The geodesic boundary value problem and its solution on a triaxial ellipsoid

The geodesic problem on a triaxial ellipsoid is solved as a boundary value problem, using the calculus of variations. The boundary value problem consists of solving a non-linear second order ordinary differential equation, subject to the Dirichlet conditions. Subsequently, this problem is reduced to...

Full description

Saved in:
Bibliographic Details
Published inJournal of Geodetic Science (Online) Vol. 3; no. 3; pp. 240 - 249
Main Author Panou, G.
Format Journal Article
LanguageEnglish
Published Versita 01.09.2013
Subjects
Online AccessGet full text
ISSN2081-9919
2081-9943
DOI10.2478/jogs-2013-0028

Cover

Abstract The geodesic problem on a triaxial ellipsoid is solved as a boundary value problem, using the calculus of variations. The boundary value problem consists of solving a non-linear second order ordinary differential equation, subject to the Dirichlet conditions. Subsequently, this problem is reduced to an initial value problem with Dirichlet and Neumann conditions. The Neumann condition is determined iteratively by solving a system of four first-order ordinary differential equations with numerical integration. The last iteration yields the solution of the boundary value problem. From the solution, the ellipsoidal coordinates and the angle between the line of constant longitude and the geodesic, at any point along the geodesic, are determined. Also, the constant in Liouville’s equation is determined and the geodesic distance between the two points, as an integral, is computed by numerical integration. To demonstrate the validity of the method presented here, numerical examples are given. The geodesic boundary value problem and its solution on a biaxial ellipsoid are obtained as a degenerate case.
AbstractList The geodesic problem on a triaxial ellipsoid is solved as a boundary value problem, using the calculus of variations. The boundary value problem consists of solving a non-linear second order ordinary differential equation, subject to the Dirichlet conditions. Subsequently, this problem is reduced to an initial value problem with Dirichlet and Neumann conditions. The Neumann condition is determined iteratively by solving a system of four first-order ordinary differential equations with numerical integration. The last iteration yields the solution of the boundary value problem. From the solution, the ellipsoidal coordinates and the angle between the line of constant longitude and the geodesic, at any point along the geodesic, are determined. Also, the constant in Liouville’s equation is determined and the geodesic distance between the two points, as an integral, is computed by numerical integration. To demonstrate the validity of the method presented here, numerical examples are given. The geodesic boundary value problem and its solution on a biaxial ellipsoid are obtained as a degenerate case.
Author Panou, G.
Author_xml – sequence: 1
  givenname: G.
  surname: Panou
  fullname: Panou, G.
  email: geopanou@survey.ntua.gr
  organization: Department of Surveying Engineering, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece
BookMark eNp1kMtqwzAQRUVJoWmabdf6Aaejhy2ZrkroCwLdpGsjW5KroFhBstvm72uT0kUhMDCzmDPMPddo1oXOIHRLYEW5kHe70KaMAmEZAJUXaE5BkqwsOZv9zaS8QsuUdgBAcighF3O02X4Y3JqgTXINrsPQaRWP-FP5weBDDLU3e6w6jV2fcAp-6F3o8FgK99Gpb6c8Nt67QwpO36BLq3wyy9--QO9Pj9v1S7Z5e35dP2yyhjHSZ6wQNW0KQa0ikuZME1BWUSJrzguqDRGN1YITTnNZ57ZmNAeQGmRhLRVcswVane42MaQUja0O0e3HvysC1aSjmnRUk45q0jEC_B_QuF5NUfqonD-P3Z-wL-V7E7Vp43Ach3FviN2Y8BzIKAf2A2qcem0
CitedBy_id crossref_primary_10_1515_jogs_2017_0004
crossref_primary_10_1080_13658816_2018_1461220
crossref_primary_10_1515_jogs_2019_0001
crossref_primary_10_1515_jag_2019_0066
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.2478/jogs-2013-0028
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
EISSN 2081-9943
EndPage 249
ExternalDocumentID 10_2478_jogs_2013_0028
10_2478_jogs_2013_002833240
GroupedDBID 0R~
4.4
5VS
AAFWJ
ABFKT
ACGFS
ADBBV
AFBDD
AFPKN
AHGSO
AIKXB
ALMA_UNASSIGNED_HOLDINGS
BCNDV
EBS
EJD
GROUPED_DOAJ
HZ~
KQ8
M~E
O9-
OK1
QD8
AAYXX
CITATION
ID FETCH-LOGICAL-c331t-367b2c672fa18253d10afa218b4462de17cfd7414258b5fb325008d086ff274d3
ISSN 2081-9919
IngestDate Thu Apr 24 22:56:26 EDT 2025
Tue Jul 01 02:48:58 EDT 2025
Thu Jul 10 10:39:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License This content is open access.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c331t-367b2c672fa18253d10afa218b4462de17cfd7414258b5fb325008d086ff274d3
OpenAccessLink https://www.degruyter.com/document/doi/10.2478/jogs-2013-0028/pdf
PageCount 10
ParticipantIDs crossref_primary_10_2478_jogs_2013_0028
crossref_citationtrail_10_2478_jogs_2013_0028
walterdegruyter_journals_10_2478_jogs_2013_002833240
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-09-01
PublicationDateYYYYMMDD 2013-09-01
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of Geodetic Science (Online)
PublicationYear 2013
Publisher Versita
Publisher_xml – name: Versita
SSID ssj0001509057
Score 1.9038802
Snippet The geodesic problem on a triaxial ellipsoid is solved as a boundary value problem, using the calculus of variations. The boundary value problem consists of...
SourceID crossref
walterdegruyter
SourceType Enrichment Source
Index Database
Publisher
StartPage 240
SubjectTerms biaxial ellipsoid
ellipsoidal coordinates
geodesic problem
Liouville constant
numerical integration
Title The geodesic boundary value problem and its solution on a triaxial ellipsoid
URI https://www.degruyter.com/doi/10.2478/jogs-2013-0028
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdb97KXsu6DdP1AD2N7CMpsSbHsx1K6lbHtqYW-GcmSw8YWj8Shy_763UmWm4QEsoExRvgkoZ98vg_dHSFvclnzygjHciNBQeG2YFoZwZS08HvMTZX6I_9fvmbXt_LT3fjuoXqbjy5pzaj6szWu5H9QhTbAFaNk_wHZvlNogGfAF-6AMNz3xnjiGutgqYfGF0iaLYeYvxvDn3ylmN45EGeC3gE9xGIdv9FY7rwvoPm2Vq9zRUr9iN1jUtfIBDbSk3b-p2mz8Bb20aoVASs6FNGK4JkNB9GAgawYKN1qW0ijFLmlWNkUYhsP5lJhXMH3ZjJnYaSkC_9eS3a98RPqjwaCUoI9lEhfIn2J9I_JE65U8MN3OnMIA0-KxGdz7ecfEnNiF-_Xp7AmeBze-8MI1k1mi2Ubnd9eprh5Rg67ZaYXAdkj8shNn5PBxRzdE83PJX1L_XOwPs1fkM8AOI2A0wg49YDTDnAKgFMAnEbAKVyaRsBpD_hLcvvh6ubymnXlMFglRNoykSnDq0zxWoNSOBY2TXStQUQzoNJz61JV1RYERODCuRnXRoB0m-QWdNa65vjtvSIH02bqBoTmrjJ5Wkuli0w6qYukyEEPN86mZpxZfUxYXKuy6nLFY8mSH-V2eI7Ju_79XyFLys435cbSl90HNd9BITBl5Ou9BzghTx_29yk5aGcLdwZyY2vO_d75C-bLbSc
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4UDnoh_gz4swejp4WtK1t3JEacCngQEm5Lu3aIAWbYiPLf-7oNRCMXkx22pF2W99p833t9-x5CV4xGJBS2MpigEKAQ6RncFbbhUgnwyERoZSX_na7j9-njoDFY-xdGl1VKNZzNF2mukFqXcTjXibKl1gChLqu_xcMEHKw7EwBA1l_TyXgblR1g_6SEyk3__uX5O9MCmGhmkp8E8M8AQuTl6o1_vOkHOlU-shPr1eesAU9rD1UKxoibuYv30ZaaHqBqM9E57HiywNc4u89TFMkhaoPn8VDFUsEzFlnbpNkCa1VvhYv-MZhPJR6lCV6uPAwXx7qFxycsSKyyE4J4JI9Qv3XXu_WNomeCEdq2lRq24woSOi6JOEQODVtaJo844LiAuI9IZblhJIFFwFZlohEJGyiQySQENlFEtIOOUWkaT1UVYaZCwayIutxzqKLcMz0GwZpQ0hINR_IaMpa2CsJCUFz3tRgHEFho2wbatoG2baBtW0M3q_HvuZTGxpH0l-mDYmclG2bYWlfw5H_TLtGO3-u0g_ZD9-kU7RJgLXmR2RkqpbO5OgfWkYqLYll9AVbT1B4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60BfFSfNL63IPoKTTZbJPNsai1aq2CFryF3exuqWhTmhTtv3c2j_rAXoQcEtiE8M0s38zs8A1CJ4xqEglXWUxQSFCIDCzuC9fyqQR6ZCJyspb_u77XHdCb51bZTZgUbZVSDaezeZorpDZlHM1MoazUGiDUZ82XeJiAgc1kAiDI5kTqVVT1vICwCqq2u1eP91-FFqBEO1P8JEB_FsRDQS7e-MeHfpBT7T07sF78zTfe6WygWhEw4nZu4U20osZbqN5OTAk7fpvjU5zd5xWKZBv1wPB4qGKp4BmLbGrSdI6NqLfCxfgYzMcSj9IEl46H4eLYTPD4AH_EKjsgiEdyBw06l0_nXasYmWBFruukluv5gkSeTzSHxKHlSsfmmgONC0j7iFSOH2kJQQTsVCZaWrgQAdlMQl6jNTH22UWVcTxWdYSZigRzNPV54FFFeWAHDHI1oaQjWp7kDWSVWIVRoSduxlq8hpBXGGxDg21osA0Ntg10tlg_yZU0lq6kv6APi42VLHnDNbKCe_977RitPVx0wt51_3YfreeuYFrIDlAlnc7UIcQcqTgqvOoTQbrTUQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+geodesic+boundary+value+problem+and+its+solution+on+a+triaxial+ellipsoid&rft.jtitle=Journal+of+Geodetic+Science+%28Online%29&rft.au=Panou%2C+G.&rft.date=2013-09-01&rft.issn=2081-9919&rft.eissn=2081-9943&rft.volume=3&rft.issue=3&rft_id=info:doi/10.2478%2Fjogs-2013-0028&rft.externalDBID=n%2Fa&rft.externalDocID=10_2478_jogs_2013_0028
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2081-9919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2081-9919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2081-9919&client=summon