Adaptive control for a motion mechanism with pneumatic artificial muscles subject to dead-zones

•Dead-zones of pneumatic artificial muscles are considered in system modeling.•Total disturbances are estimated by a nonlinear extended state observer.•An adaptive control law is proposed to handle dead-zones parameters. This paper proposes an adaptive control method for a motion mechanism of pneuma...

Full description

Saved in:
Bibliographic Details
Published inMechanical systems and signal processing Vol. 148; p. 107155
Main Authors Zhao, Ling, Cheng, Haiyan, Zhang, Jinhui, Xia, Yuanqing
Format Journal Article
LanguageEnglish
Published Berlin Elsevier Ltd 01.02.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Dead-zones of pneumatic artificial muscles are considered in system modeling.•Total disturbances are estimated by a nonlinear extended state observer.•An adaptive control law is proposed to handle dead-zones parameters. This paper proposes an adaptive control method for a motion mechanism of pneumatic artificial muscles based on a nonlinear extended state observer. The motion mechanism of pneumatic artificial muscles is modeled as a dynamic nonlinear system. Dead-zones of the pneumatic artificial muscles are considered in modeling the dynamic nonlinear system. The nonlinear extended state observer is designed to estimate total disturbances for the dynamic nonlinear system. Moreover, the dead-zones are dealt with by an adaptive control law for the dynamic nonlinear system. The effectiveness of the proposed adaptive control method is proved by angle tracking control experiments.
AbstractList This paper proposes an adaptive control method for a motion mechanism of pneumatic artificial muscles based on a nonlinear extended state observer. The motion mechanism of pneumatic artificial muscles is modeled as a dynamic nonlinear system. Dead-zones of the pneumatic artificial muscles are considered in modeling the dynamic nonlinear system. The nonlinear extended state observer is designed to estimate total disturbances for the dynamic nonlinear system. Moreover, the dead-zones are dealt with by an adaptive control law for the dynamic nonlinear system. The effectiveness of the proposed adaptive control method is proved by angle tracking control experiments.
•Dead-zones of pneumatic artificial muscles are considered in system modeling.•Total disturbances are estimated by a nonlinear extended state observer.•An adaptive control law is proposed to handle dead-zones parameters. This paper proposes an adaptive control method for a motion mechanism of pneumatic artificial muscles based on a nonlinear extended state observer. The motion mechanism of pneumatic artificial muscles is modeled as a dynamic nonlinear system. Dead-zones of the pneumatic artificial muscles are considered in modeling the dynamic nonlinear system. The nonlinear extended state observer is designed to estimate total disturbances for the dynamic nonlinear system. Moreover, the dead-zones are dealt with by an adaptive control law for the dynamic nonlinear system. The effectiveness of the proposed adaptive control method is proved by angle tracking control experiments.
ArticleNumber 107155
Author Xia, Yuanqing
Zhang, Jinhui
Cheng, Haiyan
Zhao, Ling
Author_xml – sequence: 1
  givenname: Ling
  orcidid: 0000-0002-0168-2184
  surname: Zhao
  fullname: Zhao, Ling
  email: lingzhao84@126.com
  organization: State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
– sequence: 2
  givenname: Haiyan
  orcidid: 0000-0002-6216-2617
  surname: Cheng
  fullname: Cheng, Haiyan
  email: chenghaiyan8023@163.com
  organization: School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710000, China
– sequence: 3
  givenname: Jinhui
  orcidid: 0000-0002-2405-894X
  surname: Zhang
  fullname: Zhang, Jinhui
  email: zhangjinh@bit.edu.cn
  organization: School of Automation, Beijing Institute of Technology, Beijing 100081, China
– sequence: 4
  givenname: Yuanqing
  surname: Xia
  fullname: Xia, Yuanqing
  email: xia_yuanqing@bit.edu.cn
  organization: School of Automation, Beijing Institute of Technology, Beijing 100081, China
BookMark eNqFkDtPwzAQgC1UJNrCL2CxxJziR-ImA0NV8ZIqsXS3XOeiOkrsYDtF5deTECYGuOWk0333-BZoZp0FhG4pWVFCxX29OrchdCtG2FhZ0yy7QHNKCpFQRsUMzUme5wlna3KFFiHUhJAiJWKO5KZUXTQnwNrZ6F2DK-exwq2Lxlncgj4qa0KLP0w84s5C36poNFY-mspooxrc9kE3EHDoDzXoiKPDJagy-RxuDNfoslJNgJufvET7p8f99iXZvT2_bje7RHNOY8JVRkjFNZRAK6ZoKQqSEl4onWWCFRUlwHVVqJSmrEzFOmcKgBYgKAidHvgS3U1jO-_eewhR1q73dtgoWZqlGRV8iCXiU5f2LgQPley8aZU_S0rkKFLW8lukHEXKSeRAFb8obaIa9USvTPMP-zCxMPx-MuBl0Abs8KfxgytZOvMn_wVgh5NH
CitedBy_id crossref_primary_10_1007_s40435_025_01611_y
crossref_primary_10_1016_j_ins_2024_120814
crossref_primary_10_1016_j_birob_2024_100176
crossref_primary_10_1016_j_measurement_2024_116225
crossref_primary_10_1109_JSEN_2024_3383499
crossref_primary_10_3390_s23020776
crossref_primary_10_1061_JCEMD4_COENG_14490
crossref_primary_10_1109_TSMC_2024_3373471
crossref_primary_10_1007_s11071_024_09883_3
crossref_primary_10_3390_act11120369
crossref_primary_10_1016_j_ymssp_2020_107532
crossref_primary_10_1109_TASE_2023_3243119
crossref_primary_10_1016_j_isatra_2024_06_027
crossref_primary_10_1088_1742_6596_2213_1_012033
crossref_primary_10_1109_TSMC_2024_3405657
crossref_primary_10_1109_ACCESS_2025_3532853
crossref_primary_10_1142_S0218127423300082
crossref_primary_10_1115_1_4054084
crossref_primary_10_1109_TIE_2021_3134084
crossref_primary_10_1007_s42452_023_05475_9
crossref_primary_10_1109_ACCESS_2022_3215980
crossref_primary_10_1002_rnc_7351
crossref_primary_10_1016_j_jfranklin_2024_107093
crossref_primary_10_1016_j_chaos_2022_113092
crossref_primary_10_1007_s11071_022_08143_6
crossref_primary_10_1080_14484846_2022_2094537
crossref_primary_10_3390_act10110280
crossref_primary_10_1016_j_sna_2025_116274
crossref_primary_10_3390_act9040118
Cites_doi 10.1016/j.ymssp.2017.12.015
10.1016/j.ymssp.2018.12.031
10.1109/TIE.2017.2782198
10.1016/j.automatica.2003.10.021
10.1109/TIE.2018.2860527
10.1109/TIE.2014.2316255
10.1049/iet-cta.2009.0555
10.1109/TIE.2016.2587858
10.1016/j.isatra.2016.10.012
10.1109/TCST.2017.2654424
10.1016/j.mechatronics.2015.03.006
10.1016/j.eswa.2010.12.154
10.1109/TIE.2008.2011621
10.1109/AIM.2019.8868436
10.1109/TIE.2016.2580123
10.1109/TII.2018.2822670
10.1016/j.ymssp.2018.08.040
10.1016/j.automatica.2007.11.025
10.1109/TIE.2018.2838061
10.1109/TSMC.2017.2719057
10.1109/TIE.2013.2287217
10.1109/TIE.2010.2066535
10.1109/TCST.2013.2262074
10.1016/j.automatica.2005.07.001
10.1016/j.conengprac.2017.01.008
10.1016/j.ymssp.2019.106300
10.1109/70.481753
10.1109/TMECH.2013.2268942
10.1109/TIE.2018.2884215
10.1109/TMECH.2012.2219065
10.1109/TII.2019.2923715
10.1016/j.ymssp.2019.106552
10.1109/TIE.2016.2573266
10.1109/TIE.2015.2448060
10.1016/j.ymssp.2018.02.014
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Feb 1, 2021
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Feb 1, 2021
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.ymssp.2020.107155
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1096-1216
ExternalDocumentID 10_1016_j_ymssp_2020_107155
S0888327020305410
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SST
SSV
SSZ
T5K
XPP
ZMT
ZU3
~G-
29M
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SEW
SSH
WUQ
7SC
7SP
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c331t-3a500f3cede1f2a1d6904039ac55629f10e3cf9a4142d46782aee19e61e6c4b3
IEDL.DBID .~1
ISSN 0888-3270
IngestDate Sun Jul 13 04:35:40 EDT 2025
Thu Apr 24 23:13:09 EDT 2025
Tue Jul 01 00:58:22 EDT 2025
Fri Feb 23 02:47:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Nonlinear extended state observer
Pneumatic artificial muscle
Adaptive control law
Dead-zone
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-3a500f3cede1f2a1d6904039ac55629f10e3cf9a4142d46782aee19e61e6c4b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0168-2184
0000-0002-6216-2617
0000-0002-2405-894X
PQID 2454516333
PQPubID 2045429
ParticipantIDs proquest_journals_2454516333
crossref_primary_10_1016_j_ymssp_2020_107155
crossref_citationtrail_10_1016_j_ymssp_2020_107155
elsevier_sciencedirect_doi_10_1016_j_ymssp_2020_107155
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
2021-02-00
20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Mechanical systems and signal processing
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Han (b0140) 2009; 56
Lin, Lin, Yu, Chen (b0080) 2015; 28
Pu, Yuan, Yi, Tan (b0150) 2015; 62
Zhao, Li, Liu, Cheng (b0145) 2019; 49
Xu, Su, Zhang, Lu (b0115) 2017; 66
J. J. Slotine and W. Li, Applied Nonlinear Control, Englewood Cliffs, New Jersey: Prentice-Hall, pp. 125-126, 1991.
Zhao, Cheng, Zhang, Xia (b0105) 2019; 66
Yang, Yu, Zhang (b0090) 2017; 61
Beyl, Damme, Ham, Vanderborght, Lefeber (b0030) 2014; 19
Hu, Yao, Wang (b0110) 2011; 58
Bian, Jing (b0010) 2019; 125
H. Dai, X. Jing, Y. Wang, X. Yue, J. Yuan, “Post-capture vibration suppression of spacecraft via a bio-inspired isolation system, Mechanical Systems and Signal Processing, vol. 105, pp. 214-240, 2018.
Cao, Xie, Das (b0075) 2018; 26
Zhang, Shen, Peng (b0165) 2009; 4
D. Liang, N. Sun, Y. Wu, Y. Chen, Y. Fang, “Dynamic modeling and analysis for dual pneumatic artificial muscle actuated manipulators, in: 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Hong Kong, China, pp. 691-696, 2019.
Yu, Yu, Shirinzadeh, Man (b0185) 2005; 41
Yuan, Wang, Guo (b0155) 2019; 15
Aschemann, Schindele (b0085) 2014; 61
Hussain, Jamwal, Ghayesh, Xie (b0040) 2017; 64
Jiang, Jing, Guo (b0020) 2020; 138
Xing, Huang, Wang, Wu, Xu, He (b0050) 2010; 4
Feng, Jing (b0015) 2019; 117
Jamwal, Xie, Hussain, Parsons (b0035) 2014; 19
Sun, Liang, Wu, Chen, Qin, Fang (b0045) 2020; 16
Shen, Shi, Shi, Zhang (b0125) 2017; 64
Sun, Li, Wang, Yin, Sun, Liu (b0175) 2020; 139
Zhu, Shi, Chen, Zhang, Xiong (b0070) 2017; 64
Madonski, Ramirez-Neria, Stanković, Shao, Gao, Yang, Li (b0180) 2019; 134
Andrikopoulos, Nikolakopoulos, Manesis (b0060) 2014; 61
Wang, Sub, Hong (b0130) 2004; 40
Wu, Huang, Wang, Xing (b0065) 2014; 22
Zhao, Cheng, Xia, Liu (b0100) 2019; 66
Chou, Hannaford (b0160) 1996; 12
Yuan, Yu, Guo (b0095) 2019; 66
Yang, Sun, Xia, Zhao (b0120) 2018; 65
Xie, Jamwal (b0055) 2011; 38
Zhang, Geb (b0135) 2008; 44
Liang, Sun, Wu, Chen, Qin, Fang (b0170) 2019; 36
Xie (10.1016/j.ymssp.2020.107155_b0055) 2011; 38
Jiang (10.1016/j.ymssp.2020.107155_b0020) 2020; 138
Chou (10.1016/j.ymssp.2020.107155_b0160) 1996; 12
Cao (10.1016/j.ymssp.2020.107155_b0075) 2018; 26
Shen (10.1016/j.ymssp.2020.107155_b0125) 2017; 64
10.1016/j.ymssp.2020.107155_b0005
Xing (10.1016/j.ymssp.2020.107155_b0050) 2010; 4
Yang (10.1016/j.ymssp.2020.107155_b0120) 2018; 65
Yuan (10.1016/j.ymssp.2020.107155_b0155) 2019; 15
Lin (10.1016/j.ymssp.2020.107155_b0080) 2015; 28
Jamwal (10.1016/j.ymssp.2020.107155_b0035) 2014; 19
Zhu (10.1016/j.ymssp.2020.107155_b0070) 2017; 64
Feng (10.1016/j.ymssp.2020.107155_b0015) 2019; 117
Xu (10.1016/j.ymssp.2020.107155_b0115) 2017; 66
Yu (10.1016/j.ymssp.2020.107155_b0185) 2005; 41
10.1016/j.ymssp.2020.107155_b0190
Zhao (10.1016/j.ymssp.2020.107155_b0100) 2019; 66
Aschemann (10.1016/j.ymssp.2020.107155_b0085) 2014; 61
Zhao (10.1016/j.ymssp.2020.107155_b0105) 2019; 66
Sun (10.1016/j.ymssp.2020.107155_b0175) 2020; 139
Pu (10.1016/j.ymssp.2020.107155_b0150) 2015; 62
Zhang (10.1016/j.ymssp.2020.107155_b0135) 2008; 44
Zhao (10.1016/j.ymssp.2020.107155_b0145) 2019; 49
Zhang (10.1016/j.ymssp.2020.107155_b0165) 2009; 4
Andrikopoulos (10.1016/j.ymssp.2020.107155_b0060) 2014; 61
Wu (10.1016/j.ymssp.2020.107155_b0065) 2014; 22
Sun (10.1016/j.ymssp.2020.107155_b0045) 2020; 16
Liang (10.1016/j.ymssp.2020.107155_b0170) 2019; 36
Yuan (10.1016/j.ymssp.2020.107155_b0095) 2019; 66
Han (10.1016/j.ymssp.2020.107155_b0140) 2009; 56
Yang (10.1016/j.ymssp.2020.107155_b0090) 2017; 61
10.1016/j.ymssp.2020.107155_b0025
Madonski (10.1016/j.ymssp.2020.107155_b0180) 2019; 134
Hussain (10.1016/j.ymssp.2020.107155_b0040) 2017; 64
Bian (10.1016/j.ymssp.2020.107155_b0010) 2019; 125
Hu (10.1016/j.ymssp.2020.107155_b0110) 2011; 58
Wang (10.1016/j.ymssp.2020.107155_b0130) 2004; 40
Beyl (10.1016/j.ymssp.2020.107155_b0030) 2014; 19
References_xml – volume: 58
  start-page: 2454
  year: 2011
  end-page: 2464
  ident: b0110
  article-title: Adaptive robust precision motion control of systems with unknown input dead-zones: A case study with comparative experiments
  publication-title: IEEE Trans. Industr. Electron.
– volume: 64
  start-page: 5025
  year: 2017
  end-page: 5034
  ident: b0125
  article-title: Adaptive output consensus with saturation and dead-zone and its application
  publication-title: IEEE Trans. Industr. Electron.
– reference: D. Liang, N. Sun, Y. Wu, Y. Chen, Y. Fang, “Dynamic modeling and analysis for dual pneumatic artificial muscle actuated manipulators, in: 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Hong Kong, China, pp. 691-696, 2019.
– volume: 15
  start-page: 1162
  year: 2019
  end-page: 1172
  ident: b0155
  article-title: Force reflecting control for bilateral teleoperation system under time-varying delays
  publication-title: Transactions on Industrial Informatics
– volume: 19
  start-page: 1046
  year: 2014
  end-page: 1056
  ident: b0030
  article-title: Pleated pneumatic artificial muscle-based actuator system as a torque source for compliant lower limb exoskeletons
  publication-title: IEEE/ASME Trans. Mechatron.
– volume: 56
  start-page: 900
  year: 2009
  end-page: 906
  ident: b0140
  article-title: From PID to active disturbance rejection control
  publication-title: IEEE Trans. Industr. Electron.
– volume: 138
  start-page: 1
  year: 2020
  end-page: 29
  ident: b0020
  article-title: A novel bio-inspired multi-joint anti-vibration structure and its nonlinear HSLDS properties
  publication-title: Mech. Systems Signal Process.
– volume: 22
  start-page: 440
  year: 2014
  end-page: 455
  ident: b0065
  article-title: Nonlinear disturbance observer-based dynamic surface control for trajectory tracking of pneumatic muscle system
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 61
  start-page: 3620
  year: 2014
  end-page: 3629
  ident: b0085
  article-title: Comparison of model-based approaches to the compensation of hysteresis in the force characteristic of pneumatic muscles
  publication-title: IEEE Trans. Industr. Electron.
– volume: 28
  start-page: 35
  year: 2015
  end-page: 45
  ident: b0080
  article-title: Hysteresis modeling and tracking control for a dual pneumatic artificial muscle system using Prandtl-Ishlinskii model
  publication-title: Mechatronics
– volume: 65
  start-page: 5806
  year: 2018
  end-page: 5815
  ident: b0120
  article-title: Position control for magnetic rodless cylinders with strong static friction
  publication-title: IEEE Trans. Industr. Electron.
– volume: 61
  start-page: 1
  year: 2017
  end-page: 10
  ident: b0090
  article-title: Angle tracking of a pneumatic muscle actuator mechanism under varying load conditions
  publication-title: Control Eng. Practice
– volume: 139
  start-page: 1
  year: 2020
  end-page: 11
  ident: b0175
  article-title: Continuous finite-time output torque control approach for series elastic actuator
  publication-title: Mech. Systems Signal Process.
– volume: 36
  start-page: 1912
  year: 2019
  end-page: 1919
  ident: b0170
  article-title: Nonlinear control for pneumatic artificial muscle systems with disturbance estimation
  publication-title: Control Theory Appl.
– volume: 16
  start-page: 969
  year: 2020
  end-page: 979
  ident: b0045
  article-title: Adaptive control for pneumatic artificial muscle systems with parametric uncertainties and unidirectional input constraints
  publication-title: IEEE Trans. Industr. Inf.
– volume: 19
  start-page: 64
  year: 2014
  end-page: 75
  ident: b0035
  article-title: An adaptive wearable parallel robot for the treatment of ankle injuries
  publication-title: IEEE/ASME Trans. Mechatron.
– volume: 66
  start-page: 4566
  year: 2019
  end-page: 4576
  ident: b0100
  article-title: Angle tracking adaptive backstepping control for a mechanism of pneumatic muscle actuators via an AESO
  publication-title: IEEE Trans. Industr. Electron.
– volume: 38
  start-page: 8128
  year: 2011
  end-page: 8137
  ident: b0055
  article-title: An iterative fuzzy controller for pneumatic muscle driven rehabilitation robot
  publication-title: Expert Syst. Appl.
– volume: 117
  start-page: 786
  year: 2019
  end-page: 812
  ident: b0015
  article-title: Human body inspired vibration isolation: Beneficial nonlinear stiffness, nonlinear damping & nonlinear inertia
  publication-title: Mech. Systems Signal Process.
– volume: 40
  start-page: 407
  year: 2004
  end-page: 413
  ident: b0130
  article-title: Robust adaptive control of a class of nonlinear systems with unknown dead-zone
  publication-title: Automatica
– volume: 64
  start-page: 1675
  year: 2017
  end-page: 1685
  ident: b0040
  article-title: Assist-as-needed control of an intrinsically compliant robotic gait training orthosis
  publication-title: IEEE Trans. Industr. Electron.
– volume: 61
  start-page: 6926
  year: 2014
  end-page: 6937
  ident: b0060
  article-title: Advanced nonlinear PID-based antagonistic control for pneumatic muscle actuators
  publication-title: IEEE Trans. Industr. Electron.
– reference: H. Dai, X. Jing, Y. Wang, X. Yue, J. Yuan, “Post-capture vibration suppression of spacecraft via a bio-inspired isolation system, Mechanical Systems and Signal Processing, vol. 105, pp. 214-240, 2018.
– volume: 62
  start-page: 5858
  year: 2015
  end-page: 5869
  ident: b0150
  article-title: A class of adaptive extended state observers for nonlinear disturbed systems
  publication-title: IEEE Trans. Industr. Electron.
– volume: 4
  start-page: 17
  year: 2009
  end-page: 19
  ident: b0165
  article-title: Static mathematical model and experimental study of pneumatic muscle actuator
  publication-title: Chinese Hydraulics Pneumatics
– volume: 64
  start-page: 3329
  year: 2017
  end-page: 3337
  ident: b0070
  article-title: Adaptive servomechanism of pneumatic muscle actuators with uncertainties
  publication-title: IEEE Trans. Industr. Electron.
– volume: 49
  start-page: 1110
  year: 2019
  end-page: 1118
  ident: b0145
  article-title: Trajectory tracking control of a one degree of freedom manipulator based on a switched sliding mode controller with a novel extended state observer framework
  publication-title: IEEE Trans, Systems, Man, Cybern.: Syst.
– volume: 66
  start-page: 8659
  year: 2019
  end-page: 8669
  ident: b0105
  article-title: Angle attitude control for a 2-DOF parallel mechanism of PMAs using tracking differentiators
  publication-title: IEEE Trans. Industr. Electron.
– volume: 134
  start-page: 1
  year: 2019
  end-page: 22
  ident: b0180
  article-title: On vibration suppression and trajectory tracking in largely uncertain torsional system: an error-based ADRC approach
  publication-title: Mech. Systems Signal Process.
– volume: 12
  start-page: 90
  year: 1996
  end-page: 102
  ident: b0160
  article-title: Measurement and modeling of McKibben pneumatic artificial muscles
  publication-title: IEEE Trans. Robotics Autom.
– volume: 41
  start-page: 1957
  year: 2005
  end-page: 1964
  ident: b0185
  article-title: Continuous finite-time control for robotic manipulators with terminal sliding mode
  publication-title: Automatica
– volume: 44
  start-page: 1895
  year: 2008
  end-page: 1903
  ident: b0135
  article-title: Adaptive dynamic surface control of nonlinear systems with unknown dead zone in pure feedback form
  publication-title: Automatica
– volume: 66
  start-page: 2044
  year: 2019
  end-page: 2053
  ident: b0095
  article-title: Nonlinear active disturbance rejection control for the pneumatic muscle actuators with discrete-time measurements
  publication-title: IEEE Trans. Industr. Electron.
– volume: 66
  start-page: 393
  year: 2017
  end-page: 403
  ident: b0115
  article-title: Analysis and compensation for the cascade dead-zones in the proportional control valve
  publication-title: ISA Trans.
– volume: 4
  start-page: 2058
  year: 2010
  end-page: 2070
  ident: b0050
  article-title: Tracking control of pneumatic artificial muscle actuators based on sliding mode and non-linear disturbance observer
  publication-title: IET Control Theory Appl.
– reference: J. J. Slotine and W. Li, Applied Nonlinear Control, Englewood Cliffs, New Jersey: Prentice-Hall, pp. 125-126, 1991.
– volume: 26
  start-page: 274
  year: 2018
  end-page: 281
  ident: b0075
  article-title: MIMO sliding mode controller for gait exoskeleton driven by pneumatic muscles
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 125
  start-page: 21
  year: 2019
  end-page: 51
  ident: b0010
  article-title: Superior nonlinear passive damping characteristics of the bio-inspired limb-like or X-shaped structure
  publication-title: Mech. Systems Signal Process.
– ident: 10.1016/j.ymssp.2020.107155_b0005
  doi: 10.1016/j.ymssp.2017.12.015
– volume: 139
  start-page: 1
  year: 2020
  ident: 10.1016/j.ymssp.2020.107155_b0175
  article-title: Continuous finite-time output torque control approach for series elastic actuator
  publication-title: Mech. Systems Signal Process.
  doi: 10.1016/j.ymssp.2018.12.031
– volume: 65
  start-page: 5806
  issue: 7
  year: 2018
  ident: 10.1016/j.ymssp.2020.107155_b0120
  article-title: Position control for magnetic rodless cylinders with strong static friction
  publication-title: IEEE Trans. Industr. Electron.
  doi: 10.1109/TIE.2017.2782198
– volume: 40
  start-page: 407
  year: 2004
  ident: 10.1016/j.ymssp.2020.107155_b0130
  article-title: Robust adaptive control of a class of nonlinear systems with unknown dead-zone
  publication-title: Automatica
  doi: 10.1016/j.automatica.2003.10.021
– volume: 4
  start-page: 17
  year: 2009
  ident: 10.1016/j.ymssp.2020.107155_b0165
  article-title: Static mathematical model and experimental study of pneumatic muscle actuator
  publication-title: Chinese Hydraulics Pneumatics
– volume: 66
  start-page: 4566
  issue: 6
  year: 2019
  ident: 10.1016/j.ymssp.2020.107155_b0100
  article-title: Angle tracking adaptive backstepping control for a mechanism of pneumatic muscle actuators via an AESO
  publication-title: IEEE Trans. Industr. Electron.
  doi: 10.1109/TIE.2018.2860527
– volume: 61
  start-page: 6926
  issue: 12
  year: 2014
  ident: 10.1016/j.ymssp.2020.107155_b0060
  article-title: Advanced nonlinear PID-based antagonistic control for pneumatic muscle actuators
  publication-title: IEEE Trans. Industr. Electron.
  doi: 10.1109/TIE.2014.2316255
– volume: 4
  start-page: 2058
  issue: 10
  year: 2010
  ident: 10.1016/j.ymssp.2020.107155_b0050
  article-title: Tracking control of pneumatic artificial muscle actuators based on sliding mode and non-linear disturbance observer
  publication-title: IET Control Theory Appl.
  doi: 10.1049/iet-cta.2009.0555
– volume: 64
  start-page: 5025
  issue: 6
  year: 2017
  ident: 10.1016/j.ymssp.2020.107155_b0125
  article-title: Adaptive output consensus with saturation and dead-zone and its application
  publication-title: IEEE Trans. Industr. Electron.
  doi: 10.1109/TIE.2016.2587858
– volume: 66
  start-page: 393
  year: 2017
  ident: 10.1016/j.ymssp.2020.107155_b0115
  article-title: Analysis and compensation for the cascade dead-zones in the proportional control valve
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2016.10.012
– volume: 26
  start-page: 274
  issue: 1
  year: 2018
  ident: 10.1016/j.ymssp.2020.107155_b0075
  article-title: MIMO sliding mode controller for gait exoskeleton driven by pneumatic muscles
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2017.2654424
– volume: 28
  start-page: 35
  year: 2015
  ident: 10.1016/j.ymssp.2020.107155_b0080
  article-title: Hysteresis modeling and tracking control for a dual pneumatic artificial muscle system using Prandtl-Ishlinskii model
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2015.03.006
– volume: 38
  start-page: 8128
  issue: 7
  year: 2011
  ident: 10.1016/j.ymssp.2020.107155_b0055
  article-title: An iterative fuzzy controller for pneumatic muscle driven rehabilitation robot
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.12.154
– volume: 56
  start-page: 900
  issue: 3
  year: 2009
  ident: 10.1016/j.ymssp.2020.107155_b0140
  article-title: From PID to active disturbance rejection control
  publication-title: IEEE Trans. Industr. Electron.
  doi: 10.1109/TIE.2008.2011621
– ident: 10.1016/j.ymssp.2020.107155_b0025
  doi: 10.1109/AIM.2019.8868436
– volume: 64
  start-page: 1675
  issue: 2
  year: 2017
  ident: 10.1016/j.ymssp.2020.107155_b0040
  article-title: Assist-as-needed control of an intrinsically compliant robotic gait training orthosis
  publication-title: IEEE Trans. Industr. Electron.
  doi: 10.1109/TIE.2016.2580123
– volume: 15
  start-page: 1162
  issue: 2
  year: 2019
  ident: 10.1016/j.ymssp.2020.107155_b0155
  article-title: Force reflecting control for bilateral teleoperation system under time-varying delays
  publication-title: Transactions on Industrial Informatics
  doi: 10.1109/TII.2018.2822670
– volume: 117
  start-page: 786
  year: 2019
  ident: 10.1016/j.ymssp.2020.107155_b0015
  article-title: Human body inspired vibration isolation: Beneficial nonlinear stiffness, nonlinear damping & nonlinear inertia
  publication-title: Mech. Systems Signal Process.
  doi: 10.1016/j.ymssp.2018.08.040
– volume: 44
  start-page: 1895
  year: 2008
  ident: 10.1016/j.ymssp.2020.107155_b0135
  article-title: Adaptive dynamic surface control of nonlinear systems with unknown dead zone in pure feedback form
  publication-title: Automatica
  doi: 10.1016/j.automatica.2007.11.025
– volume: 66
  start-page: 2044
  issue: 3
  year: 2019
  ident: 10.1016/j.ymssp.2020.107155_b0095
  article-title: Nonlinear active disturbance rejection control for the pneumatic muscle actuators with discrete-time measurements
  publication-title: IEEE Trans. Industr. Electron.
  doi: 10.1109/TIE.2018.2838061
– volume: 49
  start-page: 1110
  issue: 6
  year: 2019
  ident: 10.1016/j.ymssp.2020.107155_b0145
  article-title: Trajectory tracking control of a one degree of freedom manipulator based on a switched sliding mode controller with a novel extended state observer framework
  publication-title: IEEE Trans, Systems, Man, Cybern.: Syst.
  doi: 10.1109/TSMC.2017.2719057
– volume: 61
  start-page: 3620
  issue: 7
  year: 2014
  ident: 10.1016/j.ymssp.2020.107155_b0085
  article-title: Comparison of model-based approaches to the compensation of hysteresis in the force characteristic of pneumatic muscles
  publication-title: IEEE Trans. Industr. Electron.
  doi: 10.1109/TIE.2013.2287217
– volume: 58
  start-page: 2454
  issue: 6
  year: 2011
  ident: 10.1016/j.ymssp.2020.107155_b0110
  article-title: Adaptive robust precision motion control of systems with unknown input dead-zones: A case study with comparative experiments
  publication-title: IEEE Trans. Industr. Electron.
  doi: 10.1109/TIE.2010.2066535
– volume: 22
  start-page: 440
  issue: 2
  year: 2014
  ident: 10.1016/j.ymssp.2020.107155_b0065
  article-title: Nonlinear disturbance observer-based dynamic surface control for trajectory tracking of pneumatic muscle system
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2013.2262074
– volume: 36
  start-page: 1912
  issue: 11
  year: 2019
  ident: 10.1016/j.ymssp.2020.107155_b0170
  article-title: Nonlinear control for pneumatic artificial muscle systems with disturbance estimation
  publication-title: Control Theory Appl.
– volume: 41
  start-page: 1957
  year: 2005
  ident: 10.1016/j.ymssp.2020.107155_b0185
  article-title: Continuous finite-time control for robotic manipulators with terminal sliding mode
  publication-title: Automatica
  doi: 10.1016/j.automatica.2005.07.001
– volume: 61
  start-page: 1
  year: 2017
  ident: 10.1016/j.ymssp.2020.107155_b0090
  article-title: Angle tracking of a pneumatic muscle actuator mechanism under varying load conditions
  publication-title: Control Eng. Practice
  doi: 10.1016/j.conengprac.2017.01.008
– volume: 134
  start-page: 1
  year: 2019
  ident: 10.1016/j.ymssp.2020.107155_b0180
  article-title: On vibration suppression and trajectory tracking in largely uncertain torsional system: an error-based ADRC approach
  publication-title: Mech. Systems Signal Process.
  doi: 10.1016/j.ymssp.2019.106300
– volume: 12
  start-page: 90
  issue: 1
  year: 1996
  ident: 10.1016/j.ymssp.2020.107155_b0160
  article-title: Measurement and modeling of McKibben pneumatic artificial muscles
  publication-title: IEEE Trans. Robotics Autom.
  doi: 10.1109/70.481753
– volume: 19
  start-page: 1046
  issue: 3
  year: 2014
  ident: 10.1016/j.ymssp.2020.107155_b0030
  article-title: Pleated pneumatic artificial muscle-based actuator system as a torque source for compliant lower limb exoskeletons
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2013.2268942
– volume: 66
  start-page: 8659
  issue: 11
  year: 2019
  ident: 10.1016/j.ymssp.2020.107155_b0105
  article-title: Angle attitude control for a 2-DOF parallel mechanism of PMAs using tracking differentiators
  publication-title: IEEE Trans. Industr. Electron.
  doi: 10.1109/TIE.2018.2884215
– volume: 19
  start-page: 64
  issue: 1
  year: 2014
  ident: 10.1016/j.ymssp.2020.107155_b0035
  article-title: An adaptive wearable parallel robot for the treatment of ankle injuries
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2012.2219065
– volume: 16
  start-page: 969
  issue: 2
  year: 2020
  ident: 10.1016/j.ymssp.2020.107155_b0045
  article-title: Adaptive control for pneumatic artificial muscle systems with parametric uncertainties and unidirectional input constraints
  publication-title: IEEE Trans. Industr. Inf.
  doi: 10.1109/TII.2019.2923715
– ident: 10.1016/j.ymssp.2020.107155_b0190
– volume: 138
  start-page: 1
  year: 2020
  ident: 10.1016/j.ymssp.2020.107155_b0020
  article-title: A novel bio-inspired multi-joint anti-vibration structure and its nonlinear HSLDS properties
  publication-title: Mech. Systems Signal Process.
  doi: 10.1016/j.ymssp.2019.106552
– volume: 64
  start-page: 3329
  issue: 4
  year: 2017
  ident: 10.1016/j.ymssp.2020.107155_b0070
  article-title: Adaptive servomechanism of pneumatic muscle actuators with uncertainties
  publication-title: IEEE Trans. Industr. Electron.
  doi: 10.1109/TIE.2016.2573266
– volume: 62
  start-page: 5858
  issue: 9
  year: 2015
  ident: 10.1016/j.ymssp.2020.107155_b0150
  article-title: A class of adaptive extended state observers for nonlinear disturbed systems
  publication-title: IEEE Trans. Industr. Electron.
  doi: 10.1109/TIE.2015.2448060
– volume: 125
  start-page: 21
  year: 2019
  ident: 10.1016/j.ymssp.2020.107155_b0010
  article-title: Superior nonlinear passive damping characteristics of the bio-inspired limb-like or X-shaped structure
  publication-title: Mech. Systems Signal Process.
  doi: 10.1016/j.ymssp.2018.02.014
SSID ssj0009406
Score 2.500807
Snippet •Dead-zones of pneumatic artificial muscles are considered in system modeling.•Total disturbances are estimated by a nonlinear extended state observer.•An...
This paper proposes an adaptive control method for a motion mechanism of pneumatic artificial muscles based on a nonlinear extended state observer. The motion...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107155
SubjectTerms Adaptive control
Adaptive control law
Artificial muscles
Control methods
Control theory
Dead-zone
Nonlinear extended state observer
Nonlinear systems
Pneumatic artificial muscle
State observers
Tracking control
Title Adaptive control for a motion mechanism with pneumatic artificial muscles subject to dead-zones
URI https://dx.doi.org/10.1016/j.ymssp.2020.107155
https://www.proquest.com/docview/2454516333
Volume 148
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpCqTwwYhrHTtKMVUVVQHShSN0sxw-piJaINAMM_HZ8TsJLiIHVsq3kfP58cb77DqGzSA4yaVNFbKA04Zk1RCY6IlniwlEziFTCIVH4dhpP7vn1PJq30KjJhQFaZY39FaZ7tK5b-rU1-_li0b9z-8O5YwK_0lzc4dOsOE_Ayy_ePmkeKff1NaEzgd6N8pDneL0siwJEK0NoSSjk-_1-Ov3AaX_4jHfQdh014mH1YLuoZVZ7aOuLluA-EkMtc8AuXLPPsQtHscRVmR68NJDiuyiWGG5ecb4ypRdrxfCylYoEXpYFcORwUWZwO4PXT1g7FyCvoOd_gGbjy9loQurqCUQxRteEQa0Dy5wdDbWhpNp9B_OApVJFLuZJLQ0MUzaVnPJQO7gchNIYmpqYmljxjB2i9spNf4SwpZGy3GZ0oCnPXARjrIPrJGE6sDbUcQeFjdGEqpXFocDFo2goZA_CW1qApUVl6Q46_xiUV8Iaf3ePm9UQ3_xDOOj_e2C3WTtRb89ChDyCAsWMseP_znuCNkOgt3gCdxe118-lOXXxyTrreQfsoY3h1c1k-g40QOdu
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQGYAB8RRvPDBitY6dpBkrRFWg7UKRulmOH1IRLRVpB_j13CUOLyEGVsu2kvP58xfn7jtCLmLdzrXPDPMtY5nMvWM6tTHLU6Cjrh2bVGKi8GCY9B7k7Tger5CrOhcGwyoD9leYXqJ1aGkGazbnk0nzHvYHuGOKv9KAd2Ca1SqqU8UNstq5uesNP7V3ZVliE_szHFCLD5VhXq_TokDdyghbUo4pf78fUD-gujx_ultkMxBH2qmebZusuNkO2fgiJ7hLVMfqOcIXDQHoFBgp1bSq1EOnDrN8J8WU4uUrnc_cstRrpfi-lZAEnS4LDJOjxTLHCxq6eKYWvIC9oaT_Hhl1r0dXPRYKKDAjBF8wgeUOvABTOu4jzS18CsuWyLSJgfZknrecMD7TksvIAmK2I-0cz1zCXWJkLvZJYwbTHxDqeWy89DlvWy5zIDHOA2KnqbAt7yObHJKoNpoyQVwca1w8qTqK7FGVllZoaVVZ-pBcfgyaV9oaf3dP6tVQ31xEAfr_PfCkXjsVdmihIvCVGMioEEf_nfecrPVGg77q3wzvjsl6hNEuZTz3CWksXpbuFOjKIj8L7vgOJdTqHw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+control+for+a+motion+mechanism+with+pneumatic+artificial+muscles+subject+to+dead-zones&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Zhao%2C+Ling&rft.au=Cheng%2C+Haiyan&rft.au=Zhang%2C+Jinhui&rft.au=Xia%2C+Yuanqing&rft.date=2021-02-01&rft.issn=0888-3270&rft.volume=148&rft.spage=107155&rft_id=info:doi/10.1016%2Fj.ymssp.2020.107155&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ymssp_2020_107155
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon