A Canonical Transformation to Eliminate Resonant Perturbations. I

We study dynamical systems that admit action-angle variables at leading order, which are subject to nearly resonant perturbations. If the frequencies characterizing the unperturbed system are not in resonance, the long-term dynamical evolution may be integrated by orbit-averaging over the high-frequ...

Full description

Saved in:
Bibliographic Details
Published inThe Astronomical journal Vol. 162; no. 1; pp. 22 - 32
Main Authors Deme, Barnabás, Kocsis, Bence
Format Journal Article
LanguageEnglish
Published Madison The American Astronomical Society 01.07.2021
IOP Publishing
Subjects
Online AccessGet full text
ISSN0004-6256
1538-3881
1538-3881
DOI10.3847/1538-3881/abfb6d

Cover

Loading…
Abstract We study dynamical systems that admit action-angle variables at leading order, which are subject to nearly resonant perturbations. If the frequencies characterizing the unperturbed system are not in resonance, the long-term dynamical evolution may be integrated by orbit-averaging over the high-frequency angles, thereby evolving the orbit-averaged effect of the perturbations. It is well known that such integrators may be constructed via a canonical transformation, which eliminates the high-frequency variables from the orbit-averaged quantities. An example of this algorithm in celestial mechanics is the von Zeipel transformation. However, if the perturbations are inside or close to a resonance, i.e., the frequencies of the unperturbed system are commensurate; these canonical transformations are subject to divergences. We introduce a canonical transformation that eliminates the high-frequency phase variables in the Hamiltonian without encountering divergences. This leads to a well-behaved symplectic integrator. We demonstrate the algorithm through two examples: a resonantly perturbed harmonic oscillator and the gravitational three-body problem in mean motion resonance.
AbstractList We study dynamical systems that admit action-angle variables at leading order, which are subject to nearly resonant perturbations. If the frequencies characterizing the unperturbed system are not in resonance, the long-term dynamical evolution may be integrated by orbit-averaging over the high-frequency angles, thereby evolving the orbit-averaged effect of the perturbations. It is well known that such integrators may be constructed via a canonical transformation, which eliminates the high-frequency variables from the orbit-averaged quantities. An example of this algorithm in celestial mechanics is the von Zeipel transformation. However, if the perturbations are inside or close to a resonance, i.e., the frequencies of the unperturbed system are commensurate; these canonical transformations are subject to divergences. We introduce a canonical transformation that eliminates the high-frequency phase variables in the Hamiltonian without encountering divergences. This leads to a well-behaved symplectic integrator. We demonstrate the algorithm through two examples: a resonantly perturbed harmonic oscillator and the gravitational three-body problem in mean motion resonance.
Author Kocsis, Bence
Deme, Barnabás
Author_xml – sequence: 1
  givenname: Barnabás
  orcidid: 0000-0003-4016-9778
  surname: Deme
  fullname: Deme, Barnabás
  organization: Eötvös University Institute of Physics, Pázmány P. s. 1/A, Budapest, 1117, Hungary
– sequence: 2
  givenname: Bence
  orcidid: 0000-0002-4865-7517
  surname: Kocsis
  fullname: Kocsis, Bence
  organization: Clarendon Laboratory Rudolf Peierls Centre for Theoretical Physics, Parks Road, Oxford OX1 3PU, UK
BackLink https://www.osti.gov/biblio/23159275$$D View this record in Osti.gov
BookMark eNp1kEFLAzEQRoNUsK3ePS54detkk81uj6VULRQUqeeQpLOY0iY1SQ_-e1NX1IungeF9HzNvRAbOOyTkmsKEtby5ozVrS9a29E7pTovNGRn-rAZkCAC8FFUtLsgoxi0ApS3wIZnNirnKVdaoXbEOysXOh71K1rsi-WKxs3vrVMLiBaN3yqXiGUM6Bv2FxEmxvCTnndpFvPqeY_J6v1jPH8vV08NyPluVhjGaSqqposp0BhpsNdemZlwgQ6XQCGiRI0BXs3pT82nVQKXNVCi-0SAa0bH8ypjc9L0-JiujsQnNm_HOoUmyykSO_aEOwb8fMSa59cfg8mGyqjlrBBNAMwU9ZYKPMWAnD8HuVfiQFORJpzy5kyd3steZI7d9xPrDb-e_-CexTneW
Cites_doi 10.3847/1538-3881/abcbfc
10.1088/0004-637X/742/2/94
10.1088/0143-0807/32/2/016
10.1016/0032-0633(62)90129-0
10.1093/mnras/stw475
10.1007/BF01229100
10.1146/annurev-astro-081915-023315
10.1086/115978
10.1093/mnras/stu2396
10.1007/BF02848257
10.3847/1538-4357/aad09f
10.1086/108790
10.1093/mnras/sty2477
10.1002/asna.19091832202
10.1103/PhysRevLett.107.181101
10.1007/978-3-319-43522-0
10.1007/s10569-019-9913-5
10.1086/113132
ContentType Journal Article
Copyright 2021. The American Astronomical Society. All rights reserved.
Copyright IOP Publishing Jul 2021
Copyright_xml – notice: 2021. The American Astronomical Society. All rights reserved.
– notice: Copyright IOP Publishing Jul 2021
DBID AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
OTOTI
DOI 10.3847/1538-3881/abfb6d
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList CrossRef
Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
EISSN 1538-3881
ExternalDocumentID 23159275
10_3847_1538_3881_abfb6d
ajabfb6d
GrantInformation_xml – fundername: National Research, Development and Innovation Fund (Hungary)
  grantid: ÚNKP-20-3-II
– fundername: EC ∣ European Research Council (ERC)
  grantid: No 638435 (GalNUC)
  funderid: https://doi.org/10.13039/501100000781
GroupedDBID -DZ
-~X
123
1JI
23N
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
ABDNZ
ABHWH
ABXSS
ACBEA
ACGFS
ACHIP
ACNCT
ACYRX
AEFHF
AENEX
AFPKN
AGNAY
AHPAA
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
F5P
FRP
GROUPED_DOAJ
HF~
IJHAN
IOP
KOT
N5L
O3W
O43
OK1
P2P
PJBAE
RIN
RNP
RNS
ROL
SY9
T37
TR2
UPT
WH7
~02
AAYXX
CITATION
7TG
8FD
AEINN
H8D
KL.
L7M
OTOTI
ID FETCH-LOGICAL-c331t-1b1a1acfc07e8b4bc5346e3eaaec608e4e00f535d5492702bc96a4db0676f3153
IEDL.DBID O3W
ISSN 0004-6256
1538-3881
IngestDate Sun Jul 13 03:03:12 EDT 2025
Wed Aug 13 10:36:41 EDT 2025
Tue Jul 01 03:26:38 EDT 2025
Wed Aug 21 03:32:55 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-1b1a1acfc07e8b4bc5346e3eaaec608e4e00f535d5492702bc96a4db0676f3153
Notes The Solar System, Exoplanets, and Astrobiology
AAS30120
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4865-7517
0000-0003-4016-9778
OpenAccessLink https://iopscience.iop.org/article/10.3847/1538-3881/abfb6d/pdf
PQID 2543763601
PQPubID 4562438
PageCount 11
ParticipantIDs crossref_primary_10_3847_1538_3881_abfb6d
iop_journals_10_3847_1538_3881_abfb6d
proquest_journals_2543763601
osti_scitechconnect_23159275
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Madison
PublicationPlace_xml – name: Madison
– name: United States
PublicationTitle The Astronomical journal
PublicationTitleAbbrev AJ
PublicationTitleAlternate Astron. J
PublicationYear 2021
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
References Bhaskar (ajabfb6dbib1) 2021; 161
Luo (ajabfb6dbib12) 2016; 458
Wisdom (ajabfb6dbib21) 1982; 87
von Zeipel (ajabfb6dbib20) 1910; 183
Lidov (ajabfb6dbib8) 1976; 13
Wisdom (ajabfb6dbib22) 1991; 102
Grishin (ajabfb6dbib3) 2018; 481
Naoz (ajabfb6dbib16) 2016; 54
Lithwick (ajabfb6dbib9) 2011; 742
Lidov (ajabfb6dbib7) 1962; 9
Binney (ajabfb6dbib2) 2008
Sansottera (ajabfb6dbib17) 2019; 131
Sitaram (ajabfb6dbib23) 1995; 45
Kozai (ajabfb6dbib6) 1962; 67
Valtonen (ajabfb6dbib19) 2006
Murray (ajabfb6dbib15) 2000
Liu (ajabfb6dbib10) 2018; 863
Hori (ajabfb6dbib4) 1966; 18
Katz (ajabfb6dbib5) 2011; 107
Shevchenko (ajabfb6dbib18) 2017; Vol. 441
Masoliver (ajabfb6dbib13) 2011; 32
Liu (ajabfb6dbib11) 2015; 447
Morbidelli (ajabfb6dbib14) 2002
References_xml – volume: 161
  start-page: 48
  year: 2021
  ident: ajabfb6dbib1
  publication-title: AJ
  doi: 10.3847/1538-3881/abcbfc
– volume: 742
  start-page: 94
  year: 2011
  ident: ajabfb6dbib9
  publication-title: ApJ
  doi: 10.1088/0004-637X/742/2/94
– year: 2008
  ident: ajabfb6dbib2
– year: 2002
  ident: ajabfb6dbib14
– volume: 32
  start-page: 431
  year: 2011
  ident: ajabfb6dbib13
  publication-title: EJPh
  doi: 10.1088/0143-0807/32/2/016
– volume: 9
  start-page: 719
  year: 1962
  ident: ajabfb6dbib7
  publication-title: P&SS
  doi: 10.1016/0032-0633(62)90129-0
– volume: 458
  start-page: 3060
  year: 2016
  ident: ajabfb6dbib12
  publication-title: MNRAS
  doi: 10.1093/mnras/stw475
– volume: 13
  start-page: 471
  year: 1976
  ident: ajabfb6dbib8
  publication-title: CeMec
  doi: 10.1007/BF01229100
– volume: 54
  start-page: 441
  year: 2016
  ident: ajabfb6dbib16
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-081915-023315
– volume: 102
  start-page: 1528
  year: 1991
  ident: ajabfb6dbib22
  publication-title: AJ
  doi: 10.1086/115978
– volume: 447
  start-page: 747
  year: 2015
  ident: ajabfb6dbib11
  publication-title: MNRAS
  doi: 10.1093/mnras/stu2396
– volume: 45
  start-page: 141
  year: 1995
  ident: ajabfb6dbib23
  publication-title: Pramana
  doi: 10.1007/BF02848257
– volume: 863
  start-page: 68
  year: 2018
  ident: ajabfb6dbib10
  publication-title: ApJ
  doi: 10.3847/1538-4357/aad09f
– volume: 67
  start-page: 591
  year: 1962
  ident: ajabfb6dbib6
  publication-title: AJ
  doi: 10.1086/108790
– volume: 481
  start-page: 4907
  year: 2018
  ident: ajabfb6dbib3
  publication-title: MNRAS
  doi: 10.1093/mnras/sty2477
– volume: 183
  start-page: 345
  year: 1910
  ident: ajabfb6dbib20
  publication-title: AN
  doi: 10.1002/asna.19091832202
– year: 2006
  ident: ajabfb6dbib19
– volume: 107
  year: 2011
  ident: ajabfb6dbib5
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.107.181101
– volume: Vol. 441
  year: 2017
  ident: ajabfb6dbib18
  doi: 10.1007/978-3-319-43522-0
– year: 2000
  ident: ajabfb6dbib15
– volume: 131
  start-page: 38
  year: 2019
  ident: ajabfb6dbib17
  publication-title: CeMDA
  doi: 10.1007/s10569-019-9913-5
– volume: 87
  start-page: 577
  year: 1982
  ident: ajabfb6dbib21
  publication-title: AJ
  doi: 10.1086/113132
– volume: 18
  start-page: 287
  year: 1966
  ident: ajabfb6dbib4
  publication-title: PASJ
SSID ssj0011804
Score 2.3586435
Snippet We study dynamical systems that admit action-angle variables at leading order, which are subject to nearly resonant perturbations. If the frequencies...
SourceID osti
proquest
crossref
iop
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 22
SubjectTerms ALGORITHMS
Astronomy
ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
CANONICAL TRANSFORMATIONS
Celestial mechanics
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
DYNAMICAL SYSTEMS
HAMILTONIANS
HARMONIC OSCILLATORS
HARMONICS
Integrators
MECHANICS
Orbital mechanics
Orbital resonances (celestial mechanics)
ORBITS
OSCILLATORS
Perturbation
Resonance
THREE-BODY PROBLEM
Transformations (mathematics)
Title A Canonical Transformation to Eliminate Resonant Perturbations. I
URI https://iopscience.iop.org/article/10.3847/1538-3881/abfb6d
https://www.proquest.com/docview/2543763601
https://www.osti.gov/biblio/23159275
Volume 162
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8AL16MnwFF0oOaeJh0a9d18bQQCJgoHCByW9rSnZQRmAf_e1-7gRqN8dZlS9v8uvfVvvcrQlcQElCqGfe4ibjH4ox7cSbgkXEqmVFx4Hi6H5_4cMYe5uG8hu53tTD5qlL9d9AsiYJLCK18U9ClXSejVAi_K1Wm-KKO9qjgwkZeY_q8O0LwBSkpmAnzwMmvzih_7eGbTarDuKCfc5CwH_rZGZ3BITqovEWclHM7QjWzPEbNZGP3r_PXd3yDXbvcnticoCTBPbnMXa0jnn7xSfMlLnLcf3F3eBUG2117mwKDJ2YNRkdVKT14dIpmg_60N_SqSxI8TalfeL7ypS91pklkhGJKh5RxQ42URnMiDDOEZCENF5aKLSKB0jGXbKHASvGMAhJnqAHzMk2EiQ4iRZQimofMCFioiMcsi4mhIOZUtNDtFqZ0VXJhpBBDWEhTC2lqIU1LSFvoGnBMK4HY_PFd2yKdwqJb0lpts3t0kYLXGcJ0Q3i9XYHPvmz9fmR5zvzzf45ygfYDm4vi0mzbqFGs38wlOBOF6qD6aDzpuF_nA2SIwrM
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLZokRAL4hSFAh4AiSHUiY8kY1RatRylQyu6WbHrTNBUbRj49zw7KYdAiM1RItv6nHf4-fl7CJ3DloBSzYQnTCg8FmfCi7MIHpmgKTMqDhxP98NA9MbsdsInVZ1Tdxcmn1eq_xqaJVFwCaGVbwq6tOVklEaR30pVpsS0NZ9mNbTOqRC2dsMjffo4RvAjUtIwE-aBo1-dU_7ayze7VIOxQUfnIGU_dLQzPN1ttFV5jDgp57eD1sxsFx0mSxvDzl_e8CV27TJEsdxDSYLb6Sx39x3x6Itfms9wkePOs6vjVRhsI_c2DQYPzQIMj6rSenB_H427nVG751WFEjxNqV94vvJTP9WZJqGJFFOaUyYMNWlqtCCRYYaQjFM-tXRsIQmUjkXKpgoslcgoIHGA6jAvc4gw0UGoiFJEC85MBIsViphlMTEURJ1GDXS1gknOSz4MCfsIC6m0kEoLqSwhbaALwFFWQrH847umRVrCwlviWm0zfHQhwfPkMF0Or1cr8NmXvcMfWq4z_-ifo5yhjeFNV973B3fHaDOwqSku67aJ6sXi1ZyAb1GoU_f_vAPv_sWZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Canonical+Transformation+to+Eliminate+Resonant+Perturbations.+I&rft.jtitle=The+Astronomical+journal&rft.au=Deme%2C+Barnab%C3%A1s&rft.au=Kocsis%2C+Bence&rft.date=2021-07-01&rft.issn=0004-6256&rft.eissn=1538-3881&rft.volume=162&rft.issue=1&rft.spage=22&rft_id=info:doi/10.3847%2F1538-3881%2Fabfb6d&rft.externalDBID=n%2Fa&rft.externalDocID=10_3847_1538_3881_abfb6d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6256&client=summon