Risk estimation and boundary detection in Bayesian disease mapping
Bayesian hierarchical models with a spatially smooth conditional autoregressive prior distribution are commonly used to estimate the spatio-temporal pattern in disease risk from areal unit data. However, most of the modeling approaches do not take possible boundaries of step changes in disease risk...
Saved in:
Published in | The international journal of biostatistics Vol. 21; no. 1; pp. 129 - 150 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
De Gruyter
26.06.2025
Walter de Gruyter GmbH |
Subjects | |
Online Access | Get full text |
ISSN | 1557-4679 2194-573X 1557-4679 |
DOI | 10.1515/ijb-2023-0138 |
Cover
Loading…
Abstract | Bayesian hierarchical models with a spatially smooth conditional autoregressive prior distribution are commonly used to estimate the spatio-temporal pattern in disease risk from areal unit data. However, most of the modeling approaches do not take possible boundaries of step changes in disease risk between geographically neighbouring areas into consideration, which may lead to oversmoothing of the risk surfaces, prevent the detection of high-risk areas and yield biased estimation of disease risk. In this paper, we propose a two-stage method to jointly estimate the disease risk in small areas over time and detect the locations of boundaries that separate pairs of neighbouring areas exhibiting vastly different risks. In the first stage, we use a graph-based optimisation algorithm to construct a set of candidate neighbourhood matrices that represent a range of possible boundary structures for the disease data. In the second stage, a Bayesian hierarchical spatio-temporal model that takes the boundaries into account is fitted to the data. The performance of the methodology is evidenced by simulation, before being applied to a study of respiratory disease risk in Greater Glasgow, Scotland. |
---|---|
AbstractList | Bayesian hierarchical models with a spatially smooth conditional autoregressive prior distribution are commonly used to estimate the spatio-temporal pattern in disease risk from areal unit data. However, most of the modeling approaches do not take possible boundaries of step changes in disease risk between geographically neighbouring areas into consideration, which may lead to oversmoothing of the risk surfaces, prevent the detection of high-risk areas and yield biased estimation of disease risk. In this paper, we propose a two-stage method to jointly estimate the disease risk in small areas over time and detect the locations of boundaries that separate pairs of neighbouring areas exhibiting vastly different risks. In the first stage, we use a graph-based optimisation algorithm to construct a set of candidate neighbourhood matrices that represent a range of possible boundary structures for the disease data. In the second stage, a Bayesian hierarchical spatio-temporal model that takes the boundaries into account is fitted to the data. The performance of the methodology is evidenced by simulation, before being applied to a study of respiratory disease risk in Greater Glasgow, Scotland.Bayesian hierarchical models with a spatially smooth conditional autoregressive prior distribution are commonly used to estimate the spatio-temporal pattern in disease risk from areal unit data. However, most of the modeling approaches do not take possible boundaries of step changes in disease risk between geographically neighbouring areas into consideration, which may lead to oversmoothing of the risk surfaces, prevent the detection of high-risk areas and yield biased estimation of disease risk. In this paper, we propose a two-stage method to jointly estimate the disease risk in small areas over time and detect the locations of boundaries that separate pairs of neighbouring areas exhibiting vastly different risks. In the first stage, we use a graph-based optimisation algorithm to construct a set of candidate neighbourhood matrices that represent a range of possible boundary structures for the disease data. In the second stage, a Bayesian hierarchical spatio-temporal model that takes the boundaries into account is fitted to the data. The performance of the methodology is evidenced by simulation, before being applied to a study of respiratory disease risk in Greater Glasgow, Scotland. Bayesian hierarchical models with a spatially smooth conditional autoregressive prior distribution are commonly used to estimate the spatio-temporal pattern in disease risk from areal unit data. However, most of the modeling approaches do not take possible boundaries of step changes in disease risk between geographically neighbouring areas into consideration, which may lead to oversmoothing of the risk surfaces, prevent the detection of high-risk areas and yield biased estimation of disease risk. In this paper, we propose a two-stage method to jointly estimate the disease risk in small areas over time and detect the locations of boundaries that separate pairs of neighbouring areas exhibiting vastly different risks. In the first stage, we use a graph-based optimisation algorithm to construct a set of candidate neighbourhood matrices that represent a range of possible boundary structures for the disease data. In the second stage, a Bayesian hierarchical spatio-temporal model that takes the boundaries into account is fitted to the data. The performance of the methodology is evidenced by simulation, before being applied to a study of respiratory disease risk in Greater Glasgow, Scotland. |
Author | Yin, Xueqing Anderson, Craig Lee, Duncan Napier, Gary |
Author_xml | – sequence: 1 givenname: Xueqing surname: Yin fullname: Yin, Xueqing email: yinxueqing@lnu.edu.cn organization: School of Mathematics and Statistics, 12440 Liaoning University , Shenyang, Liaoning, China – sequence: 2 givenname: Craig surname: Anderson fullname: Anderson, Craig email: Craig.Anderson@glasgow.ac.uk organization: School of Mathematics and Statistics, University of Glasgow, Glasgow, UK – sequence: 3 givenname: Duncan surname: Lee fullname: Lee, Duncan email: Duncan.Lee@glasgow.ac.uk organization: School of Mathematics and Statistics, University of Glasgow, Glasgow, UK – sequence: 4 givenname: Gary surname: Napier fullname: Napier, Gary email: Gary.Napier@glasgow.ac.uk organization: School of Mathematics and Statistics, University of Glasgow, Glasgow, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40418785$$D View this record in MEDLINE/PubMed |
BookMark | eNptkF1LwzAUhoNMnJteeisFb7yp5iRN2-CVG37BQBC9LmlzOjK7dCYtsn9v5uYH4lVewnPOeXlGZGBbi4ScAL0AAeLSLMqYUcZjCjzfI4cgRBYnaSYHv_KQjLxfUJpADvKADJNNynJxSCZPxr9G6DuzVJ1pbaSsjsq2t1q5daSxw-rz29hootbojbKRNh6Vx2ipVitj50dkv1aNx-PdOyYvtzfP0_t49nj3ML2exRXn0MVcKQ55rdMEKZNVAmWdsSrlgEpySgXUoq6lTATqrOQ5U0ynVVJDXgHLaZnwMTnf7l259q0PlYul8RU2jbLY9r7gDBiAlDIP6NkfdNH2zoZ2gWISWCaCsjE53VF9uURdrFyQ4NbFl50AxFugcq33DutvBGixsV8E-8XGfrGxH_irLf-umg6dxrnr1yH8XP93LrQGJvkHQpeInQ |
Cites_doi | 10.1111/1467-9868.00353 10.1007/BF00116466 10.1136/bmj.k4680 10.1111/j.1538-4632.2005.00624.x 10.1111/j.1467-9868.2008.00700.x 10.1002/1097-0258(20000915/30)19:17/18<2555::AID-SIM587>3.0.CO;2-# 10.1063/1.1699114 10.1111/rssc.12009 10.1007/PL00011456 10.1007/s11222-021-10025-7 10.1177/0962280220946502 10.1111/rssc.12155 10.1093/oso/9780198522669.003.0010 10.1177/0962280216660420 10.1093/biostatistics/kxu005 10.2307/143141 10.1002/1097-0258(20000915/30)19:17/18<2377::AID-SIM576>3.3.CO;2-T 10.1002/sim.4780142112 10.1016/j.sste.2014.05.001 10.1111/j.1541-0420.2009.01291.x 10.1002/sim.9395 10.18637/jss.v040.i08 10.1093/biostatistics/kxt001 10.1093/biostatistics/kxr036 10.1201/9781420072884 10.1093/bioinformatics/btg427 10.1109/TPAMI.1984.4767596 10.1093/biomet/57.1.97 10.1093/biostatistics/kxy024 10.1177/09622802221084131 10.1093/biomet/37.1-2.17 10.1016/j.sste.2011.03.001 10.1214/ss/1177011136 10.1007/978-1-4612-1284-3_4 10.1177/0962280218767975 10.1148/radiology.143.1.7063747 10.1016/j.sste.2015.11.005 10.1007/978-1-4614-6868-4 10.1007/s10651-007-0029-9 10.1002/(SICI)1097-0258(19980930)17:18<2045::AID-SIM943>3.0.CO;2-P 10.1111/biom.12156 10.1016/j.sste.2022.100559 10.1016/j.puhe.2010.02.006 10.1080/01621459.1997.10474012 10.1111/j.0006-341X.2000.00013.x 10.1016/S0031-3203(96)00142-2 |
ContentType | Journal Article |
Copyright | 2025 Walter de Gruyter GmbH, Berlin/Boston. 2025 Walter de Gruyter GmbH, Berlin/Boston |
Copyright_xml | – notice: 2025 Walter de Gruyter GmbH, Berlin/Boston. – notice: 2025 Walter de Gruyter GmbH, Berlin/Boston |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 |
DOI | 10.1515/ijb-2023-0138 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1557-4679 |
EndPage | 150 |
ExternalDocumentID | 40418785 10_1515_ijb_2023_0138 10_1515_ijb_2023_0138211129 |
Genre | Journal Article |
GeographicLocations | Scotland |
GeographicLocations_xml | – name: Scotland |
GroupedDBID | --- -~S 0R~ 123 1WD 4.4 53G AAAEU AAAVF AACIX AADQG AAFPC AAGVJ AAILP AAJBH AALGR AAOUV AAOWA AAPJK AAQCX AARVR AASQH AAXCG ABAQN ABDRH ABFKT ABJNI ABMBZ ABMIY ABPLS ABRDF ABSOE ABWLS ABYBW ABYKJ ACDEB ACEFL ACGFO ACGFS ACHNZ ACONX ACPMA ACUND ACYCL ACZBO ADEQT ADGQD ADGYE ADJVZ ADOZN AECWL AEDGQ AEGVQ AEICA AEJQW AEMOE AENEX AEQDQ AEQLX AERZL AFBAA AFBDD AFBQV AFCXV AFYRI AGBEV AGQYU AHCWZ AHVWV AHXUK AIWOI AKXKS ALMA_UNASSIGNED_HOLDINGS ALWYM AMVHM ASYPN BAKPI BBCWN BCIFA CFGNV CS3 DASCH DU5 F5P HZ~ IY9 J9A K.~ KDIRW MV1 NQBSW O9- P2P QD8 SA. T2Y UK5 WTRAM AAYXX CITATION CGR CUY CVF ECM EIF NPM ADNPR CKPZI K9. SLJYH 7X8 |
ID | FETCH-LOGICAL-c331t-3aa318fd64e029c41bf72c631ea930051f5ff9945ed7b382a2d6c4f18c1280b43 |
ISSN | 1557-4679 2194-573X |
IngestDate | Wed Jul 02 02:52:49 EDT 2025 Wed Aug 13 03:35:11 EDT 2025 Sat Jul 12 03:49:54 EDT 2025 Wed Jul 16 16:46:53 EDT 2025 Sat Jul 12 03:56:36 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Bayesian hierarchical model risk smoothing spatio-temporal modelling conditional autoregressive models boundary detection disease mapping |
Language | English |
License | 2025 Walter de Gruyter GmbH, Berlin/Boston. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c331t-3aa318fd64e029c41bf72c631ea930051f5ff9945ed7b382a2d6c4f18c1280b43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 40418785 |
PQID | 3229127502 |
PQPubID | 2031306 |
PageCount | 22 |
ParticipantIDs | proquest_miscellaneous_3212119998 proquest_journals_3229127502 pubmed_primary_40418785 crossref_primary_10_1515_ijb_2023_0138 walterdegruyter_journals_10_1515_ijb_2023_0138211129 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-26 |
PublicationDateYYYYMMDD | 2025-06-26 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-26 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Berlin |
PublicationTitle | The international journal of biostatistics |
PublicationTitleAlternate | Int J Biostat |
PublicationYear | 2025 |
Publisher | De Gruyter Walter de Gruyter GmbH |
Publisher_xml | – name: De Gruyter – name: Walter de Gruyter GmbH |
References | 2025071113021737449_j_ijb-2023-0138_ref_015 2025071113021737449_j_ijb-2023-0138_ref_037 2025071113021737449_j_ijb-2023-0138_ref_016 2025071113021737449_j_ijb-2023-0138_ref_038 2025071113021737449_j_ijb-2023-0138_ref_017 2025071113021737449_j_ijb-2023-0138_ref_039 2025071113021737449_j_ijb-2023-0138_ref_018 2025071113021737449_j_ijb-2023-0138_ref_019 2025071113021737449_j_ijb-2023-0138_ref_040 2025071113021737449_j_ijb-2023-0138_ref_041 2025071113021737449_j_ijb-2023-0138_ref_020 2025071113021737449_j_ijb-2023-0138_ref_042 2025071113021737449_j_ijb-2023-0138_ref_021 2025071113021737449_j_ijb-2023-0138_ref_043 2025071113021737449_j_ijb-2023-0138_ref_022 2025071113021737449_j_ijb-2023-0138_ref_044 2025071113021737449_j_ijb-2023-0138_ref_001 2025071113021737449_j_ijb-2023-0138_ref_023 2025071113021737449_j_ijb-2023-0138_ref_045 2025071113021737449_j_ijb-2023-0138_ref_002 2025071113021737449_j_ijb-2023-0138_ref_024 2025071113021737449_j_ijb-2023-0138_ref_046 2025071113021737449_j_ijb-2023-0138_ref_003 2025071113021737449_j_ijb-2023-0138_ref_025 2025071113021737449_j_ijb-2023-0138_ref_047 2025071113021737449_j_ijb-2023-0138_ref_004 2025071113021737449_j_ijb-2023-0138_ref_026 2025071113021737449_j_ijb-2023-0138_ref_005 2025071113021737449_j_ijb-2023-0138_ref_027 2025071113021737449_j_ijb-2023-0138_ref_006 2025071113021737449_j_ijb-2023-0138_ref_028 2025071113021737449_j_ijb-2023-0138_ref_007 2025071113021737449_j_ijb-2023-0138_ref_029 2025071113021737449_j_ijb-2023-0138_ref_008 2025071113021737449_j_ijb-2023-0138_ref_009 2025071113021737449_j_ijb-2023-0138_ref_030 2025071113021737449_j_ijb-2023-0138_ref_031 2025071113021737449_j_ijb-2023-0138_ref_010 2025071113021737449_j_ijb-2023-0138_ref_032 2025071113021737449_j_ijb-2023-0138_ref_011 2025071113021737449_j_ijb-2023-0138_ref_033 2025071113021737449_j_ijb-2023-0138_ref_012 2025071113021737449_j_ijb-2023-0138_ref_034 2025071113021737449_j_ijb-2023-0138_ref_013 2025071113021737449_j_ijb-2023-0138_ref_035 2025071113021737449_j_ijb-2023-0138_ref_014 2025071113021737449_j_ijb-2023-0138_ref_036 |
References_xml | – ident: 2025071113021737449_j_ijb-2023-0138_ref_043 doi: 10.1111/1467-9868.00353 – ident: 2025071113021737449_j_ijb-2023-0138_ref_003 doi: 10.1007/BF00116466 – ident: 2025071113021737449_j_ijb-2023-0138_ref_024 doi: 10.1136/bmj.k4680 – ident: 2025071113021737449_j_ijb-2023-0138_ref_047 doi: 10.1111/j.1538-4632.2005.00624.x – ident: 2025071113021737449_j_ijb-2023-0138_ref_034 doi: 10.1111/j.1467-9868.2008.00700.x – ident: 2025071113021737449_j_ijb-2023-0138_ref_008 doi: 10.1002/1097-0258(20000915/30)19:17/18<2555::AID-SIM587>3.0.CO;2-# – ident: 2025071113021737449_j_ijb-2023-0138_ref_036 doi: 10.1063/1.1699114 – ident: 2025071113021737449_j_ijb-2023-0138_ref_019 doi: 10.1111/rssc.12009 – ident: 2025071113021737449_j_ijb-2023-0138_ref_027 doi: 10.1007/PL00011456 – ident: 2025071113021737449_j_ijb-2023-0138_ref_020 doi: 10.1007/s11222-021-10025-7 – ident: 2025071113021737449_j_ijb-2023-0138_ref_023 doi: 10.1177/0962280220946502 – ident: 2025071113021737449_j_ijb-2023-0138_ref_032 doi: 10.1111/rssc.12155 – ident: 2025071113021737449_j_ijb-2023-0138_ref_042 doi: 10.1093/oso/9780198522669.003.0010 – ident: 2025071113021737449_j_ijb-2023-0138_ref_009 doi: 10.1177/0962280216660420 – ident: 2025071113021737449_j_ijb-2023-0138_ref_013 doi: 10.1093/biostatistics/kxu005 – ident: 2025071113021737449_j_ijb-2023-0138_ref_002 doi: 10.2307/143141 – ident: 2025071113021737449_j_ijb-2023-0138_ref_005 doi: 10.1002/1097-0258(20000915/30)19:17/18<2377::AID-SIM576>3.3.CO;2-T – ident: 2025071113021737449_j_ijb-2023-0138_ref_006 doi: 10.1002/sim.4780142112 – ident: 2025071113021737449_j_ijb-2023-0138_ref_010 doi: 10.1016/j.sste.2014.05.001 – ident: 2025071113021737449_j_ijb-2023-0138_ref_017 doi: 10.1111/j.1541-0420.2009.01291.x – ident: 2025071113021737449_j_ijb-2023-0138_ref_030 – ident: 2025071113021737449_j_ijb-2023-0138_ref_011 doi: 10.1002/sim.9395 – ident: 2025071113021737449_j_ijb-2023-0138_ref_040 doi: 10.18637/jss.v040.i08 – ident: 2025071113021737449_j_ijb-2023-0138_ref_021 doi: 10.1093/biostatistics/kxt001 – ident: 2025071113021737449_j_ijb-2023-0138_ref_018 doi: 10.1093/biostatistics/kxr036 – ident: 2025071113021737449_j_ijb-2023-0138_ref_001 doi: 10.1201/9781420072884 – ident: 2025071113021737449_j_ijb-2023-0138_ref_038 doi: 10.1093/bioinformatics/btg427 – ident: 2025071113021737449_j_ijb-2023-0138_ref_035 doi: 10.1109/TPAMI.1984.4767596 – ident: 2025071113021737449_j_ijb-2023-0138_ref_037 doi: 10.1093/biomet/57.1.97 – ident: 2025071113021737449_j_ijb-2023-0138_ref_039 doi: 10.1093/biostatistics/kxy024 – ident: 2025071113021737449_j_ijb-2023-0138_ref_015 doi: 10.1177/09622802221084131 – ident: 2025071113021737449_j_ijb-2023-0138_ref_026 doi: 10.1093/biomet/37.1-2.17 – ident: 2025071113021737449_j_ijb-2023-0138_ref_029 doi: 10.1016/j.sste.2011.03.001 – ident: 2025071113021737449_j_ijb-2023-0138_ref_046 doi: 10.1214/ss/1177011136 – ident: 2025071113021737449_j_ijb-2023-0138_ref_004 doi: 10.1007/978-1-4612-1284-3_4 – ident: 2025071113021737449_j_ijb-2023-0138_ref_014 doi: 10.1177/0962280218767975 – ident: 2025071113021737449_j_ijb-2023-0138_ref_045 doi: 10.1148/radiology.143.1.7063747 – ident: 2025071113021737449_j_ijb-2023-0138_ref_022 doi: 10.1016/j.sste.2015.11.005 – ident: 2025071113021737449_j_ijb-2023-0138_ref_041 doi: 10.1007/978-1-4614-6868-4 – ident: 2025071113021737449_j_ijb-2023-0138_ref_016 doi: 10.1007/s10651-007-0029-9 – ident: 2025071113021737449_j_ijb-2023-0138_ref_007 doi: 10.1002/(SICI)1097-0258(19980930)17:18<2045::AID-SIM943>3.0.CO;2-P – ident: 2025071113021737449_j_ijb-2023-0138_ref_031 doi: 10.1111/biom.12156 – ident: 2025071113021737449_j_ijb-2023-0138_ref_033 doi: 10.1016/j.sste.2022.100559 – ident: 2025071113021737449_j_ijb-2023-0138_ref_025 doi: 10.1016/j.puhe.2010.02.006 – ident: 2025071113021737449_j_ijb-2023-0138_ref_028 doi: 10.1080/01621459.1997.10474012 – ident: 2025071113021737449_j_ijb-2023-0138_ref_012 doi: 10.1111/j.0006-341X.2000.00013.x – ident: 2025071113021737449_j_ijb-2023-0138_ref_044 doi: 10.1016/S0031-3203(96)00142-2 |
SSID | ssj0041819 |
Score | 2.3477683 |
Snippet | Bayesian hierarchical models with a spatially smooth conditional autoregressive prior distribution are commonly used to estimate the spatio-temporal pattern in... |
SourceID | proquest pubmed crossref walterdegruyter |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 129 |
SubjectTerms | Algorithms Bayes Theorem Bayesian analysis Bayesian hierarchical model boundary detection Computer Simulation conditional autoregressive models disease mapping Epidemiology Estimates Humans Models, Statistical Neighborhoods Risk Assessment - methods risk smoothing Scotland - epidemiology Spatio-Temporal Analysis spatio-temporal modelling |
Title | Risk estimation and boundary detection in Bayesian disease mapping |
URI | https://www.degruyter.com/doi/10.1515/ijb-2023-0138 https://www.ncbi.nlm.nih.gov/pubmed/40418785 https://www.proquest.com/docview/3229127502 https://www.proquest.com/docview/3212119998 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3La9RAGB_WLYIeSn3VtVVGEC8lupNMHnPsSm0R7EFa2VuYV0oEs-2aIOvFf91vXsluW0R7CSHJzMB8v3yv-R4IvVFCgF6s8ogSsHRoNk0iEes00kyBvNGC55lJTv58mp2c00_zdD4a_V6LWupa8U7-ujWv5C5UhWdAV5Ml-x-U7SeFB3AP9IUrUBiu_0TjLyYu3JTJcPmH9iBA2D5Jy9WB0q2WIZRxxlfapkv6A5mD79wUZrhY100NYuoNB-FaWQlRL0zukSvr3LMKV4Bg3umrMJf1KCirxlsf7JLX_Qsf9AM6sxwwecovawebY-5Dkr0TIk5NsJTLdHeRJIDoZbcKAcXa89IUIJC5XjGB2bp06A1QOc5JvOPDCWHiqtHe4O-pLYVRfxORafsemWPWQZCFw_tr8q2POjT2DkxQwvDSDC_NcDCAYel7aCsGOyMeo63D49nR1yDMKShAzJdmhaHvN1beVGVu2CcP0fZPG_Kg9IXbnDXN5WwHbXuTAx86_DxCI908RvddE9LVEzQzKMIDijCgCAcU4R5FuG5wQBH2KMIeRU_R-cejsw8nke-sEckkIW2UcA68vFIZ1dOYSUpElccyS4jmzPQvIFVaVYzRVKtcwB7xWGWSVqSQoM5MBU2eoXGzaPRzhItciELB3y4LQWUaM5UwCpKBaFDVVSYm6G3YpPLSFVApbyXEBO2HLSw9vH-UIG6YbUEQT9Dr_jVwQHOsxRu96Mw3tkwhYzDFrtv6fiVqKJgX6QTRa7QY1vgLLF7cbdgeejD8JPto3C47_RJ011a88vj6A8Iam7A |
linkProvider | Walter de Gruyter |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61i1DhQKEtkPIyUtWb2Y3jOMmRRdDleUBQ9Rb5Fbo8smg3UbX99R3nsW2hp3JN4tiZGXtmMjPfAHwySqFdbCLKffR0uOgFVDEbUpsY1DdWyUi44uTzCzG45iffwjabcNKkVRp7My6nRY2Q2jUjXbofZTOsAdTA3eGtoq7xN3WBtu734uH-NczFHN2VDsztf-kffm2PY7zmJw245rORfyujZxbmIiz9qILWsxX9oXuO3oJqV12nnNztlYXa0z-fADq-6LOWYamxTMl-LUor8Mrm72C-7lU5fQ_9y-HkjjhMjrrYkcjcEFU1ZRpPibFFldOVk2FO-nJqXW0maaI_5EE6FIibD3B9dHh1MKBNAwaqg8AvaCAlbvnMCG57LNHcV1nEtAh8KxMHc-9nYZYlCQ-tiVQQM8mM0DzzY41ar6d4sAqdfJTbdSBxpFRsUCh0rLgOWWJcS3Z07ixadEYoDz63nEgfa5yN1PknSJUUqZI6qqSOKh5stnxKm-02SfFUSiqkeubB7uw2bhQX_ZC5HZXumQrNDt1LD9Zq_s5m4k5Mojj0gD9h-O85_rkafCMaTB__b9gOvBlcnZ-lZ8cXpxuwwFxn4Z6gTGxCpxiXdgvNnUJtNwL9C0Ng-6c |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9RAEJ_gEQ0-ACpoAXVNjG_LXbfbbfvIASf4QYwRw1uzXyUnsUeONub8651pe8eXT_rcbnc7M7szszPzG4C3zhi0i13CZYiejlSDiBvhY-4zh_rGG50oKk7-fKKOTuWHs_jsRhU_pVU6fz6tZ1WLkNp3E1vTRdkCawA1cH_8w3Bq_M0p0Na_dMUDWE4lujI9WN57Pzz8Pj-NJWqwrMPWvDfwti66Z2A-htVfTcx6saAbqme0Bnq-6Dbj5GK3rsyu_X0Hz_F__modVju7lO21gvQElnz5FB62nSpnz2D4dXx1wQiRoy11ZLp0zDQtmaYz5nzVZHSVbFyyoZ55qsxkXeyH_dSEAXG-Aaejw2_7R7xrv8BtFIUVj7TGDV84Jf1AZFaGpkiEVVHodUYg92ERF0WWydi7xESp0MIpK4swtajzBkZGm9ArJ6V_ASxNjEkdioRNjbSxyBw1ZEfXzqM955QJ4N2cEflli7KRk3eCRMmRKDkRJSeiBLAzZ1PebbarHM-krMGpFwG8WTzGbUKxD136SU3vNFh26FwG8Lxl72ImSVKSpHEA8g6_r-f462rwi2gubf3bsNfw6MvBKP90fPJxG1YEtRUeKC7UDvSqae1foq1TmVedOP8BUUf6Tg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Risk+estimation+and+boundary+detection+in+Bayesian+disease+mapping&rft.jtitle=The+international+journal+of+biostatistics&rft.au=Yin%2C+Xueqing&rft.au=Anderson%2C+Craig&rft.au=Lee%2C+Duncan&rft.au=Napier%2C+Gary&rft.date=2025-06-26&rft.pub=De+Gruyter&rft.eissn=1557-4679&rft.volume=21&rft.issue=1&rft.spage=129&rft.epage=150&rft_id=info:doi/10.1515%2Fijb-2023-0138&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_ijb_2023_0138211129 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1557-4679&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1557-4679&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1557-4679&client=summon |