Experimental absorption solubility and rate of hydrofluoroolefin refrigerant in ionic liquids for absorption chiller cycles

•Equilibrium solubility of HFO-1234yf in [BMIM][Tf2N] were measured and calculated using NRTL model.•The absorption cycle was evaluated a Dühring diagram and could operate with a heat source of under 80°C.•Absorption rate increased following the equilibrium solubility.•Outlet absorption solubility w...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering research & design Vol. 171; pp. 340 - 348
Main Authors Esaki, Takehiro, Kobayashi, Noriyuki
Format Journal Article
LanguageEnglish
Published Rugby Elsevier B.V 01.07.2021
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Equilibrium solubility of HFO-1234yf in [BMIM][Tf2N] were measured and calculated using NRTL model.•The absorption cycle was evaluated a Dühring diagram and could operate with a heat source of under 80°C.•Absorption rate increased following the equilibrium solubility.•Outlet absorption solubility was 25–33% of the equilibrium solubility.•It will be necessary to investigate heat exchanger tubes to improve absorption performance. An absorption chiller cycle using HFO-1234yf (2,3,3,3-tetrafluoropropene) as an environmentally friendly refrigerant could allow for the efficient utilization of waste heat. In this study, we tested ionic liquids as absorbents for HFO-1234yf, and measured their experimental absorption equilibrium solubilities using a volumetric method. At 50°C, the solubility of HFO-1234yf in ionic liquids increased in the order: [BMIM][Tf2N]>[BMIM][BF4]>[EMIM][PF6]. We calculated the experimental solubility of the [BMIM][Tf2N] system using the non-random two-liquid (NRTL) model and evaluated its Dühring diagram. This confirmed that the absorption chiller cycle allowed heat exchange at 0°C with a generation temperature of 80°C. The absorption rate was measured via a volumetric method, and increased following the absorption equilibrium solubility when the experimental temperature and pressure conditions were changed. The absorption solubility obtained at the absorber outlet was equivalent to 25–33% of the absorption equilibrium solubility in the lab-scale falling-film absorber. To improve the absorption performance, it will be necessary to investigate heat exchanger tubes with higher wettabilities to reduce the thickness of the absorbent flowing on the heat exchanger surface.
AbstractList •Equilibrium solubility of HFO-1234yf in [BMIM][Tf2N] were measured and calculated using NRTL model.•The absorption cycle was evaluated a Dühring diagram and could operate with a heat source of under 80°C.•Absorption rate increased following the equilibrium solubility.•Outlet absorption solubility was 25–33% of the equilibrium solubility.•It will be necessary to investigate heat exchanger tubes to improve absorption performance. An absorption chiller cycle using HFO-1234yf (2,3,3,3-tetrafluoropropene) as an environmentally friendly refrigerant could allow for the efficient utilization of waste heat. In this study, we tested ionic liquids as absorbents for HFO-1234yf, and measured their experimental absorption equilibrium solubilities using a volumetric method. At 50°C, the solubility of HFO-1234yf in ionic liquids increased in the order: [BMIM][Tf2N]>[BMIM][BF4]>[EMIM][PF6]. We calculated the experimental solubility of the [BMIM][Tf2N] system using the non-random two-liquid (NRTL) model and evaluated its Dühring diagram. This confirmed that the absorption chiller cycle allowed heat exchange at 0°C with a generation temperature of 80°C. The absorption rate was measured via a volumetric method, and increased following the absorption equilibrium solubility when the experimental temperature and pressure conditions were changed. The absorption solubility obtained at the absorber outlet was equivalent to 25–33% of the absorption equilibrium solubility in the lab-scale falling-film absorber. To improve the absorption performance, it will be necessary to investigate heat exchanger tubes with higher wettabilities to reduce the thickness of the absorbent flowing on the heat exchanger surface.
An absorption chiller cycle using HFO-1234yf (2,3,3,3-tetrafluoropropene) as an environmentally friendly refrigerant could allow for the efficient utilization of waste heat. In this study, we tested ionic liquids as absorbents for HFO-1234yf, and measured their experimental absorption equilibrium solubilities using a volumetric method. At 50 °C, the solubility of HFO-1234yf in ionic liquids increased in the order: [BMIM][Tf2N] > [BMIM][BF4] > [EMIM][PF6]. We calculated the experimental solubility of the [BMIM][Tf2N] system using the non-random two-liquid (NRTL) model and evaluated its Dühring diagram. This confirmed that the absorption chiller cycle allowed heat exchange at 0 °C with a generation temperature of 80 °C. The absorption rate was measured via a volumetric method, and increased following the absorption equilibrium solubility when the experimental temperature and pressure conditions were changed. The absorption solubility obtained at the absorber outlet was equivalent to 25–33% of the absorption equilibrium solubility in the lab-scale falling-film absorber. To improve the absorption performance, it will be necessary to investigate heat exchanger tubes with higher wettabilities to reduce the thickness of the absorbent flowing on the heat exchanger surface.
Author Esaki, Takehiro
Kobayashi, Noriyuki
Author_xml – sequence: 1
  givenname: Takehiro
  surname: Esaki
  fullname: Esaki, Takehiro
  email: tesaki@fukuoka-u.ac.jp
  organization: Department of Chemical Engineering, Faculty of Engineering, Fukuoka University, 19-1, Nanakuma 8-chome, Jonan-ku, Fukuoka, 814-6631, Japan
– sequence: 2
  givenname: Noriyuki
  surname: Kobayashi
  fullname: Kobayashi, Noriyuki
  organization: Applied Chemistry, Chemical Engineering and Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
BookMark eNp9kD9rHDEQxUVwIGcnnyCNwPVu9Gcl7RUugrGdgMGNXQuddpTToUjn0a7x4S8fXS5FKlfDMO-94f3OyVkuGQj5ylnPGdffdr3fAk69YIL3TPVMDB_Iipth6KTS8oysmNCyG40Wn8h5rTvGWLuOK_J287oHjL8hzy5Rt6kF93MsmdaSlk1McT5QlyeKbgZaAt0eJiwhLQVLSRBipggB4y9Al2fa1uaNnqb4vMSp0lDw_1C_jSkBUn_wCepn8jG4VOHLv3lBnm5vHq9_dPcPdz-vv993Xko-d4OQo1bSq0kYF8TaSONE0GujNd9449bAAh-UkG5wyhnjTDDjaMLEpAxrZuQFuTzl7rE8L1BnuysL5vbSCqUHZeQ4HFXypPJYam2t7L5xcXiwnNkjZbuzfynbI2XLlG2Um-vq5IJW4CUC2uojZA9TRPCznUp81_8HBHuK5A
CitedBy_id crossref_primary_10_1021_acs_iecr_2c00937
crossref_primary_10_1021_acs_chemrev_3c00276
crossref_primary_10_1016_j_energy_2023_127005
crossref_primary_10_1016_j_fluid_2023_114022
crossref_primary_10_1016_j_cherd_2021_10_039
crossref_primary_10_1016_j_cherd_2023_08_020
Cites_doi 10.1016/j.fluid.2006.01.026
10.1016/j.energy.2017.12.141
10.1021/ie400261g
10.1016/j.energy.2018.11.093
10.1016/j.rser.2012.11.049
10.1016/j.fluid.2017.07.013
10.1016/j.ijrefrig.2019.04.024
10.1016/j.ijrefrig.2018.03.003
10.1016/j.energy.2015.08.046
10.1016/j.enconman.2005.04.013
10.1016/j.energy.2014.07.086
10.1016/j.apenergy.2017.07.074
10.1016/j.jclepro.2018.05.270
10.1016/j.enconman.2019.112420
10.1016/j.ijrefrig.2019.10.005
10.1016/j.cherd.2019.02.009
10.1016/j.enconman.2018.12.030
10.1002/aic.10685
10.1021/i160057a011
10.1016/j.energy.2017.10.002
10.1016/j.energy.2012.04.048
10.1021/ie060192s
ContentType Journal Article
Copyright 2021 Institution of Chemical Engineers
Copyright Elsevier Science Ltd. Jul 2021
Copyright_xml – notice: 2021 Institution of Chemical Engineers
– notice: Copyright Elsevier Science Ltd. Jul 2021
DBID AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1016/j.cherd.2021.05.024
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1744-3563
EndPage 348
ExternalDocumentID 10_1016_j_cherd_2021_05_024
S0263876221002276
GroupedDBID --K
--M
-QF
-~X
.~1
0R~
1B1
1~.
1~5
29B
3EH
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDBF
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHPOS
AI.
AIAGR
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO9
EP2
EP3
ESX
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
I-F
IHE
J1W
JARJE
KOM
M41
ML-
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SJN
SPC
SPCBC
SSG
SSR
SSZ
T5K
T9H
TUS
UNMZH
VH1
XFK
~02
~8M
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7SR
8FD
JG9
ID FETCH-LOGICAL-c331t-4238653c5d27af29737a2f697661bc7a9e0f14523a4a5a77a7f7887fd033f9073
IEDL.DBID AIKHN
ISSN 0263-8762
IngestDate Thu Oct 10 16:57:25 EDT 2024
Thu Sep 26 17:01:59 EDT 2024
Fri Feb 23 02:44:07 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords HFO-1234yf
Absorption chiller cycle
Absorption rate
Absorption solubility
Ionic liquid
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-4238653c5d27af29737a2f697661bc7a9e0f14523a4a5a77a7f7887fd033f9073
PQID 2564573847
PQPubID 2047566
PageCount 9
ParticipantIDs proquest_journals_2564573847
crossref_primary_10_1016_j_cherd_2021_05_024
elsevier_sciencedirect_doi_10_1016_j_cherd_2021_05_024
PublicationCentury 2000
PublicationDate July 2021
2021-07-00
20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationPlace Rugby
PublicationPlace_xml – name: Rugby
PublicationTitle Chemical engineering research & design
PublicationYear 2021
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Wang, Ferreira (bib0110) 2017; 204
Shiflett, Yokozeki (bib0075) 2006; 45
Wang (bib0105) 2013; 19
Wu, You, Li (bib0125) 2019; 104
Peng, Robinson (bib0065) 1976; 15
Shiflett, Yokozeki (bib0080) 2006; 52
Agrawal, Cornelio, Limperich (bib0005) 2012
Jianbo, Kai, Xiaolong, Chen, Fulin, Xiangqiang (bib0030) 2020; 205
Sun, Zhang, Wang, Prausnitz, Jin (bib0095) 2017; 450
Esaki, Kobayashi, Uchiyama, Matsukuma (bib0020) 2019; 7
Sun, Di, Wang, Wang, He (bib0100) 2020; 109
Kim, Kim, Joshi, Fedorov, Kohl (bib0045) 2012; 44
Wu, Wang, You, Wang, Shi, Li (bib0120) 2018; 195
Liu, Ye, Bai, He (bib0060) 2019; 181
Jung, Song, Kang (bib0040) 2018; 145
Jianbo, Shiming, Xiangqiang, Kai, Fulin (bib0025) 2019; 168
Lemmon, Huber, McLinden (bib0055) 2019
Shiflett, Harmer, Junk, Yokozeki (bib0085) 2006; 242
Sujatha, Venkatarathnam (bib0090) 2017; 141
Kim, Patel, Kohl (bib0050) 2013; 52
Wongwises, Kamboon, Orachon (bib0115) 2006; 47
Chen, Han, Jin (bib0010) 2015; 91
Daniel, Mohammad, Miranda, Aichele (bib0015) 2019; 144
Jung, An, Kang (bib0035) 2017; 75
Schweigler, Helm, Eckert (bib0070) 2019; 105
Sujatha (10.1016/j.cherd.2021.05.024_bib0090) 2017; 141
Shiflett (10.1016/j.cherd.2021.05.024_bib0080) 2006; 52
Sun (10.1016/j.cherd.2021.05.024_bib0100) 2020; 109
Jianbo (10.1016/j.cherd.2021.05.024_bib0025) 2019; 168
Schweigler (10.1016/j.cherd.2021.05.024_bib0070) 2019; 105
Agrawal (10.1016/j.cherd.2021.05.024_bib0005) 2012
Wang (10.1016/j.cherd.2021.05.024_bib0110) 2017; 204
Jung (10.1016/j.cherd.2021.05.024_bib0040) 2018; 145
Wu (10.1016/j.cherd.2021.05.024_bib0125) 2019; 104
Wongwises (10.1016/j.cherd.2021.05.024_bib0115) 2006; 47
Jianbo (10.1016/j.cherd.2021.05.024_bib0030) 2020; 205
Shiflett (10.1016/j.cherd.2021.05.024_bib0085) 2006; 242
Sun (10.1016/j.cherd.2021.05.024_bib0095) 2017; 450
Wang (10.1016/j.cherd.2021.05.024_bib0105) 2013; 19
Wu (10.1016/j.cherd.2021.05.024_bib0120) 2018; 195
Esaki (10.1016/j.cherd.2021.05.024_bib0020) 2019; 7
Liu (10.1016/j.cherd.2021.05.024_bib0060) 2019; 181
Daniel (10.1016/j.cherd.2021.05.024_bib0015) 2019; 144
Shiflett (10.1016/j.cherd.2021.05.024_bib0075) 2006; 45
Jung (10.1016/j.cherd.2021.05.024_bib0035) 2017; 75
Chen (10.1016/j.cherd.2021.05.024_bib0010) 2015; 91
Kim (10.1016/j.cherd.2021.05.024_bib0045) 2012; 44
Kim (10.1016/j.cherd.2021.05.024_bib0050) 2013; 52
Peng (10.1016/j.cherd.2021.05.024_bib0065) 1976; 15
Lemmon (10.1016/j.cherd.2021.05.024_bib0055) 2019
References_xml – volume: 75
  start-page: 371
  year: 2017
  end-page: 378
  ident: bib0035
  article-title: Thermal performance estimation of ammonia-water plate bubble absorbers for compression/absorption hybrid heat pump application
  publication-title: Energy
  contributor:
    fullname: Kang
– volume: 104
  start-page: 19
  year: 2019
  end-page: 33
  ident: bib0125
  article-title: Performance comparisons of NH3/ionic liquid absorption–compression heat pump for increasing the utilization of geothermal energy
  publication-title: Int. J. Refrig.
  contributor:
    fullname: Li
– volume: 105
  start-page: 178
  year: 2019
  end-page: 187
  ident: bib0070
  article-title: Flexible heat pump or chiller with hybrid water/LiBr absorption/compression cycle
  publication-title: Int. J. Refrig.
  contributor:
    fullname: Eckert
– start-page: 1
  year: 2012
  end-page: 10
  ident: bib0005
  article-title: Investigation of cubic EOS models for HFO-1234yf refrigerant used in automotive application
  publication-title: International Refrigeration and Air Conditioning Conference at Purdue, 2253
  contributor:
    fullname: Limperich
– volume: 144
  start-page: 209
  year: 2019
  end-page: 215
  ident: bib0015
  article-title: Absorption and desorption mass transfer rates as a function of pressure and mixing in a simple hydrocarbon system
  publication-title: Chem. Eng. Res. Des.
  contributor:
    fullname: Aichele
– year: 2019
  ident: bib0055
  article-title: NIST Standard Reference Database 23, Reference Fluid Thermodynamic and Transport Properties (REFPROP). Version 9.1 [software]
  contributor:
    fullname: McLinden
– volume: 109
  start-page: 135
  year: 2020
  end-page: 142
  ident: bib0100
  article-title: Phase behavior of R1234yf and R600a in pentaerythritol tetranonanoate
  publication-title: Int. J. Refrig.
  contributor:
    fullname: He
– volume: 91
  start-page: 215
  year: 2015
  end-page: 225
  ident: bib0010
  article-title: An absorption–compression refrigeration system driven by a mid-temperature heat source for low-temperature applications
  publication-title: Energy
  contributor:
    fullname: Jin
– volume: 52
  start-page: 1205
  year: 2006
  end-page: 1219
  ident: bib0080
  article-title: Solubility and diffusivity of hydrofluorocarbons in room-temperature ionic liquids
  publication-title: AiChE J.
  contributor:
    fullname: Yokozeki
– volume: 7
  start-page: 65
  year: 2019
  end-page: 78
  ident: bib0020
  article-title: Characteristics of absorption equilibrium with HFC-134a and an ionic liquid pair
  publication-title: J. Mat. Sci. Chem. Eng.
  contributor:
    fullname: Matsukuma
– volume: 205
  year: 2020
  ident: bib0030
  article-title: A novel absorption–compression combined refrigeration cycle activated by engine waste heat
  publication-title: Energy Convers. Manage.
  contributor:
    fullname: Xiangqiang
– volume: 141
  start-page: 924
  year: 2017
  end-page: 936
  ident: bib0090
  article-title: Performance of a vapour absorption heat transformer operating with ionic liquids and ammonia
  publication-title: Energy
  contributor:
    fullname: Venkatarathnam
– volume: 145
  start-page: 458
  year: 2018
  end-page: 467
  ident: bib0040
  article-title: Study on ammonia/water hybrid absorption/compression heat pump cycle to produce high temperature process water
  publication-title: Energy
  contributor:
    fullname: Kang
– volume: 181
  start-page: 319
  year: 2019
  end-page: 330
  ident: bib0060
  article-title: Performance comparison of two absorption-compression hybrid refrigeration systems using R1234yf/ionic liquid as working pair
  publication-title: Energy Convers. Manage.
  contributor:
    fullname: He
– volume: 19
  start-page: 444
  year: 2013
  end-page: 453
  ident: bib0105
  article-title: An overview for the heat transfer performance of HFO-1234yf
  publication-title: Renew. Sustain. Energy Rev.
  contributor:
    fullname: Wang
– volume: 52
  start-page: 6329
  year: 2013
  end-page: 6335
  ident: bib0050
  article-title: Performance simulation of ionic liquid and hydrofluorocarbon working fluids for an absorption refrigeration system
  publication-title: Ind. Eng. Chem. Res.
  contributor:
    fullname: Kohl
– volume: 204
  start-page: 819
  year: 2017
  end-page: 830
  ident: bib0110
  article-title: Absorption heat pump cycles with NH3–ionic liquid working pairs
  publication-title: Appl. Energy
  contributor:
    fullname: Ferreira
– volume: 44
  start-page: 1005
  year: 2012
  end-page: 1016
  ident: bib0045
  article-title: Thermodynamic analysis of an absorption refrigeration system with ionic-liquid/refrigerant mixture as a working fluid
  publication-title: Energy
  contributor:
    fullname: Kohl
– volume: 15
  start-page: 59
  year: 1976
  end-page: 64
  ident: bib0065
  article-title: A new two-constant equation of state
  publication-title: Ind. Eng. Chem. Fundam.
  contributor:
    fullname: Robinson
– volume: 195
  start-page: 890
  year: 2018
  end-page: 907
  ident: bib0120
  article-title: Compression-assisted absorption cycles using ammonia and various ionic liquids for cleaner heating
  publication-title: J. Clean. Prod.
  contributor:
    fullname: Li
– volume: 168
  start-page: 1237
  year: 2019
  end-page: 1245
  ident: bib0025
  article-title: Experimental study on absorption/compression hybrid refrigeration cycle
  publication-title: Energy
  contributor:
    fullname: Fulin
– volume: 450
  start-page: 65
  year: 2017
  end-page: 74
  ident: bib0095
  article-title: Gaseous absorption of 2,3,3,3-tetrafluoroprop-1-ene in three imidazolium-based ionic liquids
  publication-title: Fluid Phase Equilib.
  contributor:
    fullname: Jin
– volume: 47
  start-page: 1644
  year: 2006
  end-page: 1659
  ident: bib0115
  article-title: Experimental investigation of hydrocarbon mixtures to replace HFC-134a in an automotive air conditioning system
  publication-title: Energy Convers. Manage.
  contributor:
    fullname: Orachon
– volume: 45
  start-page: 6375
  year: 2006
  end-page: 6382
  ident: bib0075
  article-title: Gaseous absorption of fluoromethane, fluoroethane, and 1,1,2,2-tetrafluoroethane in 1-butyl-3-methylimidazolium hexafluorophosphate
  publication-title: Ind. Eng. Chem. Res.
  contributor:
    fullname: Yokozeki
– volume: 242
  start-page: 220
  year: 2006
  end-page: 232
  ident: bib0085
  article-title: Solubility and diffusivity of 1,1,1,2-tetrafluoroethane in room-temperature ionic liquids
  publication-title: Fluid Phase Equilib.
  contributor:
    fullname: Yokozeki
– volume: 242
  start-page: 220
  year: 2006
  ident: 10.1016/j.cherd.2021.05.024_bib0085
  article-title: Solubility and diffusivity of 1,1,1,2-tetrafluoroethane in room-temperature ionic liquids
  publication-title: Fluid Phase Equilib.
  doi: 10.1016/j.fluid.2006.01.026
  contributor:
    fullname: Shiflett
– volume: 145
  start-page: 458
  year: 2018
  ident: 10.1016/j.cherd.2021.05.024_bib0040
  article-title: Study on ammonia/water hybrid absorption/compression heat pump cycle to produce high temperature process water
  publication-title: Energy
  doi: 10.1016/j.energy.2017.12.141
  contributor:
    fullname: Jung
– volume: 52
  start-page: 6329
  year: 2013
  ident: 10.1016/j.cherd.2021.05.024_bib0050
  article-title: Performance simulation of ionic liquid and hydrofluorocarbon working fluids for an absorption refrigeration system
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie400261g
  contributor:
    fullname: Kim
– volume: 168
  start-page: 1237
  year: 2019
  ident: 10.1016/j.cherd.2021.05.024_bib0025
  article-title: Experimental study on absorption/compression hybrid refrigeration cycle
  publication-title: Energy
  doi: 10.1016/j.energy.2018.11.093
  contributor:
    fullname: Jianbo
– volume: 19
  start-page: 444
  year: 2013
  ident: 10.1016/j.cherd.2021.05.024_bib0105
  article-title: An overview for the heat transfer performance of HFO-1234yf
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2012.11.049
  contributor:
    fullname: Wang
– volume: 450
  start-page: 65
  year: 2017
  ident: 10.1016/j.cherd.2021.05.024_bib0095
  article-title: Gaseous absorption of 2,3,3,3-tetrafluoroprop-1-ene in three imidazolium-based ionic liquids
  publication-title: Fluid Phase Equilib.
  doi: 10.1016/j.fluid.2017.07.013
  contributor:
    fullname: Sun
– start-page: 1
  year: 2012
  ident: 10.1016/j.cherd.2021.05.024_bib0005
  article-title: Investigation of cubic EOS models for HFO-1234yf refrigerant used in automotive application
  publication-title: International Refrigeration and Air Conditioning Conference at Purdue, 2253
  contributor:
    fullname: Agrawal
– volume: 104
  start-page: 19
  year: 2019
  ident: 10.1016/j.cherd.2021.05.024_bib0125
  article-title: Performance comparisons of NH3/ionic liquid absorption–compression heat pump for increasing the utilization of geothermal energy
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2019.04.024
  contributor:
    fullname: Wu
– volume: 105
  start-page: 178
  year: 2019
  ident: 10.1016/j.cherd.2021.05.024_bib0070
  article-title: Flexible heat pump or chiller with hybrid water/LiBr absorption/compression cycle
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2018.03.003
  contributor:
    fullname: Schweigler
– volume: 91
  start-page: 215
  year: 2015
  ident: 10.1016/j.cherd.2021.05.024_bib0010
  article-title: An absorption–compression refrigeration system driven by a mid-temperature heat source for low-temperature applications
  publication-title: Energy
  doi: 10.1016/j.energy.2015.08.046
  contributor:
    fullname: Chen
– volume: 47
  start-page: 1644
  year: 2006
  ident: 10.1016/j.cherd.2021.05.024_bib0115
  article-title: Experimental investigation of hydrocarbon mixtures to replace HFC-134a in an automotive air conditioning system
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2005.04.013
  contributor:
    fullname: Wongwises
– volume: 75
  start-page: 371
  year: 2017
  ident: 10.1016/j.cherd.2021.05.024_bib0035
  article-title: Thermal performance estimation of ammonia-water plate bubble absorbers for compression/absorption hybrid heat pump application
  publication-title: Energy
  doi: 10.1016/j.energy.2014.07.086
  contributor:
    fullname: Jung
– year: 2019
  ident: 10.1016/j.cherd.2021.05.024_bib0055
  contributor:
    fullname: Lemmon
– volume: 204
  start-page: 819
  year: 2017
  ident: 10.1016/j.cherd.2021.05.024_bib0110
  article-title: Absorption heat pump cycles with NH3–ionic liquid working pairs
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.07.074
  contributor:
    fullname: Wang
– volume: 195
  start-page: 890
  year: 2018
  ident: 10.1016/j.cherd.2021.05.024_bib0120
  article-title: Compression-assisted absorption cycles using ammonia and various ionic liquids for cleaner heating
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.05.270
  contributor:
    fullname: Wu
– volume: 7
  start-page: 65
  issue: 3
  year: 2019
  ident: 10.1016/j.cherd.2021.05.024_bib0020
  article-title: Characteristics of absorption equilibrium with HFC-134a and an ionic liquid pair
  publication-title: J. Mat. Sci. Chem. Eng.
  contributor:
    fullname: Esaki
– volume: 205
  year: 2020
  ident: 10.1016/j.cherd.2021.05.024_bib0030
  article-title: A novel absorption–compression combined refrigeration cycle activated by engine waste heat
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2019.112420
  contributor:
    fullname: Jianbo
– volume: 109
  start-page: 135
  year: 2020
  ident: 10.1016/j.cherd.2021.05.024_bib0100
  article-title: Phase behavior of R1234yf and R600a in pentaerythritol tetranonanoate
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2019.10.005
  contributor:
    fullname: Sun
– volume: 144
  start-page: 209
  year: 2019
  ident: 10.1016/j.cherd.2021.05.024_bib0015
  article-title: Absorption and desorption mass transfer rates as a function of pressure and mixing in a simple hydrocarbon system
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2019.02.009
  contributor:
    fullname: Daniel
– volume: 181
  start-page: 319
  year: 2019
  ident: 10.1016/j.cherd.2021.05.024_bib0060
  article-title: Performance comparison of two absorption-compression hybrid refrigeration systems using R1234yf/ionic liquid as working pair
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2018.12.030
  contributor:
    fullname: Liu
– volume: 52
  start-page: 1205
  issue: 3
  year: 2006
  ident: 10.1016/j.cherd.2021.05.024_bib0080
  article-title: Solubility and diffusivity of hydrofluorocarbons in room-temperature ionic liquids
  publication-title: AiChE J.
  doi: 10.1002/aic.10685
  contributor:
    fullname: Shiflett
– volume: 15
  start-page: 59
  issue: 1
  year: 1976
  ident: 10.1016/j.cherd.2021.05.024_bib0065
  article-title: A new two-constant equation of state
  publication-title: Ind. Eng. Chem. Fundam.
  doi: 10.1021/i160057a011
  contributor:
    fullname: Peng
– volume: 141
  start-page: 924
  year: 2017
  ident: 10.1016/j.cherd.2021.05.024_bib0090
  article-title: Performance of a vapour absorption heat transformer operating with ionic liquids and ammonia
  publication-title: Energy
  doi: 10.1016/j.energy.2017.10.002
  contributor:
    fullname: Sujatha
– volume: 44
  start-page: 1005
  year: 2012
  ident: 10.1016/j.cherd.2021.05.024_bib0045
  article-title: Thermodynamic analysis of an absorption refrigeration system with ionic-liquid/refrigerant mixture as a working fluid
  publication-title: Energy
  doi: 10.1016/j.energy.2012.04.048
  contributor:
    fullname: Kim
– volume: 45
  start-page: 6375
  year: 2006
  ident: 10.1016/j.cherd.2021.05.024_bib0075
  article-title: Gaseous absorption of fluoromethane, fluoroethane, and 1,1,2,2-tetrafluoroethane in 1-butyl-3-methylimidazolium hexafluorophosphate
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie060192s
  contributor:
    fullname: Shiflett
SSID ssj0001748
Score 2.3866894
Snippet •Equilibrium solubility of HFO-1234yf in [BMIM][Tf2N] were measured and calculated using NRTL model.•The absorption cycle was evaluated a Dühring diagram and...
An absorption chiller cycle using HFO-1234yf (2,3,3,3-tetrafluoropropene) as an environmentally friendly refrigerant could allow for the efficient utilization...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 340
SubjectTerms Absorbers
Absorption
Absorption chiller cycle
Absorption rate
Absorption solubility
Adsorption
Heat exchange
Heat exchanger tubes
Heat exchangers
Heat transfer
HFO-1234yf
Ionic liquid
Ionic liquids
Refrigerants
Refrigeration
Solubility
Temperature
Waste heat recovery
Waste utilization
Title Experimental absorption solubility and rate of hydrofluoroolefin refrigerant in ionic liquids for absorption chiller cycles
URI https://dx.doi.org/10.1016/j.cherd.2021.05.024
https://www.proquest.com/docview/2564573847
Volume 171
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB4S-5IeSpuk5Gn20GMVW_uSfAzGwU1KCE0CuS0rrYaqGDnx42AK-e2dXUnBKSSH6rYCLcvM7Dcz4ttvAb4qJ3RG0RsNcJhEElMVpZlWUZ5ah5jyoXaB5XutJ_fy8kE9bMGoPQvjaZUN9teYHtC6edNvrNl_LMv-LXUPwu9lHgcdPL0NXUpHUnage_79anL9AshUdKf1rxYRNn8rPhRoXt40XjGUx0HBk8u3EtQ_UB3yz8Un-NgUjuy8Xttn2CqqXfiwISe4B3_GG3L9zGaL2TwAAvPxFUiwa2Yrx7w6BJsh-7V2hMLT1Yyq52mBZcVoNdStF5S_loyG_l9tzqbl06p0C0bl7eak_hj4tJizfO2JdftwfzG-G02i5nKFKBciXkZURqVaiVw5nlj0N1gllqOm6kTHWZ7YYTHAWFKbaqVVNklsgp54iG4gBFJHLb5Ap5pVxQEw5ejJOXq6osQhUgcYe9EKzdFJzO0hfGstah5rDQ3Tkst-m-AA4x1gBsqQAw5Bt1Y3r0LBEMq__-FJ6yPT7MSF4V4uJxGUhI_-d95j2PGjmqR7Ap3lfFWcUimyzHqwffYc9yjgRj9_3PSawPsL843hbw
link.rule.ids 315,786,790,4521,24144,27955,27956,45618,45712
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB5BOQCH1fISr931gSNRGzu20yNCoPLqBZC4WU6cEUFVCn0cKv48YydZlZXYA7klUaxoZvzNjPX5M8CJdEJlFL1RD_s6SjCVUZopGeWpdYgp7ysXWL5DNXhMrp_k0wqct3thPK2ywf4a0wNaN0-6jTW7r2XZvafuQfi5zOOgg6dWYS2ROuYdWDu7uhkM_wIyFd1pvdQiwuRvxYcCzcubxiuG8jgoePLkqwT1D1SH_HP5E340hSM7q_9tC1aKahs2l-QEd-D9Ykmun9lsOp4EQGA-vgIJdsFs5ZhXh2BjZM8LRyg8mo-peh4VWFaM_oa69YLy14zRrV-rzdmofJuXbsqovF0e1G8DHxUTli88sW4XHi8vHs4HUXO4QpQLEc8iKqNSJUUuHdcW_QlW2nJUVJ2oOMu17Rc9jBNqU21ipdXaavTEQ3Q9IZA6arEHnWpcFfvApKMr5-jpign2kTrA2ItWKI4uwdwewGlrUfNaa2iYllz2YoIDjHeA6UlDDjgA1VrdfAoFQyj__w-PWx-ZZiZODfdyOVpQEj787rh_YH3wcHdrbq-GN0ew4d_UhN1j6Mwm8-IXlSWz7HcTdh9RYOHK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+absorption+solubility+and+rate+of+hydrofluoroolefin+refrigerant+in+ionic+liquids+for+absorption+chiller+cycles&rft.jtitle=Chemical+engineering+research+%26+design&rft.au=Esaki%2C+Takehiro&rft.au=Kobayashi%2C+Noriyuki&rft.date=2021-07-01&rft.issn=0263-8762&rft.volume=171&rft.spage=340&rft.epage=348&rft_id=info:doi/10.1016%2Fj.cherd.2021.05.024&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cherd_2021_05_024
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8762&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8762&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8762&client=summon