High output triboelectric nanogenerator based on PTFE and cotton for energy harvester and human motion sensor

Recently, a novel mechanical energy harvesting method named triboelectric nanogenerator (TENG) is reported, and it has aroused great repercussions in the academic fields. But, the complex preparation process still limits its wide application. In this paper, the cotton film was used as the triboelect...

Full description

Saved in:
Bibliographic Details
Published inCurrent applied physics Vol. 22; pp. 1 - 5
Main Authors Zhang, Zhongxing, Cai, Jun
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2021
한국물리학회
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recently, a novel mechanical energy harvesting method named triboelectric nanogenerator (TENG) is reported, and it has aroused great repercussions in the academic fields. But, the complex preparation process still limits its wide application. In this paper, the cotton film was used as the triboelectric material to fabricate a novel wearable TENG (W-TENG). The polytetrafluoroethylene (PTFE) film and cotton film play the role of triboelectric pair. The W-TENG can be used to harvest low-frequency mechanical energy in our environment, especially for human body mechanical energy, and then convert them to electrical energy. In addition, the cotton coated with conductive ink plays the role of conductive material for TENG. The Voc and Isc of W-TENG can reach 556 V and 26 μA, respectively. As for the maximum power density of W-TENG, it can arrive at 0.66 mW/cm2. Also, a combined W-TENG was proposed to improve the electrical output. Moreover, the W-TENG can play the role of human motion sensor for human walking posture monitoring. This will open up a new path for the preparation of high output TENG at low cost, and promote the TENG devices in the field of sports monitoring. [Display omitted] •We firstly reported a wearable TENG (W-TENG) based on the polytetrafluoroethylene (PTFE) film and cotton film to harvest mechanical energy in our environment.•The results also show that the W-TENG has wonderful charging effect and excellent reliability.•The W-TENG can play the role of human motion sensor for human walking posture monitoring.
AbstractList Recently, a novel mechanical energy harvesting method named triboelectric nanogenerator (TENG) is reported, and it has aroused great repercussions in the academic fields. But, the complex preparation process still limits its wide application. In this paper, the cotton film was used as the triboelectric material to fabricate a novel wearable TENG (W-TENG). The polytetrafluoroethylene (PTFE) film and cotton film play the role of triboelectric pair. The W-TENG can be used to harvest low-frequency mechanical energy in our environment, especially for human body mechanical energy, and then convert them to electrical energy. In addition, the cotton coated with conductive ink plays the role of conductive material for TENG. The Voc and Isc of W-TENG can reach 556 V and 26 μA, respectively. As for the maximum power density of W-TENG, it can arrive at 0.66 mW/cm2. Also, a combined W-TENG was proposed to improve the electrical output. Moreover, the W-TENG can play the role of human motion sensor for human walking posture monitoring. This will open up a new path for the preparation of high output TENG at low cost, and promote the TENG devices in the field of sports monitoring. KCI Citation Count: 0
Recently, a novel mechanical energy harvesting method named triboelectric nanogenerator (TENG) is reported, and it has aroused great repercussions in the academic fields. But, the complex preparation process still limits its wide application. In this paper, the cotton film was used as the triboelectric material to fabricate a novel wearable TENG (W-TENG). The polytetrafluoroethylene (PTFE) film and cotton film play the role of triboelectric pair. The W-TENG can be used to harvest low-frequency mechanical energy in our environment, especially for human body mechanical energy, and then convert them to electrical energy. In addition, the cotton coated with conductive ink plays the role of conductive material for TENG. The Voc and Isc of W-TENG can reach 556 V and 26 μA, respectively. As for the maximum power density of W-TENG, it can arrive at 0.66 mW/cm2. Also, a combined W-TENG was proposed to improve the electrical output. Moreover, the W-TENG can play the role of human motion sensor for human walking posture monitoring. This will open up a new path for the preparation of high output TENG at low cost, and promote the TENG devices in the field of sports monitoring. [Display omitted] •We firstly reported a wearable TENG (W-TENG) based on the polytetrafluoroethylene (PTFE) film and cotton film to harvest mechanical energy in our environment.•The results also show that the W-TENG has wonderful charging effect and excellent reliability.•The W-TENG can play the role of human motion sensor for human walking posture monitoring.
Author Zhang, Zhongxing
Cai, Jun
Author_xml – sequence: 1
  givenname: Zhongxing
  surname: Zhang
  fullname: Zhang, Zhongxing
– sequence: 2
  givenname: Jun
  surname: Cai
  fullname: Cai, Jun
  email: caijun623@sohu.com
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002684594$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kE1LAzEQhoMo-PkDvOXqYWs-dpNdPImoFQRF6jlkk0mb2iYlSQX_van15MHTzDDPOzDPKToMMQBCl5RMKKHiejkxejNhhNWZTgihB-iE9rJvqJDdYe07IRsq-XCMTnNeVkC0pD1B66mfL3Dcls224JL8GGEFpjYGBx3iHAIkXWLCo85gcQz4dfZwj3Ww2MRS6uzqckfNv_BCp0_IBdLPfrFd64DXsfhKZQg5pnN05PQqw8VvPUPvD_ezu2nz_PL4dHf73BjOaWmYFSMDyTUTrJOMmM70bOCktb0RAwHuxh6sHXtpnTNkdEPXkhFYR50QHe_4Gbra3w3JqQ_jVdT-p86j-kjq9m32pAbJe9G3laV71qSYcwKnNsmvdfpSlKidW7VU1a3auVWUqqquZuSfjPFF7x4tSfvVv8mbfRLq-58eksrGQzBgfarelY3-n_Q3BBCW_Q
CitedBy_id crossref_primary_10_1016_j_nanoen_2024_109363
crossref_primary_10_1557_s43581_024_00095_1
crossref_primary_10_1007_s10853_023_08321_w
crossref_primary_10_1039_D2EE01590K
crossref_primary_10_1109_ACCESS_2021_3064565
crossref_primary_10_1021_acsaelm_2c00909
crossref_primary_10_3390_mi16030313
crossref_primary_10_1016_j_jrras_2024_101028
crossref_primary_10_1016_j_nanoen_2022_107785
crossref_primary_10_1016_j_nanoen_2022_107500
crossref_primary_10_3390_mi12111350
crossref_primary_10_1021_acsaelm_1c01028
crossref_primary_10_1002_admt_202202106
crossref_primary_10_1016_j_nanoen_2022_107740
crossref_primary_10_1002_eem2_12492
crossref_primary_10_1088_1361_6528_acee86
crossref_primary_10_3390_bios12090697
crossref_primary_10_3390_nano12081385
crossref_primary_10_1002_admt_202301592
crossref_primary_10_1088_1361_6528_ace724
crossref_primary_10_1021_acsanm_3c03559
crossref_primary_10_1016_j_nanoen_2023_108245
crossref_primary_10_1016_j_cap_2023_04_018
crossref_primary_10_1039_D4NR01987C
crossref_primary_10_1039_D2TA10024J
crossref_primary_10_1039_D4RA08556F
crossref_primary_10_3390_nano12172960
crossref_primary_10_1016_j_nanoen_2024_110533
crossref_primary_10_1016_j_nanoen_2024_109264
crossref_primary_10_1063_10_0024336
crossref_primary_10_1021_acsami_4c17996
crossref_primary_10_2139_ssrn_4136294
crossref_primary_10_3390_bios13090872
crossref_primary_10_1021_acsanm_3c03430
crossref_primary_10_1016_j_nanoen_2024_110253
crossref_primary_10_1109_JSEN_2022_3155188
crossref_primary_10_1007_s12613_023_2626_5
crossref_primary_10_1002_smtd_202301682
crossref_primary_10_1016_j_susmat_2023_e00596
crossref_primary_10_3390_bios13010037
crossref_primary_10_1039_D2MA00195K
crossref_primary_10_1016_j_susmat_2023_e00638
crossref_primary_10_1016_j_nanoen_2021_106476
crossref_primary_10_1088_2515_7655_ad307e
crossref_primary_10_1002_cnma_202300614
crossref_primary_10_1016_j_cplett_2022_140276
crossref_primary_10_1002_er_7245
crossref_primary_10_1016_j_elstat_2025_104066
crossref_primary_10_1016_j_isci_2024_110627
crossref_primary_10_3389_fpubh_2023_1115000
crossref_primary_10_1007_s11664_022_10180_1
crossref_primary_10_1016_j_joule_2022_06_013
crossref_primary_10_1016_j_nanoen_2021_106685
crossref_primary_10_1016_j_nanoen_2023_108983
Cites_doi 10.1016/j.nanoen.2015.09.012
10.1039/C8TA11229K
10.1021/acsnano.8b02562
10.1021/nn403021m
10.1039/C7TA02680C
10.1002/adma.201305303
10.1016/j.nanoen.2019.103953
10.1038/s41467-019-09461-x
10.1016/j.nanoen.2017.04.053
10.1016/j.nanoen.2014.09.036
10.1039/C5TA06438D
10.1039/C7NR05222G
10.1007/s10853-019-04095-2
10.1002/adma.201704077
10.1002/adfm.201907893
10.1021/nn504243j
10.1016/j.nanoen.2013.08.004
10.1002/adfm.201900327
10.1039/C7EE00158D
10.1016/j.nanoen.2018.03.062
10.1016/j.nanoen.2018.06.019
10.1039/C5EE02711J
10.1016/j.nanoen.2018.11.043
10.1016/j.nanoen.2016.07.028
10.1016/j.nanoen.2018.10.044
10.1016/j.nanoen.2019.01.020
10.1016/j.nanoen.2015.04.037
10.1039/C8NR09978B
10.1002/admt.201800588
10.1039/C8TA07784C
10.1021/acsami.6b07697
ContentType Journal Article
Copyright 2020 Korean Physical Society
Copyright_xml – notice: 2020 Korean Physical Society
DBID AAYXX
CITATION
ACYCR
DOI 10.1016/j.cap.2020.11.001
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1878-1675
EndPage 5
ExternalDocumentID oai_kci_go_kr_ARTI_9738684
10_1016_j_cap_2020_11_001
S1567173920302649
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9ZL
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSQ
SSZ
T5K
UHS
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ABPIF
ABPTK
ACYCR
ID FETCH-LOGICAL-c331t-2d6b2e73a2625720c5c829304d8c690e3fb8eddb87dffc0bf9540be251f665353
IEDL.DBID .~1
ISSN 1567-1739
IngestDate Fri Nov 17 19:16:48 EST 2023
Tue Jul 01 01:06:11 EDT 2025
Thu Apr 24 23:01:14 EDT 2025
Fri Feb 23 02:48:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords PTFE film
Sports monitoring
Cotton
Triboelectric nanogenerator (TENG)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-2d6b2e73a2625720c5c829304d8c690e3fb8eddb87dffc0bf9540be251f665353
PageCount 5
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9738684
crossref_primary_10_1016_j_cap_2020_11_001
crossref_citationtrail_10_1016_j_cap_2020_11_001
elsevier_sciencedirect_doi_10_1016_j_cap_2020_11_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2021
2021-02-00
2021-02
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: February 2021
PublicationDecade 2020
PublicationTitle Current applied physics
PublicationYear 2021
Publisher Elsevier B.V
한국물리학회
Publisher_xml – name: Elsevier B.V
– name: 한국물리학회
References Xi, Wang, Zi, Li, Han, Cao, Hu, Wang (bib8) 2017; 38
Zhang, Yang, Su, Chen, Hu, Liu, Wong, Bando, Wang (bib14) 2013; 2
Paria, Si, Karan, Das, Maitra, Bera, Halder, Bera, De, Khatua (bib12) 2019; 7
Zhang, Yu, Ma, Yang, Zou, Zhang, Niu, Pan, Xu, Li, Wang (bib3) 2019
Pu, Guo, Tang, Chen, Feng, Liu, Wang, Xi, Hu, Wang (bib6) 2018; 54
Guo, Wu, Song, Miao, Chen, Su, Han, Zhang (bib1) 2019; 58
Tang, Zhou, Sun (bib34) 2020; 30
Zhong, Xu, Yang, Shao, Chen, Wang (bib20) 2019; 11
Zhang, Qin, Feng (bib33) 2020
Liu, Xu, Xia, Shi, Hu (bib11) 2015; 3
Wang, Zhang, Tang (bib30) 2018; 12
Wang, Zhang, Tang (bib27) 2017; 5
Jie, Jiang, Zhang, Wang, Cao (bib17) 2016; 27
Lee, Hinchet, Kim, Kim, Kim (bib23) 2015; 8
Zhang, Xu, Zhang, Wang, Zou, He, Wang, Wang (bib16) 2018; 48
Cheng, Gao, Wang (bib25) 2019
Wang, Xie, Niu, Lin, Wang (bib19) 2014; 26
Hu, Wang, Zhong, Zhong, Hu, Zhang, Zhou (bib2) 2015; 14
Yao, Jiang, Zhang, Chen, Gao, Wang (bib21) 2016; 8
Ning, Tian, Zhao (bib29) 2018; 6
Cao, Zhang, Huang, Jiang, Zou, Wang, Wang (bib7) 2018; 30
Wang, Xi, Xuan, Liu, Chen, Cheng (bib4) 2015; 18
Li, Lin, Cheng, Wen, Liu, Niu, Wang (bib5) 2014; 8
Tang, Zhou, Sun (bib32) 2020; 55
Yang, Wang, Deng, Guo, Zhang, Yang, Xi, Li, Hu, Wang (bib10) 2019; 56
Ahmed, Hassan, Ibn-Mohammed, Mostafa, Reaney, Koh, Zu, Wang (bib22) 2017; 10
Lin, Cheng, Li, Yang, Wen, Wang (bib13) 2015; 15
Zou, Zhang, Guo, Wang, He, Dai, Zheng, Chen, Wang, Xu, Wang (bib15) 2019; 10
Mao, Zhang, Tang (bib28) 2017; 9
Zou, Zhang, Guo, Wang, He, Dai, Wang (bib26) 2019; 10
Zhang, Tang, Dai (bib31) 2019; 64
Yang, Zhang, Chen, Jing, Zhou, Wen, Wang (bib18) 2013; 7
Xi, Wang, Zi, Li, Han, Cao, Hu, Wang (bib24) 2017; 38
Xia, Zhu, Zhang, Du, Xu, Wang (bib9) 2018; 50
Zhang (10.1016/j.cap.2020.11.001_bib14) 2013; 2
Ahmed (10.1016/j.cap.2020.11.001_bib22) 2017; 10
Zhang (10.1016/j.cap.2020.11.001_bib16) 2018; 48
Wang (10.1016/j.cap.2020.11.001_bib4) 2015; 18
Yao (10.1016/j.cap.2020.11.001_bib21) 2016; 8
Zhong (10.1016/j.cap.2020.11.001_bib20) 2019; 11
Ning (10.1016/j.cap.2020.11.001_bib29) 2018; 6
Zhang (10.1016/j.cap.2020.11.001_bib3) 2019
Wang (10.1016/j.cap.2020.11.001_bib30) 2018; 12
Mao (10.1016/j.cap.2020.11.001_bib28) 2017; 9
Li (10.1016/j.cap.2020.11.001_bib5) 2014; 8
Zou (10.1016/j.cap.2020.11.001_bib15) 2019; 10
Tang (10.1016/j.cap.2020.11.001_bib34) 2020; 30
Liu (10.1016/j.cap.2020.11.001_bib11) 2015; 3
Xi (10.1016/j.cap.2020.11.001_bib8) 2017; 38
Pu (10.1016/j.cap.2020.11.001_bib6) 2018; 54
Paria (10.1016/j.cap.2020.11.001_bib12) 2019; 7
Hu (10.1016/j.cap.2020.11.001_bib2) 2015; 14
Xia (10.1016/j.cap.2020.11.001_bib9) 2018; 50
Zhang (10.1016/j.cap.2020.11.001_bib33) 2020
Tang (10.1016/j.cap.2020.11.001_bib32) 2020; 55
Cheng (10.1016/j.cap.2020.11.001_bib25) 2019
Zou (10.1016/j.cap.2020.11.001_bib26) 2019; 10
Guo (10.1016/j.cap.2020.11.001_bib1) 2019; 58
Cao (10.1016/j.cap.2020.11.001_bib7) 2018; 30
Xi (10.1016/j.cap.2020.11.001_bib24) 2017; 38
Yang (10.1016/j.cap.2020.11.001_bib18) 2013; 7
Jie (10.1016/j.cap.2020.11.001_bib17) 2016; 27
Lee (10.1016/j.cap.2020.11.001_bib23) 2015; 8
Wang (10.1016/j.cap.2020.11.001_bib27) 2017; 5
Yang (10.1016/j.cap.2020.11.001_bib10) 2019; 56
Zhang (10.1016/j.cap.2020.11.001_bib31) 2019; 64
Wang (10.1016/j.cap.2020.11.001_bib19) 2014; 26
Lin (10.1016/j.cap.2020.11.001_bib13) 2015; 15
References_xml – volume: 38
  start-page: 101
  year: 2017
  end-page: 108
  ident: bib24
  article-title: High efficient harvesting of underwater ultrasonic wave energy by triboelectric nanogenerator
  publication-title: Nano energy
– volume: 10
  start-page: 1427
  year: 2019
  ident: bib15
  article-title: Quantifying the triboelectric series
  publication-title: Nat. Commun.
– volume: 11
  start-page: 7199
  year: 2019
  end-page: 7208
  ident: bib20
  article-title: Open-book-like triboelectric nanogenerators based on low-frequency roll–swing oscillators for wave energy harvesting
  publication-title: Nanoscale
– volume: 38
  start-page: 101
  year: 2017
  end-page: 108
  ident: bib8
  article-title: High efficient harvesting of underwater ultrasonic wave energy by triboelectric nanogenerator
  publication-title: Nano energy
– volume: 2
  start-page: 693
  year: 2013
  end-page: 701
  ident: bib14
  article-title: Triboelectric nanogenerator as self-powered active sensors for detecting liquid/gaseous water/ethanol
  publication-title: Nanomater. Energy
– volume: 26
  start-page: 2818
  year: 2014
  end-page: 2824
  ident: bib19
  article-title: Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes
  publication-title: Adv. Mater.
– volume: 15
  start-page: 256
  year: 2015
  end-page: 265
  ident: bib13
  article-title: A multi-layered inter-digitative-electrodes-based triboelectric nanogenerator for harvesting hydropower
  publication-title: Nanomater. Energy
– volume: 30
  start-page: 1907893
  year: 2020
  ident: bib34
  article-title: Triboelectric touch-free screen sensor for noncontact gesture recognizing
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 6156
  year: 2018
  end-page: 6162
  ident: bib30
  article-title: Air-flow-driven triboelectric nanogenerators for self-powered real-time respiratory monitoring
  publication-title: ACS Nano
– start-page: 1800588
  year: 2019
  ident: bib25
  article-title: The current development and future outlook of triboelectric nanogenerators: a survey of literature
  publication-title: Advanced Materials Technologies
– volume: 8
  start-page: 10674
  year: 2014
  end-page: 10681
  ident: bib5
  article-title: 3D fiber-based hybrid nanogenerator for energy harvesting and as a self-powered pressure sensor
  publication-title: ACS Nano
– volume: 6
  start-page: 19143
  year: 2018
  end-page: 19150
  ident: bib29
  article-title: Washable textile-structured single-electrode triboelectric nanogenerator for self-powered wearable electronics
  publication-title: J. Mater. Chem.
– volume: 50
  start-page: 571
  year: 2018
  end-page: 580
  ident: bib9
  article-title: Painting a high-output triboelectric nanogenerator on paper for harvesting energy from human body motion
  publication-title: Nano energy
– volume: 10
  start-page: 653
  year: 2017
  end-page: 671
  ident: bib22
  article-title: Environmental life cycle assessment and techno-economic analysis of triboelectric nanogenerators
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 21398
  year: 2016
  end-page: 21406
  ident: bib21
  article-title: Charging system optimization of triboelectric nanogenerator for water wave energy harvesting and storage
  publication-title: ACS Appl. Mater. Interfaces
– volume: 27
  start-page: 554
  year: 2016
  end-page: 560
  ident: bib17
  article-title: A structural bionic design: from electric organs to systematic triboelectric generators
  publication-title: Nano energy
– start-page: 1
  year: 2020
  end-page: 5
  ident: bib33
  article-title: Non-contact cylindrical rotating triboelectric nanogenerator for harvesting kinetic energy from hydraulics
  publication-title: Nano Research
– volume: 18
  start-page: 28
  year: 2015
  end-page: 36
  ident: bib4
  article-title: Hybrid nanogenerators based on triboelectrification of a dielectric composite made of lead-free ZnSnO
  publication-title: Nanomater. Energy
– start-page: 1900327
  year: 2019
  ident: bib3
  article-title: Self-powered distributed water level sensors based on liquid–solid triboelectric nanogenerators for ship draft detecting
  publication-title: Adv. Funct. Mater.
– volume: 30
  start-page: 1704077
  year: 2018
  ident: bib7
  article-title: Inductor‐Free wireless energy delivery via maxwell's displacement current from an electrodeless triboelectric nanogenerator
  publication-title: Adv. Mater.
– volume: 55
  start-page: 2462
  year: 2020
  end-page: 2470
  ident: bib32
  article-title: Cotton-based naturally wearable power source for self-powered personal electronics
  publication-title: J. Mater. Sci.
– volume: 8
  start-page: 3605
  year: 2015
  end-page: 3613
  ident: bib23
  article-title: Shape memory polymer-based self-healing triboelectric nanogenerator
  publication-title: Energy Environ. Sci.
– volume: 58
  start-page: 121
  year: 2019
  end-page: 129
  ident: bib1
  article-title: Self-powered digital-analog hybrid electronic skin for noncontact displacement sensing
  publication-title: Nanomater. Energy
– volume: 56
  start-page: 300
  year: 2019
  end-page: 306
  ident: bib10
  article-title: A full-packaged rolling triboelectric-electromagnetic hybrid nanogenerator for energy harvesting and building up self-powered wireless systems
  publication-title: Nanomater. Energy
– volume: 3
  start-page: 21133
  year: 2015
  end-page: 21139
  ident: bib11
  article-title: Newton's cradle motion-like triboelectric nanogenerator to enhance energy recycle efficiency by utilizing elastic deformation
  publication-title: J. Mater. Chem.
– volume: 5
  start-page: 12252
  year: 2017
  end-page: 12257
  ident: bib27
  article-title: Single-electrode triboelectric nanogenerators based on sponge-like porous PTFE thin films for mechanical energy harvesting and self-powered electronics
  publication-title: J. Mater. Chem.
– volume: 10
  start-page: 1
  year: 2019
  end-page: 9
  ident: bib26
  article-title: Quantifying the triboelectric series
  publication-title: Nat. Commun.
– volume: 9
  start-page: 14499
  year: 2017
  end-page: 14505
  ident: bib28
  article-title: A paper triboelectric nanogenerator for self-powered electronic systems
  publication-title: Nanoscale
– volume: 14
  start-page: 236
  year: 2015
  end-page: 244
  ident: bib2
  article-title: Metal-free and non-fluorine paper-based generator
  publication-title: Nanomater. Energy
– volume: 64
  start-page: 103953
  year: 2019
  ident: bib31
  article-title: Breath-based human–machine interaction system using triboelectric nanogenerator
  publication-title: Nanomater. Energy
– volume: 7
  start-page: 7342
  year: 2013
  end-page: 7351
  ident: bib18
  article-title: Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system
  publication-title: ACS Nano
– volume: 7
  start-page: 3979
  year: 2019
  end-page: 3991
  ident: bib12
  article-title: A strategy to develop highly efficient TENGs through the dielectric constant, internal resistance optimization, and surface modification
  publication-title: J. Mater. Chem.
– volume: 54
  start-page: 453
  year: 2018
  end-page: 460
  ident: bib6
  article-title: Rotation sensing and gesture control of a robot joint via triboelectric quantization sensor
  publication-title: Nanomater. Energy
– volume: 48
  start-page: 421
  year: 2018
  end-page: 429
  ident: bib16
  article-title: Rationally designed sea snake structure based triboelectric nanogenerators for effectively and efficiently harvesting ocean wave energy with minimized water screening effect
  publication-title: Nanomater. Energy
– volume: 18
  start-page: 28
  year: 2015
  ident: 10.1016/j.cap.2020.11.001_bib4
  article-title: Hybrid nanogenerators based on triboelectrification of a dielectric composite made of lead-free ZnSnO3 nanocubes
  publication-title: Nanomater. Energy
  doi: 10.1016/j.nanoen.2015.09.012
– volume: 7
  start-page: 3979
  year: 2019
  ident: 10.1016/j.cap.2020.11.001_bib12
  article-title: A strategy to develop highly efficient TENGs through the dielectric constant, internal resistance optimization, and surface modification
  publication-title: J. Mater. Chem.
  doi: 10.1039/C8TA11229K
– volume: 12
  start-page: 6156
  year: 2018
  ident: 10.1016/j.cap.2020.11.001_bib30
  article-title: Air-flow-driven triboelectric nanogenerators for self-powered real-time respiratory monitoring
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b02562
– volume: 7
  start-page: 7342
  year: 2013
  ident: 10.1016/j.cap.2020.11.001_bib18
  article-title: Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system
  publication-title: ACS Nano
  doi: 10.1021/nn403021m
– volume: 5
  start-page: 12252
  year: 2017
  ident: 10.1016/j.cap.2020.11.001_bib27
  article-title: Single-electrode triboelectric nanogenerators based on sponge-like porous PTFE thin films for mechanical energy harvesting and self-powered electronics
  publication-title: J. Mater. Chem.
  doi: 10.1039/C7TA02680C
– volume: 26
  start-page: 2818
  year: 2014
  ident: 10.1016/j.cap.2020.11.001_bib19
  article-title: Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201305303
– volume: 64
  start-page: 103953
  year: 2019
  ident: 10.1016/j.cap.2020.11.001_bib31
  article-title: Breath-based human–machine interaction system using triboelectric nanogenerator
  publication-title: Nanomater. Energy
  doi: 10.1016/j.nanoen.2019.103953
– volume: 10
  start-page: 1
  year: 2019
  ident: 10.1016/j.cap.2020.11.001_bib26
  article-title: Quantifying the triboelectric series
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09461-x
– volume: 38
  start-page: 101
  year: 2017
  ident: 10.1016/j.cap.2020.11.001_bib8
  article-title: High efficient harvesting of underwater ultrasonic wave energy by triboelectric nanogenerator
  publication-title: Nano energy
  doi: 10.1016/j.nanoen.2017.04.053
– volume: 14
  start-page: 236
  year: 2015
  ident: 10.1016/j.cap.2020.11.001_bib2
  article-title: Metal-free and non-fluorine paper-based generator
  publication-title: Nanomater. Energy
  doi: 10.1016/j.nanoen.2014.09.036
– volume: 3
  start-page: 21133
  year: 2015
  ident: 10.1016/j.cap.2020.11.001_bib11
  article-title: Newton's cradle motion-like triboelectric nanogenerator to enhance energy recycle efficiency by utilizing elastic deformation
  publication-title: J. Mater. Chem.
  doi: 10.1039/C5TA06438D
– volume: 9
  start-page: 14499
  year: 2017
  ident: 10.1016/j.cap.2020.11.001_bib28
  article-title: A paper triboelectric nanogenerator for self-powered electronic systems
  publication-title: Nanoscale
  doi: 10.1039/C7NR05222G
– volume: 55
  start-page: 2462
  year: 2020
  ident: 10.1016/j.cap.2020.11.001_bib32
  article-title: Cotton-based naturally wearable power source for self-powered personal electronics
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-019-04095-2
– volume: 30
  start-page: 1704077
  year: 2018
  ident: 10.1016/j.cap.2020.11.001_bib7
  article-title: Inductor‐Free wireless energy delivery via maxwell's displacement current from an electrodeless triboelectric nanogenerator
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704077
– volume: 30
  start-page: 1907893
  year: 2020
  ident: 10.1016/j.cap.2020.11.001_bib34
  article-title: Triboelectric touch-free screen sensor for noncontact gesture recognizing
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201907893
– volume: 10
  start-page: 1427
  year: 2019
  ident: 10.1016/j.cap.2020.11.001_bib15
  article-title: Quantifying the triboelectric series
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09461-x
– volume: 8
  start-page: 10674
  year: 2014
  ident: 10.1016/j.cap.2020.11.001_bib5
  article-title: 3D fiber-based hybrid nanogenerator for energy harvesting and as a self-powered pressure sensor
  publication-title: ACS Nano
  doi: 10.1021/nn504243j
– volume: 2
  start-page: 693
  year: 2013
  ident: 10.1016/j.cap.2020.11.001_bib14
  article-title: Triboelectric nanogenerator as self-powered active sensors for detecting liquid/gaseous water/ethanol
  publication-title: Nanomater. Energy
  doi: 10.1016/j.nanoen.2013.08.004
– start-page: 1900327
  year: 2019
  ident: 10.1016/j.cap.2020.11.001_bib3
  article-title: Self-powered distributed water level sensors based on liquid–solid triboelectric nanogenerators for ship draft detecting
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201900327
– volume: 10
  start-page: 653
  year: 2017
  ident: 10.1016/j.cap.2020.11.001_bib22
  article-title: Environmental life cycle assessment and techno-economic analysis of triboelectric nanogenerators
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE00158D
– volume: 48
  start-page: 421
  year: 2018
  ident: 10.1016/j.cap.2020.11.001_bib16
  article-title: Rationally designed sea snake structure based triboelectric nanogenerators for effectively and efficiently harvesting ocean wave energy with minimized water screening effect
  publication-title: Nanomater. Energy
  doi: 10.1016/j.nanoen.2018.03.062
– volume: 50
  start-page: 571
  year: 2018
  ident: 10.1016/j.cap.2020.11.001_bib9
  article-title: Painting a high-output triboelectric nanogenerator on paper for harvesting energy from human body motion
  publication-title: Nano energy
  doi: 10.1016/j.nanoen.2018.06.019
– volume: 8
  start-page: 3605
  year: 2015
  ident: 10.1016/j.cap.2020.11.001_bib23
  article-title: Shape memory polymer-based self-healing triboelectric nanogenerator
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE02711J
– volume: 38
  start-page: 101
  year: 2017
  ident: 10.1016/j.cap.2020.11.001_bib24
  article-title: High efficient harvesting of underwater ultrasonic wave energy by triboelectric nanogenerator
  publication-title: Nano energy
  doi: 10.1016/j.nanoen.2017.04.053
– volume: 56
  start-page: 300
  year: 2019
  ident: 10.1016/j.cap.2020.11.001_bib10
  article-title: A full-packaged rolling triboelectric-electromagnetic hybrid nanogenerator for energy harvesting and building up self-powered wireless systems
  publication-title: Nanomater. Energy
  doi: 10.1016/j.nanoen.2018.11.043
– volume: 27
  start-page: 554
  year: 2016
  ident: 10.1016/j.cap.2020.11.001_bib17
  article-title: A structural bionic design: from electric organs to systematic triboelectric generators
  publication-title: Nano energy
  doi: 10.1016/j.nanoen.2016.07.028
– volume: 54
  start-page: 453
  year: 2018
  ident: 10.1016/j.cap.2020.11.001_bib6
  article-title: Rotation sensing and gesture control of a robot joint via triboelectric quantization sensor
  publication-title: Nanomater. Energy
  doi: 10.1016/j.nanoen.2018.10.044
– start-page: 1
  year: 2020
  ident: 10.1016/j.cap.2020.11.001_bib33
  article-title: Non-contact cylindrical rotating triboelectric nanogenerator for harvesting kinetic energy from hydraulics
  publication-title: Nano Research
– volume: 58
  start-page: 121
  year: 2019
  ident: 10.1016/j.cap.2020.11.001_bib1
  article-title: Self-powered digital-analog hybrid electronic skin for noncontact displacement sensing
  publication-title: Nanomater. Energy
  doi: 10.1016/j.nanoen.2019.01.020
– volume: 15
  start-page: 256
  year: 2015
  ident: 10.1016/j.cap.2020.11.001_bib13
  article-title: A multi-layered inter-digitative-electrodes-based triboelectric nanogenerator for harvesting hydropower
  publication-title: Nanomater. Energy
  doi: 10.1016/j.nanoen.2015.04.037
– volume: 11
  start-page: 7199
  year: 2019
  ident: 10.1016/j.cap.2020.11.001_bib20
  article-title: Open-book-like triboelectric nanogenerators based on low-frequency roll–swing oscillators for wave energy harvesting
  publication-title: Nanoscale
  doi: 10.1039/C8NR09978B
– start-page: 1800588
  year: 2019
  ident: 10.1016/j.cap.2020.11.001_bib25
  article-title: The current development and future outlook of triboelectric nanogenerators: a survey of literature
  publication-title: Advanced Materials Technologies
  doi: 10.1002/admt.201800588
– volume: 6
  start-page: 19143
  year: 2018
  ident: 10.1016/j.cap.2020.11.001_bib29
  article-title: Washable textile-structured single-electrode triboelectric nanogenerator for self-powered wearable electronics
  publication-title: J. Mater. Chem.
  doi: 10.1039/C8TA07784C
– volume: 8
  start-page: 21398
  year: 2016
  ident: 10.1016/j.cap.2020.11.001_bib21
  article-title: Charging system optimization of triboelectric nanogenerator for water wave energy harvesting and storage
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b07697
SSID ssj0016404
Score 2.4958591
Snippet Recently, a novel mechanical energy harvesting method named triboelectric nanogenerator (TENG) is reported, and it has aroused great repercussions in the...
SourceID nrf
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Cotton
PTFE film
Sports monitoring
Triboelectric nanogenerator (TENG)
물리학
Title High output triboelectric nanogenerator based on PTFE and cotton for energy harvester and human motion sensor
URI https://dx.doi.org/10.1016/j.cap.2020.11.001
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002684594
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Current Applied Physics, 2021, 22(1), , pp.1-5
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS91AEF7UUvAitrZo_cFSPAnpS3aTzeYo4uPZUimo4G3Zn_pqmzxinkf_dmc2ieihHnoKSXZDmB1m5mO_nY-QQ-d4JhCdSOlzACjCJpo7k8jKVbqwvtRRDujnuZhd5d-vi-sVcjKehUFa5RD7-5geo_XwZDJYc7KYzycXgDxwC7li4KeQ1vEQX56X6OXfHp9pHoAGooQgDk5w9LizGTleVmPLSoaBA7ck_pWbVus2vMg6002yMZSL9Lj_ow9kxdcfyftI27T3W-Qv0jRos-wWy46idlXTy9rMLa113dzEntKAqikmK0ebmv66nJ5SXTuKPRngHmpW6uP5P3qr24fYNyG-j-J9tBf5ofcAdpv2E7manl6ezJJBQCGxnGddwpwwzJdcM0A5JUttYSWk9zR30gIq9jwY6Z0zsnQh2NSECuo346HkCUIUvOCfyVrd1H6b0DTTQTDjeRokpDChs8yHzHLHqszlRuyQdDSdskN3cRS5-KNGGtlvBdZWaG1AHUil2yFHz1MWfWuNtwbn43qoV_6hIPS_Ne0rrJ26s3OFfbTxetOou1YBWjhTFSqeyvzL_317l6wzJLhECvceWevapd-HCqUzB9EFD8i747Mfs_MnuN_ksg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELVgUdVeEPRDpZRiVT1VijaxE69zRIjVboFVpS4SN8ufsAWSVcj293fGSVB7KIeeoiR2FI2tmXma53mEfHGOZwLRiZQ-B4AibKK5M4ksXakL6yc6ygFdLsTsKv92XVxvkdPhLAzSKnvf3_n06K37J-PemuP1ajX-AcgDS8glg30KYb3cJjvYnaoYkZ2T-fls8VRMEHlUEcTxCU4YipuR5mU1dq1k6DuwKvGv8LRdNeGPwDPdI7t9xkhPup_aJ1u-ek1eROamfXxDHpCpQetNu960FOWr6k7ZZmVppav6JraVBmBNMV45Wlf0-3J6RnXlKLZlgHtIW6mPRwDprW5-xdYJ8X3U76Odzg99BLxbN2_J1fRseTpLeg2FxHKetQlzwjA_4ZoB0Jmw1BZWQoRPcyctAGPPg5HeOSMnLgSbmlBCCmc8ZD1BiIIX_B0ZVXXl3xOaZjoIZjxPg4QoJnSW-ZBZ7liZudyIA5IOplO2bzCOOhf3amCS_VRgbYXWBuCBbLoD8vVpyrrrrvHc4HxYD_XXFlHg_Z-b9hnWTt3ZlcJW2ni9qdVdowAwzFWJoqcy__B_3z4mL2fLywt1MV-cH5JXDPkukdH9kYzaZuOPIGFpzad-Q_4GmRnnYw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+output+triboelectric+nanogenerator+based+on+PTFE+and+cotton+for+energy+harvester+and+human+motion+sensor&rft.jtitle=Current+applied+physics&rft.au=Zhang%2C+Zhongxing&rft.au=Cai%2C+Jun&rft.date=2021-02-01&rft.pub=Elsevier+B.V&rft.issn=1567-1739&rft.eissn=1878-1675&rft.volume=22&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1016%2Fj.cap.2020.11.001&rft.externalDocID=S1567173920302649
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1567-1739&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1567-1739&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1567-1739&client=summon