Can Arctic Sea Ice Melting Lead to More Summertime Heat Extremes?

We quantify the impact of late 21st century Arctic sea ice loss on Northern Hemisphere (NH) summertime heat extremes using model simulations that are forced by the future Arctic sea ice loss. First, we find an overall increase of heat extreme frequency in the NH continents in our model simulations,...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 52; no. 14
Main Authors Wu, Yutian, Sun, Lantao, Terry, Owen
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 28.07.2025
Wiley
Subjects
Online AccessGet full text
ISSN0094-8276
1944-8007
DOI10.1029/2025GL116668

Cover

Loading…
Abstract We quantify the impact of late 21st century Arctic sea ice loss on Northern Hemisphere (NH) summertime heat extremes using model simulations that are forced by the future Arctic sea ice loss. First, we find an overall increase of heat extreme frequency in the NH continents in our model simulations, but only in the presence of ocean‐atmosphere coupling. The increased frequency of heat extremes is entirely due to mean temperature increase. However, in comparison to the corresponding future warming scenario, in general, increases in heat extremes in NH continents due to the future Arctic sea ice loss are relatively small. The results suggest a non‐negligible but limited role of the future Arctic sea ice loss on contributing to the NH summertime heat extremes. Plain Language Summary The role of the changing Arctic on the rest of the globe, especially on weather extremes, is a subject of interest. Using climate model simulations that isolate the role of future Arctic sea ice loss, we show an overall increase of heat extreme frequency in the northern hemisphere (NH) land regions as a result, but only in the presence of a changing ocean circulation and ocean‐atmosphere coupling. However, the contribution of future Arctic sea ice loss to the NH heat extremes is relatively small, compared to the radiative forcing of anthropogenic greenhouse gases in general. Key Points The late 21st century Arctic sea ice loss can lead to more summertime heat extremes but only in the presence of ocean coupling The increased frequency of heat extremes is entirely due to mean temperature increase The role of future Arctic sea ice loss on northern hemisphere land heat extremes is relatively small compared to its corresponding future projection
AbstractList Abstract We quantify the impact of late 21st century Arctic sea ice loss on Northern Hemisphere (NH) summertime heat extremes using model simulations that are forced by the future Arctic sea ice loss. First, we find an overall increase of heat extreme frequency in the NH continents in our model simulations, but only in the presence of ocean‐atmosphere coupling. The increased frequency of heat extremes is entirely due to mean temperature increase. However, in comparison to the corresponding future warming scenario, in general, increases in heat extremes in NH continents due to the future Arctic sea ice loss are relatively small. The results suggest a non‐negligible but limited role of the future Arctic sea ice loss on contributing to the NH summertime heat extremes.
We quantify the impact of late 21st century Arctic sea ice loss on Northern Hemisphere (NH) summertime heat extremes using model simulations that are forced by the future Arctic sea ice loss. First, we find an overall increase of heat extreme frequency in the NH continents in our model simulations, but only in the presence of ocean‐atmosphere coupling. The increased frequency of heat extremes is entirely due to mean temperature increase. However, in comparison to the corresponding future warming scenario, in general, increases in heat extremes in NH continents due to the future Arctic sea ice loss are relatively small. The results suggest a non‐negligible but limited role of the future Arctic sea ice loss on contributing to the NH summertime heat extremes. The role of the changing Arctic on the rest of the globe, especially on weather extremes, is a subject of interest. Using climate model simulations that isolate the role of future Arctic sea ice loss, we show an overall increase of heat extreme frequency in the northern hemisphere (NH) land regions as a result, but only in the presence of a changing ocean circulation and ocean‐atmosphere coupling. However, the contribution of future Arctic sea ice loss to the NH heat extremes is relatively small, compared to the radiative forcing of anthropogenic greenhouse gases in general. The late 21st century Arctic sea ice loss can lead to more summertime heat extremes but only in the presence of ocean coupling The increased frequency of heat extremes is entirely due to mean temperature increase The role of future Arctic sea ice loss on northern hemisphere land heat extremes is relatively small compared to its corresponding future projection
We quantify the impact of late 21st century Arctic sea ice loss on Northern Hemisphere (NH) summertime heat extremes using model simulations that are forced by the future Arctic sea ice loss. First, we find an overall increase of heat extreme frequency in the NH continents in our model simulations, but only in the presence of ocean‐atmosphere coupling. The increased frequency of heat extremes is entirely due to mean temperature increase. However, in comparison to the corresponding future warming scenario, in general, increases in heat extremes in NH continents due to the future Arctic sea ice loss are relatively small. The results suggest a non‐negligible but limited role of the future Arctic sea ice loss on contributing to the NH summertime heat extremes.
We quantify the impact of late 21st century Arctic sea ice loss on Northern Hemisphere (NH) summertime heat extremes using model simulations that are forced by the future Arctic sea ice loss. First, we find an overall increase of heat extreme frequency in the NH continents in our model simulations, but only in the presence of ocean‐atmosphere coupling. The increased frequency of heat extremes is entirely due to mean temperature increase. However, in comparison to the corresponding future warming scenario, in general, increases in heat extremes in NH continents due to the future Arctic sea ice loss are relatively small. The results suggest a non‐negligible but limited role of the future Arctic sea ice loss on contributing to the NH summertime heat extremes. Plain Language Summary The role of the changing Arctic on the rest of the globe, especially on weather extremes, is a subject of interest. Using climate model simulations that isolate the role of future Arctic sea ice loss, we show an overall increase of heat extreme frequency in the northern hemisphere (NH) land regions as a result, but only in the presence of a changing ocean circulation and ocean‐atmosphere coupling. However, the contribution of future Arctic sea ice loss to the NH heat extremes is relatively small, compared to the radiative forcing of anthropogenic greenhouse gases in general. Key Points The late 21st century Arctic sea ice loss can lead to more summertime heat extremes but only in the presence of ocean coupling The increased frequency of heat extremes is entirely due to mean temperature increase The role of future Arctic sea ice loss on northern hemisphere land heat extremes is relatively small compared to its corresponding future projection
Author Wu, Yutian
Sun, Lantao
Terry, Owen
Author_xml – sequence: 1
  givenname: Yutian
  orcidid: 0000-0002-4428-6624
  surname: Wu
  fullname: Wu, Yutian
  email: yutianwu@ldeo.columbia.edu
  organization: Lamont‐Doherty Earth Observatory of Columbia University
– sequence: 2
  givenname: Lantao
  surname: Sun
  fullname: Sun, Lantao
  organization: Colorado State University
– sequence: 3
  givenname: Owen
  surname: Terry
  fullname: Terry, Owen
  organization: Columbia College
BookMark eNp9kE1LAzEQhoNUsFZv_oCAV6uTj002JylFa2FF8OMcstmJbOluanaL9t-7WhFPnmYYHp55eY_JqI0tEnLG4JIBN1cceLYoGFNK5QdkzIyU0xxAj8gYwAw71-qIHHfdCgAECDYms7lr6Sz5vvb0CR1deqT3uO7r9pUW6CraR3ofE9KnbdNg6usG6R26nt589Akb7K5PyGFw6w5Pf-aEvNzePM_vpsXDYjmfFVMvBMunRvmsDJ4bH4zzQjpZcpEzlEppVWkGhnOhs9x4z7hRIdPBAHjpMl_KKqCYkOXeW0W3sptUNy7tbHS1_T7E9GrdkM-v0XL0ecklD6BBGshKkVVCm0qxgIaXbHCd712bFN-22PV2FbepHeJbwYUEoxQzA3Wxp3yKXZcw_H5lYL8Kt38LH3C-x9_rNe7-Ze3isdCQi1x8AnuIf0U
Cites_doi 10.1126/science.1261768
10.1029/2022GL102301
10.1175/JCLI‐D‐23‐0389.1
10.1088/1748‐9326/8/4/044015
10.1038/s41561‐021‐00826‐w
10.1038/s41467‐018‐05256‐8
10.1038/s41561‐020‐0546‐9
10.1002/2014GL060764
10.1029/2023GL106863
10.1175/BAMS‐D‐14‐00185.1
10.1038/nature09051
10.1029/2018GL077325
10.7916/5e5c‐3y55
10.1038/nclimate2268
10.1175/JCLI‐D‐15‐0169.1
10.1175/2009jcli3053.1
10.1073/pnas.1412797111
10.1175/BAMS‐D‐12‐00121.1
10.1002/2016GL067792
10.1175/JCLI‐D‐13‐00272.1
10.1175/JCLI‐D‐21‐0647.1
10.1088/2752‐5295/ad1334
10.1175/JCLI‐D‐14‐00325.1
10.1002/qj.2502
10.1175/jcli‐d‐12‐00558.1
10.1175/JCLI‐D‐14‐00632.1
10.1175/JCLI‐D‐15‐0651.1
10.1088/2752‐5295/ad93f3
10.1175/JCLI‐D‐19‐1013.1
10.1175/JCLI‐D‐19‐0720.1
10.1038/s41558‐019‐0662‐y
10.1088/2752‐5295/ad9b45
10.5194/wcd‐3‐555‐2022
10.1126/sciadv.adp1346
ContentType Journal Article
Copyright 2025. The Author(s).
2025. This work is published under Creative Commons Attribution – Non-Commercial – No Derivatives License~http://creativecommons.org/licenses/by-nc-nd/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025. The Author(s).
– notice: 2025. This work is published under Creative Commons Attribution – Non-Commercial – No Derivatives License~http://creativecommons.org/licenses/by-nc-nd/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
DOA
DOI 10.1029/2025GL116668
DatabaseName Wiley Online Library Open Access
CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
CrossRef
Aerospace Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage n/a
ExternalDocumentID oai_doaj_org_article_2ec8b242f0704905b35d379d61fe92b1
10_1029_2025GL116668
GRL70838
Genre article
GrantInformation_xml – fundername: National Science Foundation
  funderid: AGS‐2220948; AGS‐2300038
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
AAESR
AAFWJ
AAIHA
AAMMB
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACCMX
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACTHY
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AENEX
AFBPY
AFGKR
AFPKN
AFRAH
AGXDD
AIDQK
AIDYY
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
AVUZU
AZFZN
AZVAB
BENPR
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GODZA
GROUPED_DOAJ
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIN
WXSBR
XSW
ZZTAW
~02
~OA
~~A
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
ID FETCH-LOGICAL-c3318-96c5bfc29cf9ac34a4b2381e46676d71092237589cc1296f57f900c4a5cb4dfe3
IEDL.DBID DOA
ISSN 0094-8276
IngestDate Wed Aug 27 01:14:59 EDT 2025
Tue Aug 26 04:13:03 EDT 2025
Thu Aug 21 00:26:00 EDT 2025
Tue Jul 29 10:40:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3318-96c5bfc29cf9ac34a4b2381e46676d71092237589cc1296f57f900c4a5cb4dfe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4428-6624
OpenAccessLink https://doaj.org/article/2ec8b242f0704905b35d379d61fe92b1
PQID 3234096619
PQPubID 54723
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_2ec8b242f0704905b35d379d61fe92b1
proquest_journals_3234096619
crossref_primary_10_1029_2025GL116668
wiley_primary_10_1029_2025GL116668_GRL70838
PublicationCentury 2000
PublicationDate 28 July 2025
PublicationDateYYYYMMDD 2025-07-28
PublicationDate_xml – month: 07
  year: 2025
  text: 28 July 2025
  day: 28
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2015; 141
2013; 26
2015; 96
2010; 464
2014; 27
2024; 51
2024; 10
2025; 3
2020; 13
2025
2020; 10
2015; 348
2023; 3
2014; 41
2018; 45
2014; 111
2024; 37
2013; 8
2021; 14
2010; 23
2018; 9
2015; 28
2014; 4
2021; 34
2022; 3
2021
2013; 94
2016; 43
2022; 35
2013
2024; 3
2016; 29
2023; 50
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
Seneviratne S. I. (e_1_2_7_33_1) 2021
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_34_1
Cubasch U. (e_1_2_7_9_1) 2013
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
References_xml – volume: 141
  start-page: 2070
  issue: 691
  year: 2015
  end-page: 2076
  article-title: Atmospheric response in summer linked to recent Arctic sea ice loss
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 96
  start-page: 1489
  issue: 9
  year: 2015
  end-page: 1503
  article-title: Reduced risk of North American cold extremes due to continued Arctic sea ice loss
  publication-title: Bulletin of the American Meteorological Society
– volume: 3
  issue: 4
  year: 2025
  article-title: Sea ice perturbations in aquaplanet simulations: Isolating the physical climate responses from model interventions
  publication-title: Environmental Research Climate
– volume: 34
  start-page: 3441
  issue: 9
  year: 2021
  end-page: 3460
  article-title: Changes in annual extremes of daily temperature and precipitation in CMIP6 models
  publication-title: Journal of Climate
– volume: 348
  start-page: 324
  issue: 6232
  year: 2015
  end-page: 327
  article-title: The weakening summer circulation in the northern hemisphere mid‐latitudes
  publication-title: Science
– volume: 37
  start-page: 1065
  issue: 3
  year: 2024
  end-page: 1085
  article-title: Impacts of projected Arctic sea ice loss on daily weather patterns over North America
  publication-title: Journal of Climate
– volume: 464
  start-page: 1334
  issue: 7293
  year: 2010
  end-page: 1337
  article-title: The central role of diminishing sea ice in recent Arctic temperature amplification
  publication-title: Nature
– volume: 35
  start-page: 3801
  issue: 22
  year: 2022
  end-page: 3811
  article-title: Spurious climate impacts in coupled sea ice loss simulations
  publication-title: Journal of Climate
– volume: 3
  issue: 1
  year: 2023
  article-title: Correcting for artificial heat in coupled sea ice perturbation experiments
  publication-title: Environmental Research: Climate
– volume: 34
  start-page: 2367
  issue: 6
  year: 2021
  end-page: 2383
  article-title: Nonlinear response of atmospheric blocking to early winter Barents–Kara seas warming: An idealized model study
  publication-title: Journal of Climate
– volume: 4
  start-page: 577
  issue: 7
  year: 2014
  end-page: 582
  article-title: Arctic amplification decreases temperature variance in northern mid‐to high‐latitudes
  publication-title: Nature Climate Change
– volume: 51
  issue: 2
  year: 2024
  article-title: The response of surface temperature persistence to Arctic sea‐ice loss
  publication-title: Geophysical Research Letters
– volume: 10
  issue: 40
  year: 2024
  article-title: Models and observations agree on fewer and milder midlatitude cold extremes even over recent decades of rapid Arctic warming
  publication-title: Science Advances
– volume: 9
  issue: 1
  year: 2018
  article-title: The influence of Arctic amplification on mid‐latitude summer circulation
  publication-title: Nature Communications
– volume: 8
  issue: 4
  year: 2013
  article-title: Influence of Arctic sea ice on European summer precipitation
  publication-title: Environmental Research Letters
– volume: 45
  start-page: 4264
  issue: 9
  year: 2018
  end-page: 4272
  article-title: Fast response of the tropics to an abrupt loss of arctic sea ice via ocean dynamics
  publication-title: Geophysical Research Letters
– volume: 50
  issue: 9
  year: 2023
  article-title: Arctic sea ice loss weakens northern hemisphere summertime storminess but not until the late 21st century
  publication-title: Geophysical Research Letters
– volume: 13
  start-page: 275
  issue: 4
  year: 2020
  end-page: 281
  article-title: Tropical climate responses to projected Arctic and Antarctic sea‐ice loss
  publication-title: Nature Geoscience
– volume: 23
  start-page: 333
  issue: 2
  year: 2010
  end-page: 351
  article-title: The seasonal atmospheric response to projected Arctic sea ice loss in the late twenty‐first century
  publication-title: Journal of Climate
– year: 2025
– volume: 3
  start-page: 555
  issue: 2
  year: 2022
  end-page: 573
  article-title: Summertime changes in climate extremes over the peripheral Arctic regions after a sudden sea ice retreat
  publication-title: Weather Climate Dynamics
– volume: 3
  issue: 4
  year: 2024
  article-title: Influence of high‐latitude blocking and the northern stratospheric polar vortex on cold‐air outbreaks under Arctic amplification of global warming
  publication-title: Environmental Research: Climate
– volume: 14
  start-page: 719
  issue: 10
  year: 2021
  end-page: 723
  article-title: Decreasing subseasonal temperature variability in the northern extratropics attributed to human influence
  publication-title: Nature Geoscience
– volume: 10
  start-page: 20
  issue: 1
  year: 2020
  end-page: 29
  article-title: Divergent consensus on the influence of Arctic amplification on mid‐latitude severe winter weather
  publication-title: Nature Climate Change
– volume: 43
  start-page: 2149
  issue: 5
  year: 2016
  end-page: 2157
  article-title: Does ocean coupling matter for the northern extratropical response to projected Arctic sea ice loss?
  publication-title: Geophysical Research Letters
– volume: 28
  start-page: 2168
  issue: 6
  year: 2015
  end-page: 2186
  article-title: The role of ocean–atmosphere coupling in the zonal‐mean atmospheric response to Arctic sea ice loss
  publication-title: Journal of Climate
– volume: 28
  start-page: 7824
  issue: 19
  year: 2015
  end-page: 7845
  article-title: Mechanisms of stratospheric and tropospheric circulation response to projected Arctic sea ice loss
  publication-title: Journal of Climate
– volume: 41
  start-page: 5223
  issue: 14
  year: 2014
  end-page: 5232
  article-title: Responses of midlatitude blocks and wave amplitude to changes in the meridional temperature gradient in an idealized dry GCM
  publication-title: Geophysical Research Letters
– start-page: 1513
  year: 2021
  end-page: 1766
– volume: 29
  start-page: 6841
  issue: 19
  year: 2016
  end-page: 6859
  article-title: The role of ocean heat transport in the global climate response to projected Arctic sea ice loss
  publication-title: Journal of Climate
– volume: 26
  start-page: 7372
  issue: 19
  year: 2013
  end-page: 7391
  article-title: Climate change from 1850 to 2005 simulated in CESM1(WACCM)
  publication-title: Journal of Climate
– volume: 27
  start-page: 244
  issue: 1
  year: 2014
  end-page: 264
  article-title: Response of the wintertime northern hemisphere atmospheric circulation to current and projected Arctic sea ice decline: A numerical study with CAM5
  publication-title: Journal of Climate
– volume: 111
  start-page: 12331
  issue: 34
  year: 2014
  end-page: 12336
  article-title: Quasi‐resonant circulation regimes and hemispheric synchronization of extreme weather in boreal summer
  publication-title: Proceedings of the National Academy of Sciences
– volume: 94
  start-page: 1339
  issue: 9
  year: 2013
  end-page: 1360
  article-title: The community earth system model: A framework for collaborative research
  publication-title: Bulletin of the American Meteorological Society
– volume: 28
  start-page: 2312
  year: 2015
  end-page: 2331
  article-title: Physics of changes in synoptic midlatitude temperature variability
  publication-title: Journal of Climate
– year: 2013
– ident: e_1_2_7_7_1
  doi: 10.1126/science.1261768
– ident: e_1_2_7_22_1
  doi: 10.1029/2022GL102301
– volume-title: Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change
  year: 2013
  ident: e_1_2_7_9_1
– ident: e_1_2_7_18_1
  doi: 10.1175/JCLI‐D‐23‐0389.1
– ident: e_1_2_7_29_1
  doi: 10.1088/1748‐9326/8/4/044015
– ident: e_1_2_7_2_1
  doi: 10.1038/s41561‐021‐00826‐w
– ident: e_1_2_7_6_1
  doi: 10.1038/s41467‐018‐05256‐8
– ident: e_1_2_7_16_1
  doi: 10.1038/s41561‐020‐0546‐9
– ident: e_1_2_7_20_1
  doi: 10.1002/2014GL060764
– ident: e_1_2_7_23_1
  doi: 10.1029/2023GL106863
– ident: e_1_2_7_31_1
  doi: 10.1175/BAMS‐D‐14‐00185.1
– ident: e_1_2_7_32_1
  doi: 10.1038/nature09051
– ident: e_1_2_7_36_1
  doi: 10.1029/2018GL077325
– ident: e_1_2_7_37_1
  doi: 10.7916/5e5c‐3y55
– ident: e_1_2_7_30_1
  doi: 10.1038/nclimate2268
– ident: e_1_2_7_34_1
  doi: 10.1175/JCLI‐D‐15‐0169.1
– ident: e_1_2_7_12_1
  doi: 10.1175/2009jcli3053.1
– ident: e_1_2_7_8_1
  doi: 10.1073/pnas.1412797111
– ident: e_1_2_7_21_1
  doi: 10.1175/BAMS‐D‐12‐00121.1
– ident: e_1_2_7_11_1
  doi: 10.1002/2016GL067792
– ident: e_1_2_7_26_1
  doi: 10.1175/JCLI‐D‐13‐00272.1
– ident: e_1_2_7_14_1
  doi: 10.1175/JCLI‐D‐21‐0647.1
– ident: e_1_2_7_17_1
  doi: 10.1088/2752‐5295/ad1334
– ident: e_1_2_7_13_1
  doi: 10.1175/JCLI‐D‐14‐00325.1
– ident: e_1_2_7_27_1
  doi: 10.1002/qj.2502
– ident: e_1_2_7_25_1
  doi: 10.1175/jcli‐d‐12‐00558.1
– ident: e_1_2_7_28_1
  doi: 10.1175/JCLI‐D‐14‐00632.1
– ident: e_1_2_7_35_1
  doi: 10.1175/JCLI‐D‐15‐0651.1
– ident: e_1_2_7_19_1
  doi: 10.1088/2752‐5295/ad93f3
– ident: e_1_2_7_24_1
  doi: 10.1175/JCLI‐D‐19‐1013.1
– ident: e_1_2_7_4_1
  doi: 10.1175/JCLI‐D‐19‐0720.1
– ident: e_1_2_7_5_1
  doi: 10.1038/s41558‐019‐0662‐y
– ident: e_1_2_7_15_1
  doi: 10.1088/2752‐5295/ad9b45
– start-page: 1513
  volume-title: Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change, [Masson‐Delmotte]
  year: 2021
  ident: e_1_2_7_33_1
– ident: e_1_2_7_10_1
  doi: 10.5194/wcd‐3‐555‐2022
– ident: e_1_2_7_3_1
  doi: 10.1126/sciadv.adp1346
SSID ssj0003031
Score 2.4806733
Snippet We quantify the impact of late 21st century Arctic sea ice loss on Northern Hemisphere (NH) summertime heat extremes using model simulations that are forced by...
Abstract We quantify the impact of late 21st century Arctic sea ice loss on Northern Hemisphere (NH) summertime heat extremes using model simulations that are...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Index Database
Publisher
SubjectTerms Ablation
Arctic sea ice
Continents
Extreme heat
Heat
Ice melting
Mean temperatures
Northern Hemisphere
Sea ice
Summer
Temperature rise
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aEbyIT6xWyUFPsrjNY3dzEpXaKlbEB3hbktnEi7bSVtB_70y6lnoRvC0hgWUy78x8w9ghav0qEzYl5EeVKKtd4qCwScBgSDiLTBLbx_q3We9JXT_r5zrhRr0wU3yIWcKNJCPqaxJw68Y12ABhZGLUrrs3bXr2KhbZEnXX0ugGoe5mmhjV83RinlFJIfKsLnzH8yfzp3-ZpIjc_8vdnHdao9W5XGOrtbvIz6b3u84W_GCDLXfjON4v_IoFnDDeZGcXdoDbqOOJP3jLr8Dzvn-lomZOYzT5ZMj7w5HnlPaiWuo3z3uoh3nnc0IpwvHpFnu67Dxe9JJ6PEICEiURqQvaBRAGgrEglVWO7K9XVLZaUY0lmn4MBwwAGvUs6DyYNAW8D3CqCl5us8ZgOPA7jFswlZFQAYBWAtCpS6VTIU29z1Se6SY7-qFQ-T5FwSjj67Uw5Twlm-ycyDfbQ9jVcWE4eilrUSiFh8IhjwTUNsqk2kldydxUWTt4I1y7yVo_xC9rgRqXUkiMRNGZME12HC_kzx8pu_c3OXqXxe6_du-xFVqn3K0oWqwxGX34fXQ6Ju4gctY3MTjI1g
  priority: 102
  providerName: Wiley-Blackwell
Title Can Arctic Sea Ice Melting Lead to More Summertime Heat Extremes?
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2025GL116668
https://www.proquest.com/docview/3234096619
https://doaj.org/article/2ec8b242f0704905b35d379d61fe92b1
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NbxMxEB2VVkhcKlpABErkQ3tCK1x_7K5PVajahKpBqCWo4rKyZ-0TJKgJUvn3nfFuUHqhF26rlWVZM-OZN_bzDMAhef22VF5y5UdTGG9DEbD2RaJkSAVPRpKfj00_l5OZubixNxutvpgT1pUH7gT3QUWsA82YyDaNkzZo2-rKteVxik6FnPhIJ9fJVO-DyTF3vfKcKWpVlT3lXSrH2b4dXx7zdVn9IBjlmv0PgOYmXM3x5vw57PZAUYy6Be7BVpzvw9NxbsT7h74ydROXL2B06uc0jN86ievoxSeMYhp_MJ1ZcANNsVqI6eI2Cj7wYhb1zygm5IHF2d2KDweXJy9hdn729XRS9I0RCtS0B0muaENC5TA5j9p4EzjyRsOE1ZbZlRT0KRFwiBTOy2Sr5KRE0gQG06aoX8H2fDGPr0F4dK3T2CKiNQoJzkkdTJIyxtJUpR3A0VpCza-u_kWT762VazYlOYCPLL6_Y7hqdf5Bumx6XTaP6XIAB2vhN_1WWjZaacpBCUa4AbzPCvnnQprx1WVFuLJ-8z9W9Bae8eR8mKvqA9he3f6O7wiFrMIQnijzZQg7o2-z77NhNr97y7XS8Q
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxsxEB7alNJcQtMHdR6NDs2pLF3rsbs6hSQkdlo7hDaB3IQ0K_XS2sF2oP33mZE3xrkUeluWESwjzcw3s59mAD6R128r6Uvu_KgL7U0oAja-SJQMyeDpkOTrY-PLanijv96a227OKd-FWfaHWBXc2DKyv2YD54J0122Am2RS2m4Goz7_92qewwtN0Jw5fVJfrVwx-eflyDyri0bWVcd8p_Vf1lc_iUm5df8TvLmOWnPYOX8NWx1eFMfLDd6GZ3HyBl4O8jzev_SUGZw4fwvHp35CYnzlSfyIXlxgFOP4i1nNgudoisVUjKezKLjuxWTq31EMyRGLsz8LrhHOj97BzfnZ9emw6OYjFKjIFEm9aEJCaTFZj0p7HTgAR8281ZZJlhT7KR-wiBTVq2TqZMsSaUMw6DZF9R42JtNJ_ADCo22twhYRjZZIqK5UQaeyjLHSdWV6cPioIXe3bIPh8u9rad26JntwwupbyXDz6vxiOvvpOltwMmIT6JAkcjfaliYo06ratlU_RStDvwd7j8p3nUXNnZKKUlFCE7YHn_OG_PND3OD7qCZ42ez8l_QBvBpej0dudHH5bRc2WYYLubLZg43F7D7uEwJZhI_5lD0ANTTMSQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB5BKxAXxFMECvgAJ7Ri48fu-oTSR5JCUiEgqOJi2bM2F0iqJEjl33fG2UbpBYnbajVercbz9vgbgDdk9dtK-pKRH3WhvQlFwMYXiZIhGTwJSb4-Nj2rxjP98dycdwU3vguzwYfYFtxYM7K9ZgW_aFMHNsAYmZS1m9Gkz8dezW3YZ6A8kvP9wffZj9nWFpOB3szMs7poZF11re_0hfe76284pYzdfyPg3A1bs98ZPoD7XcAoBpsdfgi34vwR3Bnlgbx_6Sm3cOLqMQyO_JzI-M6T-Bq9OMUopvEXtzULHqQp1gsxXSyj4MIXd1P_jmJMllicXK65SLj68ARmw5NvR-OiG5BQoCJdJP6iCQmlxWQ9Ku11YA8cNTeuttxlSc6fEgKLSG69SqZOtiyRdgSDblNUT2FvvpjHZyA82tYqbBHRaIkU1pUq6FSWMVa6rkwP3l5zyF1scDBcPr-W1u1ysgeHzL4tDaNX5xeL5U_XKYOTEZtAUpLI3mhbmqBMq2rbVv0UrQz9HhxcM991KrVySirKRSmcsD14lzfknz_iRl8mNcWXzfP_on4Ndz8fD93k9OzTC7jHJFzIlc0B7K2Xf-JLikDW4VUnZlcFDs04
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Can+Arctic+Sea+Ice+Melting+Lead+to+More+Summertime+Heat+Extremes%3F&rft.jtitle=Geophysical+research+letters&rft.au=Wu%2C+Yutian&rft.au=Sun%2C+Lantao&rft.au=Terry%2C+Owen&rft.date=2025-07-28&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=52&rft.issue=14&rft_id=info:doi/10.1029%2F2025GL116668&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2025GL116668
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon