Multi-parameter theoretical analysis of wearable energy harvesting backpacks for performance enhancement
•The output power model of a wearable energy harvesting backpack is established.•The multi-parameter theoretical analysis is presented to enhance harvesting performance.•Experiment results demonstrate the effectiveness of the theoretical analysis.•The optimal carried mass and spring stiffness is det...
Saved in:
Published in | Mechanical systems and signal processing Vol. 155; p. 107621 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin
Elsevier Ltd
16.06.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The output power model of a wearable energy harvesting backpack is established.•The multi-parameter theoretical analysis is presented to enhance harvesting performance.•Experiment results demonstrate the effectiveness of the theoretical analysis.•The optimal carried mass and spring stiffness is determined by the total damping.
Wearable energy harvesting technologies show a promising potential in IoT (Internet of Things) and human daily life because of their continuous power supply in place of traditional chemical batteries. However, the coupling effects between mechanical and electrical parameters, as well as human motion features, significantly complicate the performance of wearable energy harvesters. To address this issue, a multi-parameter theoretical analysis is conducted in this paper to improve the performance of an energy harvesting backpack composed of a spring, mass, electromagnetic motor, and rack-pinion-based power takeoff. The analytical equation of the average output power of the energy harvesting backpack is derived as a function of spring stiffness, external resistance, and structural and electrical damping. A comprehensive analytical analysis and numerical simulation are performed based on the average power equation to study the influence of carried mass and walking speed on the energy conversion performance. Experimental tests are implemented for different human subjects, various carried mass, spring stiffness, and electrical resistances to verify the analytical analysis. Theoretical and experimental results demonstrate that the optimal carried mass and external resistance for generating the maximum power output are determined by the total damping of the mechanical system and electrical circuit instead of resonance. Moreover, the sensitivity of power output to the human walking frequency and the carried mass can be reduced by sacrificing the peak output power. The results show that the optimal backpack with a carried mass of 12.95 kg can generate 4 W power at the walking speed of 5.6 km/h. |
---|---|
AbstractList | Wearable energy harvesting technologies show a promising potential in IoT (Internet of Things) and human daily life because of their continuous power supply in place of traditional chemical batteries. However, the coupling effects between mechanical and electrical parameters, as well as human motion features, significantly complicate the performance of wearable energy harvesters. To address this issue, a multi-parameter theoretical analysis is conducted in this paper to improve the performance of an energy harvesting backpack composed of a spring, mass, electromagnetic motor, and rack-pinion-based power takeoff. The analytical equation of the average output power of the energy harvesting backpack is derived as a function of spring stiffness, external resistance, and structural and electrical damping. A comprehensive analytical analysis and numerical simulation are performed based on the average power equation to study the influence of carried mass and walking speed on the energy conversion performance. Experimental tests are implemented for different human subjects, various carried mass, spring stiffness, and electrical resistances to verify the analytical analysis. Theoretical and experimental results demonstrate that the optimal carried mass and external resistance for generating the maximum power output are determined by the total damping of the mechanical system and electrical circuit instead of resonance. Moreover, the sensitivity of power output to the human walking frequency and the carried mass can be reduced by sacrificing the peak output power. The results show that the optimal backpack with a carried mass of 12.95 kg can generate 4 W power at the walking speed of 5.6 km/h. •The output power model of a wearable energy harvesting backpack is established.•The multi-parameter theoretical analysis is presented to enhance harvesting performance.•Experiment results demonstrate the effectiveness of the theoretical analysis.•The optimal carried mass and spring stiffness is determined by the total damping. Wearable energy harvesting technologies show a promising potential in IoT (Internet of Things) and human daily life because of their continuous power supply in place of traditional chemical batteries. However, the coupling effects between mechanical and electrical parameters, as well as human motion features, significantly complicate the performance of wearable energy harvesters. To address this issue, a multi-parameter theoretical analysis is conducted in this paper to improve the performance of an energy harvesting backpack composed of a spring, mass, electromagnetic motor, and rack-pinion-based power takeoff. The analytical equation of the average output power of the energy harvesting backpack is derived as a function of spring stiffness, external resistance, and structural and electrical damping. A comprehensive analytical analysis and numerical simulation are performed based on the average power equation to study the influence of carried mass and walking speed on the energy conversion performance. Experimental tests are implemented for different human subjects, various carried mass, spring stiffness, and electrical resistances to verify the analytical analysis. Theoretical and experimental results demonstrate that the optimal carried mass and external resistance for generating the maximum power output are determined by the total damping of the mechanical system and electrical circuit instead of resonance. Moreover, the sensitivity of power output to the human walking frequency and the carried mass can be reduced by sacrificing the peak output power. The results show that the optimal backpack with a carried mass of 12.95 kg can generate 4 W power at the walking speed of 5.6 km/h. |
ArticleNumber | 107621 |
Author | Zuo, Lei Zhang, Ying Huang, Guohui Cao, Junyi Hou, Zehao |
Author_xml | – sequence: 1 givenname: Zehao surname: Hou fullname: Hou, Zehao organization: Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering, Xi’an Jiaotong University, Xi'an 710049, China – sequence: 2 givenname: Junyi surname: Cao fullname: Cao, Junyi email: caojy@xjtu.edu.cn organization: Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering, Xi’an Jiaotong University, Xi'an 710049, China – sequence: 3 givenname: Guohui surname: Huang fullname: Huang, Guohui organization: Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering, Xi’an Jiaotong University, Xi'an 710049, China – sequence: 4 givenname: Ying surname: Zhang fullname: Zhang, Ying organization: Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering, Xi’an Jiaotong University, Xi'an 710049, China – sequence: 5 givenname: Lei surname: Zuo fullname: Zuo, Lei organization: Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA |
BookMark | eNqFkLFuHCEQhlHkSDk7eYI0SK73MsAuC0UKy7KTSLbcJDXi2MHHZXdZA2fr3j5cLlUKu0C_hP5vNPOdk7M5zkjIZwZrBkx-2a0PU87LmgNn9aeXnL0jKwZaNowzeUZWoJRqBO_hAznPeQcAugW5Itv7_VhCs9hkJyyYaNliTFiCsyO1sx0POWQaPX3BWtmMSHHG9HigW5ueMZcwP9KNdb-X-jL1MdEFU43Jzu7Y3R5zwrl8JO-9HTN--pcX5Nftzc_r783dw7cf11d3jROClUawYQDVat9KHFqtrGe-Rd51LUfRou8lMGRa9IPqhNZy8LJzYgN86LlWsBEX5PI0d0nxaV83NLu4T_WQbHgHqlOKKagtcWq5FHNO6M2SwmTTwTAwR6VmZ_4qNUel5qS0Uvo_yoViS4hzSTaMb7BfTyzW458DJpNdwCpnCAldMUMMr_J_AIrvlxE |
CitedBy_id | crossref_primary_10_1016_j_energy_2023_130030 crossref_primary_10_1016_j_ijmecsci_2024_109127 crossref_primary_10_1088_1361_665X_ad860e crossref_primary_10_1016_j_enconman_2023_117158 crossref_primary_10_1016_j_susmat_2024_e01094 crossref_primary_10_1016_j_ymssp_2021_108637 crossref_primary_10_1002_smtd_202300771 crossref_primary_10_1016_j_ymssp_2021_108410 crossref_primary_10_1109_TMECH_2022_3157848 crossref_primary_10_1016_j_renene_2022_11_008 crossref_primary_10_1016_j_cjph_2023_05_004 crossref_primary_10_1016_j_ymssp_2023_110612 crossref_primary_10_1016_j_enconman_2022_115523 crossref_primary_10_1016_j_enconman_2021_114466 crossref_primary_10_1016_j_enconman_2022_115731 crossref_primary_10_1021_acsaem_2c00703 crossref_primary_10_1016_j_enconman_2022_115441 crossref_primary_10_1016_j_sna_2022_113828 crossref_primary_10_1016_j_energy_2021_122205 crossref_primary_10_1016_j_joule_2022_06_013 |
Cites_doi | 10.1063/1.5053945 10.3390/en10101483 10.1115/1.4029807 10.1016/j.enconman.2019.111820 10.1002/ente.202000533 10.1063/1.5131193 10.1088/1361-665X/aaed66 10.1016/j.enconman.2018.06.069 10.1016/j.ymssp.2015.01.012 10.1016/j.nanoen.2019.103871 10.1016/j.apenergy.2020.114682 10.1088/0964-1726/25/8/085029 10.1109/AIM.2018.8452373 10.1016/j.enconman.2016.11.026 10.1016/j.jsv.2017.08.032 10.1088/1361-665X/ab5cf2 10.1115/DETC2019-98370 10.1016/j.enconman.2019.01.089 10.1115/DSCC2015-9837 10.1007/s40820-019-0271-3 10.1016/j.nanoen.2013.03.001 10.1115/1.4040172 10.1088/0964-1726/24/2/025029 10.1063/1.5098962 10.1016/j.ymssp.2019.106318 10.1016/j.nanoen.2019.104197 10.1016/j.jsv.2005.10.003 10.1016/j.ymssp.2007.09.015 10.1063/1.4868130 10.1126/science.1111063 10.1186/1743-0003-8-22 10.1016/j.apenergy.2018.02.093 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Jun 16, 2021 |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Jun 16, 2021 |
DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.ymssp.2021.107621 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1096-1216 |
ExternalDocumentID | 10_1016_j_ymssp_2021_107621 S0888327021000169 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG5 LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SST SSV SSZ T5K XPP ZMT ZU3 ~G- 29M AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CAG CITATION COF EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SEW SSH WUQ 7SC 7SP 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c331t-31dd0849f46ed498af1f4e25542e34ef7601e1937d853996df65c3b02d72980b3 |
IEDL.DBID | .~1 |
ISSN | 0888-3270 |
IngestDate | Sun Jul 13 04:38:03 EDT 2025 Tue Jul 01 04:30:09 EDT 2025 Thu Apr 24 23:08:32 EDT 2025 Fri Feb 23 02:45:48 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Wearables Backpack energy harvesting Biomechanical energy Multi-parameter coupling effect Vibration analysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c331t-31dd0849f46ed498af1f4e25542e34ef7601e1937d853996df65c3b02d72980b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2508588180 |
PQPubID | 2045429 |
ParticipantIDs | proquest_journals_2508588180 crossref_primary_10_1016_j_ymssp_2021_107621 crossref_citationtrail_10_1016_j_ymssp_2021_107621 elsevier_sciencedirect_doi_10_1016_j_ymssp_2021_107621 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-16 |
PublicationDateYYYYMMDD | 2021-06-16 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin |
PublicationTitle | Mechanical systems and signal processing |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Xie, Chen, Wen, Yang, Shi, Chen, Peng, Liu, Sun (b0035) 2019; 11 J. Wang, J. Liang, Energy harvesting from horizontal and vertical backpack movements during walking, IEEE/ASME Int. Conf. Adv. Intell. Mechatronics, AIM. 2018-July (2018) 798–803. https://doi.org/10.1109/AIM.2018.8452373. Cai, Wang, Liao (b0105) 2020; 263 Cai, Yang, Cao, Liao (b0010) 2020; 8 Xie, Cai (b0120) 2015; 137 X. Xu, An investigation on the interactivity between suspended-load backpacks and human gait Graduate dissertation, Doctoral Dissertation of North Carolina State University, Raleigh, NC, 2008. Kuang, Yang, Zhu (b0020) 2016; 25 Cai, Liao, Cao (b0060) 2019; 28 Feenstra, Granstrom, Sodano (b0115) 2008; 22 Wang, Cao, Zhang, Lin, Liao (b0090) 2017; 132 Zhao, Zou, Gao, Yan, Liu, Tan, Wei, Zhang (b0085) 2019; 115 Stephen (b0150) 2006; 293 Riemer, Shapiro (b0005) 2011; 8 Zhang, Luo, Wang, Dai, Lu, Wang (b0065) 2020; 116 Gao, Liu, Chung, Chan, Liao (b0025) 2019; 115 Z. Hou, J. Cao, L. Zuo, Multi-parameter coupling effect of wearable energy harvesting backpack from human motion, in: Proc. ASME Des. Eng. Tech. Conf., 2019: pp. 1–6. https://doi.org/10.1115/DETC2019-98370. Xie, Cai (b0125) 2015; 58 C. Liang, Y. Wu, L. Zuo, Vibration energy harvesting system with mechanical motion rectifier, ASME 2015 Dyn. Syst. Control Conf. DSCC 2015. 2 (2015) V002T22A002. https://doi.org/10.1115/DSCC2015-9837. Yuan, Liu, Tai, Zuo (b0130) 2018; 140 Fan, Cai, Wang, Tang, Liang, Wu, Qu, Tan (b0080) 2019; 198 Liu, Tai, Zuo (b0135) 2020; 29 Tai, Zuo (b0155) 2017; 411 Ylli, Hoffmann, Willmann, Becker, Folkmer, Manoli (b0095) 2015; 24 Meng, Cheng, Zhang, Han, Liu, Zhang (b0040) 2014; 104 Hou, Chen, Li, Huang, Shi, Liu, Sun, Lee (b0050) 2019; 63 Kim, Lee, Roman, Heimgartner, Karavas, Ryan, Galiana, Murphy, Eckert-Erdheim, Perry, Malcolm, Walsh (b0180) 2018; 672 Hou, Yang, Zhang, Chen, Chen, Lin Wang (b0045) 2013; 2 Tao, Yi, Yang, Chang, Wu, Tang, Yang, Wang, Hu, Fu, Miao, Yuan (b0055) 2020; 67 Qian, Xu, Zuo (b0030) 2018; 171 Choi, Lee, Jeon (b0015) 2017; 10 Halim, Rantz, Zhang, Gu, Yang, Roundy (b0070) 2018; 217 Liu, Hou, Lin, Li, Shi, Chen, Sun, Lee (b0100) 2018; 113 Zhang, Dai, Yang, Wang (b0075) 2019; 185 S.S. Rao, Mechanical Vibrations Fifth Edition, 2010. https://doi.org/978 92 4 150215 3. L.C. Rome, L. Flynn, E.M. Goldman, T.D. Yoo, Biophysics: Generating electricity while walking with loads, Science (80-.). 309 (2005) 1725–1728. https://doi.org/10.1126/science.1111063. Martin, Li (b0145) 2019; 134 Zhao (10.1016/j.ymssp.2021.107621_b0085) 2019; 115 Liu (10.1016/j.ymssp.2021.107621_b0100) 2018; 113 Xie (10.1016/j.ymssp.2021.107621_b0035) 2019; 11 Hou (10.1016/j.ymssp.2021.107621_b0045) 2013; 2 Riemer (10.1016/j.ymssp.2021.107621_b0005) 2011; 8 Halim (10.1016/j.ymssp.2021.107621_b0070) 2018; 217 Qian (10.1016/j.ymssp.2021.107621_b0030) 2018; 171 Ylli (10.1016/j.ymssp.2021.107621_b0095) 2015; 24 Fan (10.1016/j.ymssp.2021.107621_b0080) 2019; 198 Zhang (10.1016/j.ymssp.2021.107621_b0065) 2020; 116 Wang (10.1016/j.ymssp.2021.107621_b0090) 2017; 132 Yuan (10.1016/j.ymssp.2021.107621_b0130) 2018; 140 Choi (10.1016/j.ymssp.2021.107621_b0015) 2017; 10 Stephen (10.1016/j.ymssp.2021.107621_b0150) 2006; 293 10.1016/j.ymssp.2021.107621_b0175 10.1016/j.ymssp.2021.107621_b0110 Kuang (10.1016/j.ymssp.2021.107621_b0020) 2016; 25 10.1016/j.ymssp.2021.107621_b0170 Kim (10.1016/j.ymssp.2021.107621_b0180) 2018; 672 Tao (10.1016/j.ymssp.2021.107621_b0055) 2020; 67 Cai (10.1016/j.ymssp.2021.107621_b0105) 2020; 263 Gao (10.1016/j.ymssp.2021.107621_b0025) 2019; 115 Cai (10.1016/j.ymssp.2021.107621_b0010) 2020; 8 Martin (10.1016/j.ymssp.2021.107621_b0145) 2019; 134 Feenstra (10.1016/j.ymssp.2021.107621_b0115) 2008; 22 Xie (10.1016/j.ymssp.2021.107621_b0125) 2015; 58 Liu (10.1016/j.ymssp.2021.107621_b0135) 2020; 29 10.1016/j.ymssp.2021.107621_b0165 Meng (10.1016/j.ymssp.2021.107621_b0040) 2014; 104 10.1016/j.ymssp.2021.107621_b0140 Tai (10.1016/j.ymssp.2021.107621_b0155) 2017; 411 10.1016/j.ymssp.2021.107621_b0160 Cai (10.1016/j.ymssp.2021.107621_b0060) 2019; 28 Xie (10.1016/j.ymssp.2021.107621_b0120) 2015; 137 Hou (10.1016/j.ymssp.2021.107621_b0050) 2019; 63 Zhang (10.1016/j.ymssp.2021.107621_b0075) 2019; 185 |
References_xml | – volume: 672 start-page: 1 year: 2018 end-page: 56 ident: b0180 article-title: Reducing the metabolic rate of walking and running with a versatile, portable soft exosuit, Nature publication-title: Under Consid. – reference: L.C. Rome, L. Flynn, E.M. Goldman, T.D. Yoo, Biophysics: Generating electricity while walking with loads, Science (80-.). 309 (2005) 1725–1728. https://doi.org/10.1126/science.1111063. – volume: 185 start-page: 202 year: 2019 end-page: 210 ident: b0075 article-title: Design of high-efficiency electromagnetic energy harvester based on a rolling magnet publication-title: Energy Convers. Manag. – volume: 217 start-page: 66 year: 2018 end-page: 74 ident: b0070 article-title: An electromagnetic rotational energy harvester using sprung eccentric rotor, driven by pseudo-walking motion publication-title: Appl. Energy. – volume: 113 start-page: 203901 year: 2018 ident: b0100 article-title: A non-resonant rotational electromagnetic energy harvester for low-frequency and irregular human motion publication-title: Appl. Phys. Lett. – volume: 198 start-page: 111820 year: 2019 ident: b0080 article-title: A string-suspended and driven rotor for efficient ultra-low frequency mechanical energy harvesting publication-title: Energy Convers. Manag. – reference: Z. Hou, J. Cao, L. Zuo, Multi-parameter coupling effect of wearable energy harvesting backpack from human motion, in: Proc. ASME Des. Eng. Tech. Conf., 2019: pp. 1–6. https://doi.org/10.1115/DETC2019-98370. – volume: 25 start-page: 085029 year: 2016 ident: b0020 article-title: Design and characterisation of a piezoelectric knee-joint energy harvester with frequency up-conversion through magnetic plucking publication-title: Smart Mater. Struct. – volume: 67 start-page: 104197 year: 2020 ident: b0055 article-title: Origami-inspired electret-based triboelectric generator for biomechanical and ocean wave energy harvesting publication-title: Nano Energy. – volume: 58 start-page: 399 year: 2015 end-page: 415 ident: b0125 article-title: Increased energy harvesting and reduced accelerative load for backpacks via frequency tuning publication-title: Mech. Syst. Signal Process. – volume: 116 year: 2020 ident: b0065 article-title: Rotational electromagnetic energy harvester for human motion application at low frequency publication-title: Appl. Phys. Lett. – reference: J. Wang, J. Liang, Energy harvesting from horizontal and vertical backpack movements during walking, IEEE/ASME Int. Conf. Adv. Intell. Mechatronics, AIM. 2018-July (2018) 798–803. https://doi.org/10.1109/AIM.2018.8452373. – reference: S.S. Rao, Mechanical Vibrations Fifth Edition, 2010. https://doi.org/978 92 4 150215 3. – volume: 63 start-page: 103871 year: 2019 ident: b0050 article-title: A rotational pendulum based electromagnetic/triboelectric hybrid-generator for ultra-low-frequency vibrations aiming at human motion and blue energy applications publication-title: Nano Energy. – volume: 134 start-page: 106318 year: 2019 ident: b0145 article-title: Design, model, and performance evaluation of a biomechanical energy harvesting backpack publication-title: Mech. Syst. Signal Process. – volume: 115 start-page: 033901 year: 2019 ident: b0025 article-title: Macro fiber composite-based energy harvester for human knee publication-title: Appl. Phys. Lett. – volume: 24 start-page: 025029 year: 2015 ident: b0095 article-title: Energy harvesting from human motion: Exploiting swing and shock excitations publication-title: Smart Mater. Struct. – volume: 2 start-page: 856 year: 2013 end-page: 862 ident: b0045 article-title: Triboelectric nanogenerator built inside shoe insole for harvesting walking energy publication-title: Nano Energy. – volume: 11 start-page: 1 year: 2019 end-page: 10 ident: b0035 article-title: Spiral Steel Wire Based Fiber-Shaped Stretchable and Tailorable Triboelectric Nanogenerator for Wearable Power Source and Active Gesture Sensor publication-title: Nano-Micro Lett. – reference: C. Liang, Y. Wu, L. Zuo, Vibration energy harvesting system with mechanical motion rectifier, ASME 2015 Dyn. Syst. Control Conf. DSCC 2015. 2 (2015) V002T22A002. https://doi.org/10.1115/DSCC2015-9837. – volume: 8 start-page: 2000533 year: 2020 ident: b0010 article-title: Recent advances in human motion excited energy harvesting systems for wearables publication-title: Energy Technol. – volume: 8 start-page: 22 year: 2011 ident: b0005 article-title: Biomechanical energy harvesting from human motion: Theory, state of the art, design guidelines, and future directions publication-title: J. Neuroeng. Rehabil. – volume: 137 year: 2015 ident: b0120 article-title: Development of a Suspended Backpack for Harvesting Biomechanical Energy publication-title: J. Mech. Des. – volume: 104 start-page: 103904 year: 2014 ident: b0040 article-title: Single-friction-surface triboelectric generator with human body conduit publication-title: Appl. Phys. Lett. – volume: 10 year: 2017 ident: b0015 article-title: Wearable biomechanical energy harvesting technologies publication-title: Energies. – volume: 28 start-page: 015026 year: 2019 ident: b0060 article-title: A smart harvester for capturing energy from human ankle dorsiflexion with reduced user effort publication-title: Smart Mater. Struct. – volume: 411 start-page: 47 year: 2017 end-page: 59 ident: b0155 article-title: On optimization of energy harvesting from base-excited vibration publication-title: J. Sound Vib. – volume: 140 year: 2018 ident: b0130 article-title: Design and treadmill test of a broadband energy harvesting backpack with a mechanical motion rectifier publication-title: J. Mech. Des. – volume: 115 start-page: 263902 year: 2019 ident: b0085 article-title: Magnetically modulated orbit for human motion energy harvesting publication-title: Appl. Phys. Lett. – reference: X. Xu, An investigation on the interactivity between suspended-load backpacks and human gait Graduate dissertation, Doctoral Dissertation of North Carolina State University, Raleigh, NC, 2008. – volume: 293 start-page: 409 year: 2006 end-page: 425 ident: b0150 article-title: On energy harvesting from ambient vibration publication-title: J. Sound Vib. – volume: 132 start-page: 189 year: 2017 end-page: 197 ident: b0090 article-title: Magnetic-spring based energy harvesting from human motions: Design, modeling and experiments publication-title: Energy Convers. Manag. – volume: 29 start-page: 025007 year: 2020 ident: b0135 article-title: Enhancing the performance of backpack energy harvester using nonlinear inerter-based two degrees of freedom design publication-title: Smart Mater. Struct. – volume: 263 start-page: 114682 year: 2020 ident: b0105 article-title: Self-powered smart watch and wristband enabled by embedded generator publication-title: Appl. Energy. – volume: 22 start-page: 721 year: 2008 end-page: 734 ident: b0115 article-title: Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack publication-title: Mech. Syst. Signal Process. – volume: 171 start-page: 1352 year: 2018 end-page: 1364 ident: b0030 article-title: Design, optimization, modeling and testing of a piezoelectric footwear energy harvester publication-title: Energy Convers. Manag. – volume: 113 start-page: 203901 issue: 20 year: 2018 ident: 10.1016/j.ymssp.2021.107621_b0100 article-title: A non-resonant rotational electromagnetic energy harvester for low-frequency and irregular human motion publication-title: Appl. Phys. Lett. doi: 10.1063/1.5053945 – ident: 10.1016/j.ymssp.2021.107621_b0160 – volume: 10 year: 2017 ident: 10.1016/j.ymssp.2021.107621_b0015 article-title: Wearable biomechanical energy harvesting technologies publication-title: Energies. doi: 10.3390/en10101483 – volume: 137 year: 2015 ident: 10.1016/j.ymssp.2021.107621_b0120 article-title: Development of a Suspended Backpack for Harvesting Biomechanical Energy publication-title: J. Mech. Des. doi: 10.1115/1.4029807 – volume: 198 start-page: 111820 year: 2019 ident: 10.1016/j.ymssp.2021.107621_b0080 article-title: A string-suspended and driven rotor for efficient ultra-low frequency mechanical energy harvesting publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2019.111820 – volume: 8 start-page: 2000533 issue: 10 year: 2020 ident: 10.1016/j.ymssp.2021.107621_b0010 article-title: Recent advances in human motion excited energy harvesting systems for wearables publication-title: Energy Technol. doi: 10.1002/ente.202000533 – volume: 116 year: 2020 ident: 10.1016/j.ymssp.2021.107621_b0065 article-title: Rotational electromagnetic energy harvester for human motion application at low frequency publication-title: Appl. Phys. Lett. – volume: 115 start-page: 263902 issue: 26 year: 2019 ident: 10.1016/j.ymssp.2021.107621_b0085 article-title: Magnetically modulated orbit for human motion energy harvesting publication-title: Appl. Phys. Lett. doi: 10.1063/1.5131193 – volume: 28 start-page: 015026 issue: 1 year: 2019 ident: 10.1016/j.ymssp.2021.107621_b0060 article-title: A smart harvester for capturing energy from human ankle dorsiflexion with reduced user effort publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aaed66 – volume: 171 start-page: 1352 year: 2018 ident: 10.1016/j.ymssp.2021.107621_b0030 article-title: Design, optimization, modeling and testing of a piezoelectric footwear energy harvester publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2018.06.069 – volume: 58 start-page: 399 year: 2015 ident: 10.1016/j.ymssp.2021.107621_b0125 article-title: Increased energy harvesting and reduced accelerative load for backpacks via frequency tuning publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2015.01.012 – volume: 672 start-page: 1 year: 2018 ident: 10.1016/j.ymssp.2021.107621_b0180 article-title: Reducing the metabolic rate of walking and running with a versatile, portable soft exosuit, Nature publication-title: Under Consid. – volume: 63 start-page: 103871 year: 2019 ident: 10.1016/j.ymssp.2021.107621_b0050 article-title: A rotational pendulum based electromagnetic/triboelectric hybrid-generator for ultra-low-frequency vibrations aiming at human motion and blue energy applications publication-title: Nano Energy. doi: 10.1016/j.nanoen.2019.103871 – volume: 263 start-page: 114682 year: 2020 ident: 10.1016/j.ymssp.2021.107621_b0105 article-title: Self-powered smart watch and wristband enabled by embedded generator publication-title: Appl. Energy. doi: 10.1016/j.apenergy.2020.114682 – volume: 25 start-page: 085029 issue: 8 year: 2016 ident: 10.1016/j.ymssp.2021.107621_b0020 article-title: Design and characterisation of a piezoelectric knee-joint energy harvester with frequency up-conversion through magnetic plucking publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/25/8/085029 – ident: 10.1016/j.ymssp.2021.107621_b0140 doi: 10.1109/AIM.2018.8452373 – volume: 132 start-page: 189 year: 2017 ident: 10.1016/j.ymssp.2021.107621_b0090 article-title: Magnetic-spring based energy harvesting from human motions: Design, modeling and experiments publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2016.11.026 – volume: 411 start-page: 47 year: 2017 ident: 10.1016/j.ymssp.2021.107621_b0155 article-title: On optimization of energy harvesting from base-excited vibration publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2017.08.032 – volume: 29 start-page: 025007 issue: 2 year: 2020 ident: 10.1016/j.ymssp.2021.107621_b0135 article-title: Enhancing the performance of backpack energy harvester using nonlinear inerter-based two degrees of freedom design publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/ab5cf2 – ident: 10.1016/j.ymssp.2021.107621_b0175 doi: 10.1115/DETC2019-98370 – volume: 185 start-page: 202 year: 2019 ident: 10.1016/j.ymssp.2021.107621_b0075 article-title: Design of high-efficiency electromagnetic energy harvester based on a rolling magnet publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2019.01.089 – ident: 10.1016/j.ymssp.2021.107621_b0165 doi: 10.1115/DSCC2015-9837 – volume: 11 start-page: 1 year: 2019 ident: 10.1016/j.ymssp.2021.107621_b0035 article-title: Spiral Steel Wire Based Fiber-Shaped Stretchable and Tailorable Triboelectric Nanogenerator for Wearable Power Source and Active Gesture Sensor publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0271-3 – volume: 2 start-page: 856 issue: 5 year: 2013 ident: 10.1016/j.ymssp.2021.107621_b0045 article-title: Triboelectric nanogenerator built inside shoe insole for harvesting walking energy publication-title: Nano Energy. doi: 10.1016/j.nanoen.2013.03.001 – volume: 140 year: 2018 ident: 10.1016/j.ymssp.2021.107621_b0130 article-title: Design and treadmill test of a broadband energy harvesting backpack with a mechanical motion rectifier publication-title: J. Mech. Des. doi: 10.1115/1.4040172 – volume: 24 start-page: 025029 issue: 2 year: 2015 ident: 10.1016/j.ymssp.2021.107621_b0095 article-title: Energy harvesting from human motion: Exploiting swing and shock excitations publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/24/2/025029 – volume: 115 start-page: 033901 issue: 3 year: 2019 ident: 10.1016/j.ymssp.2021.107621_b0025 article-title: Macro fiber composite-based energy harvester for human knee publication-title: Appl. Phys. Lett. doi: 10.1063/1.5098962 – volume: 134 start-page: 106318 year: 2019 ident: 10.1016/j.ymssp.2021.107621_b0145 article-title: Design, model, and performance evaluation of a biomechanical energy harvesting backpack publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2019.106318 – volume: 67 start-page: 104197 year: 2020 ident: 10.1016/j.ymssp.2021.107621_b0055 article-title: Origami-inspired electret-based triboelectric generator for biomechanical and ocean wave energy harvesting publication-title: Nano Energy. doi: 10.1016/j.nanoen.2019.104197 – volume: 293 start-page: 409 issue: 1-2 year: 2006 ident: 10.1016/j.ymssp.2021.107621_b0150 article-title: On energy harvesting from ambient vibration publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2005.10.003 – ident: 10.1016/j.ymssp.2021.107621_b0170 – volume: 22 start-page: 721 issue: 3 year: 2008 ident: 10.1016/j.ymssp.2021.107621_b0115 article-title: Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2007.09.015 – volume: 104 start-page: 103904 issue: 10 year: 2014 ident: 10.1016/j.ymssp.2021.107621_b0040 article-title: Single-friction-surface triboelectric generator with human body conduit publication-title: Appl. Phys. Lett. doi: 10.1063/1.4868130 – ident: 10.1016/j.ymssp.2021.107621_b0110 doi: 10.1126/science.1111063 – volume: 8 start-page: 22 issue: 1 year: 2011 ident: 10.1016/j.ymssp.2021.107621_b0005 article-title: Biomechanical energy harvesting from human motion: Theory, state of the art, design guidelines, and future directions publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-8-22 – volume: 217 start-page: 66 year: 2018 ident: 10.1016/j.ymssp.2021.107621_b0070 article-title: An electromagnetic rotational energy harvester using sprung eccentric rotor, driven by pseudo-walking motion publication-title: Appl. Energy. doi: 10.1016/j.apenergy.2018.02.093 |
SSID | ssj0009406 |
Score | 2.452807 |
Snippet | •The output power model of a wearable energy harvesting backpack is established.•The multi-parameter theoretical analysis is presented to enhance harvesting... Wearable energy harvesting technologies show a promising potential in IoT (Internet of Things) and human daily life because of their continuous power supply in... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 107621 |
SubjectTerms | Backpack energy harvesting Backpacks Biomechanical energy Circuits Damping Energy Energy conversion Energy harvesting Human motion Internet of Things Maximum power Mechanical systems Multi-parameter coupling effect Parameters Performance enhancement Stiffness Vibration analysis Walking Wearable technology Wearables |
Title | Multi-parameter theoretical analysis of wearable energy harvesting backpacks for performance enhancement |
URI | https://dx.doi.org/10.1016/j.ymssp.2021.107621 https://www.proquest.com/docview/2508588180 |
Volume | 155 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpCqTwwEpqH8xqriqqA6AKVulm249ACTaO2CLHw27lzElqQ6MAUJTpb0dk-fz7d95mQC2GHSmAKDLCGj9kqWHOu0hbsDZFM_UBKjamB-0HQH7LbkT-qkW7FhcGyyjL2FzHdROvyS7v0ZjufTNoPsD6g6xAPLQhckMTHWIiz_OpzVeYRM3O_JhpbaF0pD5kar4_pYoGila4DXyAsOH_tTr_itNl8entkt0SNtFP82D6p6eyA7KxpCR6SsaHSWijlPcUSF7pGUaSilB6hs5S-w9xGvhTVhvZHx2JupDayJyqFesmRdE8BytJ8xSkA2zE-MZV4RIa968du3yqvUbCU5zlLiLJJYkcsTlmgExZHInVSpuEowVztMZ1iVYwGHBcmEcrUBkka-MqTtpsA8I5s6R2TejbL9AmhqWKJjARAKC9mgR2L2FWAF5UQTsJEGDaIW7mPq1JjHK-6eOVVMdkzNz7n6HNe-LxBLr8b5YXExmbzoBoX_mOmcNgENjdsVqPIy4W64IAAIz9Cwvvpf_s9I9v4hvVjTtAk9eX8TZ8DUlnKlpmKLbLVubnrD74A317pHA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TgMxEB2FUAAF4hRHABfQsWQP71VQICAKBGgAic54vV7CFaIkCNHwU_wgM46XS4ICiWolr21ZY3vmeTTzBmBdurGS5AJDrBGStwrvnK-0g7YhyYowyjJNroHjk6h5zg8vwosKvJa5MBRWaXX_UKcbbW1b6laa9e71df0U7wdOHdOjhYBLaiMrW_r5Cd9t_e2DPdzkDd9v7J_tNh1bWsBRQeANUPPkuZvwtOCRznmayMIruEZ4zX0dcF1QpIhGbBPnCVG3RnkRhSrIXD9HMJq4WYDzjsAoR3VBZRO2Xj7iSlJuCnrS6hxaXkl1ZILKnu_7fWLJ9D1sQT3k_WQOvxkGY-0aUzBpYSrbGUpiGiq6MwMTn8gLZ6Ftcncd4g6_p5ga9iknkknLdcIeCvaEAqMELaZNniFry57h9uhcsUyq2y5l-TPEzqz7kcSAfdv0Jd_lHJz_i3Dnodp56OgFYIXieZZIxGxByiM3lamvEKAqKb2cyzheBL8Un1CW1Jxqa9yJMnrtRhiZC5K5GMp8ETbfB3WHnB6_d4_KfRFfjqZAq_P7wFq5i8Jqhr5AyJmECWXYL_113jUYa54dH4mjg5PWMozTHwpe86IaVAe9R72CMGmQrZpjyeDyv-_BG81iIz8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-parameter+theoretical+analysis+of+wearable+energy+harvesting+backpacks+for+performance+enhancement&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Hou%2C+Zehao&rft.au=Cao%2C+Junyi&rft.au=Huang%2C+Guohui&rft.au=Zhang%2C+Ying&rft.date=2021-06-16&rft.pub=Elsevier+Ltd&rft.issn=0888-3270&rft.eissn=1096-1216&rft.volume=155&rft_id=info:doi/10.1016%2Fj.ymssp.2021.107621&rft.externalDocID=S0888327021000169 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon |