Specific Inhibition of the NLRP3 Inflammasome as an Antiinflammatory Strategy in Cystic Fibrosis

Cystic fibrosis (CF) pulmonary disease is characterized by chronic infection with and sustained neutrophil-dominant inflammation. The lack of effective antiinflammatory therapies for people with CF (PWCF) represents a significant challenge. To identify altered immunometabolism in the CF neutrophil a...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of respiratory and critical care medicine Vol. 200; no. 11; pp. 1381 - 1391
Main Authors McElvaney, Oliver J., Zaslona, Zbigniew, Becker-Flegler, Katrin, Palsson-McDermott, Eva M., Boland, Fiona, Gunaratnam, Cedric, Gulbins, Erich, O’Neill, Luke A., Reeves, Emer P., McElvaney, Noel G.
Format Journal Article
LanguageEnglish
Published United States American Thoracic Society 01.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cystic fibrosis (CF) pulmonary disease is characterized by chronic infection with and sustained neutrophil-dominant inflammation. The lack of effective antiinflammatory therapies for people with CF (PWCF) represents a significant challenge. To identify altered immunometabolism in the CF neutrophil and investigate the feasibility of specific inhibition of the NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome as a CF antiinflammatory strategy . Key markers of increased aerobic glycolysis, known as a Warburg effect, including cytosolic PKM2 (pyruvate kinase M2), phosphorylated PKM2, succinate, HIF-1α (hypoxia-inducible factor-1α), lactate, and the IL-1β precursor pro-IL-1β, as well as caspase-1 activity and processing of pro-IL-1β to IL-1β by the NLRP3 inflammasome, were measured in neutrophils from blood and airway secretions from healthy control subjects (  = 12), PWCF (  = 16), and PWCF after double-lung transplantation (  = 6). The effects of specific inhibition of NLRP3 on airway inflammation and bacterial clearance in a murine CF model were subsequently assessed . CF neutrophils display increased aerobic glycolysis in the systemic circulation. This effect is driven by low-level endotoxemia, unaffected by CFTR (cystic fibrosis transmembrane conductance regulator) modulation, and resolves after transplant. The increased pro-IL-1β produced is processed to its mature active form in the LPS-rich CF lung by the NLRP3 inflammasome via caspase-1. Specific NLRP3 inhibition with MCC950 inhibited IL-1β in the lungs of CF mice (  < 0.0001), resulting in significantly reduced airway inflammation and improved clearance (  < 0.0001). CF neutrophil immunometabolism is altered in response to inflammation. NLRP3 inflammasome inhibition may have an antiinflammatory and anti-infective role in CF.
AbstractList A study is presented that identifies altered immunometabolism in cystic fibrosis (CF) neutrophil and investigates the feasibility of specific inhibition of the NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome as a CF antiinflammatory strategy in vivo. Key markers of increased aerobic glycolysis, known as a Warburg effect, including cytosolic PKM2 (pyruvate kinase M2) are measured. It has been noted that CF pulmonary disease is characterized by chronic infection with Pseudomonas aeruginosa and sustained neutrophil-dominant inflammation. Results of the study conclude that CF neutrophil immunometabolism is altered in response to inflammation.
Cystic fibrosis (CF) pulmonary disease is characterized by chronic infection with and sustained neutrophil-dominant inflammation. The lack of effective antiinflammatory therapies for people with CF (PWCF) represents a significant challenge. To identify altered immunometabolism in the CF neutrophil and investigate the feasibility of specific inhibition of the NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome as a CF antiinflammatory strategy . Key markers of increased aerobic glycolysis, known as a Warburg effect, including cytosolic PKM2 (pyruvate kinase M2), phosphorylated PKM2, succinate, HIF-1α (hypoxia-inducible factor-1α), lactate, and the IL-1β precursor pro-IL-1β, as well as caspase-1 activity and processing of pro-IL-1β to IL-1β by the NLRP3 inflammasome, were measured in neutrophils from blood and airway secretions from healthy control subjects (  = 12), PWCF (  = 16), and PWCF after double-lung transplantation (  = 6). The effects of specific inhibition of NLRP3 on airway inflammation and bacterial clearance in a murine CF model were subsequently assessed . CF neutrophils display increased aerobic glycolysis in the systemic circulation. This effect is driven by low-level endotoxemia, unaffected by CFTR (cystic fibrosis transmembrane conductance regulator) modulation, and resolves after transplant. The increased pro-IL-1β produced is processed to its mature active form in the LPS-rich CF lung by the NLRP3 inflammasome via caspase-1. Specific NLRP3 inhibition with MCC950 inhibited IL-1β in the lungs of CF mice (  < 0.0001), resulting in significantly reduced airway inflammation and improved clearance (  < 0.0001). CF neutrophil immunometabolism is altered in response to inflammation. NLRP3 inflammasome inhibition may have an antiinflammatory and anti-infective role in CF.
Rationale: Cystic fibrosis (CF) pulmonary disease is characterized by chronic infection with Pseudomonas aeruginosa and sustained neutrophil-dominant inflammation. The lack of effective antiinflammatory therapies for people with CF (PWCF) represents a significant challenge.Objectives: To identify altered immunometabolism in the CF neutrophil and investigate the feasibility of specific inhibition of the NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome as a CF antiinflammatory strategy in vivo.Methods: Key markers of increased aerobic glycolysis, known as a Warburg effect, including cytosolic PKM2 (pyruvate kinase M2), phosphorylated PKM2, succinate, HIF-1α (hypoxia-inducible factor-1α), lactate, and the IL-1β precursor pro-IL-1β, as well as caspase-1 activity and processing of pro-IL-1β to IL-1β by the NLRP3 inflammasome, were measured in neutrophils from blood and airway secretions from healthy control subjects (n = 12), PWCF (n = 16), and PWCF after double-lung transplantation (n = 6). The effects of specific inhibition of NLRP3 on airway inflammation and bacterial clearance in a murine CF model were subsequently assessed in vivo.Measurements and Main Results: CF neutrophils display increased aerobic glycolysis in the systemic circulation. This effect is driven by low-level endotoxemia, unaffected by CFTR (cystic fibrosis transmembrane conductance regulator) modulation, and resolves after transplant. The increased pro-IL-1β produced is processed to its mature active form in the LPS-rich CF lung by the NLRP3 inflammasome via caspase-1. Specific NLRP3 inhibition in vivo with MCC950 inhibited IL-1β in the lungs of CF mice (P < 0.0001), resulting in significantly reduced airway inflammation and improved Pseudomonas clearance (P < 0.0001).Conclusions: CF neutrophil immunometabolism is altered in response to inflammation. NLRP3 inflammasome inhibition may have an antiinflammatory and anti-infective role in CF.Rationale: Cystic fibrosis (CF) pulmonary disease is characterized by chronic infection with Pseudomonas aeruginosa and sustained neutrophil-dominant inflammation. The lack of effective antiinflammatory therapies for people with CF (PWCF) represents a significant challenge.Objectives: To identify altered immunometabolism in the CF neutrophil and investigate the feasibility of specific inhibition of the NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome as a CF antiinflammatory strategy in vivo.Methods: Key markers of increased aerobic glycolysis, known as a Warburg effect, including cytosolic PKM2 (pyruvate kinase M2), phosphorylated PKM2, succinate, HIF-1α (hypoxia-inducible factor-1α), lactate, and the IL-1β precursor pro-IL-1β, as well as caspase-1 activity and processing of pro-IL-1β to IL-1β by the NLRP3 inflammasome, were measured in neutrophils from blood and airway secretions from healthy control subjects (n = 12), PWCF (n = 16), and PWCF after double-lung transplantation (n = 6). The effects of specific inhibition of NLRP3 on airway inflammation and bacterial clearance in a murine CF model were subsequently assessed in vivo.Measurements and Main Results: CF neutrophils display increased aerobic glycolysis in the systemic circulation. This effect is driven by low-level endotoxemia, unaffected by CFTR (cystic fibrosis transmembrane conductance regulator) modulation, and resolves after transplant. The increased pro-IL-1β produced is processed to its mature active form in the LPS-rich CF lung by the NLRP3 inflammasome via caspase-1. Specific NLRP3 inhibition in vivo with MCC950 inhibited IL-1β in the lungs of CF mice (P < 0.0001), resulting in significantly reduced airway inflammation and improved Pseudomonas clearance (P < 0.0001).Conclusions: CF neutrophil immunometabolism is altered in response to inflammation. NLRP3 inflammasome inhibition may have an antiinflammatory and anti-infective role in CF.
Author Boland, Fiona
McElvaney, Noel G.
Gulbins, Erich
O’Neill, Luke A.
McElvaney, Oliver J.
Palsson-McDermott, Eva M.
Zaslona, Zbigniew
Reeves, Emer P.
Becker-Flegler, Katrin
Gunaratnam, Cedric
Author_xml – sequence: 1
  givenname: Oliver J.
  orcidid: 0000-0001-8187-0769
  surname: McElvaney
  fullname: McElvaney, Oliver J.
  organization: Irish Centre for Genetic Lung Disease, Department of Medicine, and, Cystic Fibrosis Unit, Beaumont Hospital, Dublin, Ireland
– sequence: 2
  givenname: Zbigniew
  surname: Zaslona
  fullname: Zaslona, Zbigniew
  organization: School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; and
– sequence: 3
  givenname: Katrin
  surname: Becker-Flegler
  fullname: Becker-Flegler, Katrin
  organization: Department of Molecular Biology, University Duisburg-Essen, Essen, Germany
– sequence: 4
  givenname: Eva M.
  surname: Palsson-McDermott
  fullname: Palsson-McDermott, Eva M.
  organization: School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; and
– sequence: 5
  givenname: Fiona
  surname: Boland
  fullname: Boland, Fiona
  organization: Division of Biostatistics and Population Health Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
– sequence: 6
  givenname: Cedric
  surname: Gunaratnam
  fullname: Gunaratnam, Cedric
  organization: Cystic Fibrosis Unit, Beaumont Hospital, Dublin, Ireland
– sequence: 7
  givenname: Erich
  surname: Gulbins
  fullname: Gulbins, Erich
  organization: Department of Molecular Biology, University Duisburg-Essen, Essen, Germany
– sequence: 8
  givenname: Luke A.
  surname: O’Neill
  fullname: O’Neill, Luke A.
  organization: School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; and
– sequence: 9
  givenname: Emer P.
  surname: Reeves
  fullname: Reeves, Emer P.
  organization: Irish Centre for Genetic Lung Disease, Department of Medicine, and
– sequence: 10
  givenname: Noel G.
  surname: McElvaney
  fullname: McElvaney, Noel G.
  organization: Irish Centre for Genetic Lung Disease, Department of Medicine, and, Cystic Fibrosis Unit, Beaumont Hospital, Dublin, Ireland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31454256$$D View this record in MEDLINE/PubMed
BookMark eNp9kUuLFDEUhYOMOA_9Ay4k4MZNjffmVZXl0DjOQOOIo-AuplIpJ0NVqk3Si_73pukeF7MQAgmH71xyzzknJ3GJnpC3CJeISnxMzs2XDFCDbBCQ361ekDOUXDZCt3BS39DyRgj985Sc5_wIgKxDeEVOOQopmFRn5Nf9xrswBkdv40PoQwlLpMtIy4OnX9bfvvKqj5OdZ5uX2VObqY30KpYQjnJZ0o7el2SL_72jIdLVLpc67jr0ackhvyYvRztl_-Z4X5Af15--r26a9d3n29XVunGcY2mEQukYjAK4Qs18Z6VSCi20g5CALevdUNWByb7X0EnU2GnkLRsQoHWKX5APh7mbtPzZ-lzMHLLz02SjX7bZsLp6p2SroaLvn6GPyzbF-jvDuKxHacYq9e5IbfvZD2aTwmzTzjxlVwF2AFxdNCc__kMQzL4gsy_IHAoyh4KqqXtmcqHYfeo1wjD9z_oX5vmTcw
CitedBy_id crossref_primary_10_3389_fimmu_2022_920464
crossref_primary_10_3390_pathogens11020116
crossref_primary_10_3389_fimmu_2020_600033
crossref_primary_10_1080_17460441_2021_1844179
crossref_primary_10_1016_j_ajpath_2023_11_018
crossref_primary_10_1124_pharmrev_120_000171
crossref_primary_10_1164_rccm_202007_2934ED
crossref_primary_10_1172_JCI135949
crossref_primary_10_1111_imcb_12547
crossref_primary_10_3389_fimmu_2024_1405376
crossref_primary_10_1016_j_jcf_2021_01_012
crossref_primary_10_1038_s41598_023_38300_9
crossref_primary_10_3389_fimmu_2022_936167
crossref_primary_10_4049_jimmunol_2100424
crossref_primary_10_1111_imm_13336
crossref_primary_10_1164_rccm_202005_1583OC
crossref_primary_10_3390_antiox14030310
crossref_primary_10_4049_immunohorizons_2000095
crossref_primary_10_1016_j_jcf_2020_11_012
crossref_primary_10_3389_fimmu_2022_812164
crossref_primary_10_1016_j_biopha_2022_113460
crossref_primary_10_3389_fimmu_2022_903834
crossref_primary_10_1016_j_arr_2022_101638
crossref_primary_10_1038_s41564_022_01080_5
crossref_primary_10_1016_j_bbadis_2021_166077
crossref_primary_10_1016_j_jcf_2025_01_016
crossref_primary_10_1055_s_0042_1760250
crossref_primary_10_1186_s42269_023_01005_0
crossref_primary_10_3892_mmr_2019_10752
crossref_primary_10_1183_13993003_03157_2020
crossref_primary_10_1111_febs_15476
crossref_primary_10_1080_17476348_2020_1778469
crossref_primary_10_3389_fphar_2020_01098
crossref_primary_10_2174_1874467214666210208114439
crossref_primary_10_1136_thorax_2022_219943
crossref_primary_10_3389_fphar_2020_01096
crossref_primary_10_1080_17425247_2021_1874343
crossref_primary_10_3389_fphar_2020_581114
crossref_primary_10_1080_08923973_2022_2043899
crossref_primary_10_1152_ajplung_00065_2022
crossref_primary_10_3390_cells10123509
crossref_primary_10_3390_pathogens10070784
crossref_primary_10_1165_rcmb_2021_0183ED
crossref_primary_10_3389_fimmu_2020_00385
crossref_primary_10_1016_j_ccm_2022_06_004
crossref_primary_10_1016_j_jaci_2023_09_020
crossref_primary_10_3390_ijms221910721
crossref_primary_10_3389_fcell_2021_630479
crossref_primary_10_3390_biomedicines11061725
crossref_primary_10_1016_j_ejmech_2020_112717
crossref_primary_10_1007_s00018_020_03540_9
crossref_primary_10_1002_iid3_70140
crossref_primary_10_1164_rccm_202004_0991OC
crossref_primary_10_3390_ijms21093331
crossref_primary_10_3390_nu16223957
crossref_primary_10_1038_s41423_021_00670_3
crossref_primary_10_1136_thorax_2023_221071
crossref_primary_10_1016_j_ebiom_2020_103026
crossref_primary_10_1016_j_scitotenv_2021_148041
crossref_primary_10_1164_rccm_201908_1558ED
crossref_primary_10_7554_eLife_54556
crossref_primary_10_1016_j_cmet_2023_09_001
crossref_primary_10_3389_fimmu_2022_864387
crossref_primary_10_1007_s12026_024_09497_2
crossref_primary_10_7554_eLife_49248
crossref_primary_10_3390_genes14101966
crossref_primary_10_1128_spectrum_03693_23
crossref_primary_10_3390_cells10123380
crossref_primary_10_1016_j_ajpath_2022_03_003
crossref_primary_10_3390_ijms21176379
crossref_primary_10_1186_s12931_020_01591_x
crossref_primary_10_1164_rccm_202106_1426OC
crossref_primary_10_3390_molecules26164996
crossref_primary_10_1165_rcmb_2020_0257OC
Cites_doi 10.1182/blood-2014-02-555268
10.1164/rccm.201503-0578OC
10.1164/ajrccm.152.6.8520783
10.1002/bies.201300084
10.1038/nm1748
10.1136/annrheumdis-2013-203276
10.1378/chest.99.1.169
10.1126/science.2475911
10.1164/rccm.200304-505SO
10.1172/JCI41196
10.1038/nature04516
10.1056/NEJMra1300109
10.1182/blood-2008-03-146720
10.1016/S1097-2765(02)00599-3
10.1038/nrd3800
10.1038/356768a0
10.1038/ni.1935
10.1016/j.jcf.2010.09.004
10.1016/S2213-2600(17)30215-1
10.1210/jc.2013-3463
10.1038/nm.3806
10.1056/NEJMoa1409547
10.1172/JCI66142
10.1080/02713680490516710
10.1038/nature11729
10.1056/NEJMoa1709846
10.1002/JLB.5HI1117-454RR
10.1513/AnnalsATS.201802-149OC
10.1167/iovs.04-0041
10.1038/ni.1636
10.1002/ppul.24129
10.1152/ajplung.00123.2017
10.1164/rccm.201902-0310UP
10.1084/jem.178.6.2207
10.4049/jimmunol.175.11.7594
10.1038/nature08938
10.1016/j.cmet.2006.02.002
10.1126/scitranslmed.aah4066
10.1056/NEJMoa1105185
10.1016/j.cell.2011.03.054
10.1016/j.jcf.2015.03.003
10.1152/ajplung.00347.2013
10.1371/journal.ppat.1004462
10.1164/rccm.201609-1830OC
10.1016/j.jcf.2018.06.001
10.1164/ajrccm.150.2.8049828
10.1126/scisignal.2000431
10.1016/j.cmet.2014.12.005
10.4049/jimmunol.1203094
10.4049/jimmunol.1201755
10.1126/science.1373520
10.1016/j.ccr.2004.11.022
10.1038/nature11986
10.1038/ncomms10791
10.1038/s41589-019-0278-6
10.4049/jimmunol.1001284
10.1378/chest.12-2022
10.1038/s41589-019-0277-7
10.1152/ajplung.00461.2000
ContentType Journal Article
Copyright Copyright American Thoracic Society Dec 1, 2019
Copyright_xml – notice: Copyright American Thoracic Society Dec 1, 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
NAPCQ
7X8
DOI 10.1164/rccm.201905-1013OC
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1535-4970
EndPage 1391
ExternalDocumentID 31454256
10_1164_rccm_201905_1013OC
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.55
0R~
23M
2WC
34G
39C
53G
5GY
5RE
7RV
7X7
8C1
8FW
8R4
8R5
AAQQT
AAWTL
AAYXX
ABJNI
ABOCM
ABPMR
ACGFO
ACGFS
ADBBV
AENEX
AFCHL
AFKRA
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BENPR
BPHCQ
C45
CITATION
CS3
DIK
E3Z
EBS
EJD
EMOBN
EX3
F5P
FRP
FYUFA
GX1
H13
HZ~
IH2
J5H
KQ8
L7B
M5~
O9-
OBH
OFXIZ
OGEVE
OK1
OVD
OVIDX
P2P
PCD
PQQKQ
Q2X
RWL
SJN
TAE
TEORI
THO
TR2
W8F
WH7
WOQ
WOW
X7M
~02
3V.
CGR
CUY
CVF
ECM
EIF
NPM
RPM
K9.
NAPCQ
7X8
ID FETCH-LOGICAL-c331t-4615c20f4036192e8a56661a07d450172bcd2e8d25bb9085191891372d1007c63
ISSN 1073-449X
1535-4970
IngestDate Fri Jul 11 03:37:38 EDT 2025
Mon Jun 30 06:37:18 EDT 2025
Thu Jan 02 22:59:28 EST 2025
Tue Jul 01 02:01:11 EDT 2025
Thu Apr 24 23:12:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords MCC950
IL-1β
NLRP3 inflammasome
neutrophils
pyruvate kinase M2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c331t-4615c20f4036192e8a56661a07d450172bcd2e8d25bb9085191891372d1007c63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8187-0769
PMID 31454256
PQID 2352356922
PQPubID 40575
PageCount 11
ParticipantIDs proquest_miscellaneous_2281865790
proquest_journals_2352356922
pubmed_primary_31454256
crossref_primary_10_1164_rccm_201905_1013OC
crossref_citationtrail_10_1164_rccm_201905_1013OC
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-01
20191201
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle American journal of respiratory and critical care medicine
PublicationTitleAlternate Am J Respir Crit Care Med
PublicationYear 2019
Publisher American Thoracic Society
Publisher_xml – name: American Thoracic Society
References bib36
bib34
bib35
bib32
bib33
bib30
bib31
bib29
bib27
bib28
bib40
bib47
bib48
bib45
bib46
bib43
bib44
bib41
bib42
bib9
bib7
bib8
bib5
bib6
bib3
bib4
bib39
bib1
bib2
McElvaney O (bib37) 2019; 199
bib50
bib51
bib14
bib58
bib15
bib59
bib12
bib56
bib13
bib57
bib10
bib54
bib11
bib55
bib52
bib49
Rennard SI (bib38) 1998; 26
Caradonna L (bib53) 2000; 6
bib61
bib62
bib60
bib25
bib26
bib23
bib24
bib21
bib22
bib20
bib18
bib19
bib16
bib17
31487198 - Am J Respir Crit Care Med. 2019 Dec 1;200(11):1335-1337
References_xml – ident: bib26
  doi: 10.1182/blood-2014-02-555268
– ident: bib32
  doi: 10.1164/rccm.201503-0578OC
– ident: bib42
  doi: 10.1164/ajrccm.152.6.8520783
– ident: bib62
  doi: 10.1002/bies.201300084
– ident: bib49
  doi: 10.1038/nm1748
– ident: bib3
  doi: 10.1136/annrheumdis-2013-203276
– ident: bib54
  doi: 10.1378/chest.99.1.169
– ident: bib24
  doi: 10.1126/science.2475911
– ident: bib28
  doi: 10.1164/rccm.200304-505SO
– ident: bib40
  doi: 10.1172/JCI41196
– ident: bib4
  doi: 10.1038/nature04516
– ident: bib27
  doi: 10.1056/NEJMra1300109
– ident: bib56
  doi: 10.1182/blood-2008-03-146720
– ident: bib16
  doi: 10.1016/S1097-2765(02)00599-3
– ident: bib13
  doi: 10.1038/nrd3800
– ident: bib15
  doi: 10.1038/356768a0
– ident: bib1
  doi: 10.1038/ni.1935
– ident: bib52
  doi: 10.1016/j.jcf.2010.09.004
– ident: bib31
  doi: 10.1016/S2213-2600(17)30215-1
– ident: bib55
  doi: 10.1210/jc.2013-3463
– ident: bib46
  doi: 10.1038/nm.3806
– ident: bib34
  doi: 10.1056/NEJMoa1409547
– ident: bib10
  doi: 10.1172/JCI66142
– ident: bib60
  doi: 10.1080/02713680490516710
– ident: bib5
  doi: 10.1038/nature11729
– ident: bib33
  doi: 10.1056/NEJMoa1709846
– ident: bib51
  doi: 10.1002/JLB.5HI1117-454RR
– ident: bib35
  doi: 10.1513/AnnalsATS.201802-149OC
– ident: bib59
  doi: 10.1167/iovs.04-0041
– ident: bib18
  doi: 10.1038/ni.1636
– ident: bib36
  doi: 10.1002/ppul.24129
– ident: bib57
  doi: 10.1152/ajplung.00123.2017
– ident: bib29
  doi: 10.1164/rccm.201902-0310UP
– ident: bib12
  doi: 10.1084/jem.178.6.2207
– ident: bib8
  doi: 10.4049/jimmunol.175.11.7594
– ident: bib2
  doi: 10.1038/nature08938
– ident: bib21
  doi: 10.1016/j.cmet.2006.02.002
– ident: bib17
  doi: 10.1126/scitranslmed.aah4066
– volume: 6
  start-page: 205
  year: 2000
  ident: bib53
  publication-title: J Endotoxin Res
– ident: bib30
  doi: 10.1056/NEJMoa1105185
– ident: bib23
  doi: 10.1016/j.cell.2011.03.054
– ident: bib25
  doi: 10.1016/j.jcf.2015.03.003
– ident: bib6
  doi: 10.1152/ajplung.00347.2013
– ident: bib11
  doi: 10.1371/journal.ppat.1004462
– ident: bib7
  doi: 10.1164/rccm.201609-1830OC
– ident: bib39
  doi: 10.1016/j.jcf.2018.06.001
– ident: bib43
  doi: 10.1164/ajrccm.150.2.8049828
– ident: bib44
  doi: 10.1126/scisignal.2000431
– ident: bib22
  doi: 10.1016/j.cmet.2014.12.005
– ident: bib61
  doi: 10.4049/jimmunol.1203094
– volume: 26
  start-page: 13S
  year: 1998
  ident: bib38
  publication-title: Eur Respir J Suppl
– ident: bib50
  doi: 10.4049/jimmunol.1201755
– volume: 199
  start-page: A6188
  volume-title: AJRCCM
  year: 2019
  ident: bib37
– ident: bib14
  doi: 10.1126/science.1373520
– ident: bib45
  doi: 10.1016/j.ccr.2004.11.022
– ident: bib20
  doi: 10.1038/nature11986
– ident: bib9
  doi: 10.1038/ncomms10791
– ident: bib48
  doi: 10.1038/s41589-019-0278-6
– ident: bib19
  doi: 10.4049/jimmunol.1001284
– ident: bib41
  doi: 10.1378/chest.12-2022
– ident: bib47
  doi: 10.1038/s41589-019-0277-7
– ident: bib58
  doi: 10.1152/ajplung.00461.2000
– reference: 31487198 - Am J Respir Crit Care Med. 2019 Dec 1;200(11):1335-1337
SSID ssj0012810
Score 2.5591412
Snippet Cystic fibrosis (CF) pulmonary disease is characterized by chronic infection with and sustained neutrophil-dominant inflammation. The lack of effective...
A study is presented that identifies altered immunometabolism in cystic fibrosis (CF) neutrophil and investigates the feasibility of specific inhibition of the...
Rationale: Cystic fibrosis (CF) pulmonary disease is characterized by chronic infection with Pseudomonas aeruginosa and sustained neutrophil-dominant...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1381
SubjectTerms Animals
Anti-Inflammatory Agents - therapeutic use
Biomarkers - analysis
Bronchoalveolar Lavage Fluid - chemistry
Cystic fibrosis
Cystic Fibrosis - drug therapy
Furans - therapeutic use
Gram-negative bacteria
Humans
Inflammasomes - drug effects
Inflammation
Interleukin-1beta - analysis
Lung diseases
Mice
Neutrophils - drug effects
NLR Family, Pyrin Domain-Containing 3 Protein - antagonists & inhibitors
Pseudomonas Infections - etiology
Pseudomonas Infections - therapy
Sulfonamides - therapeutic use
Title Specific Inhibition of the NLRP3 Inflammasome as an Antiinflammatory Strategy in Cystic Fibrosis
URI https://www.ncbi.nlm.nih.gov/pubmed/31454256
https://www.proquest.com/docview/2352356922
https://www.proquest.com/docview/2281865790
Volume 200
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIlW9IN4sFGQkblUgTmKHHMujVIhChVpp1UtIHKdE2k2qTfYAv4ifyYwfWbOlCLhEKyebSPN9tmc8L0KeqVQqpuo0yOqUB4mqoiCruAxUKSpVS1arQgfIfhSHp8n7GZ9NJj-8qKXVUD6X33-bV_I_qMIY4IpZsv-A7PhSGIDfgC9cAWG4_hXGunl83UiY5V-bsnHKn45b_PD5OIbxGhBfFH23UNhRBibzfjs0jR3WDnZbn9bk_33Dss17B2BDd33T-5rr6Nrxak0sPT-9zo9zfRN0PNmm2x6P_kBvN2fkn-YYELJ2Sp0V_bwz-WlnZXPeeg6LVwpDPwJg2Pl8DAFZNiOrj7Wc2-BIvoFtxgaggIVgD3rtkQbLvPAQ5ZZhjr3vQn-dNiVNR0Iyb9llsen7cnk_EAmAuJQSiw6A7oNVV1lsymV6BLlYaIbELOGwhm2U5jabvb11jVyPwCDBXhnvZmMwEbojQ5eSJZIXlz-4Q7bdK37VgK4wa7R6c3KT3LB2Cd03JLtFJqq9TbaPLIR3yBfHNbrmGu1qClyjmmvU5xotelq0dJNr1HGNNi01XKOOa3fJ6cHbk9eHge3OEcg4ZkOQgC4so7BOQAcCM0G9LMAyEKwI0yrheLJQygpGq4iXZYaKfcbQJZ5GFQbmSBHfI1tt16oHhIJQQJGE7aaM00RgXIIUShagWae8BvtiSpiTWC5t6XrsoDLPtQkrkhwFnhuB50bgU7I3_ufCFG7549O7DojcTqM-j8A4ibnIomhKno63YflFnxpMl24Fz2A1NcHTLJyS-wbA8XMO8IdX3nlEdtb83yVbw3KlHoOSO5RPNL9-AnV-pnQ
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Specific+Inhibition+of+the+NLRP3+Inflammasome+as+an+Antiinflammatory+Strategy+in+Cystic+Fibrosis&rft.jtitle=American+journal+of+respiratory+and+critical+care+medicine&rft.au=McElvaney%2C+Oliver+J&rft.au=Zaslona%2C+Zbigniew&rft.au=Becker-Flegler%2C+Katrin&rft.au=Palsson-McDermott%2C+Eva+M&rft.date=2019-12-01&rft.eissn=1535-4970&rft.volume=200&rft.issue=11&rft.spage=1381&rft_id=info:doi/10.1164%2Frccm.201905-1013OC&rft_id=info%3Apmid%2F31454256&rft.externalDocID=31454256
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1073-449X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1073-449X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1073-449X&client=summon