Mean‐Field and Classical Limit for the N‐Body Quantum Dynamics with Coulomb Interaction

This paper proves the validity of the joint mean‐field and classical limit of the bosonic quantum N‐body dynamics leading to the pressureless Euler‐Poisson system for factorized initial data whose first marginal has a monokinetic Wigner measure. The interaction potential is assumed to be the repulsi...

Full description

Saved in:
Bibliographic Details
Published inCommunications on pure and applied mathematics Vol. 75; no. 6; pp. 1332 - 1376
Main Authors Golse, François, Paul, Thierry
Format Journal Article
LanguageEnglish
Published Melbourne John Wiley & Sons Australia, Ltd 01.06.2022
John Wiley and Sons, Limited
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper proves the validity of the joint mean‐field and classical limit of the bosonic quantum N‐body dynamics leading to the pressureless Euler‐Poisson system for factorized initial data whose first marginal has a monokinetic Wigner measure. The interaction potential is assumed to be the repulsive Coulomb potential. The validity of this derivation is limited to finite time intervals on which the Euler‐Poisson system has a smooth solution that is rapidly decaying at infinity. One key ingredient in the proof is an inequality taken from S. Serfaty (Duke Math. J. 169 (2020), 2887–2935) ).© 2021 Wiley Periodicals LLC.
AbstractList This paper proves the validity of the joint mean‐field and classical limit of the bosonic quantum N‐body dynamics leading to the pressureless Euler‐Poisson system for factorized initial data whose first marginal has a monokinetic Wigner measure. The interaction potential is assumed to be the repulsive Coulomb potential. The validity of this derivation is limited to finite time intervals on which the Euler‐Poisson system has a smooth solution that is rapidly decaying at infinity. One key ingredient in the proof is an inequality taken from S. Serfaty (Duke Math. J. 169 (2020), 2887–2935) ).© 2021 Wiley Periodicals LLC.
This paper proves the validity of the joint mean‐field and classical limit of the bosonic quantum N ‐body dynamics leading to the pressureless Euler‐Poisson system for factorized initial data whose first marginal has a monokinetic Wigner measure. The interaction potential is assumed to be the repulsive Coulomb potential. The validity of this derivation is limited to finite time intervals on which the Euler‐Poisson system has a smooth solution that is rapidly decaying at infinity. One key ingredient in the proof is an inequality taken from S. Serfaty ( Duke Math. J. 169 (2020), 2887–2935) ).© 2021 Wiley Periodicals LLC.
This paper proves the validity of the joint mean-field and classical limit of the quantum N-body dynamics leading to the pressureless Euler-Poisson system for factorized initial data whose first marginal has a monokinetic Wigner measure. The interaction potential is assumed to be the repulsive Coulomb potential. The validity of this derivation is limited to finite time intervals on which the Euler-Poisson system has a smooth solution that is rapidly decaying at infinity. One key ingredient in the proof is an inequality from [S. Serfaty, with an appendix of M. Duerinckx arXiv:1803.08345v3 [math.AP]].
Author Golse, François
Paul, Thierry
Author_xml – sequence: 1
  givenname: François
  surname: Golse
  fullname: Golse, François
  email: francois.golse@polytechnique.edu
  organization: CMLS, École polytechnique, Route de Saclay
– sequence: 2
  givenname: Thierry
  surname: Paul
  fullname: Paul, Thierry
  email: paul@ljll.math.upmc.fr
  organization: CNRS & Laboratoire J.‐L. Lions, Sorbonne Université
BackLink https://polytechnique.hal.science/hal-02361050$$DView record in HAL
BookMark eNp1kM1OGzEUha2KSg3QRd_AUlcsBq7tjOMs02n5kQKlUrvqwrqxHcVoxk5tT1F2PALPyJMwIZRuYHV1r75zdO7ZJ3shBkfIJwbHDICfmDUeczZV8h0ZMZhOKhCM75ERAINKyDF8IPs53wwrGysxIr8vHYaHu_tT71pLMVjatJizN9jSue98ocuYaFk5ejVQX6Ld0B89htJ39OsmYOdNpre-rGgT-zZ2C3oRiktoio_hkLxfYpvdx-d5QH6dfvvZnFfz72cXzWxeGSGYrCYL5YRkDBiHWhlUol5IKyRwkJZhjbWZIgiHbCLGlhuUyvLpWC2MBWUVFwfkaOe7wlavk-8wbXREr89nc729AR_8oYa_W_bzjl2n-Kd3ueib2KcwxNNc1rVQrJZsoE52lEkx5-SW2viC259KQt9qBnrbth7a1k9t_8_wovgX5DX22f3Wt27zNqib69lO8QjfH4_r
CitedBy_id crossref_primary_10_1007_s10955_023_03131_5
crossref_primary_10_5802_jep_230
crossref_primary_10_3233_ASY_231864
crossref_primary_10_1063_5_0228404
crossref_primary_10_1007_s00023_021_01103_7
crossref_primary_10_1007_s00033_024_02291_y
crossref_primary_10_1007_s42543_023_00065_5
crossref_primary_10_1007_s42543_023_00066_4
crossref_primary_10_1103_PhysRevA_110_022211
crossref_primary_10_1007_s11464_024_0043_3
crossref_primary_10_1007_s10955_023_03123_5
Cites_doi 10.1007/s00220-016-2583-1
10.1016/S1631-073X(02)02253-7
10.3934/krm.2013.6.919
10.1007/BF01077243
10.1002/cpa.21570
10.1090/jams/872
10.1007/s00205-006-0021-9
10.4310/MAA.2000.v7.n2.a2
10.1007/BF00400379
10.1137/15M1042620
10.1007/s11005-011-0470-4
10.1007/s00220-019-03357-z
10.1007/978-3-642-66282-9
10.24033/asens.2261
10.4171/RMI/143
10.1007/s00205-017-1125-0
10.1007/s10955-017-1725-y
10.1103/RevModPhys.52.569
10.1007/BF01611497
10.1007/BFb0060678
10.1007/BF00250353
10.1063/1.522642
10.4171/RMI/30
10.1007/s00220-015-2485-7
10.1007/s00205-016-1031-x
10.1142/S0218202503002386
10.1007/BF01608633
10.1016/j.jfa.2018.06.008
10.1007/s00220-009-0867-4
10.1007/978-0-387-70914-7
10.4310/ATMP.2001.v5.n6.a6
10.1215/00127094-2020-0019
10.1080/03605300008821529
10.1007/s00023-009-0404-1
10.1007/978-3-319-26883-5_1
10.1016/j.crma.2017.12.007
10.1007/BF03168581
10.2307/1990366
ContentType Journal Article
Copyright 2021 Wiley Periodicals LLC.
2022 Wiley Periodicals LLC.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2021 Wiley Periodicals LLC.
– notice: 2022 Wiley Periodicals LLC.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
JQ2
1XC
VOOES
DOI 10.1002/cpa.21986
DatabaseName CrossRef
ProQuest Computer Science Collection
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
CrossRef
ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1097-0312
EndPage 1376
ExternalDocumentID oai_HAL_hal_02361050v2
10_1002_cpa_21986
CPA21986
Genre article
GroupedDBID --Z
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
6OB
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEFU
ABEML
ABIJN
ABLJU
ABTAH
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OHT
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
S10
SAMSI
SUPJJ
TN5
TWZ
UB1
UHB
V2E
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WWM
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
YZZ
ZY4
ZZTAW
~IA
~WT
AAYXX
ADXHL
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
AMVHM
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
1XC
VOOES
ID FETCH-LOGICAL-c3316-7b8e3611012058ca835b6d360206d1a5a5c9a03ea1734d2ca68d2948bcd08d823
IEDL.DBID DR2
ISSN 0010-3640
IngestDate Wed Sep 03 07:01:51 EDT 2025
Fri Jul 25 18:54:09 EDT 2025
Tue Jul 01 02:50:31 EDT 2025
Thu Apr 24 22:54:59 EDT 2025
Wed Jan 22 16:26:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Hartree equation
Euler-Poisson system
Coulomb potential
Quantum dynamics
Semiclassical approximation
Mean-field limit
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3316-7b8e3611012058ca835b6d360206d1a5a5c9a03ea1734d2ca68d2948bcd08d823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://polytechnique.hal.science/hal-02361050
PQID 2655381561
PQPubID 48818
PageCount 45
ParticipantIDs hal_primary_oai_HAL_hal_02361050v2
proquest_journals_2655381561
crossref_citationtrail_10_1002_cpa_21986
crossref_primary_10_1002_cpa_21986
wiley_primary_10_1002_cpa_21986_CPA21986
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2022
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationPlace Melbourne
PublicationPlace_xml – name: Melbourne
– name: New York
PublicationTitle Communications on pure and applied mathematics
PublicationYear 2022
Publisher John Wiley & Sons Australia, Ltd
John Wiley and Sons, Limited
Wiley
Publisher_xml – name: John Wiley & Sons Australia, Ltd
– name: John Wiley and Sons, Limited
– name: Wiley
References 1993; 9
2000; 25
2007; 183
2011
2002; 334
1975; 16
2000; 7
2003; 13
2011; 97
2016; 343
2019; 369
1974
1995
2016; 347
1976; 49
2013; 6
1958
1979; 70
1979
2015; 48
1986; 2
2018; 275
2017; 30
2009; 10
1980; 52
2001; 5
2009; 291
2020
1991; 22
2018; 356
2016
1995; 147
1977; 56
1980
2001; 18
2017; 166
1951; 70
2017; 223
2016; 48
2001; 14
2017; 225
2016; 69
Reed M. (e_1_2_1_36_1) 1980
e_1_2_1_42_1
e_1_2_1_20_1
e_1_2_1_41_1
Hauray M. (e_1_2_1_23_1) 2015; 48
e_1_2_1_40_1
e_1_2_1_24_1
e_1_2_1_21_1
e_1_2_1_22_1
e_1_2_1_43_1
e_1_2_1_27_1
e_1_2_1_28_1
e_1_2_1_25_1
e_1_2_1_26_1
Lieb E. H. (e_1_2_1_29_1) 2001
e_1_2_1_7_1
e_1_2_1_8_1
e_1_2_1_30_1
e_1_2_1_5_1
e_1_2_1_6_1
e_1_2_1_3_1
e_1_2_1_12_1
e_1_2_1_35_1
e_1_2_1_4_1
e_1_2_1_13_1
e_1_2_1_34_1
e_1_2_1_10_1
e_1_2_1_33_1
e_1_2_1_2_1
e_1_2_1_11_1
e_1_2_1_32_1
e_1_2_1_16_1
e_1_2_1_39_1
e_1_2_1_17_1
e_1_2_1_38_1
e_1_2_1_14_1
e_1_2_1_37_1
e_1_2_1_15_1
Malliavin P. (e_1_2_1_31_1) 1995
e_1_2_1_9_1
e_1_2_1_18_1
e_1_2_1_19_1
References_xml – year: 2011
– volume: 225
  start-page: 1201
  issue: 3
  year: 2017
  end-page: 1231
  article-title: A mean field limit for the Vlasov‐Poisson system
  publication-title: Arch. Ration. Mech. Anal.
– year: 1958
– volume: 356
  start-page: 177
  issue: 2
  year: 2018
  end-page: 197
  article-title: Wave packets and the quadratic Monge‐Kantorovich distance in quantum mechanics
  publication-title: C. R. Math. Acad. Sci. Paris
– volume: 7
  start-page: 275
  issue: 2
  year: 2000
  end-page: 294
  article-title: Weak coupling limit of the ‐particle Schrödinger equation
  publication-title: Methods Appl. Anal.
– volume: 52
  start-page: 569
  issue: 3
  year: 1980
  end-page: 615
  article-title: Kinetic equations from Hamiltonian dynamics: Markovian limits
  publication-title: Rev. Mod. Phys.
– volume: 347
  start-page: 271
  issue: 1
  year: 2016
  end-page: 289
  article-title: The Vlasov‐Poisson dynamics as the mean‐field limit of extended charges
  publication-title: Comm. Math. Phys.
– volume: 25
  start-page: 737
  issue: 3‐4
  year: 2000
  end-page: 754
  article-title: Convergence of the Vlasov‐Poisson system to the incompressible Euler equations
  publication-title: Comm. Partial Differential Equations
– volume: 14
  year: 2001
– volume: 69
  start-page: 519
  issue: 3
  year: 2016
  end-page: 605
  article-title: Higher‐dimensional Coulomb gases and renormalized energy functionals
  publication-title: Comm. Pure Appl. Math.
– volume: 6
  start-page: 919
  issue: 4
  year: 2013
  end-page: 943
  article-title: Empirical measures and Vlasov hierarchies
  publication-title: Kinet. Relat. Models
– volume: 70
  start-page: 195
  issue: 2
  year: 1951
  end-page: 211
  article-title: Fundamental properties of Hamiltonian operators of Schrödinger type
  publication-title: Trans. Amer. Math. Soc.
– year: 1979
– year: 2016
– volume: 48
  start-page: 2269
  issue: 3
  year: 2016
  end-page: 2300
  article-title: Mean‐field limits for some Riesz interaction gradient flows
  publication-title: SIAM J. Math. Anal.
– volume: 16
  start-page: 1122
  issue: 5
  year: 1975
  end-page: 1130
  article-title: Global existence of solutions to the Cauchy problem for time‐dependent Hartree equations
  publication-title: J. Mathematical Phys.
– volume: 166
  start-page: 1345
  issue: 6
  year: 2017
  end-page: 1364
  article-title: Mean field evolution of fermions with Coulomb interaction
  publication-title: J. Stat. Phys.
– volume: 291
  start-page: 31
  issue: 1
  year: 2009
  end-page: 61
  article-title: Quantum fluctuations and rate of convergence towards mean‐field dynamics
  publication-title: Comm. Math. Phys.
– volume: 9
  start-page: 553
  issue: 3
  year: 1993
  end-page: 618
  article-title: Sur les mesures de Wigner
  publication-title: Rev. Mat. Iberoamericana
– volume: 10
  start-page: 145
  issue: 1
  year: 2009
  end-page: 187
  article-title: Mean‐field limit and semiclassical expansion of a quantum particle system
  publication-title: Ann. Henri Poincaré
– volume: 2
  start-page: 119
  issue: 1‐2
  year: 1986
  end-page: 213
  article-title: Relativistic stability of matter
  publication-title: I. Rev. Mat. Iberoamericana
– volume: 97
  start-page: 151
  issue: 2
  year: 2011
  end-page: 164
  article-title: A simple derivation of mean‐field limits for quantum systems
  publication-title: Lett. Math. Phys.
– year: 1980
– volume: 22
  start-page: 63
  issue: 1
  year: 1991
  end-page: 80
  article-title: Relative entropy and hydrodynamics of Ginzburg‐Landau models
  publication-title: Lett. Math. Phys.
– volume: 5
  start-page: 1169
  issue: 6
  year: 2001
  end-page: 1205
  article-title: Derivation of the nonlinear Schrödinger equation from a many body Coulomb system
  publication-title: Adv. Theor. Math. Phys.
– volume: 369
  start-page: 1021
  issue: 3
  year: 2019
  end-page: 1053
  article-title: Empirical measures and quantum mechanics: applications to the mean‐field limit
  publication-title: Comm. Math. Phys.
– volume: 147
  year: 1995
– year: 2020
– volume: 183
  start-page: 489
  issue: 3
  year: 2007
  end-page: 524
  article-title: ‐particles approximation of the Vlasov equations with singular potential
  publication-title: Arch. Ration. Mech. Anal.
– volume: 48
  start-page: 891
  issue: 4
  year: 2015
  end-page: 940
  article-title: Particle approximation of Vlasov equations with singular forces: propagation of chaos
  publication-title: Ann. Sci. Éc. Norm. Supér. (4)
– volume: 13
  start-page: 59
  issue: 1
  year: 2003
  end-page: 73
  article-title: Mean‐field approximation of quantum systems and classical limit
  publication-title: Math. Models Methods Appl. Sci.
– year: 1995
– year: 1974
– volume: 70
  start-page: 167
  issue: 2
  year: 1979
  end-page: 179
  article-title: The second law of thermodynamics and stability
  publication-title: Arch. Rational Mech. Anal.
– volume: 18
  start-page: 383
  issue: 2
  year: 2001
  end-page: 392
– volume: 49
  start-page: 25
  issue: 1
  year: 1976
  end-page: 33
  article-title: On the Hartree‐Fock time‐dependent problem
  publication-title: Comm. Math. Phys.
– volume: 223
  start-page: 57
  issue: 1
  year: 2017
  end-page: 94
  article-title: The Schrödinger equation in the mean‐field and semiclassical regime
  publication-title: Arch. Ration. Mech. Anal.
– volume: 56
  start-page: 101
  issue: 2
  year: 1977
  end-page: 113
  article-title: The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles
  publication-title: Comm. Math. Phys.
– volume: 30
  start-page: 713
  issue: 3
  year: 2017
  end-page: 768
  article-title: Mean field limits of the Gross‐Pitaevskii and parabolic Ginzburg‐Landau equations
  publication-title: J. Amer. Math. Soc.
– volume: 334
  start-page: 515
  issue: 6
  year: 2002
  end-page: 520
  article-title: Derivation of the Schrödinger‐Poisson equation from the quantum ‐body problem
  publication-title: C. R. Math. Acad. Sci. Paris
– volume: 343
  start-page: 165
  issue: 1
  year: 2016
  end-page: 205
  article-title: On the mean field and classical limits of quantum mechanics
  publication-title: Comm. Math. Phys.
– volume: 275
  start-page: 1603
  issue: 7
  year: 2018
  end-page: 1649
  article-title: On the derivation of the Hartree equation from the ‐body Schrödinger equation: uniformity in the Planck constant
  publication-title: J. Functional Anal.
– ident: e_1_2_1_27_1
  doi: 10.1007/s00220-016-2583-1
– ident: e_1_2_1_2_1
  doi: 10.1016/S1631-073X(02)02253-7
– ident: e_1_2_1_16_1
  doi: 10.3934/krm.2013.6.919
– ident: e_1_2_1_10_1
  doi: 10.1007/BF01077243
– ident: e_1_2_1_38_1
  doi: 10.1002/cpa.21570
– ident: e_1_2_1_39_1
  doi: 10.1090/jams/872
– ident: e_1_2_1_22_1
  doi: 10.1007/s00205-006-0021-9
– ident: e_1_2_1_3_1
  doi: 10.4310/MAA.2000.v7.n2.a2
– ident: e_1_2_1_43_1
  doi: 10.1007/BF00400379
– ident: e_1_2_1_11_1
  doi: 10.1137/15M1042620
– ident: e_1_2_1_34_1
  doi: 10.1007/s11005-011-0470-4
– ident: e_1_2_1_26_1
– ident: e_1_2_1_19_1
  doi: 10.1007/s00220-019-03357-z
– ident: e_1_2_1_25_1
  doi: 10.1007/978-3-642-66282-9
– volume: 48
  start-page: 891
  issue: 4
  year: 2015
  ident: e_1_2_1_23_1
  article-title: Particle approximation of Vlasov equations with singular forces: propagation of chaos
  publication-title: Ann. Sci. Éc. Norm. Supér. (4)
  doi: 10.24033/asens.2261
– ident: e_1_2_1_30_1
  doi: 10.4171/RMI/143
– ident: e_1_2_1_28_1
  doi: 10.1007/s00205-017-1125-0
– ident: e_1_2_1_35_1
  doi: 10.1007/s10955-017-1725-y
– ident: e_1_2_1_41_1
  doi: 10.1103/RevModPhys.52.569
– volume-title: Graduate Texts in Mathematics
  year: 1995
  ident: e_1_2_1_31_1
– ident: e_1_2_1_5_1
  doi: 10.1007/BF01611497
– ident: e_1_2_1_32_1
  doi: 10.1007/BFb0060678
– ident: e_1_2_1_9_1
  doi: 10.1007/BF00250353
– volume-title: Graduate Studies in Mathematics
  year: 2001
  ident: e_1_2_1_29_1
– ident: e_1_2_1_8_1
  doi: 10.1063/1.522642
– volume-title: Methods of modern mathematical physics
  year: 1980
  ident: e_1_2_1_36_1
– ident: e_1_2_1_13_1
  doi: 10.4171/RMI/30
– ident: e_1_2_1_15_1
  doi: 10.1007/s00220-015-2485-7
– ident: e_1_2_1_17_1
  doi: 10.1007/s00205-016-1031-x
– ident: e_1_2_1_21_1
  doi: 10.1142/S0218202503002386
– ident: e_1_2_1_4_1
  doi: 10.1007/BF01608633
– ident: e_1_2_1_20_1
  doi: 10.1016/j.jfa.2018.06.008
– ident: e_1_2_1_37_1
  doi: 10.1007/s00220-009-0867-4
– ident: e_1_2_1_7_1
  doi: 10.1007/978-0-387-70914-7
– ident: e_1_2_1_12_1
  doi: 10.4310/ATMP.2001.v5.n6.a6
– ident: e_1_2_1_40_1
  doi: 10.1215/00127094-2020-0019
– ident: e_1_2_1_6_1
  doi: 10.1080/03605300008821529
– ident: e_1_2_1_33_1
  doi: 10.1007/s00023-009-0404-1
– ident: e_1_2_1_14_1
  doi: 10.1007/978-3-319-26883-5_1
– ident: e_1_2_1_18_1
  doi: 10.1016/j.crma.2017.12.007
– ident: e_1_2_1_42_1
  doi: 10.1007/BF03168581
– ident: e_1_2_1_24_1
  doi: 10.2307/1990366
SSID ssj0011483
Score 2.3946726
Snippet This paper proves the validity of the joint mean‐field and classical limit of the bosonic quantum N‐body dynamics leading to the pressureless Euler‐Poisson...
This paper proves the validity of the joint mean‐field and classical limit of the bosonic quantum N ‐body dynamics leading to the pressureless Euler‐Poisson...
This paper proves the validity of the joint mean-field and classical limit of the quantum N-body dynamics leading to the pressureless Euler-Poisson system for...
SourceID hal
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1332
SubjectTerms Analysis of PDEs
Coulomb potential
Mathematics
Title Mean‐Field and Classical Limit for the N‐Body Quantum Dynamics with Coulomb Interaction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpa.21986
https://www.proquest.com/docview/2655381561
https://polytechnique.hal.science/hal-02361050
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbp3nJo82jp5oUIPeTijSxZikxO202WpXRDWxoItGD0MoEk3pBdB5JTfkJ-Y35JNdLa2ZYWSm7GHmFZo5E-jWe-QeiDJMpqy3lCuKNJRi1NcsdJYjKngRCdpyVkI49PxOg0-3TGz5bQYZMLE_khWocbWEZYr8HAlZ7uP5OGmmvV8-YmgW4bYrUAEH1rqaMA5se_y7DOiIw0rEKE7rctf9uLXp1DJOQCzFwEq2G3Gb5BP5t-xiCTi1490z1z_weF4ws_ZAW9nqNQ3I_TZhUtuWoNLY9bCtfpOvoxdqp6engcQogbVpXFoX4m6BSHrCjs4S72DfCJl_o4sXf4a-3VVF_ho1jlforByYsHk_pycqVx8D3GNIq36HR4_H0wSuaVGBLDWCqSAy0dEylwgREujfKwTQvLhMeawqaKK25yRZhT6QHLLDVKSEvzTGpjibSSsneoU00q9x7hkjnuMiZEmcss1VLmhpVl7ltQaf3Jvov2Gp0UZk5TDtUyLotIsEwLP15FGK8u2m1FryM3x1-FvGLb58CmPep_LuAekOd7eEluaRdtNXov5jY8Lajgfjfw59vU9yko8N9vKQZf-uFi4_9FN8FHQNKY2LiFOrOb2m17hDPTO2Eq_wJHJfXo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fi9QwEB_uzgf1wf_i6qlBfPCle2nS5FLwZV1dVt1dVO7gQCTkXxG86x7uVtAnP4Kf0U9iJt3WUxTEt9JOaJrJJL-ZZn4D8FBR460XIqMisKxgnmVlEDRzRbBIiC7yCrOR5ws5PSxeHImjLXjc5cK0_BB9wA0tI63XaOAYkN77yRrqTs0w2puS23AOK3onh-pNTx6FQL_9v4wrjSxoxytE2V7f9JfdaPs9noU8AzTPwtW030wuw7uup-0xkw_DZm2H7stvJI7_-ylX4NIGiJJRO3Ouwlaor8HFec_iuroOb-fB1N-_fpvgKTdiak9SCU1UK0mJUSQiXhIbkEWUerL0n8nrJmqqOSFP20L3K4JxXjJeNsfLE0tS-LHNpLgBh5NnB-NptinGkDnOc5ntWxW4zJEOjArlTERuVnouI9yUPjfCCFcayoPJ93nhmTNSeVYWyjpPlVeM34SdelmHW0AqHkQouJRVqYrcKlU6XlVlbMGUj879AB51StFuw1SOBTOOdcuxzHQcL53GawAPetHTlp7jj0JRs_1zJNSejmYa7yF_fkSY9BMbwG6neL0x45VmUsQNIbq4eexT0uDf36LHr0bp4va_i96H89OD-UzPni9e3oELDFMrUoRnF3bWH5twNwKetb2X5vUPo836DA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFD60FUQfvBdXWw3igy-zzeTWDH1ad7us2l2qWCgohNwGwXZ2cXcEffIn9Df6S0wyO2MVBfFtmDlhMjnnJF_O5HwH4KnE2hnHeYa5JxkjjmSF5zizzJtIiM7zMmYjT2dicsJenvLTDThoc2Eafogu4BY9I83X0cEXrtz7SRpqF7of3E2KTbjCBJbRpEdvOu6oiPOb38txohEMt7RCmOx1TX9ZjDY_xKOQl3DmZbSalpvxTXjfdrQ5ZfKxX69M3379jcPxP7_kFtxYw1A0aOzmNmz46g5cn3Ycrsu78G7qdfX928U4nnFDunIoFdCMSkUpLQoFvItCAzQLUs_n7gt6XQc91edo1JS5X6IY5UXDeX02PzcoBR-bPIp7cDI-fDucZOtSDJmlNBfZvpGeijySgWEurQ64zQhHRQCbwuWaa24LjanX-T5ljlgtpCMFk8Y6LJ0kdBu2qnnl7wMqqeeeUSHKQrLcSFlYWpZFaEGkC1v7HjxrdaLsmqc8lss4Uw3DMlFhvFQarx486UQXDTnHH4WCYrvnkU57MjhS8V5kzw_4En8mPdhp9a7WTrxURPCwHIQNbh76lBT497eo4fEgXTz4d9HHcPV4NFZHL2avHsI1EvMqUnhnB7ZWn2q_G9DOyjxKVv0D1-r4xA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MEAN-FIELD+AND+CLASSICAL+LIMIT+FOR+THE+N-BODY+QUANTUM+DYNAMICS+WITH+COULOMB+INTERACTION&rft.jtitle=Communications+on+pure+and+applied+mathematics&rft.au=Golse%2C+Fran%C3%A7ois&rft.au=Paul%2C+Thierry&rft.date=2022-06-01&rft.pub=Wiley&rft.issn=0010-3640&rft.eissn=1097-0312&rft_id=info:doi/10.1002%2Fcpa.21986&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02361050v2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-3640&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-3640&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-3640&client=summon