Mean‐Field and Classical Limit for the N‐Body Quantum Dynamics with Coulomb Interaction
This paper proves the validity of the joint mean‐field and classical limit of the bosonic quantum N‐body dynamics leading to the pressureless Euler‐Poisson system for factorized initial data whose first marginal has a monokinetic Wigner measure. The interaction potential is assumed to be the repulsi...
Saved in:
Published in | Communications on pure and applied mathematics Vol. 75; no. 6; pp. 1332 - 1376 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Melbourne
John Wiley & Sons Australia, Ltd
01.06.2022
John Wiley and Sons, Limited Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper proves the validity of the joint mean‐field and classical limit of the bosonic quantum N‐body dynamics leading to the pressureless Euler‐Poisson system for factorized initial data whose first marginal has a monokinetic Wigner measure. The interaction potential is assumed to be the repulsive Coulomb potential. The validity of this derivation is limited to finite time intervals on which the Euler‐Poisson system has a smooth solution that is rapidly decaying at infinity. One key ingredient in the proof is an inequality taken from S. Serfaty (Duke Math. J. 169 (2020), 2887–2935) ).© 2021 Wiley Periodicals LLC. |
---|---|
AbstractList | This paper proves the validity of the joint mean‐field and classical limit of the bosonic quantum N‐body dynamics leading to the pressureless Euler‐Poisson system for factorized initial data whose first marginal has a monokinetic Wigner measure. The interaction potential is assumed to be the repulsive Coulomb potential. The validity of this derivation is limited to finite time intervals on which the Euler‐Poisson system has a smooth solution that is rapidly decaying at infinity. One key ingredient in the proof is an inequality taken from S. Serfaty (Duke Math. J. 169 (2020), 2887–2935) ).© 2021 Wiley Periodicals LLC. This paper proves the validity of the joint mean‐field and classical limit of the bosonic quantum N ‐body dynamics leading to the pressureless Euler‐Poisson system for factorized initial data whose first marginal has a monokinetic Wigner measure. The interaction potential is assumed to be the repulsive Coulomb potential. The validity of this derivation is limited to finite time intervals on which the Euler‐Poisson system has a smooth solution that is rapidly decaying at infinity. One key ingredient in the proof is an inequality taken from S. Serfaty ( Duke Math. J. 169 (2020), 2887–2935) ).© 2021 Wiley Periodicals LLC. This paper proves the validity of the joint mean-field and classical limit of the quantum N-body dynamics leading to the pressureless Euler-Poisson system for factorized initial data whose first marginal has a monokinetic Wigner measure. The interaction potential is assumed to be the repulsive Coulomb potential. The validity of this derivation is limited to finite time intervals on which the Euler-Poisson system has a smooth solution that is rapidly decaying at infinity. One key ingredient in the proof is an inequality from [S. Serfaty, with an appendix of M. Duerinckx arXiv:1803.08345v3 [math.AP]]. |
Author | Golse, François Paul, Thierry |
Author_xml | – sequence: 1 givenname: François surname: Golse fullname: Golse, François email: francois.golse@polytechnique.edu organization: CMLS, École polytechnique, Route de Saclay – sequence: 2 givenname: Thierry surname: Paul fullname: Paul, Thierry email: paul@ljll.math.upmc.fr organization: CNRS & Laboratoire J.‐L. Lions, Sorbonne Université |
BackLink | https://polytechnique.hal.science/hal-02361050$$DView record in HAL |
BookMark | eNp1kM1OGzEUha2KSg3QRd_AUlcsBq7tjOMs02n5kQKlUrvqwrqxHcVoxk5tT1F2PALPyJMwIZRuYHV1r75zdO7ZJ3shBkfIJwbHDICfmDUeczZV8h0ZMZhOKhCM75ERAINKyDF8IPs53wwrGysxIr8vHYaHu_tT71pLMVjatJizN9jSue98ocuYaFk5ejVQX6Ld0B89htJ39OsmYOdNpre-rGgT-zZ2C3oRiktoio_hkLxfYpvdx-d5QH6dfvvZnFfz72cXzWxeGSGYrCYL5YRkDBiHWhlUol5IKyRwkJZhjbWZIgiHbCLGlhuUyvLpWC2MBWUVFwfkaOe7wlavk-8wbXREr89nc729AR_8oYa_W_bzjl2n-Kd3ueib2KcwxNNc1rVQrJZsoE52lEkx5-SW2viC259KQt9qBnrbth7a1k9t_8_wovgX5DX22f3Wt27zNqib69lO8QjfH4_r |
CitedBy_id | crossref_primary_10_1007_s10955_023_03131_5 crossref_primary_10_5802_jep_230 crossref_primary_10_3233_ASY_231864 crossref_primary_10_1063_5_0228404 crossref_primary_10_1007_s00023_021_01103_7 crossref_primary_10_1007_s00033_024_02291_y crossref_primary_10_1007_s42543_023_00065_5 crossref_primary_10_1007_s42543_023_00066_4 crossref_primary_10_1103_PhysRevA_110_022211 crossref_primary_10_1007_s11464_024_0043_3 crossref_primary_10_1007_s10955_023_03123_5 |
Cites_doi | 10.1007/s00220-016-2583-1 10.1016/S1631-073X(02)02253-7 10.3934/krm.2013.6.919 10.1007/BF01077243 10.1002/cpa.21570 10.1090/jams/872 10.1007/s00205-006-0021-9 10.4310/MAA.2000.v7.n2.a2 10.1007/BF00400379 10.1137/15M1042620 10.1007/s11005-011-0470-4 10.1007/s00220-019-03357-z 10.1007/978-3-642-66282-9 10.24033/asens.2261 10.4171/RMI/143 10.1007/s00205-017-1125-0 10.1007/s10955-017-1725-y 10.1103/RevModPhys.52.569 10.1007/BF01611497 10.1007/BFb0060678 10.1007/BF00250353 10.1063/1.522642 10.4171/RMI/30 10.1007/s00220-015-2485-7 10.1007/s00205-016-1031-x 10.1142/S0218202503002386 10.1007/BF01608633 10.1016/j.jfa.2018.06.008 10.1007/s00220-009-0867-4 10.1007/978-0-387-70914-7 10.4310/ATMP.2001.v5.n6.a6 10.1215/00127094-2020-0019 10.1080/03605300008821529 10.1007/s00023-009-0404-1 10.1007/978-3-319-26883-5_1 10.1016/j.crma.2017.12.007 10.1007/BF03168581 10.2307/1990366 |
ContentType | Journal Article |
Copyright | 2021 Wiley Periodicals LLC. 2022 Wiley Periodicals LLC. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2021 Wiley Periodicals LLC. – notice: 2022 Wiley Periodicals LLC. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION JQ2 1XC VOOES |
DOI | 10.1002/cpa.21986 |
DatabaseName | CrossRef ProQuest Computer Science Collection Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | CrossRef ProQuest Computer Science Collection |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1097-0312 |
EndPage | 1376 |
ExternalDocumentID | oai_HAL_hal_02361050v2 10_1002_cpa_21986 CPA21986 |
Genre | article |
GroupedDBID | --Z .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6J9 6OB 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEFU ABEML ABIJN ABLJU ABTAH ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE FSPIC G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6L MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OHT P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 RYL S10 SAMSI SUPJJ TN5 TWZ UB1 UHB V2E VH1 W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WRC WWM WXSBR WYISQ XBAML XG1 XPP XV2 YZZ ZY4 ZZTAW ~IA ~WT AAYXX ADXHL AETEA AEYWJ AGHNM AGQPQ AGYGG AMVHM CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 1XC VOOES |
ID | FETCH-LOGICAL-c3316-7b8e3611012058ca835b6d360206d1a5a5c9a03ea1734d2ca68d2948bcd08d823 |
IEDL.DBID | DR2 |
ISSN | 0010-3640 |
IngestDate | Wed Sep 03 07:01:51 EDT 2025 Fri Jul 25 18:54:09 EDT 2025 Tue Jul 01 02:50:31 EDT 2025 Thu Apr 24 22:54:59 EDT 2025 Wed Jan 22 16:26:12 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Hartree equation Euler-Poisson system Coulomb potential Quantum dynamics Semiclassical approximation Mean-field limit |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3316-7b8e3611012058ca835b6d360206d1a5a5c9a03ea1734d2ca68d2948bcd08d823 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://polytechnique.hal.science/hal-02361050 |
PQID | 2655381561 |
PQPubID | 48818 |
PageCount | 45 |
ParticipantIDs | hal_primary_oai_HAL_hal_02361050v2 proquest_journals_2655381561 crossref_citationtrail_10_1002_cpa_21986 crossref_primary_10_1002_cpa_21986 wiley_primary_10_1002_cpa_21986_CPA21986 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2022 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: June 2022 |
PublicationDecade | 2020 |
PublicationPlace | Melbourne |
PublicationPlace_xml | – name: Melbourne – name: New York |
PublicationTitle | Communications on pure and applied mathematics |
PublicationYear | 2022 |
Publisher | John Wiley & Sons Australia, Ltd John Wiley and Sons, Limited Wiley |
Publisher_xml | – name: John Wiley & Sons Australia, Ltd – name: John Wiley and Sons, Limited – name: Wiley |
References | 1993; 9 2000; 25 2007; 183 2011 2002; 334 1975; 16 2000; 7 2003; 13 2011; 97 2016; 343 2019; 369 1974 1995 2016; 347 1976; 49 2013; 6 1958 1979; 70 1979 2015; 48 1986; 2 2018; 275 2017; 30 2009; 10 1980; 52 2001; 5 2009; 291 2020 1991; 22 2018; 356 2016 1995; 147 1977; 56 1980 2001; 18 2017; 166 1951; 70 2017; 223 2016; 48 2001; 14 2017; 225 2016; 69 Reed M. (e_1_2_1_36_1) 1980 e_1_2_1_42_1 e_1_2_1_20_1 e_1_2_1_41_1 Hauray M. (e_1_2_1_23_1) 2015; 48 e_1_2_1_40_1 e_1_2_1_24_1 e_1_2_1_21_1 e_1_2_1_22_1 e_1_2_1_43_1 e_1_2_1_27_1 e_1_2_1_28_1 e_1_2_1_25_1 e_1_2_1_26_1 Lieb E. H. (e_1_2_1_29_1) 2001 e_1_2_1_7_1 e_1_2_1_8_1 e_1_2_1_30_1 e_1_2_1_5_1 e_1_2_1_6_1 e_1_2_1_3_1 e_1_2_1_12_1 e_1_2_1_35_1 e_1_2_1_4_1 e_1_2_1_13_1 e_1_2_1_34_1 e_1_2_1_10_1 e_1_2_1_33_1 e_1_2_1_2_1 e_1_2_1_11_1 e_1_2_1_32_1 e_1_2_1_16_1 e_1_2_1_39_1 e_1_2_1_17_1 e_1_2_1_38_1 e_1_2_1_14_1 e_1_2_1_37_1 e_1_2_1_15_1 Malliavin P. (e_1_2_1_31_1) 1995 e_1_2_1_9_1 e_1_2_1_18_1 e_1_2_1_19_1 |
References_xml | – year: 2011 – volume: 225 start-page: 1201 issue: 3 year: 2017 end-page: 1231 article-title: A mean field limit for the Vlasov‐Poisson system publication-title: Arch. Ration. Mech. Anal. – year: 1958 – volume: 356 start-page: 177 issue: 2 year: 2018 end-page: 197 article-title: Wave packets and the quadratic Monge‐Kantorovich distance in quantum mechanics publication-title: C. R. Math. Acad. Sci. Paris – volume: 7 start-page: 275 issue: 2 year: 2000 end-page: 294 article-title: Weak coupling limit of the ‐particle Schrödinger equation publication-title: Methods Appl. Anal. – volume: 52 start-page: 569 issue: 3 year: 1980 end-page: 615 article-title: Kinetic equations from Hamiltonian dynamics: Markovian limits publication-title: Rev. Mod. Phys. – volume: 347 start-page: 271 issue: 1 year: 2016 end-page: 289 article-title: The Vlasov‐Poisson dynamics as the mean‐field limit of extended charges publication-title: Comm. Math. Phys. – volume: 25 start-page: 737 issue: 3‐4 year: 2000 end-page: 754 article-title: Convergence of the Vlasov‐Poisson system to the incompressible Euler equations publication-title: Comm. Partial Differential Equations – volume: 14 year: 2001 – volume: 69 start-page: 519 issue: 3 year: 2016 end-page: 605 article-title: Higher‐dimensional Coulomb gases and renormalized energy functionals publication-title: Comm. Pure Appl. Math. – volume: 6 start-page: 919 issue: 4 year: 2013 end-page: 943 article-title: Empirical measures and Vlasov hierarchies publication-title: Kinet. Relat. Models – volume: 70 start-page: 195 issue: 2 year: 1951 end-page: 211 article-title: Fundamental properties of Hamiltonian operators of Schrödinger type publication-title: Trans. Amer. Math. Soc. – year: 1979 – year: 2016 – volume: 48 start-page: 2269 issue: 3 year: 2016 end-page: 2300 article-title: Mean‐field limits for some Riesz interaction gradient flows publication-title: SIAM J. Math. Anal. – volume: 16 start-page: 1122 issue: 5 year: 1975 end-page: 1130 article-title: Global existence of solutions to the Cauchy problem for time‐dependent Hartree equations publication-title: J. Mathematical Phys. – volume: 166 start-page: 1345 issue: 6 year: 2017 end-page: 1364 article-title: Mean field evolution of fermions with Coulomb interaction publication-title: J. Stat. Phys. – volume: 291 start-page: 31 issue: 1 year: 2009 end-page: 61 article-title: Quantum fluctuations and rate of convergence towards mean‐field dynamics publication-title: Comm. Math. Phys. – volume: 9 start-page: 553 issue: 3 year: 1993 end-page: 618 article-title: Sur les mesures de Wigner publication-title: Rev. Mat. Iberoamericana – volume: 10 start-page: 145 issue: 1 year: 2009 end-page: 187 article-title: Mean‐field limit and semiclassical expansion of a quantum particle system publication-title: Ann. Henri Poincaré – volume: 2 start-page: 119 issue: 1‐2 year: 1986 end-page: 213 article-title: Relativistic stability of matter publication-title: I. Rev. Mat. Iberoamericana – volume: 97 start-page: 151 issue: 2 year: 2011 end-page: 164 article-title: A simple derivation of mean‐field limits for quantum systems publication-title: Lett. Math. Phys. – year: 1980 – volume: 22 start-page: 63 issue: 1 year: 1991 end-page: 80 article-title: Relative entropy and hydrodynamics of Ginzburg‐Landau models publication-title: Lett. Math. Phys. – volume: 5 start-page: 1169 issue: 6 year: 2001 end-page: 1205 article-title: Derivation of the nonlinear Schrödinger equation from a many body Coulomb system publication-title: Adv. Theor. Math. Phys. – volume: 369 start-page: 1021 issue: 3 year: 2019 end-page: 1053 article-title: Empirical measures and quantum mechanics: applications to the mean‐field limit publication-title: Comm. Math. Phys. – volume: 147 year: 1995 – year: 2020 – volume: 183 start-page: 489 issue: 3 year: 2007 end-page: 524 article-title: ‐particles approximation of the Vlasov equations with singular potential publication-title: Arch. Ration. Mech. Anal. – volume: 48 start-page: 891 issue: 4 year: 2015 end-page: 940 article-title: Particle approximation of Vlasov equations with singular forces: propagation of chaos publication-title: Ann. Sci. Éc. Norm. Supér. (4) – volume: 13 start-page: 59 issue: 1 year: 2003 end-page: 73 article-title: Mean‐field approximation of quantum systems and classical limit publication-title: Math. Models Methods Appl. Sci. – year: 1995 – year: 1974 – volume: 70 start-page: 167 issue: 2 year: 1979 end-page: 179 article-title: The second law of thermodynamics and stability publication-title: Arch. Rational Mech. Anal. – volume: 18 start-page: 383 issue: 2 year: 2001 end-page: 392 – volume: 49 start-page: 25 issue: 1 year: 1976 end-page: 33 article-title: On the Hartree‐Fock time‐dependent problem publication-title: Comm. Math. Phys. – volume: 223 start-page: 57 issue: 1 year: 2017 end-page: 94 article-title: The Schrödinger equation in the mean‐field and semiclassical regime publication-title: Arch. Ration. Mech. Anal. – volume: 56 start-page: 101 issue: 2 year: 1977 end-page: 113 article-title: The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles publication-title: Comm. Math. Phys. – volume: 30 start-page: 713 issue: 3 year: 2017 end-page: 768 article-title: Mean field limits of the Gross‐Pitaevskii and parabolic Ginzburg‐Landau equations publication-title: J. Amer. Math. Soc. – volume: 334 start-page: 515 issue: 6 year: 2002 end-page: 520 article-title: Derivation of the Schrödinger‐Poisson equation from the quantum ‐body problem publication-title: C. R. Math. Acad. Sci. Paris – volume: 343 start-page: 165 issue: 1 year: 2016 end-page: 205 article-title: On the mean field and classical limits of quantum mechanics publication-title: Comm. Math. Phys. – volume: 275 start-page: 1603 issue: 7 year: 2018 end-page: 1649 article-title: On the derivation of the Hartree equation from the ‐body Schrödinger equation: uniformity in the Planck constant publication-title: J. Functional Anal. – ident: e_1_2_1_27_1 doi: 10.1007/s00220-016-2583-1 – ident: e_1_2_1_2_1 doi: 10.1016/S1631-073X(02)02253-7 – ident: e_1_2_1_16_1 doi: 10.3934/krm.2013.6.919 – ident: e_1_2_1_10_1 doi: 10.1007/BF01077243 – ident: e_1_2_1_38_1 doi: 10.1002/cpa.21570 – ident: e_1_2_1_39_1 doi: 10.1090/jams/872 – ident: e_1_2_1_22_1 doi: 10.1007/s00205-006-0021-9 – ident: e_1_2_1_3_1 doi: 10.4310/MAA.2000.v7.n2.a2 – ident: e_1_2_1_43_1 doi: 10.1007/BF00400379 – ident: e_1_2_1_11_1 doi: 10.1137/15M1042620 – ident: e_1_2_1_34_1 doi: 10.1007/s11005-011-0470-4 – ident: e_1_2_1_26_1 – ident: e_1_2_1_19_1 doi: 10.1007/s00220-019-03357-z – ident: e_1_2_1_25_1 doi: 10.1007/978-3-642-66282-9 – volume: 48 start-page: 891 issue: 4 year: 2015 ident: e_1_2_1_23_1 article-title: Particle approximation of Vlasov equations with singular forces: propagation of chaos publication-title: Ann. Sci. Éc. Norm. Supér. (4) doi: 10.24033/asens.2261 – ident: e_1_2_1_30_1 doi: 10.4171/RMI/143 – ident: e_1_2_1_28_1 doi: 10.1007/s00205-017-1125-0 – ident: e_1_2_1_35_1 doi: 10.1007/s10955-017-1725-y – ident: e_1_2_1_41_1 doi: 10.1103/RevModPhys.52.569 – volume-title: Graduate Texts in Mathematics year: 1995 ident: e_1_2_1_31_1 – ident: e_1_2_1_5_1 doi: 10.1007/BF01611497 – ident: e_1_2_1_32_1 doi: 10.1007/BFb0060678 – ident: e_1_2_1_9_1 doi: 10.1007/BF00250353 – volume-title: Graduate Studies in Mathematics year: 2001 ident: e_1_2_1_29_1 – ident: e_1_2_1_8_1 doi: 10.1063/1.522642 – volume-title: Methods of modern mathematical physics year: 1980 ident: e_1_2_1_36_1 – ident: e_1_2_1_13_1 doi: 10.4171/RMI/30 – ident: e_1_2_1_15_1 doi: 10.1007/s00220-015-2485-7 – ident: e_1_2_1_17_1 doi: 10.1007/s00205-016-1031-x – ident: e_1_2_1_21_1 doi: 10.1142/S0218202503002386 – ident: e_1_2_1_4_1 doi: 10.1007/BF01608633 – ident: e_1_2_1_20_1 doi: 10.1016/j.jfa.2018.06.008 – ident: e_1_2_1_37_1 doi: 10.1007/s00220-009-0867-4 – ident: e_1_2_1_7_1 doi: 10.1007/978-0-387-70914-7 – ident: e_1_2_1_12_1 doi: 10.4310/ATMP.2001.v5.n6.a6 – ident: e_1_2_1_40_1 doi: 10.1215/00127094-2020-0019 – ident: e_1_2_1_6_1 doi: 10.1080/03605300008821529 – ident: e_1_2_1_33_1 doi: 10.1007/s00023-009-0404-1 – ident: e_1_2_1_14_1 doi: 10.1007/978-3-319-26883-5_1 – ident: e_1_2_1_18_1 doi: 10.1016/j.crma.2017.12.007 – ident: e_1_2_1_42_1 doi: 10.1007/BF03168581 – ident: e_1_2_1_24_1 doi: 10.2307/1990366 |
SSID | ssj0011483 |
Score | 2.3946726 |
Snippet | This paper proves the validity of the joint mean‐field and classical limit of the bosonic quantum N‐body dynamics leading to the pressureless Euler‐Poisson... This paper proves the validity of the joint mean‐field and classical limit of the bosonic quantum N ‐body dynamics leading to the pressureless Euler‐Poisson... This paper proves the validity of the joint mean-field and classical limit of the quantum N-body dynamics leading to the pressureless Euler-Poisson system for... |
SourceID | hal proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1332 |
SubjectTerms | Analysis of PDEs Coulomb potential Mathematics |
Title | Mean‐Field and Classical Limit for the N‐Body Quantum Dynamics with Coulomb Interaction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpa.21986 https://www.proquest.com/docview/2655381561 https://polytechnique.hal.science/hal-02361050 |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbp3nJo82jp5oUIPeTijSxZikxO202WpXRDWxoItGD0MoEk3pBdB5JTfkJ-Y35JNdLa2ZYWSm7GHmFZo5E-jWe-QeiDJMpqy3lCuKNJRi1NcsdJYjKngRCdpyVkI49PxOg0-3TGz5bQYZMLE_khWocbWEZYr8HAlZ7uP5OGmmvV8-YmgW4bYrUAEH1rqaMA5se_y7DOiIw0rEKE7rctf9uLXp1DJOQCzFwEq2G3Gb5BP5t-xiCTi1490z1z_weF4ws_ZAW9nqNQ3I_TZhUtuWoNLY9bCtfpOvoxdqp6engcQogbVpXFoX4m6BSHrCjs4S72DfCJl_o4sXf4a-3VVF_ho1jlforByYsHk_pycqVx8D3GNIq36HR4_H0wSuaVGBLDWCqSAy0dEylwgREujfKwTQvLhMeawqaKK25yRZhT6QHLLDVKSEvzTGpjibSSsneoU00q9x7hkjnuMiZEmcss1VLmhpVl7ltQaf3Jvov2Gp0UZk5TDtUyLotIsEwLP15FGK8u2m1FryM3x1-FvGLb58CmPep_LuAekOd7eEluaRdtNXov5jY8Lajgfjfw59vU9yko8N9vKQZf-uFi4_9FN8FHQNKY2LiFOrOb2m17hDPTO2Eq_wJHJfXo |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fi9QwEB_uzgf1wf_i6qlBfPCle2nS5FLwZV1dVt1dVO7gQCTkXxG86x7uVtAnP4Kf0U9iJt3WUxTEt9JOaJrJJL-ZZn4D8FBR460XIqMisKxgnmVlEDRzRbBIiC7yCrOR5ws5PSxeHImjLXjc5cK0_BB9wA0tI63XaOAYkN77yRrqTs0w2puS23AOK3onh-pNTx6FQL_9v4wrjSxoxytE2V7f9JfdaPs9noU8AzTPwtW030wuw7uup-0xkw_DZm2H7stvJI7_-ylX4NIGiJJRO3Ouwlaor8HFec_iuroOb-fB1N-_fpvgKTdiak9SCU1UK0mJUSQiXhIbkEWUerL0n8nrJmqqOSFP20L3K4JxXjJeNsfLE0tS-LHNpLgBh5NnB-NptinGkDnOc5ntWxW4zJEOjArlTERuVnouI9yUPjfCCFcayoPJ93nhmTNSeVYWyjpPlVeM34SdelmHW0AqHkQouJRVqYrcKlU6XlVlbMGUj879AB51StFuw1SOBTOOdcuxzHQcL53GawAPetHTlp7jj0JRs_1zJNSejmYa7yF_fkSY9BMbwG6neL0x45VmUsQNIbq4eexT0uDf36LHr0bp4va_i96H89OD-UzPni9e3oELDFMrUoRnF3bWH5twNwKetb2X5vUPo836DA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFD60FUQfvBdXWw3igy-zzeTWDH1ad7us2l2qWCgohNwGwXZ2cXcEffIn9Df6S0wyO2MVBfFtmDlhMjnnJF_O5HwH4KnE2hnHeYa5JxkjjmSF5zizzJtIiM7zMmYjT2dicsJenvLTDThoc2Eafogu4BY9I83X0cEXrtz7SRpqF7of3E2KTbjCBJbRpEdvOu6oiPOb38txohEMt7RCmOx1TX9ZjDY_xKOQl3DmZbSalpvxTXjfdrQ5ZfKxX69M3379jcPxP7_kFtxYw1A0aOzmNmz46g5cn3Ycrsu78G7qdfX928U4nnFDunIoFdCMSkUpLQoFvItCAzQLUs_n7gt6XQc91edo1JS5X6IY5UXDeX02PzcoBR-bPIp7cDI-fDucZOtSDJmlNBfZvpGeijySgWEurQ64zQhHRQCbwuWaa24LjanX-T5ljlgtpCMFk8Y6LJ0kdBu2qnnl7wMqqeeeUSHKQrLcSFlYWpZFaEGkC1v7HjxrdaLsmqc8lss4Uw3DMlFhvFQarx486UQXDTnHH4WCYrvnkU57MjhS8V5kzw_4En8mPdhp9a7WTrxURPCwHIQNbh76lBT497eo4fEgXTz4d9HHcPV4NFZHL2avHsI1EvMqUnhnB7ZWn2q_G9DOyjxKVv0D1-r4xA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MEAN-FIELD+AND+CLASSICAL+LIMIT+FOR+THE+N-BODY+QUANTUM+DYNAMICS+WITH+COULOMB+INTERACTION&rft.jtitle=Communications+on+pure+and+applied+mathematics&rft.au=Golse%2C+Fran%C3%A7ois&rft.au=Paul%2C+Thierry&rft.date=2022-06-01&rft.pub=Wiley&rft.issn=0010-3640&rft.eissn=1097-0312&rft_id=info:doi/10.1002%2Fcpa.21986&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02361050v2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-3640&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-3640&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-3640&client=summon |