Optimal Calibration of Evaporation Models against Penman–Monteith Equation

We present an approach for the calibration of simplified evaporation model parameters based on the optimization of parameters against the most complex model for evaporation estimation, i.e., the Penman–Monteith equation. This model computes the evaporation from several input quantities, such as air...

Full description

Saved in:
Bibliographic Details
Published inWater (Basel) Vol. 13; no. 11; p. 1484
Main Authors Dlouhá, Dagmar, Dubovský, Viktor, Pospíšil, Lukáš
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.06.2021
Subjects
Online AccessGet full text
ISSN2073-4441
2073-4441
DOI10.3390/w13111484

Cover

Loading…
Abstract We present an approach for the calibration of simplified evaporation model parameters based on the optimization of parameters against the most complex model for evaporation estimation, i.e., the Penman–Monteith equation. This model computes the evaporation from several input quantities, such as air temperature, wind speed, heat storage, net radiation etc. However, sometimes all these values are not available, therefore we must use simplified models. Our interest in free water surface evaporation is given by the need for ongoing hydric reclamation of the former Ležáky–Most quarry, i.e., the ongoing restoration of the land that has been mined to a natural and economically usable state. For emerging pit lakes, the prediction of evaporation and the level of water plays a crucial role. We examine the methodology on several popular models and standard statistical measures. The presented approach can be applied in a general model calibration process subject to any theoretical or measured evaporation.
AbstractList We present an approach for the calibration of simplified evaporation model parameters based on the optimization of parameters against the most complex model for evaporation estimation, i.e., the Penman–Monteith equation. This model computes the evaporation from several input quantities, such as air temperature, wind speed, heat storage, net radiation etc. However, sometimes all these values are not available, therefore we must use simplified models. Our interest in free water surface evaporation is given by the need for ongoing hydric reclamation of the former Ležáky–Most quarry, i.e., the ongoing restoration of the land that has been mined to a natural and economically usable state. For emerging pit lakes, the prediction of evaporation and the level of water plays a crucial role. We examine the methodology on several popular models and standard statistical measures. The presented approach can be applied in a general model calibration process subject to any theoretical or measured evaporation.
Audience Academic
Author Dubovský, Viktor
Pospíšil, Lukáš
Dlouhá, Dagmar
Author_xml – sequence: 1
  givenname: Dagmar
  orcidid: 0000-0002-4571-9006
  surname: Dlouhá
  fullname: Dlouhá, Dagmar
– sequence: 2
  givenname: Viktor
  orcidid: 0000-0001-9855-1692
  surname: Dubovský
  fullname: Dubovský, Viktor
– sequence: 3
  givenname: Lukáš
  orcidid: 0000-0001-9801-0538
  surname: Pospíšil
  fullname: Pospíšil, Lukáš
BookMark eNptkEtOwzAQhi1UJErpghtEYsUirR2_kmVVlYfUqixgHbmOU1yldmq7oO64AzfkJLgPIYSYWYxn9H8ezX8JOsYaBcA1ggOMCzh8RxghRHJyBroZ5DglhKDOr_cF6Hu_gjFIkecUdsF03ga9Fk0yFo1eOBG0NYmtk8mbaO2pndlKNT4RS6GND8mTMmthvj4-Z9YEpcNrMtlsD8orcF6Lxqv-qfbAy93kefyQTuf3j-PRNJUYo5BmQhDBKpkpKbIcY8h5zooKQsQVpZRxhoqayWLBoUKQMpVhtiC5IJTWJGcK98DN8d_W2c1W-VCu7NaZuLLMKC72QVBUDY6qpWhUqU1tgxMyZqXWWkbnah3nI17gjGHMeQSGR0A6671TdSl1OBwWQd2UCJZ7m8sfmyNx-4doXXTT7f7RfgP1Nn2T
CitedBy_id crossref_primary_10_1016_j_ejrh_2024_101979
crossref_primary_10_3390_app12178806
crossref_primary_10_21605_cukurovaumfd_1230919
crossref_primary_10_3390_en16083403
crossref_primary_10_3390_en16031341
crossref_primary_10_30657_pea_2023_29_38
crossref_primary_10_3390_en15166061
crossref_primary_10_3390_en17215300
crossref_primary_10_3390_machines12120940
crossref_primary_10_1016_j_envpol_2024_123404
crossref_primary_10_2478_mape_2021_0020
crossref_primary_10_1016_j_conbuildmat_2023_130955
crossref_primary_10_1016_j_scitotenv_2023_163342
crossref_primary_10_2166_wcc_2023_459
crossref_primary_10_3390_su141811674
crossref_primary_10_1016_j_jenvman_2024_120450
crossref_primary_10_3390_agriculture12050612
crossref_primary_10_3390_machines11020194
crossref_primary_10_56038_ejrnd_v4i3_484
crossref_primary_10_3934_mbe_2023789
crossref_primary_10_1088_1755_1315_1295_1_012005
crossref_primary_10_3390_pr10030527
crossref_primary_10_3390_w13213106
crossref_primary_10_29166_siembra_v11i1_6264
crossref_primary_10_3390_pr11103047
crossref_primary_10_5194_gmd_17_7083_2024
crossref_primary_10_29303_jrpb_v12i2_629
crossref_primary_10_3390_f14071342
Cites_doi 10.13031/2013.23153
10.1007/s00271-011-0295-z
10.1111/j.2517-6161.1974.tb00994.x
10.4236/jwarp.2009.12010
10.1061/9780784414057
10.1007/s40710-015-0107-1
10.1016/j.agwat.2006.04.010
10.1016/j.ejrh.2015.02.002
10.3390/w13060769
10.17221/240/2010-PSE
10.1002/(SICI)1099-1085(20000215)14:2<339::AID-HYP928>3.0.CO;2-O
10.1016/j.agwat.2008.01.009
10.1590/1807-1929/agriambi.v20n10p874-879
10.13031/2013.26773
10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
10.1016/0168-1923(93)90031-C
10.1017/CBO9780511808470
10.1007/s10584-010-9869-7
10.1016/j.agwat.2007.01.014
10.1007/978-94-017-1497-6
10.23919/SpliTech.2019.8783028
10.1007/978-94-007-4737-1
10.1002/wat2.1172
10.1002/hyp.119
10.2478/jwld-2019-0021
10.3390/w9100734
10.1016/0022-1694(70)90255-6
10.3390/su13010313
10.1016/j.gloplacha.2014.01.006
10.13031/2013.36722
10.1016/j.agwat.2004.09.009
ContentType Journal Article
Copyright COPYRIGHT 2021 MDPI AG
2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2021 MDPI AG
– notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.3390/w13111484
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2073-4441
ExternalDocumentID A793263377
10_3390_w13111484
GeographicLocations Czech Republic
GeographicLocations_xml – name: Czech Republic
GroupedDBID 2XV
5VS
7XC
8CJ
8FE
8FH
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
D1J
E3Z
ECGQY
EDH
GX1
IAO
ITC
KQ8
MODMG
M~E
OK1
OZF
PHGZM
PHGZT
PIMPY
PROAC
PMFND
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c331t-2aa4a6dc2eca2833077869d0017e55567619f6c9b70e1056e236b48a455f486e3
IEDL.DBID BENPR
ISSN 2073-4441
IngestDate Mon Jun 30 07:31:45 EDT 2025
Tue Jun 10 21:09:10 EDT 2025
Tue Jul 01 00:23:21 EDT 2025
Thu Apr 24 22:56:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-2aa4a6dc2eca2833077869d0017e55567619f6c9b70e1056e236b48a455f486e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9801-0538
0000-0002-4571-9006
0000-0001-9855-1692
OpenAccessLink https://www.proquest.com/docview/2539999941?pq-origsite=%requestingapplication%
PQID 2539999941
PQPubID 2032318
ParticipantIDs proquest_journals_2539999941
gale_infotracacademiconefile_A793263377
crossref_citationtrail_10_3390_w13111484
crossref_primary_10_3390_w13111484
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Water (Basel)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Ansorge (ref_34) 2019; 41
Lovelli (ref_10) 2005; 72
Djaman (ref_24) 2015; 3
Linacre (ref_31) 1993; 64
Craig (ref_4) 2006; 85
Stone (ref_28) 1974; 36
Debnath (ref_32) 2015; 2
Hargreaves (ref_40) 1975; 18
ref_13
ref_11
Mostafa (ref_23) 2012; 3
ref_30
Baille (ref_3) 2012; 458
Turc (ref_44) 1961; 12
Beran (ref_36) 2013; 55
ref_18
ref_17
ref_16
Xu (ref_38) 2001; 15
Poyen (ref_39) 2018; 13
ref_15
Xu (ref_45) 2000; 14
McMahon (ref_14) 2016; 3
Tabari (ref_33) 2014; 115
Cabrera (ref_26) 2016; 20
Moriasi (ref_27) 2007; 50
Mohawesh (ref_22) 2011; 57
Nash (ref_46) 1970; 10
Kharrufa (ref_37) 1985; 5
Berengena (ref_9) 2007; 89
Tabari (ref_20) 2011; 31
Schendel (ref_42) 1967; 137
ref_47
ref_21
Priestley (ref_43) 1972; 100
Bormann (ref_19) 2010; 104
ref_1
Gay (ref_48) 1990; 153
ref_2
ref_29
Hargreaves (ref_41) 1985; 1
(ref_12) 2019; 43
(ref_35) 1961; 12
Yao (ref_25) 2009; 2
ref_5
ref_7
Jabloun (ref_8) 2008; 95
ref_6
References_xml – ident: ref_7
– ident: ref_30
– volume: 153
  start-page: 1
  year: 1990
  ident: ref_48
  article-title: Usage summary for selected optimization routines
  publication-title: Comput. Sci. Tech. Rep.
– volume: 50
  start-page: 885
  year: 2007
  ident: ref_27
  article-title: Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations
  publication-title: Trans. ASABE
  doi: 10.13031/2013.23153
– volume: 31
  start-page: 107
  year: 2011
  ident: ref_20
  article-title: Comparative Analysis of 31 Reference Evapotranspiration Methods under Humid Conditions
  publication-title: Irrig. Sci.
  doi: 10.1007/s00271-011-0295-z
– volume: 36
  start-page: 111
  year: 1974
  ident: ref_28
  article-title: Cross-validatory choice and assessment of statistical predictions
  publication-title: J. R. Stat. Soc. Ser. Methodol.
  doi: 10.1111/j.2517-6161.1974.tb00994.x
– volume: 2
  start-page: 59
  year: 2009
  ident: ref_25
  article-title: Long-Term Study of Lake Evaporation and Evaluation of Seven Estimation Methods: Results from Dickie Lake, South-Central Ontario, Canada
  publication-title: J. Water Resour. Prot.
  doi: 10.4236/jwarp.2009.12010
– ident: ref_47
– ident: ref_11
– ident: ref_2
  doi: 10.1061/9780784414057
– volume: 2
  start-page: 689
  year: 2015
  ident: ref_32
  article-title: Sensitivity Analysis of FAO-56 Penman-Monteith Method for Different Agro-ecological Regions of India
  publication-title: Environ. Process.
  doi: 10.1007/s40710-015-0107-1
– volume: 85
  start-page: 193
  year: 2006
  ident: ref_4
  article-title: Comparison of precise water depth measurements on agricultural storages with open water evaporation estimates
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2006.04.010
– ident: ref_16
– volume: 3
  start-page: 139
  year: 2015
  ident: ref_24
  article-title: Evaluation of sixteen reference evapotranspiration methods under sahelian conditions in the Senegal River Valley
  publication-title: J. Hydrol. Reg. Stud.
  doi: 10.1016/j.ejrh.2015.02.002
– ident: ref_6
  doi: 10.3390/w13060769
– ident: ref_1
– ident: ref_18
– volume: 57
  start-page: 145
  year: 2011
  ident: ref_22
  article-title: Evaluation of evapotranspiration models for estimating daily reference evapotranspiration in arid and semiarid environments
  publication-title: Plant Soil Environ.
  doi: 10.17221/240/2010-PSE
– volume: 14
  start-page: 339
  year: 2000
  ident: ref_45
  article-title: Evaluation and Generalization of Radiation-based Methods for Calculating Evaporation
  publication-title: Hydrol. Process.
  doi: 10.1002/(SICI)1099-1085(20000215)14:2<339::AID-HYP928>3.0.CO;2-O
– volume: 137
  start-page: 1
  year: 1967
  ident: ref_42
  article-title: Vegetationswasserverbrauch und-wasserbedarf
  publication-title: Habilit. Kiel
– volume: 3
  start-page: 120
  year: 2012
  ident: ref_23
  article-title: Prediction of Evaporation from Algardabiya Reservoir
  publication-title: Libyan Agric. Res. Cent. J. Int.
– volume: 95
  start-page: 707
  year: 2008
  ident: ref_8
  article-title: Evaluation of FAO-56 methodology for estimating reference evapotranspiration using limited climatic data: Application to Tunisia
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2008.01.009
– volume: 20
  start-page: 874
  year: 2016
  ident: ref_26
  article-title: Performance of evaporation estimation methods compared with standard 20 m2 tank
  publication-title: Rev. Bras. Eng. AgrÃcola Ambient.
  doi: 10.1590/1807-1929/agriambi.v20n10p874-879
– volume: 1
  start-page: 96
  year: 1985
  ident: ref_41
  article-title: Reference Crop Evapotranspiration From Temperature
  publication-title: Appl. Eng. Agric.
  doi: 10.13031/2013.26773
– volume: 12
  start-page: 13
  year: 1961
  ident: ref_44
  article-title: Estimation of irrigation water requirements, potential evapotranspiration: A simple climatic formula evolved up to date
  publication-title: Ann. Agron.
– volume: 100
  start-page: 81
  year: 1972
  ident: ref_43
  article-title: On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters
  publication-title: Mon. Weather. Rev.
  doi: 10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
– volume: 64
  start-page: 237
  year: 1993
  ident: ref_31
  article-title: Data-sparse estimation of lake evaporation, using a simplified Penman equation
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/0168-1923(93)90031-C
– ident: ref_13
  doi: 10.1017/CBO9780511808470
– volume: 104
  start-page: 729
  year: 2010
  ident: ref_19
  article-title: Sensitivity analysis of 18 different potential evapotranspiration models to observed climatic change at German climate stations
  publication-title: Clim. Chang.
  doi: 10.1007/s10584-010-9869-7
– volume: 12
  start-page: 544
  year: 1961
  ident: ref_35
  article-title: Experimentálné vzorce pre stanovenie strát vody výparom z vodných nádrží [Empirical equations for estimation of evaporation from reservoirs]
  publication-title: Vodní Hospodářství
– volume: 89
  start-page: 275
  year: 2007
  ident: ref_9
  article-title: Measuring versus estimating net radiation and soil heat flux: Impact on Penman–Monteith reference ET estimates in semiarid regions
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2007.01.014
– ident: ref_15
  doi: 10.1007/978-94-017-1497-6
– volume: 458
  start-page: 59
  year: 2012
  ident: ref_3
  article-title: Evaluation of evaporation estimation methods for a covered reservoir in a semi-arid climate (south-eastern Spain)
  publication-title: J. Hydrol.
– ident: ref_5
  doi: 10.23919/SpliTech.2019.8783028
– volume: 55
  start-page: 4
  year: 2013
  ident: ref_36
  article-title: Odvození regresních vztahů pro výpočet výparu z volné hladiny a identifikace trendů ve vývoji měřených veličin ve výparoměrné stanici Hlasivo [Derivation of regression equations for calculation of evaporation from a free water surface and identification of trends in measured variables in Hlasivo station]
  publication-title: Vodohospodářské Technicko-Ekonomické Inf.
– ident: ref_17
  doi: 10.1007/978-94-007-4737-1
– volume: 3
  start-page: 788
  year: 2016
  ident: ref_14
  article-title: Historical developments of models for estimating evaporation using standard meteorological data
  publication-title: Wiley Interdiscip. Rev. Water
  doi: 10.1002/wat2.1172
– volume: 43
  start-page: 159
  year: 2019
  ident: ref_12
  article-title: The Improvement of the Lake Most Evaporation Estimates
  publication-title: Inżynieria Mineralna
– volume: 5
  start-page: 39
  year: 1985
  ident: ref_37
  article-title: Simplified equation for evapotranspiration in arid regions
  publication-title: Hydrol. Sonderh.
– volume: 15
  start-page: 305
  year: 2001
  ident: ref_38
  article-title: Evaluation and generalization of temperature-based methods for calculating evaporation
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.119
– volume: 41
  start-page: 1
  year: 2019
  ident: ref_34
  article-title: Performance of simple temperature-based evaporation methods compared with a time series of pan evaporation measures from a standard 20 m2 tank
  publication-title: J. Water Land Dev.
  doi: 10.2478/jwld-2019-0021
– ident: ref_21
  doi: 10.3390/w9100734
– volume: 13
  start-page: 12753
  year: 2018
  ident: ref_39
  article-title: Temperature based ET Method Selection for Burdwan District in WB, INDIA
  publication-title: Int. J. Appl. Eng. Res.
– volume: 10
  start-page: 282
  year: 1970
  ident: ref_46
  article-title: River flow forecasting through conceptual models part I—A discussion of principles
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(70)90255-6
– ident: ref_29
  doi: 10.3390/su13010313
– volume: 115
  start-page: 16
  year: 2014
  ident: ref_33
  article-title: Sensitivity of evapotranspiration to climatic change in different climates
  publication-title: Glob. Planet. Chang.
  doi: 10.1016/j.gloplacha.2014.01.006
– volume: 18
  start-page: 980
  year: 1975
  ident: ref_40
  article-title: Moisture Availability and Crop Production
  publication-title: Trans. ASABE
  doi: 10.13031/2013.36722
– volume: 72
  start-page: 147
  year: 2005
  ident: ref_10
  article-title: Lysimetric determination of muskmelon crop coefficients cultivated under plastic mulches
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2004.09.009
SSID ssj0000498850
Score 2.3535216
Snippet We present an approach for the calibration of simplified evaporation model parameters based on the optimization of parameters against the most complex model...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1484
SubjectTerms Analysis
Design of experiments
Humidity
Lakes
Methods
Precipitation
Radiation
Title Optimal Calibration of Evaporation Models against Penman–Monteith Equation
URI https://www.proquest.com/docview/2539999941
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NTsJAEN4IXPRg_I0oksaY6KUBuj_dngwa0BhBYiTh1nS3WzWBAlLj1XfwDX0SZ-iCmhB77aZtZjoz38zOfkPIqdAAA5SvXS9mvst8Q8HmEuVCJAwAPmvVmB8K63TFTZ_dDvjAFtxmtq1y4RPnjjoea6yR1zykUIWLNS4mUxenRuHuqh2hUSAlcMGSF0npstXtPSyrLIB_peT1nFKIQn5fe0d-GcgB2J9AtNodz2NMe4tsWnDoNHNtbpM1k-6QjV-Ugbvk7h5sfASL8FCVytXnjBMHEPHEatPB-WbDmRM9QdY_y5yeSUdR-vXx2UEmqpfs2WlNc4LvPdJvtx6vblw7EcHVlDYy14siFolYe0ZHgAvAPn0pghhDjeGcC6xJJEIHyq8bAE7CeFQoJiPGecKkMHSfFNNxag6IE2tOlaxr6SvJAi-RAVLLMS0TGSMqLJPzhXhCbenCcWrFMIS0ASUZLiVZJifLpZOcI2PVojOUcYh2A8_RkW3_h69BBqqw6SOSpNSHN1cWagitQc3CH_Uf_n_7iKx72HYyL5RUSDF7fTPHgBsyVbU_R5UUrgeNbyDiwxU
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB4t7AF6QJQf8dtaCASXiF3bSZxDhbbtooX9ASGQuAXbcSgSZBd2K9Rb34H36EP1STqzSbYgIW7kGiuJxt_MfHY83wBsBxZpgAmtxxMZejJ0An0uNR5mwgjpszX1cVFYtxe0LuTxpX9ZgT9lLQwdqyxj4jhQJ31Le-T7nCRU8ZL1g8G9R12j6O9q2UIjh0Xb_XrEJdvwy9F3nN8dzg-b599aXtFVwLNC1Ece11rqILHcWY25FTEeqiBKKFw73_cDWtengY1MWHPUlt5xERiptPT9VKrACXzuFFSRZkToRdWvzd7p2WRXB_m2Un4tlzASIqrtP5KeDa455IvE93r4H-e0w3mYK8goa-To-QgVly3Ah2cShYvQOcGYcoeDqIjL5HBh_ZQhAx8U6GHUT-12yPS1vkGyyU5ddqezv7-fuqR8dTP6wZr3uaD4Ely8i62WYTrrZ24FWGJ9YVTNqtAoGfFURSRlJ61KVUIsdBX2SvPEtpAnpy4ZtzEuU8iS8cSSq7A1GTrINTleG7RLNo7JT_E5VhflBvg1pHgVN0JirkKE-OaNchriwoGH8X-4rb19-zPMtM67nbhz1GuvwyynIy_jTZoNmB49_HSbyFlG5lMBFAZX743Nf4m__QM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTttAEB5BkBA9VKUFEaBlVVGVi5Vkd-1dH6qKlkT8hqgCiZvZXa8pEnGSJhXqre_Qt-FxeJLOxHagEuoNX72yrdlvZ75Z73wDsB05pAFWuYCnUgVSeYFrLrMBRsIY6bOzrWlR2Ek32j-XhxfhxRzcVbUwdKyy8olTR50OHO2RNzhJqOIlW42sPBbR2-t8Ho4C6iBFf1qrdhoFRI78r1tM38afDvZwrj9w3mmffd0Pyg4DgROiNQm4MdJEqePeGYyziHelozgl1-3DMIwox88iF1vV9NSi3nMRWamNDMNM6sgLfO48LCiMiroGC1_a3d632Q4Pcm-tw2YhZyRE3GzckrYN5h_ynyD4dCiYxrfOK3hZElO2WyBpGeZ8_hpePJIrfAPHp-hf-jiICrpsAR02yBiy8WGJJEa91W7GzFyZaySerOfzvsnvf_85IRWs68l31h4V4uIrcP4stlqFWj7I_Rqw1IXC6qbTymoZ80zHJGsnnc50Soy0DjuVeRJXSpVTx4ybBFMWsmQys2Qd3s-GDgt9jqcGfSQbJ7Rm8TnOlKUH-DWkfpXsKmKxQih882Y1DUm5mMfJA_TW_397CxYRk8nxQfdoA5Y4nX6Z7tdsQm3y46d_i_RlYt-VOGFw-dzQ_AsInwE-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Calibration+of+Evaporation+Models+against+Penman%E2%80%93Monteith+Equation&rft.jtitle=Water+%28Basel%29&rft.au=Dlouh%C3%A1%2C+Dagmar&rft.au=Dubovsk%C3%BD%2C+Viktor&rft.au=Posp%C3%AD%C5%A1il%2C+Luk%C3%A1%C5%A1&rft.date=2021-06-01&rft.issn=2073-4441&rft.eissn=2073-4441&rft.volume=13&rft.issue=11&rft.spage=1484&rft_id=info:doi/10.3390%2Fw13111484&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_w13111484
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4441&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4441&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4441&client=summon