Multi-parameter theoretical analysis of wearable energy harvesting backpacks for performance enhancement

•The output power model of a wearable energy harvesting backpack is established.•The multi-parameter theoretical analysis is presented to enhance harvesting performance.•Experiment results demonstrate the effectiveness of the theoretical analysis.•The optimal carried mass and spring stiffness is det...

Full description

Saved in:
Bibliographic Details
Published inMechanical systems and signal processing Vol. 155; p. 107621
Main Authors Hou, Zehao, Cao, Junyi, Huang, Guohui, Zhang, Ying, Zuo, Lei
Format Journal Article
LanguageEnglish
Published Berlin Elsevier Ltd 16.06.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The output power model of a wearable energy harvesting backpack is established.•The multi-parameter theoretical analysis is presented to enhance harvesting performance.•Experiment results demonstrate the effectiveness of the theoretical analysis.•The optimal carried mass and spring stiffness is determined by the total damping. Wearable energy harvesting technologies show a promising potential in IoT (Internet of Things) and human daily life because of their continuous power supply in place of traditional chemical batteries. However, the coupling effects between mechanical and electrical parameters, as well as human motion features, significantly complicate the performance of wearable energy harvesters. To address this issue, a multi-parameter theoretical analysis is conducted in this paper to improve the performance of an energy harvesting backpack composed of a spring, mass, electromagnetic motor, and rack-pinion-based power takeoff. The analytical equation of the average output power of the energy harvesting backpack is derived as a function of spring stiffness, external resistance, and structural and electrical damping. A comprehensive analytical analysis and numerical simulation are performed based on the average power equation to study the influence of carried mass and walking speed on the energy conversion performance. Experimental tests are implemented for different human subjects, various carried mass, spring stiffness, and electrical resistances to verify the analytical analysis. Theoretical and experimental results demonstrate that the optimal carried mass and external resistance for generating the maximum power output are determined by the total damping of the mechanical system and electrical circuit instead of resonance. Moreover, the sensitivity of power output to the human walking frequency and the carried mass can be reduced by sacrificing the peak output power. The results show that the optimal backpack with a carried mass of 12.95 kg can generate 4 W power at the walking speed of 5.6 km/h.
AbstractList Wearable energy harvesting technologies show a promising potential in IoT (Internet of Things) and human daily life because of their continuous power supply in place of traditional chemical batteries. However, the coupling effects between mechanical and electrical parameters, as well as human motion features, significantly complicate the performance of wearable energy harvesters. To address this issue, a multi-parameter theoretical analysis is conducted in this paper to improve the performance of an energy harvesting backpack composed of a spring, mass, electromagnetic motor, and rack-pinion-based power takeoff. The analytical equation of the average output power of the energy harvesting backpack is derived as a function of spring stiffness, external resistance, and structural and electrical damping. A comprehensive analytical analysis and numerical simulation are performed based on the average power equation to study the influence of carried mass and walking speed on the energy conversion performance. Experimental tests are implemented for different human subjects, various carried mass, spring stiffness, and electrical resistances to verify the analytical analysis. Theoretical and experimental results demonstrate that the optimal carried mass and external resistance for generating the maximum power output are determined by the total damping of the mechanical system and electrical circuit instead of resonance. Moreover, the sensitivity of power output to the human walking frequency and the carried mass can be reduced by sacrificing the peak output power. The results show that the optimal backpack with a carried mass of 12.95 kg can generate 4 W power at the walking speed of 5.6 km/h.
•The output power model of a wearable energy harvesting backpack is established.•The multi-parameter theoretical analysis is presented to enhance harvesting performance.•Experiment results demonstrate the effectiveness of the theoretical analysis.•The optimal carried mass and spring stiffness is determined by the total damping. Wearable energy harvesting technologies show a promising potential in IoT (Internet of Things) and human daily life because of their continuous power supply in place of traditional chemical batteries. However, the coupling effects between mechanical and electrical parameters, as well as human motion features, significantly complicate the performance of wearable energy harvesters. To address this issue, a multi-parameter theoretical analysis is conducted in this paper to improve the performance of an energy harvesting backpack composed of a spring, mass, electromagnetic motor, and rack-pinion-based power takeoff. The analytical equation of the average output power of the energy harvesting backpack is derived as a function of spring stiffness, external resistance, and structural and electrical damping. A comprehensive analytical analysis and numerical simulation are performed based on the average power equation to study the influence of carried mass and walking speed on the energy conversion performance. Experimental tests are implemented for different human subjects, various carried mass, spring stiffness, and electrical resistances to verify the analytical analysis. Theoretical and experimental results demonstrate that the optimal carried mass and external resistance for generating the maximum power output are determined by the total damping of the mechanical system and electrical circuit instead of resonance. Moreover, the sensitivity of power output to the human walking frequency and the carried mass can be reduced by sacrificing the peak output power. The results show that the optimal backpack with a carried mass of 12.95 kg can generate 4 W power at the walking speed of 5.6 km/h.
ArticleNumber 107621
Author Zuo, Lei
Zhang, Ying
Huang, Guohui
Cao, Junyi
Hou, Zehao
Author_xml – sequence: 1
  givenname: Zehao
  surname: Hou
  fullname: Hou, Zehao
  organization: Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering, Xi’an Jiaotong University, Xi'an 710049, China
– sequence: 2
  givenname: Junyi
  surname: Cao
  fullname: Cao, Junyi
  email: caojy@xjtu.edu.cn
  organization: Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering, Xi’an Jiaotong University, Xi'an 710049, China
– sequence: 3
  givenname: Guohui
  surname: Huang
  fullname: Huang, Guohui
  organization: Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering, Xi’an Jiaotong University, Xi'an 710049, China
– sequence: 4
  givenname: Ying
  surname: Zhang
  fullname: Zhang, Ying
  organization: Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering, Xi’an Jiaotong University, Xi'an 710049, China
– sequence: 5
  givenname: Lei
  surname: Zuo
  fullname: Zuo, Lei
  organization: Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA
BookMark eNqFkLFuHCEQhlHkSDk7eYI0SK73MsAuC0UKy7KTSLbcJDXi2MHHZXdZA2fr3j5cLlUKu0C_hP5vNPOdk7M5zkjIZwZrBkx-2a0PU87LmgNn9aeXnL0jKwZaNowzeUZWoJRqBO_hAznPeQcAugW5Itv7_VhCs9hkJyyYaNliTFiCsyO1sx0POWQaPX3BWtmMSHHG9HigW5ueMZcwP9KNdb-X-jL1MdEFU43Jzu7Y3R5zwrl8JO-9HTN--pcX5Nftzc_r783dw7cf11d3jROClUawYQDVat9KHFqtrGe-Rd51LUfRou8lMGRa9IPqhNZy8LJzYgN86LlWsBEX5PI0d0nxaV83NLu4T_WQbHgHqlOKKagtcWq5FHNO6M2SwmTTwTAwR6VmZ_4qNUel5qS0Uvo_yoViS4hzSTaMb7BfTyzW458DJpNdwCpnCAldMUMMr_J_AIrvlxE
CitedBy_id crossref_primary_10_1016_j_energy_2023_130030
crossref_primary_10_1016_j_ijmecsci_2024_109127
crossref_primary_10_1088_1361_665X_ad860e
crossref_primary_10_1016_j_enconman_2023_117158
crossref_primary_10_1016_j_susmat_2024_e01094
crossref_primary_10_1016_j_ymssp_2021_108637
crossref_primary_10_1002_smtd_202300771
crossref_primary_10_1016_j_ymssp_2021_108410
crossref_primary_10_1109_TMECH_2022_3157848
crossref_primary_10_1016_j_renene_2022_11_008
crossref_primary_10_1016_j_cjph_2023_05_004
crossref_primary_10_1016_j_ymssp_2023_110612
crossref_primary_10_1016_j_enconman_2022_115523
crossref_primary_10_1016_j_enconman_2021_114466
crossref_primary_10_1016_j_enconman_2022_115731
crossref_primary_10_1021_acsaem_2c00703
crossref_primary_10_1016_j_enconman_2022_115441
crossref_primary_10_1016_j_sna_2022_113828
crossref_primary_10_1016_j_energy_2021_122205
crossref_primary_10_1016_j_joule_2022_06_013
Cites_doi 10.1063/1.5053945
10.3390/en10101483
10.1115/1.4029807
10.1016/j.enconman.2019.111820
10.1002/ente.202000533
10.1063/1.5131193
10.1088/1361-665X/aaed66
10.1016/j.enconman.2018.06.069
10.1016/j.ymssp.2015.01.012
10.1016/j.nanoen.2019.103871
10.1016/j.apenergy.2020.114682
10.1088/0964-1726/25/8/085029
10.1109/AIM.2018.8452373
10.1016/j.enconman.2016.11.026
10.1016/j.jsv.2017.08.032
10.1088/1361-665X/ab5cf2
10.1115/DETC2019-98370
10.1016/j.enconman.2019.01.089
10.1115/DSCC2015-9837
10.1007/s40820-019-0271-3
10.1016/j.nanoen.2013.03.001
10.1115/1.4040172
10.1088/0964-1726/24/2/025029
10.1063/1.5098962
10.1016/j.ymssp.2019.106318
10.1016/j.nanoen.2019.104197
10.1016/j.jsv.2005.10.003
10.1016/j.ymssp.2007.09.015
10.1063/1.4868130
10.1126/science.1111063
10.1186/1743-0003-8-22
10.1016/j.apenergy.2018.02.093
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Jun 16, 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Jun 16, 2021
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.ymssp.2021.107621
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1096-1216
ExternalDocumentID 10_1016_j_ymssp_2021_107621
S0888327021000169
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SST
SSV
SSZ
T5K
XPP
ZMT
ZU3
~G-
29M
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SEW
SSH
WUQ
7SC
7SP
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c331t-31dd0849f46ed498af1f4e25542e34ef7601e1937d853996df65c3b02d72980b3
IEDL.DBID .~1
ISSN 0888-3270
IngestDate Sun Jul 13 04:38:03 EDT 2025
Tue Jul 01 04:30:09 EDT 2025
Thu Apr 24 23:08:32 EDT 2025
Fri Feb 23 02:45:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Wearables
Backpack energy harvesting
Biomechanical energy
Multi-parameter coupling effect
Vibration analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-31dd0849f46ed498af1f4e25542e34ef7601e1937d853996df65c3b02d72980b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2508588180
PQPubID 2045429
ParticipantIDs proquest_journals_2508588180
crossref_primary_10_1016_j_ymssp_2021_107621
crossref_citationtrail_10_1016_j_ymssp_2021_107621
elsevier_sciencedirect_doi_10_1016_j_ymssp_2021_107621
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-16
PublicationDateYYYYMMDD 2021-06-16
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-16
  day: 16
PublicationDecade 2020
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Mechanical systems and signal processing
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Xie, Chen, Wen, Yang, Shi, Chen, Peng, Liu, Sun (b0035) 2019; 11
J. Wang, J. Liang, Energy harvesting from horizontal and vertical backpack movements during walking, IEEE/ASME Int. Conf. Adv. Intell. Mechatronics, AIM. 2018-July (2018) 798–803. https://doi.org/10.1109/AIM.2018.8452373.
Cai, Wang, Liao (b0105) 2020; 263
Cai, Yang, Cao, Liao (b0010) 2020; 8
Xie, Cai (b0120) 2015; 137
X. Xu, An investigation on the interactivity between suspended-load backpacks and human gait Graduate dissertation, Doctoral Dissertation of North Carolina State University, Raleigh, NC, 2008.
Kuang, Yang, Zhu (b0020) 2016; 25
Cai, Liao, Cao (b0060) 2019; 28
Feenstra, Granstrom, Sodano (b0115) 2008; 22
Wang, Cao, Zhang, Lin, Liao (b0090) 2017; 132
Zhao, Zou, Gao, Yan, Liu, Tan, Wei, Zhang (b0085) 2019; 115
Stephen (b0150) 2006; 293
Riemer, Shapiro (b0005) 2011; 8
Zhang, Luo, Wang, Dai, Lu, Wang (b0065) 2020; 116
Gao, Liu, Chung, Chan, Liao (b0025) 2019; 115
Z. Hou, J. Cao, L. Zuo, Multi-parameter coupling effect of wearable energy harvesting backpack from human motion, in: Proc. ASME Des. Eng. Tech. Conf., 2019: pp. 1–6. https://doi.org/10.1115/DETC2019-98370.
Xie, Cai (b0125) 2015; 58
C. Liang, Y. Wu, L. Zuo, Vibration energy harvesting system with mechanical motion rectifier, ASME 2015 Dyn. Syst. Control Conf. DSCC 2015. 2 (2015) V002T22A002. https://doi.org/10.1115/DSCC2015-9837.
Yuan, Liu, Tai, Zuo (b0130) 2018; 140
Fan, Cai, Wang, Tang, Liang, Wu, Qu, Tan (b0080) 2019; 198
Liu, Tai, Zuo (b0135) 2020; 29
Tai, Zuo (b0155) 2017; 411
Ylli, Hoffmann, Willmann, Becker, Folkmer, Manoli (b0095) 2015; 24
Meng, Cheng, Zhang, Han, Liu, Zhang (b0040) 2014; 104
Hou, Chen, Li, Huang, Shi, Liu, Sun, Lee (b0050) 2019; 63
Kim, Lee, Roman, Heimgartner, Karavas, Ryan, Galiana, Murphy, Eckert-Erdheim, Perry, Malcolm, Walsh (b0180) 2018; 672
Hou, Yang, Zhang, Chen, Chen, Lin Wang (b0045) 2013; 2
Tao, Yi, Yang, Chang, Wu, Tang, Yang, Wang, Hu, Fu, Miao, Yuan (b0055) 2020; 67
Qian, Xu, Zuo (b0030) 2018; 171
Choi, Lee, Jeon (b0015) 2017; 10
Halim, Rantz, Zhang, Gu, Yang, Roundy (b0070) 2018; 217
Liu, Hou, Lin, Li, Shi, Chen, Sun, Lee (b0100) 2018; 113
Zhang, Dai, Yang, Wang (b0075) 2019; 185
S.S. Rao, Mechanical Vibrations Fifth Edition, 2010. https://doi.org/978 92 4 150215 3.
L.C. Rome, L. Flynn, E.M. Goldman, T.D. Yoo, Biophysics: Generating electricity while walking with loads, Science (80-.). 309 (2005) 1725–1728. https://doi.org/10.1126/science.1111063.
Martin, Li (b0145) 2019; 134
Zhao (10.1016/j.ymssp.2021.107621_b0085) 2019; 115
Liu (10.1016/j.ymssp.2021.107621_b0100) 2018; 113
Xie (10.1016/j.ymssp.2021.107621_b0035) 2019; 11
Hou (10.1016/j.ymssp.2021.107621_b0045) 2013; 2
Riemer (10.1016/j.ymssp.2021.107621_b0005) 2011; 8
Halim (10.1016/j.ymssp.2021.107621_b0070) 2018; 217
Qian (10.1016/j.ymssp.2021.107621_b0030) 2018; 171
Ylli (10.1016/j.ymssp.2021.107621_b0095) 2015; 24
Fan (10.1016/j.ymssp.2021.107621_b0080) 2019; 198
Zhang (10.1016/j.ymssp.2021.107621_b0065) 2020; 116
Wang (10.1016/j.ymssp.2021.107621_b0090) 2017; 132
Yuan (10.1016/j.ymssp.2021.107621_b0130) 2018; 140
Choi (10.1016/j.ymssp.2021.107621_b0015) 2017; 10
Stephen (10.1016/j.ymssp.2021.107621_b0150) 2006; 293
10.1016/j.ymssp.2021.107621_b0175
10.1016/j.ymssp.2021.107621_b0110
Kuang (10.1016/j.ymssp.2021.107621_b0020) 2016; 25
10.1016/j.ymssp.2021.107621_b0170
Kim (10.1016/j.ymssp.2021.107621_b0180) 2018; 672
Tao (10.1016/j.ymssp.2021.107621_b0055) 2020; 67
Cai (10.1016/j.ymssp.2021.107621_b0105) 2020; 263
Gao (10.1016/j.ymssp.2021.107621_b0025) 2019; 115
Cai (10.1016/j.ymssp.2021.107621_b0010) 2020; 8
Martin (10.1016/j.ymssp.2021.107621_b0145) 2019; 134
Feenstra (10.1016/j.ymssp.2021.107621_b0115) 2008; 22
Xie (10.1016/j.ymssp.2021.107621_b0125) 2015; 58
Liu (10.1016/j.ymssp.2021.107621_b0135) 2020; 29
10.1016/j.ymssp.2021.107621_b0165
Meng (10.1016/j.ymssp.2021.107621_b0040) 2014; 104
10.1016/j.ymssp.2021.107621_b0140
Tai (10.1016/j.ymssp.2021.107621_b0155) 2017; 411
10.1016/j.ymssp.2021.107621_b0160
Cai (10.1016/j.ymssp.2021.107621_b0060) 2019; 28
Xie (10.1016/j.ymssp.2021.107621_b0120) 2015; 137
Hou (10.1016/j.ymssp.2021.107621_b0050) 2019; 63
Zhang (10.1016/j.ymssp.2021.107621_b0075) 2019; 185
References_xml – volume: 672
  start-page: 1
  year: 2018
  end-page: 56
  ident: b0180
  article-title: Reducing the metabolic rate of walking and running with a versatile, portable soft exosuit, Nature
  publication-title: Under Consid.
– reference: L.C. Rome, L. Flynn, E.M. Goldman, T.D. Yoo, Biophysics: Generating electricity while walking with loads, Science (80-.). 309 (2005) 1725–1728. https://doi.org/10.1126/science.1111063.
– volume: 185
  start-page: 202
  year: 2019
  end-page: 210
  ident: b0075
  article-title: Design of high-efficiency electromagnetic energy harvester based on a rolling magnet
  publication-title: Energy Convers. Manag.
– volume: 217
  start-page: 66
  year: 2018
  end-page: 74
  ident: b0070
  article-title: An electromagnetic rotational energy harvester using sprung eccentric rotor, driven by pseudo-walking motion
  publication-title: Appl. Energy.
– volume: 113
  start-page: 203901
  year: 2018
  ident: b0100
  article-title: A non-resonant rotational electromagnetic energy harvester for low-frequency and irregular human motion
  publication-title: Appl. Phys. Lett.
– volume: 198
  start-page: 111820
  year: 2019
  ident: b0080
  article-title: A string-suspended and driven rotor for efficient ultra-low frequency mechanical energy harvesting
  publication-title: Energy Convers. Manag.
– reference: Z. Hou, J. Cao, L. Zuo, Multi-parameter coupling effect of wearable energy harvesting backpack from human motion, in: Proc. ASME Des. Eng. Tech. Conf., 2019: pp. 1–6. https://doi.org/10.1115/DETC2019-98370.
– volume: 25
  start-page: 085029
  year: 2016
  ident: b0020
  article-title: Design and characterisation of a piezoelectric knee-joint energy harvester with frequency up-conversion through magnetic plucking
  publication-title: Smart Mater. Struct.
– volume: 67
  start-page: 104197
  year: 2020
  ident: b0055
  article-title: Origami-inspired electret-based triboelectric generator for biomechanical and ocean wave energy harvesting
  publication-title: Nano Energy.
– volume: 58
  start-page: 399
  year: 2015
  end-page: 415
  ident: b0125
  article-title: Increased energy harvesting and reduced accelerative load for backpacks via frequency tuning
  publication-title: Mech. Syst. Signal Process.
– volume: 116
  year: 2020
  ident: b0065
  article-title: Rotational electromagnetic energy harvester for human motion application at low frequency
  publication-title: Appl. Phys. Lett.
– reference: J. Wang, J. Liang, Energy harvesting from horizontal and vertical backpack movements during walking, IEEE/ASME Int. Conf. Adv. Intell. Mechatronics, AIM. 2018-July (2018) 798–803. https://doi.org/10.1109/AIM.2018.8452373.
– reference: S.S. Rao, Mechanical Vibrations Fifth Edition, 2010. https://doi.org/978 92 4 150215 3.
– volume: 63
  start-page: 103871
  year: 2019
  ident: b0050
  article-title: A rotational pendulum based electromagnetic/triboelectric hybrid-generator for ultra-low-frequency vibrations aiming at human motion and blue energy applications
  publication-title: Nano Energy.
– volume: 134
  start-page: 106318
  year: 2019
  ident: b0145
  article-title: Design, model, and performance evaluation of a biomechanical energy harvesting backpack
  publication-title: Mech. Syst. Signal Process.
– volume: 115
  start-page: 033901
  year: 2019
  ident: b0025
  article-title: Macro fiber composite-based energy harvester for human knee
  publication-title: Appl. Phys. Lett.
– volume: 24
  start-page: 025029
  year: 2015
  ident: b0095
  article-title: Energy harvesting from human motion: Exploiting swing and shock excitations
  publication-title: Smart Mater. Struct.
– volume: 2
  start-page: 856
  year: 2013
  end-page: 862
  ident: b0045
  article-title: Triboelectric nanogenerator built inside shoe insole for harvesting walking energy
  publication-title: Nano Energy.
– volume: 11
  start-page: 1
  year: 2019
  end-page: 10
  ident: b0035
  article-title: Spiral Steel Wire Based Fiber-Shaped Stretchable and Tailorable Triboelectric Nanogenerator for Wearable Power Source and Active Gesture Sensor
  publication-title: Nano-Micro Lett.
– reference: C. Liang, Y. Wu, L. Zuo, Vibration energy harvesting system with mechanical motion rectifier, ASME 2015 Dyn. Syst. Control Conf. DSCC 2015. 2 (2015) V002T22A002. https://doi.org/10.1115/DSCC2015-9837.
– volume: 8
  start-page: 2000533
  year: 2020
  ident: b0010
  article-title: Recent advances in human motion excited energy harvesting systems for wearables
  publication-title: Energy Technol.
– volume: 8
  start-page: 22
  year: 2011
  ident: b0005
  article-title: Biomechanical energy harvesting from human motion: Theory, state of the art, design guidelines, and future directions
  publication-title: J. Neuroeng. Rehabil.
– volume: 137
  year: 2015
  ident: b0120
  article-title: Development of a Suspended Backpack for Harvesting Biomechanical Energy
  publication-title: J. Mech. Des.
– volume: 104
  start-page: 103904
  year: 2014
  ident: b0040
  article-title: Single-friction-surface triboelectric generator with human body conduit
  publication-title: Appl. Phys. Lett.
– volume: 10
  year: 2017
  ident: b0015
  article-title: Wearable biomechanical energy harvesting technologies
  publication-title: Energies.
– volume: 28
  start-page: 015026
  year: 2019
  ident: b0060
  article-title: A smart harvester for capturing energy from human ankle dorsiflexion with reduced user effort
  publication-title: Smart Mater. Struct.
– volume: 411
  start-page: 47
  year: 2017
  end-page: 59
  ident: b0155
  article-title: On optimization of energy harvesting from base-excited vibration
  publication-title: J. Sound Vib.
– volume: 140
  year: 2018
  ident: b0130
  article-title: Design and treadmill test of a broadband energy harvesting backpack with a mechanical motion rectifier
  publication-title: J. Mech. Des.
– volume: 115
  start-page: 263902
  year: 2019
  ident: b0085
  article-title: Magnetically modulated orbit for human motion energy harvesting
  publication-title: Appl. Phys. Lett.
– reference: X. Xu, An investigation on the interactivity between suspended-load backpacks and human gait Graduate dissertation, Doctoral Dissertation of North Carolina State University, Raleigh, NC, 2008.
– volume: 293
  start-page: 409
  year: 2006
  end-page: 425
  ident: b0150
  article-title: On energy harvesting from ambient vibration
  publication-title: J. Sound Vib.
– volume: 132
  start-page: 189
  year: 2017
  end-page: 197
  ident: b0090
  article-title: Magnetic-spring based energy harvesting from human motions: Design, modeling and experiments
  publication-title: Energy Convers. Manag.
– volume: 29
  start-page: 025007
  year: 2020
  ident: b0135
  article-title: Enhancing the performance of backpack energy harvester using nonlinear inerter-based two degrees of freedom design
  publication-title: Smart Mater. Struct.
– volume: 263
  start-page: 114682
  year: 2020
  ident: b0105
  article-title: Self-powered smart watch and wristband enabled by embedded generator
  publication-title: Appl. Energy.
– volume: 22
  start-page: 721
  year: 2008
  end-page: 734
  ident: b0115
  article-title: Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack
  publication-title: Mech. Syst. Signal Process.
– volume: 171
  start-page: 1352
  year: 2018
  end-page: 1364
  ident: b0030
  article-title: Design, optimization, modeling and testing of a piezoelectric footwear energy harvester
  publication-title: Energy Convers. Manag.
– volume: 113
  start-page: 203901
  issue: 20
  year: 2018
  ident: 10.1016/j.ymssp.2021.107621_b0100
  article-title: A non-resonant rotational electromagnetic energy harvester for low-frequency and irregular human motion
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5053945
– ident: 10.1016/j.ymssp.2021.107621_b0160
– volume: 10
  year: 2017
  ident: 10.1016/j.ymssp.2021.107621_b0015
  article-title: Wearable biomechanical energy harvesting technologies
  publication-title: Energies.
  doi: 10.3390/en10101483
– volume: 137
  year: 2015
  ident: 10.1016/j.ymssp.2021.107621_b0120
  article-title: Development of a Suspended Backpack for Harvesting Biomechanical Energy
  publication-title: J. Mech. Des.
  doi: 10.1115/1.4029807
– volume: 198
  start-page: 111820
  year: 2019
  ident: 10.1016/j.ymssp.2021.107621_b0080
  article-title: A string-suspended and driven rotor for efficient ultra-low frequency mechanical energy harvesting
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2019.111820
– volume: 8
  start-page: 2000533
  issue: 10
  year: 2020
  ident: 10.1016/j.ymssp.2021.107621_b0010
  article-title: Recent advances in human motion excited energy harvesting systems for wearables
  publication-title: Energy Technol.
  doi: 10.1002/ente.202000533
– volume: 116
  year: 2020
  ident: 10.1016/j.ymssp.2021.107621_b0065
  article-title: Rotational electromagnetic energy harvester for human motion application at low frequency
  publication-title: Appl. Phys. Lett.
– volume: 115
  start-page: 263902
  issue: 26
  year: 2019
  ident: 10.1016/j.ymssp.2021.107621_b0085
  article-title: Magnetically modulated orbit for human motion energy harvesting
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5131193
– volume: 28
  start-page: 015026
  issue: 1
  year: 2019
  ident: 10.1016/j.ymssp.2021.107621_b0060
  article-title: A smart harvester for capturing energy from human ankle dorsiflexion with reduced user effort
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aaed66
– volume: 171
  start-page: 1352
  year: 2018
  ident: 10.1016/j.ymssp.2021.107621_b0030
  article-title: Design, optimization, modeling and testing of a piezoelectric footwear energy harvester
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2018.06.069
– volume: 58
  start-page: 399
  year: 2015
  ident: 10.1016/j.ymssp.2021.107621_b0125
  article-title: Increased energy harvesting and reduced accelerative load for backpacks via frequency tuning
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2015.01.012
– volume: 672
  start-page: 1
  year: 2018
  ident: 10.1016/j.ymssp.2021.107621_b0180
  article-title: Reducing the metabolic rate of walking and running with a versatile, portable soft exosuit, Nature
  publication-title: Under Consid.
– volume: 63
  start-page: 103871
  year: 2019
  ident: 10.1016/j.ymssp.2021.107621_b0050
  article-title: A rotational pendulum based electromagnetic/triboelectric hybrid-generator for ultra-low-frequency vibrations aiming at human motion and blue energy applications
  publication-title: Nano Energy.
  doi: 10.1016/j.nanoen.2019.103871
– volume: 263
  start-page: 114682
  year: 2020
  ident: 10.1016/j.ymssp.2021.107621_b0105
  article-title: Self-powered smart watch and wristband enabled by embedded generator
  publication-title: Appl. Energy.
  doi: 10.1016/j.apenergy.2020.114682
– volume: 25
  start-page: 085029
  issue: 8
  year: 2016
  ident: 10.1016/j.ymssp.2021.107621_b0020
  article-title: Design and characterisation of a piezoelectric knee-joint energy harvester with frequency up-conversion through magnetic plucking
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/25/8/085029
– ident: 10.1016/j.ymssp.2021.107621_b0140
  doi: 10.1109/AIM.2018.8452373
– volume: 132
  start-page: 189
  year: 2017
  ident: 10.1016/j.ymssp.2021.107621_b0090
  article-title: Magnetic-spring based energy harvesting from human motions: Design, modeling and experiments
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2016.11.026
– volume: 411
  start-page: 47
  year: 2017
  ident: 10.1016/j.ymssp.2021.107621_b0155
  article-title: On optimization of energy harvesting from base-excited vibration
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2017.08.032
– volume: 29
  start-page: 025007
  issue: 2
  year: 2020
  ident: 10.1016/j.ymssp.2021.107621_b0135
  article-title: Enhancing the performance of backpack energy harvester using nonlinear inerter-based two degrees of freedom design
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/ab5cf2
– ident: 10.1016/j.ymssp.2021.107621_b0175
  doi: 10.1115/DETC2019-98370
– volume: 185
  start-page: 202
  year: 2019
  ident: 10.1016/j.ymssp.2021.107621_b0075
  article-title: Design of high-efficiency electromagnetic energy harvester based on a rolling magnet
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2019.01.089
– ident: 10.1016/j.ymssp.2021.107621_b0165
  doi: 10.1115/DSCC2015-9837
– volume: 11
  start-page: 1
  year: 2019
  ident: 10.1016/j.ymssp.2021.107621_b0035
  article-title: Spiral Steel Wire Based Fiber-Shaped Stretchable and Tailorable Triboelectric Nanogenerator for Wearable Power Source and Active Gesture Sensor
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-019-0271-3
– volume: 2
  start-page: 856
  issue: 5
  year: 2013
  ident: 10.1016/j.ymssp.2021.107621_b0045
  article-title: Triboelectric nanogenerator built inside shoe insole for harvesting walking energy
  publication-title: Nano Energy.
  doi: 10.1016/j.nanoen.2013.03.001
– volume: 140
  year: 2018
  ident: 10.1016/j.ymssp.2021.107621_b0130
  article-title: Design and treadmill test of a broadband energy harvesting backpack with a mechanical motion rectifier
  publication-title: J. Mech. Des.
  doi: 10.1115/1.4040172
– volume: 24
  start-page: 025029
  issue: 2
  year: 2015
  ident: 10.1016/j.ymssp.2021.107621_b0095
  article-title: Energy harvesting from human motion: Exploiting swing and shock excitations
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/24/2/025029
– volume: 115
  start-page: 033901
  issue: 3
  year: 2019
  ident: 10.1016/j.ymssp.2021.107621_b0025
  article-title: Macro fiber composite-based energy harvester for human knee
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5098962
– volume: 134
  start-page: 106318
  year: 2019
  ident: 10.1016/j.ymssp.2021.107621_b0145
  article-title: Design, model, and performance evaluation of a biomechanical energy harvesting backpack
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.106318
– volume: 67
  start-page: 104197
  year: 2020
  ident: 10.1016/j.ymssp.2021.107621_b0055
  article-title: Origami-inspired electret-based triboelectric generator for biomechanical and ocean wave energy harvesting
  publication-title: Nano Energy.
  doi: 10.1016/j.nanoen.2019.104197
– volume: 293
  start-page: 409
  issue: 1-2
  year: 2006
  ident: 10.1016/j.ymssp.2021.107621_b0150
  article-title: On energy harvesting from ambient vibration
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2005.10.003
– ident: 10.1016/j.ymssp.2021.107621_b0170
– volume: 22
  start-page: 721
  issue: 3
  year: 2008
  ident: 10.1016/j.ymssp.2021.107621_b0115
  article-title: Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2007.09.015
– volume: 104
  start-page: 103904
  issue: 10
  year: 2014
  ident: 10.1016/j.ymssp.2021.107621_b0040
  article-title: Single-friction-surface triboelectric generator with human body conduit
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4868130
– ident: 10.1016/j.ymssp.2021.107621_b0110
  doi: 10.1126/science.1111063
– volume: 8
  start-page: 22
  issue: 1
  year: 2011
  ident: 10.1016/j.ymssp.2021.107621_b0005
  article-title: Biomechanical energy harvesting from human motion: Theory, state of the art, design guidelines, and future directions
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-8-22
– volume: 217
  start-page: 66
  year: 2018
  ident: 10.1016/j.ymssp.2021.107621_b0070
  article-title: An electromagnetic rotational energy harvester using sprung eccentric rotor, driven by pseudo-walking motion
  publication-title: Appl. Energy.
  doi: 10.1016/j.apenergy.2018.02.093
SSID ssj0009406
Score 2.452807
Snippet •The output power model of a wearable energy harvesting backpack is established.•The multi-parameter theoretical analysis is presented to enhance harvesting...
Wearable energy harvesting technologies show a promising potential in IoT (Internet of Things) and human daily life because of their continuous power supply in...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107621
SubjectTerms Backpack energy harvesting
Backpacks
Biomechanical energy
Circuits
Damping
Energy
Energy conversion
Energy harvesting
Human motion
Internet of Things
Maximum power
Mechanical systems
Multi-parameter coupling effect
Parameters
Performance enhancement
Stiffness
Vibration analysis
Walking
Wearable technology
Wearables
Title Multi-parameter theoretical analysis of wearable energy harvesting backpacks for performance enhancement
URI https://dx.doi.org/10.1016/j.ymssp.2021.107621
https://www.proquest.com/docview/2508588180
Volume 155
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpCqTwwEpqH8xqriqqA6AKVulm249ACTaO2CLHw27lzElqQ6MAUJTpb0dk-fz7d95mQC2GHSmAKDLCGj9kqWHOu0hbsDZFM_UBKjamB-0HQH7LbkT-qkW7FhcGyyjL2FzHdROvyS7v0ZjufTNoPsD6g6xAPLQhckMTHWIiz_OpzVeYRM3O_JhpbaF0pD5kar4_pYoGila4DXyAsOH_tTr_itNl8entkt0SNtFP82D6p6eyA7KxpCR6SsaHSWijlPcUSF7pGUaSilB6hs5S-w9xGvhTVhvZHx2JupDayJyqFesmRdE8BytJ8xSkA2zE-MZV4RIa968du3yqvUbCU5zlLiLJJYkcsTlmgExZHInVSpuEowVztMZ1iVYwGHBcmEcrUBkka-MqTtpsA8I5s6R2TejbL9AmhqWKJjARAKC9mgR2L2FWAF5UQTsJEGDaIW7mPq1JjHK-6eOVVMdkzNz7n6HNe-LxBLr8b5YXExmbzoBoX_mOmcNgENjdsVqPIy4W64IAAIz9Cwvvpf_s9I9v4hvVjTtAk9eX8TZ8DUlnKlpmKLbLVubnrD74A317pHA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TgMxEB2FUAAF4hRHABfQsWQP71VQICAKBGgAic54vV7CFaIkCNHwU_wgM46XS4ICiWolr21ZY3vmeTTzBmBdurGS5AJDrBGStwrvnK-0g7YhyYowyjJNroHjk6h5zg8vwosKvJa5MBRWaXX_UKcbbW1b6laa9e71df0U7wdOHdOjhYBLaiMrW_r5Cd9t_e2DPdzkDd9v7J_tNh1bWsBRQeANUPPkuZvwtOCRznmayMIruEZ4zX0dcF1QpIhGbBPnCVG3RnkRhSrIXD9HMJq4WYDzjsAoR3VBZRO2Xj7iSlJuCnrS6hxaXkl1ZILKnu_7fWLJ9D1sQT3k_WQOvxkGY-0aUzBpYSrbGUpiGiq6MwMTn8gLZ6Ftcncd4g6_p5ga9iknkknLdcIeCvaEAqMELaZNniFry57h9uhcsUyq2y5l-TPEzqz7kcSAfdv0Jd_lHJz_i3Dnodp56OgFYIXieZZIxGxByiM3lamvEKAqKb2cyzheBL8Un1CW1Jxqa9yJMnrtRhiZC5K5GMp8ETbfB3WHnB6_d4_KfRFfjqZAq_P7wFq5i8Jqhr5AyJmECWXYL_113jUYa54dH4mjg5PWMozTHwpe86IaVAe9R72CMGmQrZpjyeDyv-_BG81iIz8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-parameter+theoretical+analysis+of+wearable+energy+harvesting+backpacks+for+performance+enhancement&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Hou%2C+Zehao&rft.au=Cao%2C+Junyi&rft.au=Huang%2C+Guohui&rft.au=Zhang%2C+Ying&rft.date=2021-06-16&rft.pub=Elsevier+Ltd&rft.issn=0888-3270&rft.eissn=1096-1216&rft.volume=155&rft_id=info:doi/10.1016%2Fj.ymssp.2021.107621&rft.externalDocID=S0888327021000169
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon