Specific Inhibition of the NLRP3 Inflammasome as an Antiinflammatory Strategy in Cystic Fibrosis
Cystic fibrosis (CF) pulmonary disease is characterized by chronic infection with and sustained neutrophil-dominant inflammation. The lack of effective antiinflammatory therapies for people with CF (PWCF) represents a significant challenge. To identify altered immunometabolism in the CF neutrophil a...
Saved in:
Published in | American journal of respiratory and critical care medicine Vol. 200; no. 11; pp. 1381 - 1391 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Thoracic Society
01.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cystic fibrosis (CF) pulmonary disease is characterized by chronic infection with
and sustained neutrophil-dominant inflammation. The lack of effective antiinflammatory therapies for people with CF (PWCF) represents a significant challenge.
To identify altered immunometabolism in the CF neutrophil and investigate the feasibility of specific inhibition of the NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome as a CF antiinflammatory strategy
.
Key markers of increased aerobic glycolysis, known as a Warburg effect, including cytosolic PKM2 (pyruvate kinase M2), phosphorylated PKM2, succinate, HIF-1α (hypoxia-inducible factor-1α), lactate, and the IL-1β precursor pro-IL-1β, as well as caspase-1 activity and processing of pro-IL-1β to IL-1β by the NLRP3 inflammasome, were measured in neutrophils from blood and airway secretions from healthy control subjects (
= 12), PWCF (
= 16), and PWCF after double-lung transplantation (
= 6). The effects of specific inhibition of NLRP3 on airway inflammation and bacterial clearance in a murine CF model were subsequently assessed
.
CF neutrophils display increased aerobic glycolysis in the systemic circulation. This effect is driven by low-level endotoxemia, unaffected by CFTR (cystic fibrosis transmembrane conductance regulator) modulation, and resolves after transplant. The increased pro-IL-1β produced is processed to its mature active form in the LPS-rich CF lung by the NLRP3 inflammasome via caspase-1. Specific NLRP3 inhibition
with MCC950 inhibited IL-1β in the lungs of CF mice (
< 0.0001), resulting in significantly reduced airway inflammation and improved
clearance (
< 0.0001).
CF neutrophil immunometabolism is altered in response to inflammation. NLRP3 inflammasome inhibition may have an antiinflammatory and anti-infective role in CF. |
---|---|
AbstractList | A study is presented that identifies altered immunometabolism in cystic fibrosis (CF) neutrophil and investigates the feasibility of specific inhibition of the NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome as a CF antiinflammatory strategy in vivo. Key markers of increased aerobic glycolysis, known as a Warburg effect, including cytosolic PKM2 (pyruvate kinase M2) are measured. It has been noted that CF pulmonary disease is characterized by chronic infection with Pseudomonas aeruginosa and sustained neutrophil-dominant inflammation. Results of the study conclude that CF neutrophil immunometabolism is altered in response to inflammation. Cystic fibrosis (CF) pulmonary disease is characterized by chronic infection with and sustained neutrophil-dominant inflammation. The lack of effective antiinflammatory therapies for people with CF (PWCF) represents a significant challenge. To identify altered immunometabolism in the CF neutrophil and investigate the feasibility of specific inhibition of the NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome as a CF antiinflammatory strategy . Key markers of increased aerobic glycolysis, known as a Warburg effect, including cytosolic PKM2 (pyruvate kinase M2), phosphorylated PKM2, succinate, HIF-1α (hypoxia-inducible factor-1α), lactate, and the IL-1β precursor pro-IL-1β, as well as caspase-1 activity and processing of pro-IL-1β to IL-1β by the NLRP3 inflammasome, were measured in neutrophils from blood and airway secretions from healthy control subjects ( = 12), PWCF ( = 16), and PWCF after double-lung transplantation ( = 6). The effects of specific inhibition of NLRP3 on airway inflammation and bacterial clearance in a murine CF model were subsequently assessed . CF neutrophils display increased aerobic glycolysis in the systemic circulation. This effect is driven by low-level endotoxemia, unaffected by CFTR (cystic fibrosis transmembrane conductance regulator) modulation, and resolves after transplant. The increased pro-IL-1β produced is processed to its mature active form in the LPS-rich CF lung by the NLRP3 inflammasome via caspase-1. Specific NLRP3 inhibition with MCC950 inhibited IL-1β in the lungs of CF mice ( < 0.0001), resulting in significantly reduced airway inflammation and improved clearance ( < 0.0001). CF neutrophil immunometabolism is altered in response to inflammation. NLRP3 inflammasome inhibition may have an antiinflammatory and anti-infective role in CF. Rationale: Cystic fibrosis (CF) pulmonary disease is characterized by chronic infection with Pseudomonas aeruginosa and sustained neutrophil-dominant inflammation. The lack of effective antiinflammatory therapies for people with CF (PWCF) represents a significant challenge.Objectives: To identify altered immunometabolism in the CF neutrophil and investigate the feasibility of specific inhibition of the NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome as a CF antiinflammatory strategy in vivo.Methods: Key markers of increased aerobic glycolysis, known as a Warburg effect, including cytosolic PKM2 (pyruvate kinase M2), phosphorylated PKM2, succinate, HIF-1α (hypoxia-inducible factor-1α), lactate, and the IL-1β precursor pro-IL-1β, as well as caspase-1 activity and processing of pro-IL-1β to IL-1β by the NLRP3 inflammasome, were measured in neutrophils from blood and airway secretions from healthy control subjects (n = 12), PWCF (n = 16), and PWCF after double-lung transplantation (n = 6). The effects of specific inhibition of NLRP3 on airway inflammation and bacterial clearance in a murine CF model were subsequently assessed in vivo.Measurements and Main Results: CF neutrophils display increased aerobic glycolysis in the systemic circulation. This effect is driven by low-level endotoxemia, unaffected by CFTR (cystic fibrosis transmembrane conductance regulator) modulation, and resolves after transplant. The increased pro-IL-1β produced is processed to its mature active form in the LPS-rich CF lung by the NLRP3 inflammasome via caspase-1. Specific NLRP3 inhibition in vivo with MCC950 inhibited IL-1β in the lungs of CF mice (P < 0.0001), resulting in significantly reduced airway inflammation and improved Pseudomonas clearance (P < 0.0001).Conclusions: CF neutrophil immunometabolism is altered in response to inflammation. NLRP3 inflammasome inhibition may have an antiinflammatory and anti-infective role in CF.Rationale: Cystic fibrosis (CF) pulmonary disease is characterized by chronic infection with Pseudomonas aeruginosa and sustained neutrophil-dominant inflammation. The lack of effective antiinflammatory therapies for people with CF (PWCF) represents a significant challenge.Objectives: To identify altered immunometabolism in the CF neutrophil and investigate the feasibility of specific inhibition of the NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome as a CF antiinflammatory strategy in vivo.Methods: Key markers of increased aerobic glycolysis, known as a Warburg effect, including cytosolic PKM2 (pyruvate kinase M2), phosphorylated PKM2, succinate, HIF-1α (hypoxia-inducible factor-1α), lactate, and the IL-1β precursor pro-IL-1β, as well as caspase-1 activity and processing of pro-IL-1β to IL-1β by the NLRP3 inflammasome, were measured in neutrophils from blood and airway secretions from healthy control subjects (n = 12), PWCF (n = 16), and PWCF after double-lung transplantation (n = 6). The effects of specific inhibition of NLRP3 on airway inflammation and bacterial clearance in a murine CF model were subsequently assessed in vivo.Measurements and Main Results: CF neutrophils display increased aerobic glycolysis in the systemic circulation. This effect is driven by low-level endotoxemia, unaffected by CFTR (cystic fibrosis transmembrane conductance regulator) modulation, and resolves after transplant. The increased pro-IL-1β produced is processed to its mature active form in the LPS-rich CF lung by the NLRP3 inflammasome via caspase-1. Specific NLRP3 inhibition in vivo with MCC950 inhibited IL-1β in the lungs of CF mice (P < 0.0001), resulting in significantly reduced airway inflammation and improved Pseudomonas clearance (P < 0.0001).Conclusions: CF neutrophil immunometabolism is altered in response to inflammation. NLRP3 inflammasome inhibition may have an antiinflammatory and anti-infective role in CF. |
Author | Boland, Fiona McElvaney, Noel G. Gulbins, Erich O’Neill, Luke A. McElvaney, Oliver J. Palsson-McDermott, Eva M. Zaslona, Zbigniew Reeves, Emer P. Becker-Flegler, Katrin Gunaratnam, Cedric |
Author_xml | – sequence: 1 givenname: Oliver J. orcidid: 0000-0001-8187-0769 surname: McElvaney fullname: McElvaney, Oliver J. organization: Irish Centre for Genetic Lung Disease, Department of Medicine, and, Cystic Fibrosis Unit, Beaumont Hospital, Dublin, Ireland – sequence: 2 givenname: Zbigniew surname: Zaslona fullname: Zaslona, Zbigniew organization: School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; and – sequence: 3 givenname: Katrin surname: Becker-Flegler fullname: Becker-Flegler, Katrin organization: Department of Molecular Biology, University Duisburg-Essen, Essen, Germany – sequence: 4 givenname: Eva M. surname: Palsson-McDermott fullname: Palsson-McDermott, Eva M. organization: School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; and – sequence: 5 givenname: Fiona surname: Boland fullname: Boland, Fiona organization: Division of Biostatistics and Population Health Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland – sequence: 6 givenname: Cedric surname: Gunaratnam fullname: Gunaratnam, Cedric organization: Cystic Fibrosis Unit, Beaumont Hospital, Dublin, Ireland – sequence: 7 givenname: Erich surname: Gulbins fullname: Gulbins, Erich organization: Department of Molecular Biology, University Duisburg-Essen, Essen, Germany – sequence: 8 givenname: Luke A. surname: O’Neill fullname: O’Neill, Luke A. organization: School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; and – sequence: 9 givenname: Emer P. surname: Reeves fullname: Reeves, Emer P. organization: Irish Centre for Genetic Lung Disease, Department of Medicine, and – sequence: 10 givenname: Noel G. surname: McElvaney fullname: McElvaney, Noel G. organization: Irish Centre for Genetic Lung Disease, Department of Medicine, and, Cystic Fibrosis Unit, Beaumont Hospital, Dublin, Ireland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31454256$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUuLFDEUhYOMOA_9Ay4k4MZNjffmVZXl0DjOQOOIo-AuplIpJ0NVqk3Si_73pukeF7MQAgmH71xyzzknJ3GJnpC3CJeISnxMzs2XDFCDbBCQ361ekDOUXDZCt3BS39DyRgj985Sc5_wIgKxDeEVOOQopmFRn5Nf9xrswBkdv40PoQwlLpMtIy4OnX9bfvvKqj5OdZ5uX2VObqY30KpYQjnJZ0o7el2SL_72jIdLVLpc67jr0ackhvyYvRztl_-Z4X5Af15--r26a9d3n29XVunGcY2mEQukYjAK4Qs18Z6VSCi20g5CALevdUNWByb7X0EnU2GnkLRsQoHWKX5APh7mbtPzZ-lzMHLLz02SjX7bZsLp6p2SroaLvn6GPyzbF-jvDuKxHacYq9e5IbfvZD2aTwmzTzjxlVwF2AFxdNCc__kMQzL4gsy_IHAoyh4KqqXtmcqHYfeo1wjD9z_oX5vmTcw |
CitedBy_id | crossref_primary_10_3389_fimmu_2022_920464 crossref_primary_10_3390_pathogens11020116 crossref_primary_10_3389_fimmu_2020_600033 crossref_primary_10_1080_17460441_2021_1844179 crossref_primary_10_1016_j_ajpath_2023_11_018 crossref_primary_10_1124_pharmrev_120_000171 crossref_primary_10_1164_rccm_202007_2934ED crossref_primary_10_1172_JCI135949 crossref_primary_10_1111_imcb_12547 crossref_primary_10_3389_fimmu_2024_1405376 crossref_primary_10_1016_j_jcf_2021_01_012 crossref_primary_10_1038_s41598_023_38300_9 crossref_primary_10_3389_fimmu_2022_936167 crossref_primary_10_4049_jimmunol_2100424 crossref_primary_10_1111_imm_13336 crossref_primary_10_1164_rccm_202005_1583OC crossref_primary_10_3390_antiox14030310 crossref_primary_10_4049_immunohorizons_2000095 crossref_primary_10_1016_j_jcf_2020_11_012 crossref_primary_10_3389_fimmu_2022_812164 crossref_primary_10_1016_j_biopha_2022_113460 crossref_primary_10_3389_fimmu_2022_903834 crossref_primary_10_1016_j_arr_2022_101638 crossref_primary_10_1038_s41564_022_01080_5 crossref_primary_10_1016_j_bbadis_2021_166077 crossref_primary_10_1016_j_jcf_2025_01_016 crossref_primary_10_1055_s_0042_1760250 crossref_primary_10_1186_s42269_023_01005_0 crossref_primary_10_3892_mmr_2019_10752 crossref_primary_10_1183_13993003_03157_2020 crossref_primary_10_1111_febs_15476 crossref_primary_10_1080_17476348_2020_1778469 crossref_primary_10_3389_fphar_2020_01098 crossref_primary_10_2174_1874467214666210208114439 crossref_primary_10_1136_thorax_2022_219943 crossref_primary_10_3389_fphar_2020_01096 crossref_primary_10_1080_17425247_2021_1874343 crossref_primary_10_3389_fphar_2020_581114 crossref_primary_10_1080_08923973_2022_2043899 crossref_primary_10_1152_ajplung_00065_2022 crossref_primary_10_3390_cells10123509 crossref_primary_10_3390_pathogens10070784 crossref_primary_10_1165_rcmb_2021_0183ED crossref_primary_10_3389_fimmu_2020_00385 crossref_primary_10_1016_j_ccm_2022_06_004 crossref_primary_10_1016_j_jaci_2023_09_020 crossref_primary_10_3390_ijms221910721 crossref_primary_10_3389_fcell_2021_630479 crossref_primary_10_3390_biomedicines11061725 crossref_primary_10_1016_j_ejmech_2020_112717 crossref_primary_10_1007_s00018_020_03540_9 crossref_primary_10_1002_iid3_70140 crossref_primary_10_1164_rccm_202004_0991OC crossref_primary_10_3390_ijms21093331 crossref_primary_10_3390_nu16223957 crossref_primary_10_1038_s41423_021_00670_3 crossref_primary_10_1136_thorax_2023_221071 crossref_primary_10_1016_j_ebiom_2020_103026 crossref_primary_10_1016_j_scitotenv_2021_148041 crossref_primary_10_1164_rccm_201908_1558ED crossref_primary_10_7554_eLife_54556 crossref_primary_10_1016_j_cmet_2023_09_001 crossref_primary_10_3389_fimmu_2022_864387 crossref_primary_10_1007_s12026_024_09497_2 crossref_primary_10_7554_eLife_49248 crossref_primary_10_3390_genes14101966 crossref_primary_10_1128_spectrum_03693_23 crossref_primary_10_3390_cells10123380 crossref_primary_10_1016_j_ajpath_2022_03_003 crossref_primary_10_3390_ijms21176379 crossref_primary_10_1186_s12931_020_01591_x crossref_primary_10_1164_rccm_202106_1426OC crossref_primary_10_3390_molecules26164996 crossref_primary_10_1165_rcmb_2020_0257OC |
Cites_doi | 10.1182/blood-2014-02-555268 10.1164/rccm.201503-0578OC 10.1164/ajrccm.152.6.8520783 10.1002/bies.201300084 10.1038/nm1748 10.1136/annrheumdis-2013-203276 10.1378/chest.99.1.169 10.1126/science.2475911 10.1164/rccm.200304-505SO 10.1172/JCI41196 10.1038/nature04516 10.1056/NEJMra1300109 10.1182/blood-2008-03-146720 10.1016/S1097-2765(02)00599-3 10.1038/nrd3800 10.1038/356768a0 10.1038/ni.1935 10.1016/j.jcf.2010.09.004 10.1016/S2213-2600(17)30215-1 10.1210/jc.2013-3463 10.1038/nm.3806 10.1056/NEJMoa1409547 10.1172/JCI66142 10.1080/02713680490516710 10.1038/nature11729 10.1056/NEJMoa1709846 10.1002/JLB.5HI1117-454RR 10.1513/AnnalsATS.201802-149OC 10.1167/iovs.04-0041 10.1038/ni.1636 10.1002/ppul.24129 10.1152/ajplung.00123.2017 10.1164/rccm.201902-0310UP 10.1084/jem.178.6.2207 10.4049/jimmunol.175.11.7594 10.1038/nature08938 10.1016/j.cmet.2006.02.002 10.1126/scitranslmed.aah4066 10.1056/NEJMoa1105185 10.1016/j.cell.2011.03.054 10.1016/j.jcf.2015.03.003 10.1152/ajplung.00347.2013 10.1371/journal.ppat.1004462 10.1164/rccm.201609-1830OC 10.1016/j.jcf.2018.06.001 10.1164/ajrccm.150.2.8049828 10.1126/scisignal.2000431 10.1016/j.cmet.2014.12.005 10.4049/jimmunol.1203094 10.4049/jimmunol.1201755 10.1126/science.1373520 10.1016/j.ccr.2004.11.022 10.1038/nature11986 10.1038/ncomms10791 10.1038/s41589-019-0278-6 10.4049/jimmunol.1001284 10.1378/chest.12-2022 10.1038/s41589-019-0277-7 10.1152/ajplung.00461.2000 |
ContentType | Journal Article |
Copyright | Copyright American Thoracic Society Dec 1, 2019 |
Copyright_xml | – notice: Copyright American Thoracic Society Dec 1, 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. NAPCQ 7X8 |
DOI | 10.1164/rccm.201905-1013OC |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1535-4970 |
EndPage | 1391 |
ExternalDocumentID | 31454256 10_1164_rccm_201905_1013OC |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X .55 0R~ 23M 2WC 34G 39C 53G 5GY 5RE 7RV 7X7 8C1 8FW 8R4 8R5 AAQQT AAWTL AAYXX ABJNI ABOCM ABPMR ACGFO ACGFS ADBBV AENEX AFCHL AFKRA AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS BAWUL BENPR BPHCQ C45 CITATION CS3 DIK E3Z EBS EJD EMOBN EX3 F5P FRP FYUFA GX1 H13 HZ~ IH2 J5H KQ8 L7B M5~ O9- OBH OFXIZ OGEVE OK1 OVD OVIDX P2P PCD PQQKQ Q2X RWL SJN TAE TEORI THO TR2 W8F WH7 WOQ WOW X7M ~02 3V. CGR CUY CVF ECM EIF NPM RPM K9. NAPCQ 7X8 |
ID | FETCH-LOGICAL-c331t-4615c20f4036192e8a56661a07d450172bcd2e8d25bb9085191891372d1007c63 |
ISSN | 1073-449X 1535-4970 |
IngestDate | Fri Jul 11 03:37:38 EDT 2025 Mon Jun 30 06:37:18 EDT 2025 Thu Jan 02 22:59:28 EST 2025 Tue Jul 01 02:01:11 EDT 2025 Thu Apr 24 23:12:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | MCC950 IL-1β NLRP3 inflammasome neutrophils pyruvate kinase M2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c331t-4615c20f4036192e8a56661a07d450172bcd2e8d25bb9085191891372d1007c63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8187-0769 |
PMID | 31454256 |
PQID | 2352356922 |
PQPubID | 40575 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2281865790 proquest_journals_2352356922 pubmed_primary_31454256 crossref_primary_10_1164_rccm_201905_1013OC crossref_citationtrail_10_1164_rccm_201905_1013OC |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-01 20191201 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | American journal of respiratory and critical care medicine |
PublicationTitleAlternate | Am J Respir Crit Care Med |
PublicationYear | 2019 |
Publisher | American Thoracic Society |
Publisher_xml | – name: American Thoracic Society |
References | bib36 bib34 bib35 bib32 bib33 bib30 bib31 bib29 bib27 bib28 bib40 bib47 bib48 bib45 bib46 bib43 bib44 bib41 bib42 bib9 bib7 bib8 bib5 bib6 bib3 bib4 bib39 bib1 bib2 McElvaney O (bib37) 2019; 199 bib50 bib51 bib14 bib58 bib15 bib59 bib12 bib56 bib13 bib57 bib10 bib54 bib11 bib55 bib52 bib49 Rennard SI (bib38) 1998; 26 Caradonna L (bib53) 2000; 6 bib61 bib62 bib60 bib25 bib26 bib23 bib24 bib21 bib22 bib20 bib18 bib19 bib16 bib17 31487198 - Am J Respir Crit Care Med. 2019 Dec 1;200(11):1335-1337 |
References_xml | – ident: bib26 doi: 10.1182/blood-2014-02-555268 – ident: bib32 doi: 10.1164/rccm.201503-0578OC – ident: bib42 doi: 10.1164/ajrccm.152.6.8520783 – ident: bib62 doi: 10.1002/bies.201300084 – ident: bib49 doi: 10.1038/nm1748 – ident: bib3 doi: 10.1136/annrheumdis-2013-203276 – ident: bib54 doi: 10.1378/chest.99.1.169 – ident: bib24 doi: 10.1126/science.2475911 – ident: bib28 doi: 10.1164/rccm.200304-505SO – ident: bib40 doi: 10.1172/JCI41196 – ident: bib4 doi: 10.1038/nature04516 – ident: bib27 doi: 10.1056/NEJMra1300109 – ident: bib56 doi: 10.1182/blood-2008-03-146720 – ident: bib16 doi: 10.1016/S1097-2765(02)00599-3 – ident: bib13 doi: 10.1038/nrd3800 – ident: bib15 doi: 10.1038/356768a0 – ident: bib1 doi: 10.1038/ni.1935 – ident: bib52 doi: 10.1016/j.jcf.2010.09.004 – ident: bib31 doi: 10.1016/S2213-2600(17)30215-1 – ident: bib55 doi: 10.1210/jc.2013-3463 – ident: bib46 doi: 10.1038/nm.3806 – ident: bib34 doi: 10.1056/NEJMoa1409547 – ident: bib10 doi: 10.1172/JCI66142 – ident: bib60 doi: 10.1080/02713680490516710 – ident: bib5 doi: 10.1038/nature11729 – ident: bib33 doi: 10.1056/NEJMoa1709846 – ident: bib51 doi: 10.1002/JLB.5HI1117-454RR – ident: bib35 doi: 10.1513/AnnalsATS.201802-149OC – ident: bib59 doi: 10.1167/iovs.04-0041 – ident: bib18 doi: 10.1038/ni.1636 – ident: bib36 doi: 10.1002/ppul.24129 – ident: bib57 doi: 10.1152/ajplung.00123.2017 – ident: bib29 doi: 10.1164/rccm.201902-0310UP – ident: bib12 doi: 10.1084/jem.178.6.2207 – ident: bib8 doi: 10.4049/jimmunol.175.11.7594 – ident: bib2 doi: 10.1038/nature08938 – ident: bib21 doi: 10.1016/j.cmet.2006.02.002 – ident: bib17 doi: 10.1126/scitranslmed.aah4066 – volume: 6 start-page: 205 year: 2000 ident: bib53 publication-title: J Endotoxin Res – ident: bib30 doi: 10.1056/NEJMoa1105185 – ident: bib23 doi: 10.1016/j.cell.2011.03.054 – ident: bib25 doi: 10.1016/j.jcf.2015.03.003 – ident: bib6 doi: 10.1152/ajplung.00347.2013 – ident: bib11 doi: 10.1371/journal.ppat.1004462 – ident: bib7 doi: 10.1164/rccm.201609-1830OC – ident: bib39 doi: 10.1016/j.jcf.2018.06.001 – ident: bib43 doi: 10.1164/ajrccm.150.2.8049828 – ident: bib44 doi: 10.1126/scisignal.2000431 – ident: bib22 doi: 10.1016/j.cmet.2014.12.005 – ident: bib61 doi: 10.4049/jimmunol.1203094 – volume: 26 start-page: 13S year: 1998 ident: bib38 publication-title: Eur Respir J Suppl – ident: bib50 doi: 10.4049/jimmunol.1201755 – volume: 199 start-page: A6188 volume-title: AJRCCM year: 2019 ident: bib37 – ident: bib14 doi: 10.1126/science.1373520 – ident: bib45 doi: 10.1016/j.ccr.2004.11.022 – ident: bib20 doi: 10.1038/nature11986 – ident: bib9 doi: 10.1038/ncomms10791 – ident: bib48 doi: 10.1038/s41589-019-0278-6 – ident: bib19 doi: 10.4049/jimmunol.1001284 – ident: bib41 doi: 10.1378/chest.12-2022 – ident: bib47 doi: 10.1038/s41589-019-0277-7 – ident: bib58 doi: 10.1152/ajplung.00461.2000 – reference: 31487198 - Am J Respir Crit Care Med. 2019 Dec 1;200(11):1335-1337 |
SSID | ssj0012810 |
Score | 2.5591412 |
Snippet | Cystic fibrosis (CF) pulmonary disease is characterized by chronic infection with
and sustained neutrophil-dominant inflammation. The lack of effective... A study is presented that identifies altered immunometabolism in cystic fibrosis (CF) neutrophil and investigates the feasibility of specific inhibition of the... Rationale: Cystic fibrosis (CF) pulmonary disease is characterized by chronic infection with Pseudomonas aeruginosa and sustained neutrophil-dominant... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 1381 |
SubjectTerms | Animals Anti-Inflammatory Agents - therapeutic use Biomarkers - analysis Bronchoalveolar Lavage Fluid - chemistry Cystic fibrosis Cystic Fibrosis - drug therapy Furans - therapeutic use Gram-negative bacteria Humans Inflammasomes - drug effects Inflammation Interleukin-1beta - analysis Lung diseases Mice Neutrophils - drug effects NLR Family, Pyrin Domain-Containing 3 Protein - antagonists & inhibitors Pseudomonas Infections - etiology Pseudomonas Infections - therapy Sulfonamides - therapeutic use |
Title | Specific Inhibition of the NLRP3 Inflammasome as an Antiinflammatory Strategy in Cystic Fibrosis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31454256 https://www.proquest.com/docview/2352356922 https://www.proquest.com/docview/2281865790 |
Volume | 200 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIlW9IN4sFGQkblUgTmKHHMujVIhChVpp1UtIHKdE2k2qTfYAv4ifyYwfWbOlCLhEKyebSPN9tmc8L0KeqVQqpuo0yOqUB4mqoiCruAxUKSpVS1arQgfIfhSHp8n7GZ9NJj-8qKXVUD6X33-bV_I_qMIY4IpZsv-A7PhSGIDfgC9cAWG4_hXGunl83UiY5V-bsnHKn45b_PD5OIbxGhBfFH23UNhRBibzfjs0jR3WDnZbn9bk_33Dss17B2BDd33T-5rr6Nrxak0sPT-9zo9zfRN0PNmm2x6P_kBvN2fkn-YYELJ2Sp0V_bwz-WlnZXPeeg6LVwpDPwJg2Pl8DAFZNiOrj7Wc2-BIvoFtxgaggIVgD3rtkQbLvPAQ5ZZhjr3vQn-dNiVNR0Iyb9llsen7cnk_EAmAuJQSiw6A7oNVV1lsymV6BLlYaIbELOGwhm2U5jabvb11jVyPwCDBXhnvZmMwEbojQ5eSJZIXlz-4Q7bdK37VgK4wa7R6c3KT3LB2Cd03JLtFJqq9TbaPLIR3yBfHNbrmGu1qClyjmmvU5xotelq0dJNr1HGNNi01XKOOa3fJ6cHbk9eHge3OEcg4ZkOQgC4so7BOQAcCM0G9LMAyEKwI0yrheLJQygpGq4iXZYaKfcbQJZ5GFQbmSBHfI1tt16oHhIJQQJGE7aaM00RgXIIUShagWae8BvtiSpiTWC5t6XrsoDLPtQkrkhwFnhuB50bgU7I3_ufCFG7549O7DojcTqM-j8A4ibnIomhKno63YflFnxpMl24Fz2A1NcHTLJyS-wbA8XMO8IdX3nlEdtb83yVbw3KlHoOSO5RPNL9-AnV-pnQ |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Specific+Inhibition+of+the+NLRP3+Inflammasome+as+an+Antiinflammatory+Strategy+in+Cystic+Fibrosis&rft.jtitle=American+journal+of+respiratory+and+critical+care+medicine&rft.au=McElvaney%2C+Oliver+J&rft.au=Zaslona%2C+Zbigniew&rft.au=Becker-Flegler%2C+Katrin&rft.au=Palsson-McDermott%2C+Eva+M&rft.date=2019-12-01&rft.eissn=1535-4970&rft.volume=200&rft.issue=11&rft.spage=1381&rft_id=info:doi/10.1164%2Frccm.201905-1013OC&rft_id=info%3Apmid%2F31454256&rft.externalDocID=31454256 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1073-449X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1073-449X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1073-449X&client=summon |