Risk estimation and boundary detection in Bayesian disease mapping

Bayesian hierarchical models with a spatially smooth conditional autoregressive prior distribution are commonly used to estimate the spatio-temporal pattern in disease risk from areal unit data. However, most of the modeling approaches do not take possible boundaries of step changes in disease risk...

Full description

Saved in:
Bibliographic Details
Published inThe international journal of biostatistics Vol. 21; no. 1; pp. 129 - 150
Main Authors Yin, Xueqing, Anderson, Craig, Lee, Duncan, Napier, Gary
Format Journal Article
LanguageEnglish
Published Germany De Gruyter 26.06.2025
Walter de Gruyter GmbH
Subjects
Online AccessGet full text
ISSN1557-4679
2194-573X
1557-4679
DOI10.1515/ijb-2023-0138

Cover

Loading…
Abstract Bayesian hierarchical models with a spatially smooth conditional autoregressive prior distribution are commonly used to estimate the spatio-temporal pattern in disease risk from areal unit data. However, most of the modeling approaches do not take possible boundaries of step changes in disease risk between geographically neighbouring areas into consideration, which may lead to oversmoothing of the risk surfaces, prevent the detection of high-risk areas and yield biased estimation of disease risk. In this paper, we propose a two-stage method to jointly estimate the disease risk in small areas over time and detect the locations of boundaries that separate pairs of neighbouring areas exhibiting vastly different risks. In the first stage, we use a graph-based optimisation algorithm to construct a set of candidate neighbourhood matrices that represent a range of possible boundary structures for the disease data. In the second stage, a Bayesian hierarchical spatio-temporal model that takes the boundaries into account is fitted to the data. The performance of the methodology is evidenced by simulation, before being applied to a study of respiratory disease risk in Greater Glasgow, Scotland.
AbstractList Bayesian hierarchical models with a spatially smooth conditional autoregressive prior distribution are commonly used to estimate the spatio-temporal pattern in disease risk from areal unit data. However, most of the modeling approaches do not take possible boundaries of step changes in disease risk between geographically neighbouring areas into consideration, which may lead to oversmoothing of the risk surfaces, prevent the detection of high-risk areas and yield biased estimation of disease risk. In this paper, we propose a two-stage method to jointly estimate the disease risk in small areas over time and detect the locations of boundaries that separate pairs of neighbouring areas exhibiting vastly different risks. In the first stage, we use a graph-based optimisation algorithm to construct a set of candidate neighbourhood matrices that represent a range of possible boundary structures for the disease data. In the second stage, a Bayesian hierarchical spatio-temporal model that takes the boundaries into account is fitted to the data. The performance of the methodology is evidenced by simulation, before being applied to a study of respiratory disease risk in Greater Glasgow, Scotland.Bayesian hierarchical models with a spatially smooth conditional autoregressive prior distribution are commonly used to estimate the spatio-temporal pattern in disease risk from areal unit data. However, most of the modeling approaches do not take possible boundaries of step changes in disease risk between geographically neighbouring areas into consideration, which may lead to oversmoothing of the risk surfaces, prevent the detection of high-risk areas and yield biased estimation of disease risk. In this paper, we propose a two-stage method to jointly estimate the disease risk in small areas over time and detect the locations of boundaries that separate pairs of neighbouring areas exhibiting vastly different risks. In the first stage, we use a graph-based optimisation algorithm to construct a set of candidate neighbourhood matrices that represent a range of possible boundary structures for the disease data. In the second stage, a Bayesian hierarchical spatio-temporal model that takes the boundaries into account is fitted to the data. The performance of the methodology is evidenced by simulation, before being applied to a study of respiratory disease risk in Greater Glasgow, Scotland.
Bayesian hierarchical models with a spatially smooth conditional autoregressive prior distribution are commonly used to estimate the spatio-temporal pattern in disease risk from areal unit data. However, most of the modeling approaches do not take possible boundaries of step changes in disease risk between geographically neighbouring areas into consideration, which may lead to oversmoothing of the risk surfaces, prevent the detection of high-risk areas and yield biased estimation of disease risk. In this paper, we propose a two-stage method to jointly estimate the disease risk in small areas over time and detect the locations of boundaries that separate pairs of neighbouring areas exhibiting vastly different risks. In the first stage, we use a graph-based optimisation algorithm to construct a set of candidate neighbourhood matrices that represent a range of possible boundary structures for the disease data. In the second stage, a Bayesian hierarchical spatio-temporal model that takes the boundaries into account is fitted to the data. The performance of the methodology is evidenced by simulation, before being applied to a study of respiratory disease risk in Greater Glasgow, Scotland.
Author Yin, Xueqing
Anderson, Craig
Lee, Duncan
Napier, Gary
Author_xml – sequence: 1
  givenname: Xueqing
  surname: Yin
  fullname: Yin, Xueqing
  email: yinxueqing@lnu.edu.cn
  organization: School of Mathematics and Statistics, 12440 Liaoning University , Shenyang, Liaoning, China
– sequence: 2
  givenname: Craig
  surname: Anderson
  fullname: Anderson, Craig
  email: Craig.Anderson@glasgow.ac.uk
  organization: School of Mathematics and Statistics, University of Glasgow, Glasgow, UK
– sequence: 3
  givenname: Duncan
  surname: Lee
  fullname: Lee, Duncan
  email: Duncan.Lee@glasgow.ac.uk
  organization: School of Mathematics and Statistics, University of Glasgow, Glasgow, UK
– sequence: 4
  givenname: Gary
  surname: Napier
  fullname: Napier, Gary
  email: Gary.Napier@glasgow.ac.uk
  organization: School of Mathematics and Statistics, University of Glasgow, Glasgow, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40418785$$D View this record in MEDLINE/PubMed
BookMark eNptkF1LwzAUhoNMnJteeisFb7yp5iRN2-CVG37BQBC9LmlzOjK7dCYtsn9v5uYH4lVewnPOeXlGZGBbi4ScAL0AAeLSLMqYUcZjCjzfI4cgRBYnaSYHv_KQjLxfUJpADvKADJNNynJxSCZPxr9G6DuzVJ1pbaSsjsq2t1q5daSxw-rz29hootbojbKRNh6Vx2ipVitj50dkv1aNx-PdOyYvtzfP0_t49nj3ML2exRXn0MVcKQ55rdMEKZNVAmWdsSrlgEpySgXUoq6lTATqrOQ5U0ynVVJDXgHLaZnwMTnf7l259q0PlYul8RU2jbLY9r7gDBiAlDIP6NkfdNH2zoZ2gWISWCaCsjE53VF9uURdrFyQ4NbFl50AxFugcq33DutvBGixsV8E-8XGfrGxH_irLf-umg6dxrnr1yH8XP93LrQGJvkHQpeInQ
Cites_doi 10.1111/1467-9868.00353
10.1007/BF00116466
10.1136/bmj.k4680
10.1111/j.1538-4632.2005.00624.x
10.1111/j.1467-9868.2008.00700.x
10.1002/1097-0258(20000915/30)19:17/18<2555::AID-SIM587>3.0.CO;2-#
10.1063/1.1699114
10.1111/rssc.12009
10.1007/PL00011456
10.1007/s11222-021-10025-7
10.1177/0962280220946502
10.1111/rssc.12155
10.1093/oso/9780198522669.003.0010
10.1177/0962280216660420
10.1093/biostatistics/kxu005
10.2307/143141
10.1002/1097-0258(20000915/30)19:17/18<2377::AID-SIM576>3.3.CO;2-T
10.1002/sim.4780142112
10.1016/j.sste.2014.05.001
10.1111/j.1541-0420.2009.01291.x
10.1002/sim.9395
10.18637/jss.v040.i08
10.1093/biostatistics/kxt001
10.1093/biostatistics/kxr036
10.1201/9781420072884
10.1093/bioinformatics/btg427
10.1109/TPAMI.1984.4767596
10.1093/biomet/57.1.97
10.1093/biostatistics/kxy024
10.1177/09622802221084131
10.1093/biomet/37.1-2.17
10.1016/j.sste.2011.03.001
10.1214/ss/1177011136
10.1007/978-1-4612-1284-3_4
10.1177/0962280218767975
10.1148/radiology.143.1.7063747
10.1016/j.sste.2015.11.005
10.1007/978-1-4614-6868-4
10.1007/s10651-007-0029-9
10.1002/(SICI)1097-0258(19980930)17:18<2045::AID-SIM943>3.0.CO;2-P
10.1111/biom.12156
10.1016/j.sste.2022.100559
10.1016/j.puhe.2010.02.006
10.1080/01621459.1997.10474012
10.1111/j.0006-341X.2000.00013.x
10.1016/S0031-3203(96)00142-2
ContentType Journal Article
Copyright 2025 Walter de Gruyter GmbH, Berlin/Boston.
2025 Walter de Gruyter GmbH, Berlin/Boston
Copyright_xml – notice: 2025 Walter de Gruyter GmbH, Berlin/Boston.
– notice: 2025 Walter de Gruyter GmbH, Berlin/Boston
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1515/ijb-2023-0138
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

ProQuest Health & Medical Complete (Alumni)
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1557-4679
EndPage 150
ExternalDocumentID 40418785
10_1515_ijb_2023_0138
10_1515_ijb_2023_0138211129
Genre Journal Article
GeographicLocations Scotland
GeographicLocations_xml – name: Scotland
GroupedDBID ---
-~S
0R~
123
1WD
4.4
53G
AAAEU
AAAVF
AACIX
AADQG
AAFPC
AAGVJ
AAILP
AAJBH
AALGR
AAOUV
AAOWA
AAPJK
AAQCX
AARVR
AASQH
AAXCG
ABAQN
ABDRH
ABFKT
ABJNI
ABMBZ
ABMIY
ABPLS
ABRDF
ABSOE
ABWLS
ABYBW
ABYKJ
ACDEB
ACEFL
ACGFO
ACGFS
ACHNZ
ACONX
ACPMA
ACUND
ACYCL
ACZBO
ADEQT
ADGQD
ADGYE
ADJVZ
ADOZN
AECWL
AEDGQ
AEGVQ
AEICA
AEJQW
AEMOE
AENEX
AEQDQ
AEQLX
AERZL
AFBAA
AFBDD
AFBQV
AFCXV
AFYRI
AGBEV
AGQYU
AHCWZ
AHVWV
AHXUK
AIWOI
AKXKS
ALMA_UNASSIGNED_HOLDINGS
ALWYM
AMVHM
ASYPN
BAKPI
BBCWN
BCIFA
CFGNV
CS3
DASCH
DU5
F5P
HZ~
IY9
J9A
K.~
KDIRW
MV1
NQBSW
O9-
P2P
QD8
SA.
T2Y
UK5
WTRAM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ADNPR
CKPZI
K9.
SLJYH
7X8
ID FETCH-LOGICAL-c331t-3aa318fd64e029c41bf72c631ea930051f5ff9945ed7b382a2d6c4f18c1280b43
ISSN 1557-4679
2194-573X
IngestDate Wed Jul 02 02:52:49 EDT 2025
Wed Aug 13 03:35:11 EDT 2025
Sat Jul 12 03:49:54 EDT 2025
Wed Jul 16 16:46:53 EDT 2025
Sat Jul 12 03:56:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Bayesian hierarchical model
risk smoothing
spatio-temporal modelling
conditional autoregressive models
boundary detection
disease mapping
Language English
License 2025 Walter de Gruyter GmbH, Berlin/Boston.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c331t-3aa318fd64e029c41bf72c631ea930051f5ff9945ed7b382a2d6c4f18c1280b43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 40418785
PQID 3229127502
PQPubID 2031306
PageCount 22
ParticipantIDs proquest_miscellaneous_3212119998
proquest_journals_3229127502
pubmed_primary_40418785
crossref_primary_10_1515_ijb_2023_0138
walterdegruyter_journals_10_1515_ijb_2023_0138211129
PublicationCentury 2000
PublicationDate 2025-06-26
PublicationDateYYYYMMDD 2025-06-26
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-26
  day: 26
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Berlin
PublicationTitle The international journal of biostatistics
PublicationTitleAlternate Int J Biostat
PublicationYear 2025
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References 2025071113021737449_j_ijb-2023-0138_ref_015
2025071113021737449_j_ijb-2023-0138_ref_037
2025071113021737449_j_ijb-2023-0138_ref_016
2025071113021737449_j_ijb-2023-0138_ref_038
2025071113021737449_j_ijb-2023-0138_ref_017
2025071113021737449_j_ijb-2023-0138_ref_039
2025071113021737449_j_ijb-2023-0138_ref_018
2025071113021737449_j_ijb-2023-0138_ref_019
2025071113021737449_j_ijb-2023-0138_ref_040
2025071113021737449_j_ijb-2023-0138_ref_041
2025071113021737449_j_ijb-2023-0138_ref_020
2025071113021737449_j_ijb-2023-0138_ref_042
2025071113021737449_j_ijb-2023-0138_ref_021
2025071113021737449_j_ijb-2023-0138_ref_043
2025071113021737449_j_ijb-2023-0138_ref_022
2025071113021737449_j_ijb-2023-0138_ref_044
2025071113021737449_j_ijb-2023-0138_ref_001
2025071113021737449_j_ijb-2023-0138_ref_023
2025071113021737449_j_ijb-2023-0138_ref_045
2025071113021737449_j_ijb-2023-0138_ref_002
2025071113021737449_j_ijb-2023-0138_ref_024
2025071113021737449_j_ijb-2023-0138_ref_046
2025071113021737449_j_ijb-2023-0138_ref_003
2025071113021737449_j_ijb-2023-0138_ref_025
2025071113021737449_j_ijb-2023-0138_ref_047
2025071113021737449_j_ijb-2023-0138_ref_004
2025071113021737449_j_ijb-2023-0138_ref_026
2025071113021737449_j_ijb-2023-0138_ref_005
2025071113021737449_j_ijb-2023-0138_ref_027
2025071113021737449_j_ijb-2023-0138_ref_006
2025071113021737449_j_ijb-2023-0138_ref_028
2025071113021737449_j_ijb-2023-0138_ref_007
2025071113021737449_j_ijb-2023-0138_ref_029
2025071113021737449_j_ijb-2023-0138_ref_008
2025071113021737449_j_ijb-2023-0138_ref_009
2025071113021737449_j_ijb-2023-0138_ref_030
2025071113021737449_j_ijb-2023-0138_ref_031
2025071113021737449_j_ijb-2023-0138_ref_010
2025071113021737449_j_ijb-2023-0138_ref_032
2025071113021737449_j_ijb-2023-0138_ref_011
2025071113021737449_j_ijb-2023-0138_ref_033
2025071113021737449_j_ijb-2023-0138_ref_012
2025071113021737449_j_ijb-2023-0138_ref_034
2025071113021737449_j_ijb-2023-0138_ref_013
2025071113021737449_j_ijb-2023-0138_ref_035
2025071113021737449_j_ijb-2023-0138_ref_014
2025071113021737449_j_ijb-2023-0138_ref_036
References_xml – ident: 2025071113021737449_j_ijb-2023-0138_ref_043
  doi: 10.1111/1467-9868.00353
– ident: 2025071113021737449_j_ijb-2023-0138_ref_003
  doi: 10.1007/BF00116466
– ident: 2025071113021737449_j_ijb-2023-0138_ref_024
  doi: 10.1136/bmj.k4680
– ident: 2025071113021737449_j_ijb-2023-0138_ref_047
  doi: 10.1111/j.1538-4632.2005.00624.x
– ident: 2025071113021737449_j_ijb-2023-0138_ref_034
  doi: 10.1111/j.1467-9868.2008.00700.x
– ident: 2025071113021737449_j_ijb-2023-0138_ref_008
  doi: 10.1002/1097-0258(20000915/30)19:17/18<2555::AID-SIM587>3.0.CO;2-#
– ident: 2025071113021737449_j_ijb-2023-0138_ref_036
  doi: 10.1063/1.1699114
– ident: 2025071113021737449_j_ijb-2023-0138_ref_019
  doi: 10.1111/rssc.12009
– ident: 2025071113021737449_j_ijb-2023-0138_ref_027
  doi: 10.1007/PL00011456
– ident: 2025071113021737449_j_ijb-2023-0138_ref_020
  doi: 10.1007/s11222-021-10025-7
– ident: 2025071113021737449_j_ijb-2023-0138_ref_023
  doi: 10.1177/0962280220946502
– ident: 2025071113021737449_j_ijb-2023-0138_ref_032
  doi: 10.1111/rssc.12155
– ident: 2025071113021737449_j_ijb-2023-0138_ref_042
  doi: 10.1093/oso/9780198522669.003.0010
– ident: 2025071113021737449_j_ijb-2023-0138_ref_009
  doi: 10.1177/0962280216660420
– ident: 2025071113021737449_j_ijb-2023-0138_ref_013
  doi: 10.1093/biostatistics/kxu005
– ident: 2025071113021737449_j_ijb-2023-0138_ref_002
  doi: 10.2307/143141
– ident: 2025071113021737449_j_ijb-2023-0138_ref_005
  doi: 10.1002/1097-0258(20000915/30)19:17/18<2377::AID-SIM576>3.3.CO;2-T
– ident: 2025071113021737449_j_ijb-2023-0138_ref_006
  doi: 10.1002/sim.4780142112
– ident: 2025071113021737449_j_ijb-2023-0138_ref_010
  doi: 10.1016/j.sste.2014.05.001
– ident: 2025071113021737449_j_ijb-2023-0138_ref_017
  doi: 10.1111/j.1541-0420.2009.01291.x
– ident: 2025071113021737449_j_ijb-2023-0138_ref_030
– ident: 2025071113021737449_j_ijb-2023-0138_ref_011
  doi: 10.1002/sim.9395
– ident: 2025071113021737449_j_ijb-2023-0138_ref_040
  doi: 10.18637/jss.v040.i08
– ident: 2025071113021737449_j_ijb-2023-0138_ref_021
  doi: 10.1093/biostatistics/kxt001
– ident: 2025071113021737449_j_ijb-2023-0138_ref_018
  doi: 10.1093/biostatistics/kxr036
– ident: 2025071113021737449_j_ijb-2023-0138_ref_001
  doi: 10.1201/9781420072884
– ident: 2025071113021737449_j_ijb-2023-0138_ref_038
  doi: 10.1093/bioinformatics/btg427
– ident: 2025071113021737449_j_ijb-2023-0138_ref_035
  doi: 10.1109/TPAMI.1984.4767596
– ident: 2025071113021737449_j_ijb-2023-0138_ref_037
  doi: 10.1093/biomet/57.1.97
– ident: 2025071113021737449_j_ijb-2023-0138_ref_039
  doi: 10.1093/biostatistics/kxy024
– ident: 2025071113021737449_j_ijb-2023-0138_ref_015
  doi: 10.1177/09622802221084131
– ident: 2025071113021737449_j_ijb-2023-0138_ref_026
  doi: 10.1093/biomet/37.1-2.17
– ident: 2025071113021737449_j_ijb-2023-0138_ref_029
  doi: 10.1016/j.sste.2011.03.001
– ident: 2025071113021737449_j_ijb-2023-0138_ref_046
  doi: 10.1214/ss/1177011136
– ident: 2025071113021737449_j_ijb-2023-0138_ref_004
  doi: 10.1007/978-1-4612-1284-3_4
– ident: 2025071113021737449_j_ijb-2023-0138_ref_014
  doi: 10.1177/0962280218767975
– ident: 2025071113021737449_j_ijb-2023-0138_ref_045
  doi: 10.1148/radiology.143.1.7063747
– ident: 2025071113021737449_j_ijb-2023-0138_ref_022
  doi: 10.1016/j.sste.2015.11.005
– ident: 2025071113021737449_j_ijb-2023-0138_ref_041
  doi: 10.1007/978-1-4614-6868-4
– ident: 2025071113021737449_j_ijb-2023-0138_ref_016
  doi: 10.1007/s10651-007-0029-9
– ident: 2025071113021737449_j_ijb-2023-0138_ref_007
  doi: 10.1002/(SICI)1097-0258(19980930)17:18<2045::AID-SIM943>3.0.CO;2-P
– ident: 2025071113021737449_j_ijb-2023-0138_ref_031
  doi: 10.1111/biom.12156
– ident: 2025071113021737449_j_ijb-2023-0138_ref_033
  doi: 10.1016/j.sste.2022.100559
– ident: 2025071113021737449_j_ijb-2023-0138_ref_025
  doi: 10.1016/j.puhe.2010.02.006
– ident: 2025071113021737449_j_ijb-2023-0138_ref_028
  doi: 10.1080/01621459.1997.10474012
– ident: 2025071113021737449_j_ijb-2023-0138_ref_012
  doi: 10.1111/j.0006-341X.2000.00013.x
– ident: 2025071113021737449_j_ijb-2023-0138_ref_044
  doi: 10.1016/S0031-3203(96)00142-2
SSID ssj0041819
Score 2.3477683
Snippet Bayesian hierarchical models with a spatially smooth conditional autoregressive prior distribution are commonly used to estimate the spatio-temporal pattern in...
SourceID proquest
pubmed
crossref
walterdegruyter
SourceType Aggregation Database
Index Database
Publisher
StartPage 129
SubjectTerms Algorithms
Bayes Theorem
Bayesian analysis
Bayesian hierarchical model
boundary detection
Computer Simulation
conditional autoregressive models
disease mapping
Epidemiology
Estimates
Humans
Models, Statistical
Neighborhoods
Risk Assessment - methods
risk smoothing
Scotland - epidemiology
Spatio-Temporal Analysis
spatio-temporal modelling
Title Risk estimation and boundary detection in Bayesian disease mapping
URI https://www.degruyter.com/doi/10.1515/ijb-2023-0138
https://www.ncbi.nlm.nih.gov/pubmed/40418785
https://www.proquest.com/docview/3229127502
https://www.proquest.com/docview/3212119998
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3La9RAGB_WLYIeSn3VtVVGEC8lupNMHnPsSm0R7EFa2VuYV0oEs-2aIOvFf91vXsluW0R7CSHJzMB8v3yv-R4IvVFCgF6s8ogSsHRoNk0iEes00kyBvNGC55lJTv58mp2c00_zdD4a_V6LWupa8U7-ujWv5C5UhWdAV5Ml-x-U7SeFB3AP9IUrUBiu_0TjLyYu3JTJcPmH9iBA2D5Jy9WB0q2WIZRxxlfapkv6A5mD79wUZrhY100NYuoNB-FaWQlRL0zukSvr3LMKV4Bg3umrMJf1KCirxlsf7JLX_Qsf9AM6sxwwecovawebY-5Dkr0TIk5NsJTLdHeRJIDoZbcKAcXa89IUIJC5XjGB2bp06A1QOc5JvOPDCWHiqtHe4O-pLYVRfxORafsemWPWQZCFw_tr8q2POjT2DkxQwvDSDC_NcDCAYel7aCsGOyMeo63D49nR1yDMKShAzJdmhaHvN1beVGVu2CcP0fZPG_Kg9IXbnDXN5WwHbXuTAx86_DxCI908RvddE9LVEzQzKMIDijCgCAcU4R5FuG5wQBH2KMIeRU_R-cejsw8nke-sEckkIW2UcA68vFIZ1dOYSUpElccyS4jmzPQvIFVaVYzRVKtcwB7xWGWSVqSQoM5MBU2eoXGzaPRzhItciELB3y4LQWUaM5UwCpKBaFDVVSYm6G3YpPLSFVApbyXEBO2HLSw9vH-UIG6YbUEQT9Dr_jVwQHOsxRu96Mw3tkwhYzDFrtv6fiVqKJgX6QTRa7QY1vgLLF7cbdgeejD8JPto3C47_RJ011a88vj6A8Iam7A
linkProvider Walter de Gruyter
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61i1DhQKEtkPIyUtWb2Y3jOMmRRdDleUBQ9Rb5Fbo8smg3UbX99R3nsW2hp3JN4tiZGXtmMjPfAHwySqFdbCLKffR0uOgFVDEbUpsY1DdWyUi44uTzCzG45iffwjabcNKkVRp7My6nRY2Q2jUjXbofZTOsAdTA3eGtoq7xN3WBtu734uH-NczFHN2VDsztf-kffm2PY7zmJw245rORfyujZxbmIiz9qILWsxX9oXuO3oJqV12nnNztlYXa0z-fADq-6LOWYamxTMl-LUor8Mrm72C-7lU5fQ_9y-HkjjhMjrrYkcjcEFU1ZRpPibFFldOVk2FO-nJqXW0maaI_5EE6FIibD3B9dHh1MKBNAwaqg8AvaCAlbvnMCG57LNHcV1nEtAh8KxMHc-9nYZYlCQ-tiVQQM8mM0DzzY41ar6d4sAqdfJTbdSBxpFRsUCh0rLgOWWJcS3Z07ixadEYoDz63nEgfa5yN1PknSJUUqZI6qqSOKh5stnxKm-02SfFUSiqkeubB7uw2bhQX_ZC5HZXumQrNDt1LD9Zq_s5m4k5Mojj0gD9h-O85_rkafCMaTB__b9gOvBlcnZ-lZ8cXpxuwwFxn4Z6gTGxCpxiXdgvNnUJtNwL9C0Ng-6c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9RAEJ_gEQ0-ACpoAXVNjG_LXbfbbfvIASf4QYwRw1uzXyUnsUeONub8651pe8eXT_rcbnc7M7szszPzG4C3zhi0i13CZYiejlSDiBvhY-4zh_rGG50oKk7-fKKOTuWHs_jsRhU_pVU6fz6tZ1WLkNp3E1vTRdkCawA1cH_8w3Bq_M0p0Na_dMUDWE4lujI9WN57Pzz8Pj-NJWqwrMPWvDfwti66Z2A-htVfTcx6saAbqme0Bnq-6Dbj5GK3rsyu_X0Hz_F__modVju7lO21gvQElnz5FB62nSpnz2D4dXx1wQiRoy11ZLp0zDQtmaYz5nzVZHSVbFyyoZ55qsxkXeyH_dSEAXG-Aaejw2_7R7xrv8BtFIUVj7TGDV84Jf1AZFaGpkiEVVHodUYg92ERF0WWydi7xESp0MIpK4swtajzBkZGm9ArJ6V_ASxNjEkdioRNjbSxyBw1ZEfXzqM955QJ4N2cEflli7KRk3eCRMmRKDkRJSeiBLAzZ1PebbarHM-krMGpFwG8WTzGbUKxD136SU3vNFh26FwG8Lxl72ImSVKSpHEA8g6_r-f462rwi2gubf3bsNfw6MvBKP90fPJxG1YEtRUeKC7UDvSqae1foq1TmVedOP8BUUf6Tg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Risk+estimation+and+boundary+detection+in+Bayesian+disease+mapping&rft.jtitle=The+international+journal+of+biostatistics&rft.au=Yin%2C+Xueqing&rft.au=Anderson%2C+Craig&rft.au=Lee%2C+Duncan&rft.au=Napier%2C+Gary&rft.date=2025-06-26&rft.pub=De+Gruyter&rft.eissn=1557-4679&rft.volume=21&rft.issue=1&rft.spage=129&rft.epage=150&rft_id=info:doi/10.1515%2Fijb-2023-0138&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_ijb_2023_0138211129
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1557-4679&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1557-4679&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1557-4679&client=summon