year: 2002 ident: 10.1016/j.apm.2022.08.030_bib0007 article-title: Non-local dispersive model for wave propagation in heterogeneous media: one-dimensional case publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.423 – volume: 54 start-page: 347 issue: 3 year: 2002 ident: 10.1016/j.apm.2022.08.030_bib0006 article-title: Non-local dispersive model for wave propagation in heterogeneous media: multi-dimensional case publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.424 – year: 2011 ident: 10.1016/j.apm.2022.08.030_bib0001 – volume: 119 start-page: 104 year: 2018 ident: 10.1016/j.apm.2022.08.030_bib0045 article-title: Homogenized enriched continuum analysis of acoustic metamaterials with negative stiffness and double negative effects publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2018.06.015 – volume: 51 start-page: 1052 issue: 5 year: 2014 ident: 10.1016/j.apm.2022.08.030_bib0015 article-title: Second-gradient homogenized model for wave propagation in heterogeneous periodic media publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2013.12.001 – volume: 68 start-page: 153 issue: 2 year: 2001 ident: 10.1016/j.apm.2022.08.030_bib0005 article-title: A dispersive model for wave propagation in periodic heterogeneous media based on homogenization with multiple spatial and temporal scales publication-title: J. Appl. Mech. doi: 10.1115/1.1357165 – volume: 474 start-page: 20170638 issue: 2213 year: 2018 ident: 10.1016/j.apm.2022.08.030_bib0021 article-title: On the dynamic homogenization of periodic media: Willis’ approach versus two-scale paradigm publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci. – volume: 223 start-page: 107228 issue: December 2021 year: 2022 ident: 10.1016/j.apm.2022.08.030_bib0023 article-title: Multifield constitutive identification of non-conventional thermo-viscoelastic periodic Cauchy materials publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2022.107228 – volume: 21 start-page: 1 issue: C year: 1981 ident: 10.1016/j.apm.2022.08.030_bib0028 article-title: Variational and related methods for the overall properties of composites publication-title: Adv. Appl. Mech. – volume: 63 start-page: 1 issue: 3 year: 2010 ident: 10.1016/j.apm.2022.08.030_bib0025 article-title: Homogenization techniques and micromechanics. A survey and perspectives publication-title: Appl. Mech. Rev. doi: 10.1115/1.4001911 – volume: 127 start-page: 1223 issue: 12 year: 2001 ident: 10.1016/j.apm.2022.08.030_bib0010 article-title: Higher-order homogenization of initial/boundary-value problem publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)0733-9399(2001)127:12(1223) – volume: 158 start-page: 103743 issue: February year: 2021 ident: 10.1016/j.apm.2022.08.030_bib0017 article-title: A variational approach of homogenization of heterogeneous materials towards second gradient continua publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2021.103743 – volume: 1 start-page: 62 issue: 2 year: 2007 ident: 10.1016/j.apm.2022.08.030_bib0034 article-title: Bloch material parameters of magneto-dielectric metamaterials and the concept of Bloch lattices publication-title: Metamaterials doi: 10.1016/j.metmat.2007.09.002 – volume: 41 start-page: 385 issue: 4 year: 2009 ident: 10.1016/j.apm.2022.08.030_bib0047 article-title: Exact effective relations for dynamics of a laminated body publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2009.01.010 – volume: 205 start-page: 106566 issue: March year: 2021 ident: 10.1016/j.apm.2022.08.030_bib0022 article-title: Variational-asymptotic homogenization of thermoelastic periodic materials with thermal relaxation publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2021.106566 – start-page: 265 year: 1997 ident: 10.1016/j.apm.2022.08.030_bib0031 article-title: Dynamics of composites – volume: 77 start-page: 158 year: 2015 ident: 10.1016/j.apm.2022.08.030_bib0050 article-title: Willis elastodynamic homogenization theory revisited for periodic media publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2014.12.011 – volume: 464 start-page: 1181 issue: 2093 year: 2008 ident: 10.1016/j.apm.2022.08.030_bib0011 article-title: Higher order asymptotic homogenization and wave propagation in periodic composite materials publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci. – volume: 111 start-page: 414 year: 2018 ident: 10.1016/j.apm.2022.08.030_bib0044 article-title: A general multiscale framework for the emergent effective elastodynamics of metamaterials publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2017.11.017 – volume: 28 start-page: 287 issue: 5–6 year: 1980 ident: 10.1016/j.apm.2022.08.030_bib0026 article-title: A polarization approach to the scattering of elastic waves-I. Scattering by a single inclusion publication-title: J. Mech. Phys. Solids doi: 10.1016/0022-5096(80)90021-6 – volume: 83 start-page: 104103 issue: 10 year: 2011 ident: 10.1016/j.apm.2022.08.030_bib0037 article-title: Homogenization of periodic elastic composites and locally resonant sonic materials publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.104103 – volume: 33 start-page: 1023 issue: 7 year: 1996 ident: 10.1016/j.apm.2022.08.030_bib0004 article-title: Microstructural effects in elastic composites publication-title: Int. J. Solids Struct. doi: 10.1016/0020-7683(95)00089-5 – volume: 463 start-page: 855 issue: 2079 year: 2007 ident: 10.1016/j.apm.2022.08.030_bib0046 article-title: On modifications of Newton’s second law and linear continuum elastodynamics publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci. – volume: 188–189 start-page: 88 year: 2020 ident: 10.1016/j.apm.2022.08.030_bib0012 article-title: Second-order homogenization of boundary and transmission conditions for one-dimensional waves in periodic media publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2019.09.009 – volume: 61 start-page: 254 issue: 1 year: 2013 ident: 10.1016/j.apm.2022.08.030_bib0038 article-title: Bounds on effective dynamic properties of elastic composites publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2012.07.003 – volume: 101 start-page: 10 year: 2017 ident: 10.1016/j.apm.2022.08.030_bib0043 article-title: Modulated phononic crystals: non-reciprocal wave propagation and Willis materials publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2017.01.010 – volume: 336 start-page: 24 issue: 1–2 year: 2008 ident: 10.1016/j.apm.2022.08.030_bib0036 article-title: Microstructurally-based homogenization of electromagnetic properties of periodic media publication-title: Comptes Rendus Mécanique doi: 10.1016/j.crme.2007.10.012 – volume: 468 start-page: 1629 issue: 2142 year: 2012 ident: 10.1016/j.apm.2022.08.030_bib0041 article-title: Analytical formulation of three-dimensional dynamic homogenization for periodic elastic systems publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci. – volume: 475 start-page: 20180547 issue: 2223 year: 2019 ident: 10.1016/j.apm.2022.08.030_bib0013 article-title: A rational framework for dynamic homogenization at finite wavelengths and frequencies publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci. – start-page: 1 year: 2021 ident: 10.1016/j.apm.2022.08.030_bib0014 article-title: A convergent low-wavenumber, high-frequency homogenization of the wave equation in periodic media with a source term publication-title: Appl. Anal. – volume: 21 start-page: 805 issue: 7 year: 1985 ident: 10.1016/j.apm.2022.08.030_bib0030 article-title: The nonlocal influence of density variations in a composite publication-title: Int. J. Solids Struct. doi: 10.1016/0020-7683(85)90084-8 – volume: 31 start-page: 1669 issue: 12 year: 1993 ident: 10.1016/j.apm.2022.08.030_bib0003 article-title: Rayleigh scattering in elastic composite materials publication-title: Int. J. Eng. Sci. doi: 10.1016/0020-7225(93)90082-6 – volume: 23 start-page: 1482 issue: 6 year: 1992 ident: 10.1016/j.apm.2022.08.030_bib0002 article-title: Homogenization and two-scale convergence publication-title: SIAM J. Math. Anal. doi: 10.1137/0523084 – volume: 48 start-page: 525 issue: 6 year: 2011 ident: 10.1016/j.apm.2022.08.030_bib0035 article-title: Elastic cloaking theory publication-title: Wave Motion doi: 10.1016/j.wavemoti.2011.03.002 – volume: 8 start-page: 248 issue: 10 year: 2006 ident: 10.1016/j.apm.2022.08.030_bib0033 article-title: On cloaking for elasticity and physical equations with a transformation invariant form publication-title: New J. Phys. doi: 10.1088/1367-2630/8/10/248 – volume: 467 start-page: 1749 issue: 2130 year: 2011 ident: 10.1016/j.apm.2022.08.030_bib0039 article-title: Effective Willis constitutive equations for periodically stratified anisotropic elastic media publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci. – volume: 342 start-page: 1 year: 2018 ident: 10.1016/j.apm.2022.08.030_bib0019 article-title: Spatial temporal nonlocal homogenization model for transient anti-plane shear wave propagation in periodic viscoelastic composites publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2018.07.037 – volume: 289 start-page: 1734 issue: 5485 year: 2000 ident: 10.1016/j.apm.2022.08.030_bib0032 article-title: Locally resonant sonic materials publication-title: Science (80-.). doi: 10.1126/science.289.5485.1734 – volume: 468 start-page: 269 issue: 2137 year: 2012 ident: 10.1016/j.apm.2022.08.030_bib0040 article-title: Overall dynamic properties of three-dimensional periodic elastic composites publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci. – volume: 59 start-page: 1953 issue: 10 year: 2011 ident: 10.1016/j.apm.2022.08.030_bib0049 article-title: Overall dynamic constitutive relations of layered elastic composites publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2011.07.008 |
SSID | ssj0005904 ssib019627096 |
Score | 2.3700972 |
Snippet | •A constructive link between Willis’ method and the two-scale asymptotic method.•Effective impedance tensor characterizing Willis’ effective elastodynamic... |
SourceID | hal crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 109 |
SubjectTerms | Asymptotic analysis Composites Dispersion relation Dynamics Engineering Sciences Homogenization |
Title | On two elastodynamic homogenization methods for periodic composites |
URI | https://dx.doi.org/10.1016/j.apm.2022.08.030 https://univ-eiffel.hal.science/hal-04404278 |
Volume | 113 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qvehBfGJ9lCCehNhNstk0x1Is9VUPWuht2VdoRZNio9787c7kURSkBy85LLtLmJnMzmxmvo-Qcx16AUsgTQ3BP7rMWPikfK7dWOtuoiIWd02B9jniwzG7mYSTBunXvTBYVln5_tKnF966GulU0uzMZ7POI5pnTNnER0XDSYUd7CxCK7_8-lHmEVNWgyHi7PrPZlHjJefYjO77BYonFkL_fTatTetb1uLUGWyTrSpcdHrlG-2Qhk13yeb9Emt1sUf6D6mTf2aOhTg4z0zJMO9Ms9cMbKPqsnRKouiFAyGqg9jGmYE5WE6ONVt2sU_Gg6un_tCtqBFcHQRe7rLEQmKgDJdGchUyeLJIx0b6kGUm1GouMZNRsWaB4tRIKo2CVMOGnoKYLwkOSDPNUntIHOl7llulIbZTDIShuOWeNUxFSTehVLUIrYUidIUbjvQVL6IuEHsWIEeBchRIaRnQFrlYLpmXoBmrJrNa0uKX5gU49VXLzkAry-0RJXvYuxM4hizayCDy4R39b-9jsoGs8uVNywlp5m_v9hRij1y1C-Nqk_Xe9e1w9A0KNdgp |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60PagH8Yn1GcSTELpJNtvmWIqS2loPKvS2ZB_BijbFRv37zuRREcSDlxyWnSXMbmZnNt9-H8CFDr2Ap1imhhgfXW4sflK-0G6kdTdVHR51TcH2ORbxI7-ZhJMV6Nd3YQhWWcX-MqYX0bpqaVfebM-n0_Y9Lc-I8YlPE4071So0iZ0qbECzNxjG42-kR8R4zYdIBvXPzQLmlczpPrrvF0SehIX-fXtafaoPWouN53oLNquM0emVL7UNK3a2Axu3S7rVxS7072ZO_pk5FlPhPDOlyLzzlL1muDyqi5ZOqRW9cDBLdYjeODPYhxDlBNuyiz14vL566MdupY7g6iDwcpenFmsDZURiEqFCjk_e0ZFJfCw0U2a1SKiYUZHmgRLMJCwxCqsNG3oK07402IfGLJvZA3AS37PCKo3pneLoDCWs8KzhqpN2U8ZUC1jtFKkr6nBSsHiRNUbsWaIfJflRkqplwFpwuTSZl7wZf3Xmtaflj8mXGNf_MjvHWVkOT0TZcW8kqY2EtElE5MM7_N_YZ7AWP9yO5GgwHh7BOonMlwcvx9DI397tCaYiuTqtltoXgNLa2g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+two+elastodynamic+homogenization+methods+for+periodic+composites&rft.jtitle=Applied+mathematical+modelling&rft.au=Luo%2C+Wei-Zhi&rft.au=He%2C+Qi-Chang&rft.au=Le+Quang%2C+Hung&rft.date=2023-01-01&rft.pub=Elsevier+Inc&rft.issn=0307-904X&rft.volume=113&rft.spage=109&rft.epage=128&rft_id=info:doi/10.1016%2Fj.apm.2022.08.030&rft.externalDocID=S0307904X22004218 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-904X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-904X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-904X&client=summon |