The geodesic boundary value problem and its solution on a triaxial ellipsoid
The geodesic problem on a triaxial ellipsoid is solved as a boundary value problem, using the calculus of variations. The boundary value problem consists of solving a non-linear second order ordinary differential equation, subject to the Dirichlet conditions. Subsequently, this problem is reduced to...
Saved in:
Published in | Journal of Geodetic Science (Online) Vol. 3; no. 3; pp. 240 - 249 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Versita
01.09.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 2081-9919 2081-9943 |
DOI | 10.2478/jogs-2013-0028 |
Cover
Abstract | The geodesic problem on a triaxial ellipsoid is solved as a boundary value problem, using the calculus of variations. The boundary value problem consists of solving a non-linear second order ordinary differential equation, subject to the Dirichlet conditions. Subsequently, this problem is reduced to an initial value problem with Dirichlet and Neumann conditions. The Neumann condition is determined iteratively by solving a system of four first-order ordinary differential equations with numerical integration. The last iteration yields the solution of the boundary value problem. From the solution, the ellipsoidal coordinates and the angle between the line of constant longitude and the geodesic, at any point along the geodesic, are determined. Also, the constant in Liouville’s equation is determined and the geodesic distance between the two points, as an integral, is computed by numerical integration. To demonstrate the validity of the method presented here, numerical examples are given. The geodesic boundary value problem and its solution on a biaxial ellipsoid are obtained as a degenerate case. |
---|---|
AbstractList | The geodesic problem on a triaxial ellipsoid is solved as a boundary value problem, using the calculus of variations. The boundary value problem consists of solving a non-linear second order ordinary differential equation, subject to the Dirichlet conditions. Subsequently, this problem is reduced to an initial value problem with Dirichlet and Neumann conditions. The Neumann condition is determined iteratively by solving a system of four first-order ordinary differential equations with numerical integration. The last iteration yields the solution of the boundary value problem. From the solution, the ellipsoidal coordinates and the angle between the line of constant longitude and the geodesic, at any point along the geodesic, are determined. Also, the constant in Liouville’s equation is determined and the geodesic distance between the two points, as an integral, is computed by numerical integration. To demonstrate the validity of the method presented here, numerical examples are given. The geodesic boundary value problem and its solution on a biaxial ellipsoid are obtained as a degenerate case. |
Author | Panou, G. |
Author_xml | – sequence: 1 givenname: G. surname: Panou fullname: Panou, G. email: geopanou@survey.ntua.gr organization: Department of Surveying Engineering, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece |
BookMark | eNp1kMtqwzAQRUVJoWmabdf6Aaejhy2ZrkroCwLdpGsjW5KroFhBstvm72uT0kUhMDCzmDPMPddo1oXOIHRLYEW5kHe70KaMAmEZAJUXaE5BkqwsOZv9zaS8QsuUdgBAcighF3O02X4Y3JqgTXINrsPQaRWP-FP5weBDDLU3e6w6jV2fcAp-6F3o8FgK99Gpb6c8Nt67QwpO36BLq3wyy9--QO9Pj9v1S7Z5e35dP2yyhjHSZ6wQNW0KQa0ikuZME1BWUSJrzguqDRGN1YITTnNZ57ZmNAeQGmRhLRVcswVane42MaQUja0O0e3HvysC1aSjmnRUk45q0jEC_B_QuF5NUfqonD-P3Z-wL-V7E7Vp43Ach3FviN2Y8BzIKAf2A2qcem0 |
CitedBy_id | crossref_primary_10_1515_jogs_2017_0004 crossref_primary_10_1080_13658816_2018_1461220 crossref_primary_10_1515_jogs_2019_0001 crossref_primary_10_1515_jag_2019_0066 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.2478/jogs-2013-0028 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics |
EISSN | 2081-9943 |
EndPage | 249 |
ExternalDocumentID | 10_2478_jogs_2013_0028 10_2478_jogs_2013_002833240 |
GroupedDBID | 0R~ 4.4 5VS AAFWJ ABFKT ACGFS ADBBV AFBDD AFPKN AHGSO AIKXB ALMA_UNASSIGNED_HOLDINGS BCNDV EBS EJD GROUPED_DOAJ HZ~ KQ8 M~E O9- OK1 QD8 AAYXX CITATION |
ID | FETCH-LOGICAL-c331t-367b2c672fa18253d10afa218b4462de17cfd7414258b5fb325008d086ff274d3 |
ISSN | 2081-9919 |
IngestDate | Thu Apr 24 22:56:26 EDT 2025 Tue Jul 01 02:48:58 EDT 2025 Thu Jul 10 10:39:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | This content is open access. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c331t-367b2c672fa18253d10afa218b4462de17cfd7414258b5fb325008d086ff274d3 |
OpenAccessLink | https://www.degruyter.com/document/doi/10.2478/jogs-2013-0028/pdf |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_2478_jogs_2013_0028 crossref_citationtrail_10_2478_jogs_2013_0028 walterdegruyter_journals_10_2478_jogs_2013_002833240 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-09-01 |
PublicationDateYYYYMMDD | 2013-09-01 |
PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of Geodetic Science (Online) |
PublicationYear | 2013 |
Publisher | Versita |
Publisher_xml | – name: Versita |
SSID | ssj0001509057 |
Score | 1.9038802 |
Snippet | The geodesic problem on a triaxial ellipsoid is solved as a boundary value problem, using the calculus of variations. The boundary value problem consists of... |
SourceID | crossref walterdegruyter |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 240 |
SubjectTerms | biaxial ellipsoid ellipsoidal coordinates geodesic problem Liouville constant numerical integration |
Title | The geodesic boundary value problem and its solution on a triaxial ellipsoid |
URI | https://www.degruyter.com/doi/10.2478/jogs-2013-0028 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdb97KXsu6DdP1AD2N7CMpsSbHsx1K6lbHtqYW-GcmSw8YWj8Shy_763UmWm4QEsoExRvgkoZ98vg_dHSFvclnzygjHciNBQeG2YFoZwZS08HvMTZX6I_9fvmbXt_LT3fjuoXqbjy5pzaj6szWu5H9QhTbAFaNk_wHZvlNogGfAF-6AMNz3xnjiGutgqYfGF0iaLYeYvxvDn3ylmN45EGeC3gE9xGIdv9FY7rwvoPm2Vq9zRUr9iN1jUtfIBDbSk3b-p2mz8Bb20aoVASs6FNGK4JkNB9GAgawYKN1qW0ijFLmlWNkUYhsP5lJhXMH3ZjJnYaSkC_9eS3a98RPqjwaCUoI9lEhfIn2J9I_JE65U8MN3OnMIA0-KxGdz7ecfEnNiF-_Xp7AmeBze-8MI1k1mi2Ubnd9eprh5Rg67ZaYXAdkj8shNn5PBxRzdE83PJX1L_XOwPs1fkM8AOI2A0wg49YDTDnAKgFMAnEbAKVyaRsBpD_hLcvvh6ubymnXlMFglRNoykSnDq0zxWoNSOBY2TXStQUQzoNJz61JV1RYERODCuRnXRoB0m-QWdNa65vjtvSIH02bqBoTmrjJ5Wkuli0w6qYukyEEPN86mZpxZfUxYXKuy6nLFY8mSH-V2eI7Ju_79XyFLys435cbSl90HNd9BITBl5Ou9BzghTx_29yk5aGcLdwZyY2vO_d75C-bLbSc |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4UDnoh_gz4swejp4WtK1t3JEacCngQEm5Lu3aIAWbYiPLf-7oNRCMXkx22pF2W99p833t9-x5CV4xGJBS2MpigEKAQ6RncFbbhUgnwyERoZSX_na7j9-njoDFY-xdGl1VKNZzNF2mukFqXcTjXibKl1gChLqu_xcMEHKw7EwBA1l_TyXgblR1g_6SEyk3__uX5O9MCmGhmkp8E8M8AQuTl6o1_vOkHOlU-shPr1eesAU9rD1UKxoibuYv30ZaaHqBqM9E57HiywNc4u89TFMkhaoPn8VDFUsEzFlnbpNkCa1VvhYv-MZhPJR6lCV6uPAwXx7qFxycsSKyyE4J4JI9Qv3XXu_WNomeCEdq2lRq24woSOi6JOEQODVtaJo844LiAuI9IZblhJIFFwFZlohEJGyiQySQENlFEtIOOUWkaT1UVYaZCwayIutxzqKLcMz0GwZpQ0hINR_IaMpa2CsJCUFz3tRgHEFho2wbatoG2baBtW0M3q_HvuZTGxpH0l-mDYmclG2bYWlfw5H_TLtGO3-u0g_ZD9-kU7RJgLXmR2RkqpbO5OgfWkYqLYll9AVbT1B4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60BfFSfNL63IPoKTTZbJPNsai1aq2CFryF3exuqWhTmhTtv3c2j_rAXoQcEtiE8M0s38zs8A1CJ4xqEglXWUxQSFCIDCzuC9fyqQR6ZCJyspb_u77XHdCb51bZTZgUbZVSDaezeZorpDZlHM1MoazUGiDUZ82XeJiAgc1kAiDI5kTqVVT1vICwCqq2u1eP91-FFqBEO1P8JEB_FsRDQS7e-MeHfpBT7T07sF78zTfe6WygWhEw4nZu4U20osZbqN5OTAk7fpvjU5zd5xWKZBv1wPB4qGKp4BmLbGrSdI6NqLfCxfgYzMcSj9IEl46H4eLYTPD4AH_EKjsgiEdyBw06l0_nXasYmWBFruukluv5gkSeTzSHxKHlSsfmmgONC0j7iFSOH2kJQQTsVCZaWrgQAdlMQl6jNTH22UWVcTxWdYSZigRzNPV54FFFeWAHDHI1oaQjWp7kDWSVWIVRoSduxlq8hpBXGGxDg21osA0Ntg10tlg_yZU0lq6kv6APi42VLHnDNbKCe_977RitPVx0wt51_3YfreeuYFrIDlAlnc7UIcQcqTgqvOoTQbrTUQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+geodesic+boundary+value+problem+and+its+solution+on+a+triaxial+ellipsoid&rft.jtitle=Journal+of+Geodetic+Science+%28Online%29&rft.au=Panou%2C+G.&rft.date=2013-09-01&rft.issn=2081-9919&rft.eissn=2081-9943&rft.volume=3&rft.issue=3&rft_id=info:doi/10.2478%2Fjogs-2013-0028&rft.externalDBID=n%2Fa&rft.externalDocID=10_2478_jogs_2013_0028 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2081-9919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2081-9919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2081-9919&client=summon |