High output triboelectric nanogenerator based on PTFE and cotton for energy harvester and human motion sensor
Recently, a novel mechanical energy harvesting method named triboelectric nanogenerator (TENG) is reported, and it has aroused great repercussions in the academic fields. But, the complex preparation process still limits its wide application. In this paper, the cotton film was used as the triboelect...
Saved in:
Published in | Current applied physics Vol. 22; pp. 1 - 5 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2021
한국물리학회 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recently, a novel mechanical energy harvesting method named triboelectric nanogenerator (TENG) is reported, and it has aroused great repercussions in the academic fields. But, the complex preparation process still limits its wide application. In this paper, the cotton film was used as the triboelectric material to fabricate a novel wearable TENG (W-TENG). The polytetrafluoroethylene (PTFE) film and cotton film play the role of triboelectric pair. The W-TENG can be used to harvest low-frequency mechanical energy in our environment, especially for human body mechanical energy, and then convert them to electrical energy. In addition, the cotton coated with conductive ink plays the role of conductive material for TENG. The Voc and Isc of W-TENG can reach 556 V and 26 μA, respectively. As for the maximum power density of W-TENG, it can arrive at 0.66 mW/cm2. Also, a combined W-TENG was proposed to improve the electrical output. Moreover, the W-TENG can play the role of human motion sensor for human walking posture monitoring. This will open up a new path for the preparation of high output TENG at low cost, and promote the TENG devices in the field of sports monitoring.
[Display omitted]
•We firstly reported a wearable TENG (W-TENG) based on the polytetrafluoroethylene (PTFE) film and cotton film to harvest mechanical energy in our environment.•The results also show that the W-TENG has wonderful charging effect and excellent reliability.•The W-TENG can play the role of human motion sensor for human walking posture monitoring. |
---|---|
AbstractList | Recently, a novel mechanical energy harvesting method named triboelectric nanogenerator (TENG) is reported, and it has aroused great repercussions in the academic fields. But, the complex preparation process still limits its wide application. In this paper, the cotton film was used as the triboelectric material to fabricate a novel wearable TENG (W-TENG). The polytetrafluoroethylene (PTFE) film and cotton film play the role of triboelectric pair. The W-TENG can be used to harvest low-frequency mechanical energy in our environment, especially for human body mechanical energy, and then convert them to electrical energy. In addition, the cotton coated with conductive ink plays the role of conductive material for TENG. The Voc and Isc of W-TENG can reach 556 V and 26 μA, respectively. As for the maximum power density of W-TENG, it can arrive at 0.66 mW/cm2. Also, a combined W-TENG was proposed to improve the electrical output. Moreover, the W-TENG can play the role of human motion sensor for human walking posture monitoring. This will open up a new path for the preparation of high output TENG at low cost, and promote the TENG devices in the field of sports monitoring. KCI Citation Count: 0 Recently, a novel mechanical energy harvesting method named triboelectric nanogenerator (TENG) is reported, and it has aroused great repercussions in the academic fields. But, the complex preparation process still limits its wide application. In this paper, the cotton film was used as the triboelectric material to fabricate a novel wearable TENG (W-TENG). The polytetrafluoroethylene (PTFE) film and cotton film play the role of triboelectric pair. The W-TENG can be used to harvest low-frequency mechanical energy in our environment, especially for human body mechanical energy, and then convert them to electrical energy. In addition, the cotton coated with conductive ink plays the role of conductive material for TENG. The Voc and Isc of W-TENG can reach 556 V and 26 μA, respectively. As for the maximum power density of W-TENG, it can arrive at 0.66 mW/cm2. Also, a combined W-TENG was proposed to improve the electrical output. Moreover, the W-TENG can play the role of human motion sensor for human walking posture monitoring. This will open up a new path for the preparation of high output TENG at low cost, and promote the TENG devices in the field of sports monitoring. [Display omitted] •We firstly reported a wearable TENG (W-TENG) based on the polytetrafluoroethylene (PTFE) film and cotton film to harvest mechanical energy in our environment.•The results also show that the W-TENG has wonderful charging effect and excellent reliability.•The W-TENG can play the role of human motion sensor for human walking posture monitoring. |
Author | Zhang, Zhongxing Cai, Jun |
Author_xml | – sequence: 1 givenname: Zhongxing surname: Zhang fullname: Zhang, Zhongxing – sequence: 2 givenname: Jun surname: Cai fullname: Cai, Jun email: caijun623@sohu.com |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002684594$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kE1LAzEQhoMo-PkDvOXqYWs-dpNdPImoFQRF6jlkk0mb2iYlSQX_van15MHTzDDPOzDPKToMMQBCl5RMKKHiejkxejNhhNWZTgihB-iE9rJvqJDdYe07IRsq-XCMTnNeVkC0pD1B66mfL3Dcls224JL8GGEFpjYGBx3iHAIkXWLCo85gcQz4dfZwj3Ww2MRS6uzqckfNv_BCp0_IBdLPfrFd64DXsfhKZQg5pnN05PQqw8VvPUPvD_ezu2nz_PL4dHf73BjOaWmYFSMDyTUTrJOMmM70bOCktb0RAwHuxh6sHXtpnTNkdEPXkhFYR50QHe_4Gbra3w3JqQ_jVdT-p86j-kjq9m32pAbJe9G3laV71qSYcwKnNsmvdfpSlKidW7VU1a3auVWUqqquZuSfjPFF7x4tSfvVv8mbfRLq-58eksrGQzBgfarelY3-n_Q3BBCW_Q |
CitedBy_id | crossref_primary_10_1016_j_nanoen_2024_109363 crossref_primary_10_1557_s43581_024_00095_1 crossref_primary_10_1007_s10853_023_08321_w crossref_primary_10_1039_D2EE01590K crossref_primary_10_1109_ACCESS_2021_3064565 crossref_primary_10_1021_acsaelm_2c00909 crossref_primary_10_3390_mi16030313 crossref_primary_10_1016_j_jrras_2024_101028 crossref_primary_10_1016_j_nanoen_2022_107785 crossref_primary_10_1016_j_nanoen_2022_107500 crossref_primary_10_3390_mi12111350 crossref_primary_10_1021_acsaelm_1c01028 crossref_primary_10_1002_admt_202202106 crossref_primary_10_1016_j_nanoen_2022_107740 crossref_primary_10_1002_eem2_12492 crossref_primary_10_1088_1361_6528_acee86 crossref_primary_10_3390_bios12090697 crossref_primary_10_3390_nano12081385 crossref_primary_10_1002_admt_202301592 crossref_primary_10_1088_1361_6528_ace724 crossref_primary_10_1021_acsanm_3c03559 crossref_primary_10_1016_j_nanoen_2023_108245 crossref_primary_10_1016_j_cap_2023_04_018 crossref_primary_10_1039_D4NR01987C crossref_primary_10_1039_D2TA10024J crossref_primary_10_1039_D4RA08556F crossref_primary_10_3390_nano12172960 crossref_primary_10_1016_j_nanoen_2024_110533 crossref_primary_10_1016_j_nanoen_2024_109264 crossref_primary_10_1063_10_0024336 crossref_primary_10_1021_acsami_4c17996 crossref_primary_10_2139_ssrn_4136294 crossref_primary_10_3390_bios13090872 crossref_primary_10_1021_acsanm_3c03430 crossref_primary_10_1016_j_nanoen_2024_110253 crossref_primary_10_1109_JSEN_2022_3155188 crossref_primary_10_1007_s12613_023_2626_5 crossref_primary_10_1002_smtd_202301682 crossref_primary_10_1016_j_susmat_2023_e00596 crossref_primary_10_3390_bios13010037 crossref_primary_10_1039_D2MA00195K crossref_primary_10_1016_j_susmat_2023_e00638 crossref_primary_10_1016_j_nanoen_2021_106476 crossref_primary_10_1088_2515_7655_ad307e crossref_primary_10_1002_cnma_202300614 crossref_primary_10_1016_j_cplett_2022_140276 crossref_primary_10_1002_er_7245 crossref_primary_10_1016_j_elstat_2025_104066 crossref_primary_10_1016_j_isci_2024_110627 crossref_primary_10_3389_fpubh_2023_1115000 crossref_primary_10_1007_s11664_022_10180_1 crossref_primary_10_1016_j_joule_2022_06_013 crossref_primary_10_1016_j_nanoen_2021_106685 crossref_primary_10_1016_j_nanoen_2023_108983 |
Cites_doi | 10.1016/j.nanoen.2015.09.012 10.1039/C8TA11229K 10.1021/acsnano.8b02562 10.1021/nn403021m 10.1039/C7TA02680C 10.1002/adma.201305303 10.1016/j.nanoen.2019.103953 10.1038/s41467-019-09461-x 10.1016/j.nanoen.2017.04.053 10.1016/j.nanoen.2014.09.036 10.1039/C5TA06438D 10.1039/C7NR05222G 10.1007/s10853-019-04095-2 10.1002/adma.201704077 10.1002/adfm.201907893 10.1021/nn504243j 10.1016/j.nanoen.2013.08.004 10.1002/adfm.201900327 10.1039/C7EE00158D 10.1016/j.nanoen.2018.03.062 10.1016/j.nanoen.2018.06.019 10.1039/C5EE02711J 10.1016/j.nanoen.2018.11.043 10.1016/j.nanoen.2016.07.028 10.1016/j.nanoen.2018.10.044 10.1016/j.nanoen.2019.01.020 10.1016/j.nanoen.2015.04.037 10.1039/C8NR09978B 10.1002/admt.201800588 10.1039/C8TA07784C 10.1021/acsami.6b07697 |
ContentType | Journal Article |
Copyright | 2020 Korean Physical Society |
Copyright_xml | – notice: 2020 Korean Physical Society |
DBID | AAYXX CITATION ACYCR |
DOI | 10.1016/j.cap.2020.11.001 |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1878-1675 |
EndPage | 5 |
ExternalDocumentID | oai_kci_go_kr_ARTI_9738684 10_1016_j_cap_2020_11_001 S1567173920302649 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9ZL AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABNEU ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SPD SSQ SSZ T5K UHS ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH ABPIF ABPTK ACYCR |
ID | FETCH-LOGICAL-c331t-2d6b2e73a2625720c5c829304d8c690e3fb8eddb87dffc0bf9540be251f665353 |
IEDL.DBID | .~1 |
ISSN | 1567-1739 |
IngestDate | Fri Nov 17 19:16:48 EST 2023 Tue Jul 01 01:06:11 EDT 2025 Thu Apr 24 23:01:14 EDT 2025 Fri Feb 23 02:48:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | PTFE film Sports monitoring Cotton Triboelectric nanogenerator (TENG) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c331t-2d6b2e73a2625720c5c829304d8c690e3fb8eddb87dffc0bf9540be251f665353 |
PageCount | 5 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9738684 crossref_primary_10_1016_j_cap_2020_11_001 crossref_citationtrail_10_1016_j_cap_2020_11_001 elsevier_sciencedirect_doi_10_1016_j_cap_2020_11_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2021 2021-02-00 2021-02 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: February 2021 |
PublicationDecade | 2020 |
PublicationTitle | Current applied physics |
PublicationYear | 2021 |
Publisher | Elsevier B.V 한국물리학회 |
Publisher_xml | – name: Elsevier B.V – name: 한국물리학회 |
References | Xi, Wang, Zi, Li, Han, Cao, Hu, Wang (bib8) 2017; 38 Zhang, Yang, Su, Chen, Hu, Liu, Wong, Bando, Wang (bib14) 2013; 2 Paria, Si, Karan, Das, Maitra, Bera, Halder, Bera, De, Khatua (bib12) 2019; 7 Zhang, Yu, Ma, Yang, Zou, Zhang, Niu, Pan, Xu, Li, Wang (bib3) 2019 Pu, Guo, Tang, Chen, Feng, Liu, Wang, Xi, Hu, Wang (bib6) 2018; 54 Guo, Wu, Song, Miao, Chen, Su, Han, Zhang (bib1) 2019; 58 Tang, Zhou, Sun (bib34) 2020; 30 Zhong, Xu, Yang, Shao, Chen, Wang (bib20) 2019; 11 Zhang, Qin, Feng (bib33) 2020 Liu, Xu, Xia, Shi, Hu (bib11) 2015; 3 Wang, Zhang, Tang (bib30) 2018; 12 Wang, Zhang, Tang (bib27) 2017; 5 Jie, Jiang, Zhang, Wang, Cao (bib17) 2016; 27 Lee, Hinchet, Kim, Kim, Kim (bib23) 2015; 8 Zhang, Xu, Zhang, Wang, Zou, He, Wang, Wang (bib16) 2018; 48 Cheng, Gao, Wang (bib25) 2019 Wang, Xie, Niu, Lin, Wang (bib19) 2014; 26 Hu, Wang, Zhong, Zhong, Hu, Zhang, Zhou (bib2) 2015; 14 Yao, Jiang, Zhang, Chen, Gao, Wang (bib21) 2016; 8 Ning, Tian, Zhao (bib29) 2018; 6 Cao, Zhang, Huang, Jiang, Zou, Wang, Wang (bib7) 2018; 30 Wang, Xi, Xuan, Liu, Chen, Cheng (bib4) 2015; 18 Li, Lin, Cheng, Wen, Liu, Niu, Wang (bib5) 2014; 8 Tang, Zhou, Sun (bib32) 2020; 55 Yang, Wang, Deng, Guo, Zhang, Yang, Xi, Li, Hu, Wang (bib10) 2019; 56 Ahmed, Hassan, Ibn-Mohammed, Mostafa, Reaney, Koh, Zu, Wang (bib22) 2017; 10 Lin, Cheng, Li, Yang, Wen, Wang (bib13) 2015; 15 Zou, Zhang, Guo, Wang, He, Dai, Zheng, Chen, Wang, Xu, Wang (bib15) 2019; 10 Mao, Zhang, Tang (bib28) 2017; 9 Zou, Zhang, Guo, Wang, He, Dai, Wang (bib26) 2019; 10 Zhang, Tang, Dai (bib31) 2019; 64 Yang, Zhang, Chen, Jing, Zhou, Wen, Wang (bib18) 2013; 7 Xi, Wang, Zi, Li, Han, Cao, Hu, Wang (bib24) 2017; 38 Xia, Zhu, Zhang, Du, Xu, Wang (bib9) 2018; 50 Zhang (10.1016/j.cap.2020.11.001_bib14) 2013; 2 Ahmed (10.1016/j.cap.2020.11.001_bib22) 2017; 10 Zhang (10.1016/j.cap.2020.11.001_bib16) 2018; 48 Wang (10.1016/j.cap.2020.11.001_bib4) 2015; 18 Yao (10.1016/j.cap.2020.11.001_bib21) 2016; 8 Zhong (10.1016/j.cap.2020.11.001_bib20) 2019; 11 Ning (10.1016/j.cap.2020.11.001_bib29) 2018; 6 Zhang (10.1016/j.cap.2020.11.001_bib3) 2019 Wang (10.1016/j.cap.2020.11.001_bib30) 2018; 12 Mao (10.1016/j.cap.2020.11.001_bib28) 2017; 9 Li (10.1016/j.cap.2020.11.001_bib5) 2014; 8 Zou (10.1016/j.cap.2020.11.001_bib15) 2019; 10 Tang (10.1016/j.cap.2020.11.001_bib34) 2020; 30 Liu (10.1016/j.cap.2020.11.001_bib11) 2015; 3 Xi (10.1016/j.cap.2020.11.001_bib8) 2017; 38 Pu (10.1016/j.cap.2020.11.001_bib6) 2018; 54 Paria (10.1016/j.cap.2020.11.001_bib12) 2019; 7 Hu (10.1016/j.cap.2020.11.001_bib2) 2015; 14 Xia (10.1016/j.cap.2020.11.001_bib9) 2018; 50 Zhang (10.1016/j.cap.2020.11.001_bib33) 2020 Tang (10.1016/j.cap.2020.11.001_bib32) 2020; 55 Cheng (10.1016/j.cap.2020.11.001_bib25) 2019 Zou (10.1016/j.cap.2020.11.001_bib26) 2019; 10 Guo (10.1016/j.cap.2020.11.001_bib1) 2019; 58 Cao (10.1016/j.cap.2020.11.001_bib7) 2018; 30 Xi (10.1016/j.cap.2020.11.001_bib24) 2017; 38 Yang (10.1016/j.cap.2020.11.001_bib18) 2013; 7 Jie (10.1016/j.cap.2020.11.001_bib17) 2016; 27 Lee (10.1016/j.cap.2020.11.001_bib23) 2015; 8 Wang (10.1016/j.cap.2020.11.001_bib27) 2017; 5 Yang (10.1016/j.cap.2020.11.001_bib10) 2019; 56 Zhang (10.1016/j.cap.2020.11.001_bib31) 2019; 64 Wang (10.1016/j.cap.2020.11.001_bib19) 2014; 26 Lin (10.1016/j.cap.2020.11.001_bib13) 2015; 15 |
References_xml | – volume: 38 start-page: 101 year: 2017 end-page: 108 ident: bib24 article-title: High efficient harvesting of underwater ultrasonic wave energy by triboelectric nanogenerator publication-title: Nano energy – volume: 10 start-page: 1427 year: 2019 ident: bib15 article-title: Quantifying the triboelectric series publication-title: Nat. Commun. – volume: 11 start-page: 7199 year: 2019 end-page: 7208 ident: bib20 article-title: Open-book-like triboelectric nanogenerators based on low-frequency roll–swing oscillators for wave energy harvesting publication-title: Nanoscale – volume: 38 start-page: 101 year: 2017 end-page: 108 ident: bib8 article-title: High efficient harvesting of underwater ultrasonic wave energy by triboelectric nanogenerator publication-title: Nano energy – volume: 2 start-page: 693 year: 2013 end-page: 701 ident: bib14 article-title: Triboelectric nanogenerator as self-powered active sensors for detecting liquid/gaseous water/ethanol publication-title: Nanomater. Energy – volume: 26 start-page: 2818 year: 2014 end-page: 2824 ident: bib19 article-title: Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes publication-title: Adv. Mater. – volume: 15 start-page: 256 year: 2015 end-page: 265 ident: bib13 article-title: A multi-layered inter-digitative-electrodes-based triboelectric nanogenerator for harvesting hydropower publication-title: Nanomater. Energy – volume: 30 start-page: 1907893 year: 2020 ident: bib34 article-title: Triboelectric touch-free screen sensor for noncontact gesture recognizing publication-title: Adv. Funct. Mater. – volume: 12 start-page: 6156 year: 2018 end-page: 6162 ident: bib30 article-title: Air-flow-driven triboelectric nanogenerators for self-powered real-time respiratory monitoring publication-title: ACS Nano – start-page: 1800588 year: 2019 ident: bib25 article-title: The current development and future outlook of triboelectric nanogenerators: a survey of literature publication-title: Advanced Materials Technologies – volume: 8 start-page: 10674 year: 2014 end-page: 10681 ident: bib5 article-title: 3D fiber-based hybrid nanogenerator for energy harvesting and as a self-powered pressure sensor publication-title: ACS Nano – volume: 6 start-page: 19143 year: 2018 end-page: 19150 ident: bib29 article-title: Washable textile-structured single-electrode triboelectric nanogenerator for self-powered wearable electronics publication-title: J. Mater. Chem. – volume: 50 start-page: 571 year: 2018 end-page: 580 ident: bib9 article-title: Painting a high-output triboelectric nanogenerator on paper for harvesting energy from human body motion publication-title: Nano energy – volume: 10 start-page: 653 year: 2017 end-page: 671 ident: bib22 article-title: Environmental life cycle assessment and techno-economic analysis of triboelectric nanogenerators publication-title: Energy Environ. Sci. – volume: 8 start-page: 21398 year: 2016 end-page: 21406 ident: bib21 article-title: Charging system optimization of triboelectric nanogenerator for water wave energy harvesting and storage publication-title: ACS Appl. Mater. Interfaces – volume: 27 start-page: 554 year: 2016 end-page: 560 ident: bib17 article-title: A structural bionic design: from electric organs to systematic triboelectric generators publication-title: Nano energy – start-page: 1 year: 2020 end-page: 5 ident: bib33 article-title: Non-contact cylindrical rotating triboelectric nanogenerator for harvesting kinetic energy from hydraulics publication-title: Nano Research – volume: 18 start-page: 28 year: 2015 end-page: 36 ident: bib4 article-title: Hybrid nanogenerators based on triboelectrification of a dielectric composite made of lead-free ZnSnO publication-title: Nanomater. Energy – start-page: 1900327 year: 2019 ident: bib3 article-title: Self-powered distributed water level sensors based on liquid–solid triboelectric nanogenerators for ship draft detecting publication-title: Adv. Funct. Mater. – volume: 30 start-page: 1704077 year: 2018 ident: bib7 article-title: Inductor‐Free wireless energy delivery via maxwell's displacement current from an electrodeless triboelectric nanogenerator publication-title: Adv. Mater. – volume: 55 start-page: 2462 year: 2020 end-page: 2470 ident: bib32 article-title: Cotton-based naturally wearable power source for self-powered personal electronics publication-title: J. Mater. Sci. – volume: 8 start-page: 3605 year: 2015 end-page: 3613 ident: bib23 article-title: Shape memory polymer-based self-healing triboelectric nanogenerator publication-title: Energy Environ. Sci. – volume: 58 start-page: 121 year: 2019 end-page: 129 ident: bib1 article-title: Self-powered digital-analog hybrid electronic skin for noncontact displacement sensing publication-title: Nanomater. Energy – volume: 56 start-page: 300 year: 2019 end-page: 306 ident: bib10 article-title: A full-packaged rolling triboelectric-electromagnetic hybrid nanogenerator for energy harvesting and building up self-powered wireless systems publication-title: Nanomater. Energy – volume: 3 start-page: 21133 year: 2015 end-page: 21139 ident: bib11 article-title: Newton's cradle motion-like triboelectric nanogenerator to enhance energy recycle efficiency by utilizing elastic deformation publication-title: J. Mater. Chem. – volume: 5 start-page: 12252 year: 2017 end-page: 12257 ident: bib27 article-title: Single-electrode triboelectric nanogenerators based on sponge-like porous PTFE thin films for mechanical energy harvesting and self-powered electronics publication-title: J. Mater. Chem. – volume: 10 start-page: 1 year: 2019 end-page: 9 ident: bib26 article-title: Quantifying the triboelectric series publication-title: Nat. Commun. – volume: 9 start-page: 14499 year: 2017 end-page: 14505 ident: bib28 article-title: A paper triboelectric nanogenerator for self-powered electronic systems publication-title: Nanoscale – volume: 14 start-page: 236 year: 2015 end-page: 244 ident: bib2 article-title: Metal-free and non-fluorine paper-based generator publication-title: Nanomater. Energy – volume: 64 start-page: 103953 year: 2019 ident: bib31 article-title: Breath-based human–machine interaction system using triboelectric nanogenerator publication-title: Nanomater. Energy – volume: 7 start-page: 7342 year: 2013 end-page: 7351 ident: bib18 article-title: Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system publication-title: ACS Nano – volume: 7 start-page: 3979 year: 2019 end-page: 3991 ident: bib12 article-title: A strategy to develop highly efficient TENGs through the dielectric constant, internal resistance optimization, and surface modification publication-title: J. Mater. Chem. – volume: 54 start-page: 453 year: 2018 end-page: 460 ident: bib6 article-title: Rotation sensing and gesture control of a robot joint via triboelectric quantization sensor publication-title: Nanomater. Energy – volume: 48 start-page: 421 year: 2018 end-page: 429 ident: bib16 article-title: Rationally designed sea snake structure based triboelectric nanogenerators for effectively and efficiently harvesting ocean wave energy with minimized water screening effect publication-title: Nanomater. Energy – volume: 18 start-page: 28 year: 2015 ident: 10.1016/j.cap.2020.11.001_bib4 article-title: Hybrid nanogenerators based on triboelectrification of a dielectric composite made of lead-free ZnSnO3 nanocubes publication-title: Nanomater. Energy doi: 10.1016/j.nanoen.2015.09.012 – volume: 7 start-page: 3979 year: 2019 ident: 10.1016/j.cap.2020.11.001_bib12 article-title: A strategy to develop highly efficient TENGs through the dielectric constant, internal resistance optimization, and surface modification publication-title: J. Mater. Chem. doi: 10.1039/C8TA11229K – volume: 12 start-page: 6156 year: 2018 ident: 10.1016/j.cap.2020.11.001_bib30 article-title: Air-flow-driven triboelectric nanogenerators for self-powered real-time respiratory monitoring publication-title: ACS Nano doi: 10.1021/acsnano.8b02562 – volume: 7 start-page: 7342 year: 2013 ident: 10.1016/j.cap.2020.11.001_bib18 article-title: Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system publication-title: ACS Nano doi: 10.1021/nn403021m – volume: 5 start-page: 12252 year: 2017 ident: 10.1016/j.cap.2020.11.001_bib27 article-title: Single-electrode triboelectric nanogenerators based on sponge-like porous PTFE thin films for mechanical energy harvesting and self-powered electronics publication-title: J. Mater. Chem. doi: 10.1039/C7TA02680C – volume: 26 start-page: 2818 year: 2014 ident: 10.1016/j.cap.2020.11.001_bib19 article-title: Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes publication-title: Adv. Mater. doi: 10.1002/adma.201305303 – volume: 64 start-page: 103953 year: 2019 ident: 10.1016/j.cap.2020.11.001_bib31 article-title: Breath-based human–machine interaction system using triboelectric nanogenerator publication-title: Nanomater. Energy doi: 10.1016/j.nanoen.2019.103953 – volume: 10 start-page: 1 year: 2019 ident: 10.1016/j.cap.2020.11.001_bib26 article-title: Quantifying the triboelectric series publication-title: Nat. Commun. doi: 10.1038/s41467-019-09461-x – volume: 38 start-page: 101 year: 2017 ident: 10.1016/j.cap.2020.11.001_bib8 article-title: High efficient harvesting of underwater ultrasonic wave energy by triboelectric nanogenerator publication-title: Nano energy doi: 10.1016/j.nanoen.2017.04.053 – volume: 14 start-page: 236 year: 2015 ident: 10.1016/j.cap.2020.11.001_bib2 article-title: Metal-free and non-fluorine paper-based generator publication-title: Nanomater. Energy doi: 10.1016/j.nanoen.2014.09.036 – volume: 3 start-page: 21133 year: 2015 ident: 10.1016/j.cap.2020.11.001_bib11 article-title: Newton's cradle motion-like triboelectric nanogenerator to enhance energy recycle efficiency by utilizing elastic deformation publication-title: J. Mater. Chem. doi: 10.1039/C5TA06438D – volume: 9 start-page: 14499 year: 2017 ident: 10.1016/j.cap.2020.11.001_bib28 article-title: A paper triboelectric nanogenerator for self-powered electronic systems publication-title: Nanoscale doi: 10.1039/C7NR05222G – volume: 55 start-page: 2462 year: 2020 ident: 10.1016/j.cap.2020.11.001_bib32 article-title: Cotton-based naturally wearable power source for self-powered personal electronics publication-title: J. Mater. Sci. doi: 10.1007/s10853-019-04095-2 – volume: 30 start-page: 1704077 year: 2018 ident: 10.1016/j.cap.2020.11.001_bib7 article-title: Inductor‐Free wireless energy delivery via maxwell's displacement current from an electrodeless triboelectric nanogenerator publication-title: Adv. Mater. doi: 10.1002/adma.201704077 – volume: 30 start-page: 1907893 year: 2020 ident: 10.1016/j.cap.2020.11.001_bib34 article-title: Triboelectric touch-free screen sensor for noncontact gesture recognizing publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201907893 – volume: 10 start-page: 1427 year: 2019 ident: 10.1016/j.cap.2020.11.001_bib15 article-title: Quantifying the triboelectric series publication-title: Nat. Commun. doi: 10.1038/s41467-019-09461-x – volume: 8 start-page: 10674 year: 2014 ident: 10.1016/j.cap.2020.11.001_bib5 article-title: 3D fiber-based hybrid nanogenerator for energy harvesting and as a self-powered pressure sensor publication-title: ACS Nano doi: 10.1021/nn504243j – volume: 2 start-page: 693 year: 2013 ident: 10.1016/j.cap.2020.11.001_bib14 article-title: Triboelectric nanogenerator as self-powered active sensors for detecting liquid/gaseous water/ethanol publication-title: Nanomater. Energy doi: 10.1016/j.nanoen.2013.08.004 – start-page: 1900327 year: 2019 ident: 10.1016/j.cap.2020.11.001_bib3 article-title: Self-powered distributed water level sensors based on liquid–solid triboelectric nanogenerators for ship draft detecting publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201900327 – volume: 10 start-page: 653 year: 2017 ident: 10.1016/j.cap.2020.11.001_bib22 article-title: Environmental life cycle assessment and techno-economic analysis of triboelectric nanogenerators publication-title: Energy Environ. Sci. doi: 10.1039/C7EE00158D – volume: 48 start-page: 421 year: 2018 ident: 10.1016/j.cap.2020.11.001_bib16 article-title: Rationally designed sea snake structure based triboelectric nanogenerators for effectively and efficiently harvesting ocean wave energy with minimized water screening effect publication-title: Nanomater. Energy doi: 10.1016/j.nanoen.2018.03.062 – volume: 50 start-page: 571 year: 2018 ident: 10.1016/j.cap.2020.11.001_bib9 article-title: Painting a high-output triboelectric nanogenerator on paper for harvesting energy from human body motion publication-title: Nano energy doi: 10.1016/j.nanoen.2018.06.019 – volume: 8 start-page: 3605 year: 2015 ident: 10.1016/j.cap.2020.11.001_bib23 article-title: Shape memory polymer-based self-healing triboelectric nanogenerator publication-title: Energy Environ. Sci. doi: 10.1039/C5EE02711J – volume: 38 start-page: 101 year: 2017 ident: 10.1016/j.cap.2020.11.001_bib24 article-title: High efficient harvesting of underwater ultrasonic wave energy by triboelectric nanogenerator publication-title: Nano energy doi: 10.1016/j.nanoen.2017.04.053 – volume: 56 start-page: 300 year: 2019 ident: 10.1016/j.cap.2020.11.001_bib10 article-title: A full-packaged rolling triboelectric-electromagnetic hybrid nanogenerator for energy harvesting and building up self-powered wireless systems publication-title: Nanomater. Energy doi: 10.1016/j.nanoen.2018.11.043 – volume: 27 start-page: 554 year: 2016 ident: 10.1016/j.cap.2020.11.001_bib17 article-title: A structural bionic design: from electric organs to systematic triboelectric generators publication-title: Nano energy doi: 10.1016/j.nanoen.2016.07.028 – volume: 54 start-page: 453 year: 2018 ident: 10.1016/j.cap.2020.11.001_bib6 article-title: Rotation sensing and gesture control of a robot joint via triboelectric quantization sensor publication-title: Nanomater. Energy doi: 10.1016/j.nanoen.2018.10.044 – start-page: 1 year: 2020 ident: 10.1016/j.cap.2020.11.001_bib33 article-title: Non-contact cylindrical rotating triboelectric nanogenerator for harvesting kinetic energy from hydraulics publication-title: Nano Research – volume: 58 start-page: 121 year: 2019 ident: 10.1016/j.cap.2020.11.001_bib1 article-title: Self-powered digital-analog hybrid electronic skin for noncontact displacement sensing publication-title: Nanomater. Energy doi: 10.1016/j.nanoen.2019.01.020 – volume: 15 start-page: 256 year: 2015 ident: 10.1016/j.cap.2020.11.001_bib13 article-title: A multi-layered inter-digitative-electrodes-based triboelectric nanogenerator for harvesting hydropower publication-title: Nanomater. Energy doi: 10.1016/j.nanoen.2015.04.037 – volume: 11 start-page: 7199 year: 2019 ident: 10.1016/j.cap.2020.11.001_bib20 article-title: Open-book-like triboelectric nanogenerators based on low-frequency roll–swing oscillators for wave energy harvesting publication-title: Nanoscale doi: 10.1039/C8NR09978B – start-page: 1800588 year: 2019 ident: 10.1016/j.cap.2020.11.001_bib25 article-title: The current development and future outlook of triboelectric nanogenerators: a survey of literature publication-title: Advanced Materials Technologies doi: 10.1002/admt.201800588 – volume: 6 start-page: 19143 year: 2018 ident: 10.1016/j.cap.2020.11.001_bib29 article-title: Washable textile-structured single-electrode triboelectric nanogenerator for self-powered wearable electronics publication-title: J. Mater. Chem. doi: 10.1039/C8TA07784C – volume: 8 start-page: 21398 year: 2016 ident: 10.1016/j.cap.2020.11.001_bib21 article-title: Charging system optimization of triboelectric nanogenerator for water wave energy harvesting and storage publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b07697 |
SSID | ssj0016404 |
Score | 2.4958591 |
Snippet | Recently, a novel mechanical energy harvesting method named triboelectric nanogenerator (TENG) is reported, and it has aroused great repercussions in the... |
SourceID | nrf crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Cotton PTFE film Sports monitoring Triboelectric nanogenerator (TENG) 물리학 |
Title | High output triboelectric nanogenerator based on PTFE and cotton for energy harvester and human motion sensor |
URI | https://dx.doi.org/10.1016/j.cap.2020.11.001 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002684594 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Current Applied Physics, 2021, 22(1), , pp.1-5 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS91AEF7UUvAitrZo_cFSPAnpS3aTzeYo4uPZUimo4G3Zn_pqmzxinkf_dmc2ieihHnoKSXZDmB1m5mO_nY-QQ-d4JhCdSOlzACjCJpo7k8jKVbqwvtRRDujnuZhd5d-vi-sVcjKehUFa5RD7-5geo_XwZDJYc7KYzycXgDxwC7li4KeQ1vEQX56X6OXfHp9pHoAGooQgDk5w9LizGTleVmPLSoaBA7ck_pWbVus2vMg6002yMZSL9Lj_ow9kxdcfyftI27T3W-Qv0jRos-wWy46idlXTy9rMLa113dzEntKAqikmK0ebmv66nJ5SXTuKPRngHmpW6uP5P3qr24fYNyG-j-J9tBf5ofcAdpv2E7manl6ezJJBQCGxnGddwpwwzJdcM0A5JUttYSWk9zR30gIq9jwY6Z0zsnQh2NSECuo346HkCUIUvOCfyVrd1H6b0DTTQTDjeRokpDChs8yHzHLHqszlRuyQdDSdskN3cRS5-KNGGtlvBdZWaG1AHUil2yFHz1MWfWuNtwbn43qoV_6hIPS_Ne0rrJ26s3OFfbTxetOou1YBWjhTFSqeyvzL_317l6wzJLhECvceWevapd-HCqUzB9EFD8i747Mfs_MnuN_ksg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELVgUdVeEPRDpZRiVT1VijaxE69zRIjVboFVpS4SN8ufsAWSVcj293fGSVB7KIeeoiR2FI2tmXma53mEfHGOZwLRiZQ-B4AibKK5M4ksXakL6yc6ygFdLsTsKv92XVxvkdPhLAzSKnvf3_n06K37J-PemuP1ajX-AcgDS8glg30KYb3cJjvYnaoYkZ2T-fls8VRMEHlUEcTxCU4YipuR5mU1dq1k6DuwKvGv8LRdNeGPwDPdI7t9xkhPup_aJ1u-ek1eROamfXxDHpCpQetNu960FOWr6k7ZZmVppav6JraVBmBNMV45Wlf0-3J6RnXlKLZlgHtIW6mPRwDprW5-xdYJ8X3U76Odzg99BLxbN2_J1fRseTpLeg2FxHKetQlzwjA_4ZoB0Jmw1BZWQoRPcyctAGPPg5HeOSMnLgSbmlBCCmc8ZD1BiIIX_B0ZVXXl3xOaZjoIZjxPg4QoJnSW-ZBZ7liZudyIA5IOplO2bzCOOhf3amCS_VRgbYXWBuCBbLoD8vVpyrrrrvHc4HxYD_XXFlHg_Z-b9hnWTt3ZlcJW2ni9qdVdowAwzFWJoqcy__B_3z4mL2fLywt1MV-cH5JXDPkukdH9kYzaZuOPIGFpzad-Q_4GmRnnYw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+output+triboelectric+nanogenerator+based+on+PTFE+and+cotton+for+energy+harvester+and+human+motion+sensor&rft.jtitle=Current+applied+physics&rft.au=Zhang%2C+Zhongxing&rft.au=Cai%2C+Jun&rft.date=2021-02-01&rft.pub=Elsevier+B.V&rft.issn=1567-1739&rft.eissn=1878-1675&rft.volume=22&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1016%2Fj.cap.2020.11.001&rft.externalDocID=S1567173920302649 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1567-1739&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1567-1739&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1567-1739&client=summon |