Vacancy‐Rich Ni(OH)2 Drives the Electrooxidation of Amino C−N Bonds to Nitrile C≡N Bonds
Electrochemical synthesis based on electrons as reagents provides a broad prospect for commodity chemical manufacturing. A direct one‐step route for the electrooxidation of amino C−N bonds to nitrile C≡N bonds offers an alternative pathway for nitrile production. However, this route has not been ful...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 59; no. 39; pp. 16974 - 16981 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
21.09.2020
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electrochemical synthesis based on electrons as reagents provides a broad prospect for commodity chemical manufacturing. A direct one‐step route for the electrooxidation of amino C−N bonds to nitrile C≡N bonds offers an alternative pathway for nitrile production. However, this route has not been fully explored with respect to either the chemical bond reforming process or the performance optimization. Proposed here is a model of vacancy‐rich Ni(OH)2 atomic layers for studying the performance relationship with respect to structure. Theoretical calculations show the vacancy‐induced local electropositive sites chemisorb the N atom with a lone pair of electrons and then attack the corresponding N(sp3)−H, thus accelerating amino C−N bond activation for dehydrogenation directly into the C≡N bond. Vacancy‐rich nanosheets exhibit up to 96.5 % propionitrile selectivity at a moderate potential of 1.38 V. These findings can lead to a new pathway for facilitating catalytic reactions in the chemicals industry.
Vacancy‐rich Ni(OH)2 nanosheets are proposed to realize a direct one‐step route for the electrooxidation of amino C−N bonds to nitrile C≡N bonds for nitrile production. During the catalytic reaction the local vacancy‐induced electropositive site chemisorbs the N atom with a lone pair of electrons and then attacks the corresponding N−H bond. |
---|---|
AbstractList | Electrochemical synthesis based on electrons as reagents provides a broad prospect for commodity chemical manufacturing. A direct one‐step route for the electrooxidation of amino C−N bonds to nitrile C≡N bonds offers an alternative pathway for nitrile production. However, this route has not been fully explored with respect to either the chemical bond reforming process or the performance optimization. Proposed here is a model of vacancy‐rich Ni(OH)2 atomic layers for studying the performance relationship with respect to structure. Theoretical calculations show the vacancy‐induced local electropositive sites chemisorb the N atom with a lone pair of electrons and then attack the corresponding N(sp3)−H, thus accelerating amino C−N bond activation for dehydrogenation directly into the C≡N bond. Vacancy‐rich nanosheets exhibit up to 96.5 % propionitrile selectivity at a moderate potential of 1.38 V. These findings can lead to a new pathway for facilitating catalytic reactions in the chemicals industry. Electrochemical synthesis based on electrons as reagents provides a broad prospect for commodity chemical manufacturing. A direct one-step route for the electrooxidation of amino C-N bonds to nitrile C≡N bonds offers an alternative pathway for nitrile production. However, this route has not been fully explored with respect to either the chemical bond reforming process or the performance optimization. Proposed here is a model of vacancy-rich Ni(OH)2 atomic layers for studying the performance relationship with respect to structure. Theoretical calculations show the vacancy-induced local electropositive sites chemisorb the N atom with a lone pair of electrons and then attack the corresponding N(sp3 )-H, thus accelerating amino C-N bond activation for dehydrogenation directly into the C≡N bond. Vacancy-rich nanosheets exhibit up to 96.5 % propionitrile selectivity at a moderate potential of 1.38 V. These findings can lead to a new pathway for facilitating catalytic reactions in the chemicals industry.Electrochemical synthesis based on electrons as reagents provides a broad prospect for commodity chemical manufacturing. A direct one-step route for the electrooxidation of amino C-N bonds to nitrile C≡N bonds offers an alternative pathway for nitrile production. However, this route has not been fully explored with respect to either the chemical bond reforming process or the performance optimization. Proposed here is a model of vacancy-rich Ni(OH)2 atomic layers for studying the performance relationship with respect to structure. Theoretical calculations show the vacancy-induced local electropositive sites chemisorb the N atom with a lone pair of electrons and then attack the corresponding N(sp3 )-H, thus accelerating amino C-N bond activation for dehydrogenation directly into the C≡N bond. Vacancy-rich nanosheets exhibit up to 96.5 % propionitrile selectivity at a moderate potential of 1.38 V. These findings can lead to a new pathway for facilitating catalytic reactions in the chemicals industry. Electrochemical synthesis based on electrons as reagents provides a broad prospect for commodity chemical manufacturing. A direct one‐step route for the electrooxidation of amino C−N bonds to nitrile C≡N bonds offers an alternative pathway for nitrile production. However, this route has not been fully explored with respect to either the chemical bond reforming process or the performance optimization. Proposed here is a model of vacancy‐rich Ni(OH)2 atomic layers for studying the performance relationship with respect to structure. Theoretical calculations show the vacancy‐induced local electropositive sites chemisorb the N atom with a lone pair of electrons and then attack the corresponding N(sp3)−H, thus accelerating amino C−N bond activation for dehydrogenation directly into the C≡N bond. Vacancy‐rich nanosheets exhibit up to 96.5 % propionitrile selectivity at a moderate potential of 1.38 V. These findings can lead to a new pathway for facilitating catalytic reactions in the chemicals industry. Vacancy‐rich Ni(OH)2 nanosheets are proposed to realize a direct one‐step route for the electrooxidation of amino C−N bonds to nitrile C≡N bonds for nitrile production. During the catalytic reaction the local vacancy‐induced electropositive site chemisorbs the N atom with a lone pair of electrons and then attacks the corresponding N−H bond. Electrochemical synthesis based on electrons as reagents provides a broad prospect for commodity chemical manufacturing. A direct one‐step route for the electrooxidation of amino C−N bonds to nitrile C≡N bonds offers an alternative pathway for nitrile production. However, this route has not been fully explored with respect to either the chemical bond reforming process or the performance optimization. Proposed here is a model of vacancy‐rich Ni(OH) 2 atomic layers for studying the performance relationship with respect to structure. Theoretical calculations show the vacancy‐induced local electropositive sites chemisorb the N atom with a lone pair of electrons and then attack the corresponding N(sp 3 )−H, thus accelerating amino C−N bond activation for dehydrogenation directly into the C≡N bond. Vacancy‐rich nanosheets exhibit up to 96.5 % propionitrile selectivity at a moderate potential of 1.38 V. These findings can lead to a new pathway for facilitating catalytic reactions in the chemicals industry. |
Author | Li, Huiqiao Yang, Ruoou Liu, Youwen Wang, Yutang Wen, Qunlei Zhai, Tianyou Wang, Wenbin Jiang, Zheng |
Author_xml | – sequence: 1 givenname: Wenbin surname: Wang fullname: Wang, Wenbin organization: Huazhong University of Science and Technology – sequence: 2 givenname: Yutang surname: Wang fullname: Wang, Yutang organization: Huazhong University of Science and Technology – sequence: 3 givenname: Ruoou surname: Yang fullname: Yang, Ruoou organization: Chinese Academy of Sciences – sequence: 4 givenname: Qunlei surname: Wen fullname: Wen, Qunlei organization: Huazhong University of Science and Technology – sequence: 5 givenname: Youwen surname: Liu fullname: Liu, Youwen email: ywliu@hust.edu.cn organization: Huazhong University of Science and Technology – sequence: 6 givenname: Zheng surname: Jiang fullname: Jiang, Zheng email: jiangzheng@sinap.ac.cn organization: Chinese Academy of Sciences – sequence: 7 givenname: Huiqiao surname: Li fullname: Li, Huiqiao organization: Huazhong University of Science and Technology – sequence: 8 givenname: Tianyou orcidid: 0000-0003-0985-4806 surname: Zhai fullname: Zhai, Tianyou email: zhaity@hust.edu.cn organization: Huazhong University of Science and Technology |
BookMark | eNqFkM9KAzEQh4NUsK1ePS94qYet-bfZ7bHWagWpIOrRJc0mNGWb1GSr9uZRb-Ib-Gp9ElMrCgXxNMPwfcPMrwFqxhoJwD6CbQQhPuJGyzaGGMIkSekWqKMEo5ikKamFnhISp1mCdkDD-0ngswyyOri75YIbsVg-v11pMY6GunU5OMTRidMP0kfVWEb9UorKWfukC15payKrou5UGxv1li_vw-jYmiKQNriV06UM49eP7_Eu2Fa89HLvuzbBzWn_ujeILy7Pznvdi1gQgmhMEOYJHY2QKhSkMiESKpoiRTgknKhUZBlFirICUpJl4SXOGO9IyThlKVGYNEFrvXfm7P1c-iqfai9kWXIj7dznmCIKIWI0CejBBjqxc2fCdYGimEHCCAwUXVPCWe-dVLnQ1df7leO6zBHMV6Hnq9Dzn9CD1t7QZk5PuVv8LXTWwmNIbvEPnXeH5_1f9xPgPJac |
CitedBy_id | crossref_primary_10_3390_inorganics11060236 crossref_primary_10_1002_adma_202306108 crossref_primary_10_1016_j_apcatb_2023_123073 crossref_primary_10_1016_j_jcis_2024_10_192 crossref_primary_10_1021_acsami_1c16048 crossref_primary_10_1038_s41467_022_29699_2 crossref_primary_10_1039_D1GC00914A crossref_primary_10_1002_aenm_202400374 crossref_primary_10_1039_D3QI02542J crossref_primary_10_1016_j_apcatb_2024_123915 crossref_primary_10_1002_adfm_202301884 crossref_primary_10_1002_aenm_202203595 crossref_primary_10_1002_anie_202217411 crossref_primary_10_1002_ange_202110000 crossref_primary_10_1002_cctc_202301332 crossref_primary_10_1002_smll_202411363 crossref_primary_10_1007_s40820_023_01150_1 crossref_primary_10_1016_j_cclet_2025_111001 crossref_primary_10_1002_ange_202416763 crossref_primary_10_1016_j_micromeso_2021_111402 crossref_primary_10_1016_j_ces_2022_117769 crossref_primary_10_1021_jacs_2c05403 crossref_primary_10_1021_acs_chemmater_3c02863 crossref_primary_10_1002_anie_202402176 crossref_primary_10_1002_anie_202209014 crossref_primary_10_1016_j_catcom_2023_106698 crossref_primary_10_1039_D4SC01571A crossref_primary_10_1039_D1TA10499C crossref_primary_10_1002_ange_202101522 crossref_primary_10_1002_cssc_202401601 crossref_primary_10_1515_revic_2024_0057 crossref_primary_10_1039_D2TA01758J crossref_primary_10_1021_jacs_3c02570 crossref_primary_10_1021_acsami_1c01091 crossref_primary_10_6023_A23050202 crossref_primary_10_1002_anie_202110000 crossref_primary_10_1016_j_apcatb_2024_124064 crossref_primary_10_1039_D5GC00572H crossref_primary_10_1021_acs_energyfuels_3c00732 crossref_primary_10_1038_s41467_024_47765_9 crossref_primary_10_1016_j_apsusc_2024_159321 crossref_primary_10_1016_j_electacta_2024_144678 crossref_primary_10_1016_j_cej_2022_140947 crossref_primary_10_1002_anie_202207282 crossref_primary_10_1002_ange_202209014 crossref_primary_10_1002_anie_202206077 crossref_primary_10_1039_D3TA01931D crossref_primary_10_1002_anie_202101522 crossref_primary_10_1002_adfm_202422063 crossref_primary_10_1007_s12274_023_6011_5 crossref_primary_10_1016_j_electacta_2022_139831 crossref_primary_10_1016_j_cclet_2022_03_042 crossref_primary_10_1039_D3EE02467A crossref_primary_10_1039_D3CC03889K crossref_primary_10_1039_D2EE00951J crossref_primary_10_1002_ange_202112953 crossref_primary_10_1016_j_chempr_2024_08_009 crossref_primary_10_1021_jacs_4c09252 crossref_primary_10_1002_ange_202217411 crossref_primary_10_1007_s12274_022_5163_z crossref_primary_10_1002_anie_202415132 crossref_primary_10_1002_aenm_202102292 crossref_primary_10_1016_S1872_2067_23_64565_6 crossref_primary_10_1002_cssc_202100811 crossref_primary_10_1021_acsami_2c09004 crossref_primary_10_1039_D1CC04680B crossref_primary_10_1016_j_chempr_2022_07_010 crossref_primary_10_1002_aenm_202400696 crossref_primary_10_1021_acssuschemeng_3c08543 crossref_primary_10_1016_j_jpowsour_2022_231461 crossref_primary_10_1002_cey2_672 crossref_primary_10_1002_ange_202415132 crossref_primary_10_1039_D4QI00145A crossref_primary_10_1002_adsu_202200364 crossref_primary_10_1021_acscatal_2c02489 crossref_primary_10_1002_anie_202112953 crossref_primary_10_1007_s40843_023_2480_x crossref_primary_10_1007_s12274_022_4858_5 crossref_primary_10_1002_ange_202109211 crossref_primary_10_1021_acsanm_4c04165 crossref_primary_10_1002_ange_202402176 crossref_primary_10_1002_aenm_202203955 crossref_primary_10_1039_D0TA11566E crossref_primary_10_1039_D4CC01830C crossref_primary_10_1002_ange_202207282 crossref_primary_10_1002_adma_202211603 crossref_primary_10_1002_ange_202206077 crossref_primary_10_1038_s41467_023_36830_4 crossref_primary_10_1016_j_jcis_2023_07_123 crossref_primary_10_1007_s12274_022_4727_2 crossref_primary_10_1039_D3CC00936J crossref_primary_10_1002_anie_202416763 crossref_primary_10_1039_D3CC05861A crossref_primary_10_1002_ppsc_202300103 crossref_primary_10_1007_s12274_023_5431_6 crossref_primary_10_1007_s12274_021_3568_8 crossref_primary_10_1002_anie_202109211 crossref_primary_10_1002_aenm_202102353 crossref_primary_10_1016_j_jechem_2022_02_054 crossref_primary_10_1038_s41570_024_00589_z crossref_primary_10_1039_D3QI00277B crossref_primary_10_1021_acs_joc_1c03011 crossref_primary_10_1002_smll_202403270 crossref_primary_10_1016_j_jechem_2023_03_025 crossref_primary_10_1021_acsnano_2c10327 crossref_primary_10_1002_smll_202104513 crossref_primary_10_1016_j_apcatb_2022_122207 crossref_primary_10_1007_s12274_021_3434_8 crossref_primary_10_1007_s12274_024_6473_0 crossref_primary_10_1002_sstr_202100134 crossref_primary_10_1007_s41918_025_00241_4 crossref_primary_10_1021_acsnano_2c02838 crossref_primary_10_1016_j_apsusc_2021_152065 crossref_primary_10_1002_sstr_202100095 crossref_primary_10_1021_acsorginorgau_4c00025 crossref_primary_10_1002_adma_202404806 crossref_primary_10_1016_j_jcis_2024_06_085 crossref_primary_10_1002_adfm_202304403 crossref_primary_10_1016_j_flatc_2022_100361 crossref_primary_10_1021_jacs_4c12451 crossref_primary_10_1002_adma_202008631 crossref_primary_10_1002_slct_202201305 |
Cites_doi | 10.1002/ange.201300193 10.31635/ccschem.019.20190022 10.1002/anie.201908722 10.1038/s41560-019-0355-9 10.1016/j.scriptamat.2004.05.007 10.1021/acscatal.9b00043 10.1002/ange.201807717 10.1039/C9EE02565K 10.1002/anie.201800320 10.1002/aenm.201801775 10.1021/acscatal.8b01332 10.1039/C5CC02968F 10.1002/ange.201908722 10.1021/jacs.5b03105 10.1002/aenm.201900881 10.1021/jm100762r 10.1002/adma.201900528 10.1021/jacs.8b00643 10.1002/ange.201800320 10.1126/science.aav3506 10.1002/ange.201809411 10.1038/s41467-019-09788-5 10.1038/s41467-019-13052-1 10.1039/C8CC09229J 10.1002/anie.201608899 10.1002/ange.201904658 10.1021/ar400259e 10.1021/acscatal.7b03334 10.1016/j.solidstatesciences.2007.04.003 10.1002/anie.201809411 10.1126/science.aaf1525 10.1021/jacs.8b05009 10.1016/j.nanoen.2014.10.025 10.1002/ange.201502836 10.1038/ncomms5123 10.1002/anie.201300193 10.1038/s41929-019-0252-4 10.1002/anie.201904658 10.1126/science.aad4998 10.1021/ja00116a009 10.1002/ange.201608899 10.1021/jacs.6b07127 10.1021/jacs.5b10525 10.1002/anie.201807717 10.1038/ncomms3899 10.1016/j.jqsrt.2014.11.002 10.1002/adfm.201807651 10.1002/cctc.201000173 10.1016/j.nanoen.2018.10.050 10.1039/C6CP08110J 10.1002/anie.201502836 10.1002/adfm.201804361 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 Wiley‐VCH GmbH 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION 7TM K9. 7X8 |
DOI | 10.1002/anie.202005574 |
DatabaseName | CrossRef Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 16981 |
ExternalDocumentID | 10_1002_anie_202005574 ANIE202005574 |
Genre | article |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central University funderid: 2019kfyXMBZ018 – fundername: National Natural Science Foundation of China funderid: 21805102; 21825103; 51727809 – fundername: Hubei Provincial Natural Science Foundation of China funderid: 2019CFA002 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3314-312a54bb1fdf04e53e0f471f3a03a3f7c8841f46d04388377a66a9ee6a4673f23 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 03:57:16 EDT 2025 Sun Jul 13 02:51:49 EDT 2025 Thu Apr 24 23:05:24 EDT 2025 Tue Jul 01 01:17:42 EDT 2025 Wed Jan 22 16:32:04 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 39 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3314-312a54bb1fdf04e53e0f471f3a03a3f7c8841f46d04388377a66a9ee6a4673f23 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0985-4806 |
PQID | 2442603630 |
PQPubID | 946352 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2414001645 proquest_journals_2442603630 crossref_citationtrail_10_1002_anie_202005574 crossref_primary_10_1002_anie_202005574 wiley_primary_10_1002_anie_202005574_ANIE202005574 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 21, 2020 |
PublicationDateYYYYMMDD | 2020-09-21 |
PublicationDate_xml | – month: 09 year: 2020 text: September 21, 2020 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 53 2019; 9 2018; 28 2019; 4 2013; 4 2018; 140 2019; 31 2015; 51 2019; 2 2019; 55 2019; 10 2019; 1 2015; 11 1995; 117 2014; 47 2020; 13 2017 2017; 56 129 2017; 355 2019; 364 2019 2019; 58 131 2013 2013; 52 125 2015; 152 2018; 8 2014; 5 2004; 51 2015; 137 2018 2018; 57 130 2007; 9 2015 2015; 54 127 2019; 29 2016; 352 2017; 19 2016; 138 2010; 2 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_30_2 e_1_2_6_19_1 e_1_2_6_19_2 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_34_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_15_2 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_2 e_1_2_6_9_2 e_1_2_6_3_2 e_1_2_6_7_1 e_1_2_6_5_2 e_1_2_6_1_1 e_1_2_6_24_2 e_1_2_6_22_3 e_1_2_6_49_1 e_1_2_6_22_2 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_24_3 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_12_2 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_10_3 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_18_1 e_1_2_6_37_1 e_1_2_6_42_2 e_1_2_6_40_1 e_1_2_6_6_3 e_1_2_6_8_1 e_1_2_6_29_3 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_6_2 e_1_2_6_48_1 e_1_2_6_2_2 e_1_2_6_23_1 e_1_2_6_21_2 e_1_2_6_44_1 e_1_2_6_25_3 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_25_2 e_1_2_6_46_2 |
References_xml | – volume: 51 start-page: 9969 year: 2015 end-page: 9971 publication-title: Chem. Commun. – volume: 57 130 start-page: 5379 5477 year: 2018 2018 end-page: 5383 5481 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 2 start-page: 290 year: 2019 end-page: 296 publication-title: Nat. Catal. – volume: 1 start-page: 396 year: 2019 end-page: 406 publication-title: CCS Chem. – volume: 9 start-page: 6681 year: 2019 end-page: 6691 publication-title: ACS Catal. – volume: 8 start-page: 5382 year: 2018 end-page: 5390 publication-title: ACS Catal. – volume: 13 start-page: 229 year: 2020 end-page: 237 publication-title: Energy Environ. Sci. – volume: 53 start-page: 7902 year: 2010 end-page: 7917 publication-title: J. Med. Chem. – volume: 47 start-page: 1137 year: 2014 end-page: 1145 publication-title: Acc. Chem. Res. – volume: 137 start-page: 6393 year: 2015 end-page: 6399 publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 1627 year: 2018 end-page: 1631 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 329 year: 2019 end-page: 338 publication-title: Nat. Energy – volume: 4 start-page: 2899 year: 2013 publication-title: Nat. Commun. – volume: 364 year: 2019 publication-title: Science – volume: 8 start-page: 258 year: 2018 end-page: 271 publication-title: ACS Catal. – volume: 117 start-page: 3037 year: 1995 end-page: 3043 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 1779 year: 2019 publication-title: Nat. Commun. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 19 start-page: 2915 year: 2017 end-page: 2925 publication-title: Phys. Chem. Chem. Phys. – volume: 352 start-page: 333 year: 2016 end-page: 337 publication-title: Science – volume: 51 start-page: 777 year: 2004 end-page: 781 publication-title: Scr. Mater. – volume: 57 130 start-page: 14240 14436 year: 2018 2018 end-page: 14244 14440 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 54 127 start-page: 8722 8846 year: 2015 2015 end-page: 8727 8851 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 9 start-page: 465 year: 2007 end-page: 471 publication-title: Solid State Sci. – volume: 10 start-page: 5074 year: 2019 publication-title: Nat. Commun. – volume: 5 start-page: 4123 year: 2014 publication-title: Nat. Commun. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 55 start-page: 458 year: 2019 end-page: 461 publication-title: Chem. Commun. – volume: 55 start-page: 37 year: 2019 end-page: 41 publication-title: Nano Energy – volume: 57 130 start-page: 13163 13347 year: 2018 2018 end-page: 13166 13350 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 11 start-page: 419 year: 2015 end-page: 427 publication-title: Nano Energy – volume: 58 131 start-page: 15895 16042 year: 2019 2019 end-page: 15903 16050 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 355 year: 2017 publication-title: Science – volume: 140 start-page: 8662 year: 2018 end-page: 8666 publication-title: J. Am. Chem. Soc. – volume: 58 131 start-page: 11033 11149 year: 2019 2019 end-page: 11038 11154 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 52 125 start-page: 6677 6809 year: 2013 2013 end-page: 6680 6812 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 138 start-page: 13639 year: 2016 end-page: 13646 publication-title: J. Am. Chem. Soc. – volume: 56 129 start-page: 842 860 year: 2017 2017 end-page: 846 864 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 138 start-page: 36 year: 2016 end-page: 39 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 1504 year: 2010 end-page: 1522 publication-title: ChemCatChem – volume: 152 start-page: 107 year: 2015 end-page: 113 publication-title: J. Quant. Spectrosc. Radiat. Transfer – ident: e_1_2_6_10_3 doi: 10.1002/ange.201300193 – ident: e_1_2_6_23_1 – ident: e_1_2_6_45_1 doi: 10.31635/ccschem.019.20190022 – ident: e_1_2_6_46_1 doi: 10.1002/anie.201908722 – ident: e_1_2_6_31_1 – ident: e_1_2_6_42_2 doi: 10.1038/s41560-019-0355-9 – ident: e_1_2_6_40_1 – ident: e_1_2_6_39_2 doi: 10.1016/j.scriptamat.2004.05.007 – ident: e_1_2_6_12_2 doi: 10.1021/acscatal.9b00043 – ident: e_1_2_6_19_2 doi: 10.1002/ange.201807717 – ident: e_1_2_6_30_2 doi: 10.1039/C9EE02565K – ident: e_1_2_6_25_2 doi: 10.1002/anie.201800320 – ident: e_1_2_6_37_1 – ident: e_1_2_6_14_1 – ident: e_1_2_6_28_1 – ident: e_1_2_6_51_1 doi: 10.1002/aenm.201801775 – ident: e_1_2_6_36_1 doi: 10.1021/acscatal.8b01332 – ident: e_1_2_6_9_2 doi: 10.1039/C5CC02968F – ident: e_1_2_6_46_2 doi: 10.1002/ange.201908722 – ident: e_1_2_6_52_1 doi: 10.1021/jacs.5b03105 – ident: e_1_2_6_27_1 doi: 10.1002/aenm.201900881 – ident: e_1_2_6_2_2 doi: 10.1021/jm100762r – ident: e_1_2_6_34_2 doi: 10.1002/adma.201900528 – ident: e_1_2_6_4_2 doi: 10.1021/jacs.8b00643 – ident: e_1_2_6_25_3 doi: 10.1002/ange.201800320 – ident: e_1_2_6_18_1 doi: 10.1126/science.aav3506 – ident: e_1_2_6_24_3 doi: 10.1002/ange.201809411 – ident: e_1_2_6_48_1 doi: 10.1038/s41467-019-09788-5 – ident: e_1_2_6_41_2 doi: 10.1038/s41467-019-13052-1 – ident: e_1_2_6_20_1 – ident: e_1_2_6_26_1 doi: 10.1039/C8CC09229J – ident: e_1_2_6_22_2 doi: 10.1002/anie.201608899 – ident: e_1_2_6_1_1 – ident: e_1_2_6_6_3 doi: 10.1002/ange.201904658 – ident: e_1_2_6_11_2 doi: 10.1021/ar400259e – ident: e_1_2_6_5_2 doi: 10.1021/acscatal.7b03334 – ident: e_1_2_6_35_1 doi: 10.1016/j.solidstatesciences.2007.04.003 – ident: e_1_2_6_24_2 doi: 10.1002/anie.201809411 – ident: e_1_2_6_44_1 doi: 10.1126/science.aaf1525 – ident: e_1_2_6_53_1 doi: 10.1021/jacs.8b05009 – ident: e_1_2_6_38_2 doi: 10.1016/j.nanoen.2014.10.025 – ident: e_1_2_6_29_3 doi: 10.1002/ange.201502836 – ident: e_1_2_6_13_1 doi: 10.1038/ncomms5123 – ident: e_1_2_6_10_2 doi: 10.1002/anie.201300193 – ident: e_1_2_6_16_2 doi: 10.1038/s41929-019-0252-4 – ident: e_1_2_6_6_2 doi: 10.1002/anie.201904658 – ident: e_1_2_6_17_2 doi: 10.1126/science.aad4998 – ident: e_1_2_6_7_1 doi: 10.1021/ja00116a009 – ident: e_1_2_6_22_3 doi: 10.1002/ange.201608899 – ident: e_1_2_6_15_2 doi: 10.1021/jacs.6b07127 – ident: e_1_2_6_47_1 doi: 10.1021/jacs.5b10525 – ident: e_1_2_6_19_1 doi: 10.1002/anie.201807717 – ident: e_1_2_6_43_1 doi: 10.1038/ncomms3899 – ident: e_1_2_6_8_1 – ident: e_1_2_6_50_1 doi: 10.1016/j.jqsrt.2014.11.002 – ident: e_1_2_6_21_2 doi: 10.1002/adfm.201807651 – ident: e_1_2_6_3_2 doi: 10.1002/cctc.201000173 – ident: e_1_2_6_32_2 doi: 10.1016/j.nanoen.2018.10.050 – ident: e_1_2_6_49_1 doi: 10.1039/C6CP08110J – ident: e_1_2_6_29_2 doi: 10.1002/anie.201502836 – ident: e_1_2_6_33_2 doi: 10.1002/adfm.201804361 |
SSID | ssj0028806 |
Score | 2.6267114 |
Snippet | Electrochemical synthesis based on electrons as reagents provides a broad prospect for commodity chemical manufacturing. A direct one‐step route for the... Electrochemical synthesis based on electrons as reagents provides a broad prospect for commodity chemical manufacturing. A direct one-step route for the... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 16974 |
SubjectTerms | amines Chemical bonds Chemical industry Dehydrogenation Electrochemistry Electrons Electropositivity nanostructures Nickel compounds Optimization oxidation Propionitrile Reagents Reforming Selectivity surface chemistry Vacancies |
Title | Vacancy‐Rich Ni(OH)2 Drives the Electrooxidation of Amino C−N Bonds to Nitrile C≡N Bonds |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202005574 https://www.proquest.com/docview/2442603630 https://www.proquest.com/docview/2414001645 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYll_TSpi-6ybaoUEh7cCJLstZ7XLa7bAt1IDQhpxpJlmBJYoddL4Seemxvof-gf21_SWf8ygNKobnZ8gjLeoy-sWa-IeStHTomMy8D7pgOZMazAFCRC7wbMKuc0THD4OTPiZodyU8n0cmNKP6aH6L74YYro9LXuMC1We5fk4ZiBDbYd7xikUJCUHTYQlR02PFHcZicdXiREAFmoW9ZGxnfv1399q50DTVvAtZqx5k-Jrpta-1ocrq3Ks2e_XaHxvE-H7NFHjVwlI7q-fOEPHD5U7I5brPAPSNfj7VFBbz-foUx-DSZvzuYvef0wwL5ainARzqpM-kUl_M6PxMtPB2dz_OCjtc_fiUUMxeDZAF1ywW0Dop__m6Kn5Oj6eTLeBY0ORkCK0QoQWVzHUljQp95Jl0kHPOwv3mhmdDCD2wcy9BLleEJIxi_A62UHjqnNGhk4bl4QTbyIncvCXVGGsnDTAyVl5b52AijYusAYiJ5su-RoB2T1DaE5Zg34yytqZZ5ir2Wdr3WI7ud_EVN1fFXyX47xGmzZJcp4Byw7YQSrEfedI-ht_EEReeuWKEM2KNIShb1CK_G8x9vSkfJx0l3t_0_lXbIQ7xGHxUe9slGuVi5VwCESvO6mux_ABT4ACM |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1BOZRLgQLqlgJGqgQc0jq215s9rpatttCmEmoRJyLbsaUVNKmWXQlx4gg3xD_gr_WXMJOvUiSERI9xxorjzze25z2AbTf0XOVBRcJzE6lc5BGiIh8FP-BOe2sSTsHJh6menqiXb_vtbUKKhan5IboNNxoZ1XxNA5w2pHcvWEMpBBsdPFHRSKnrcINkvSuv6nXHICWwe9YBRlJGpEPf8jZysXs5_-V16QJs_g5ZqzVn7xbYtrT1VZP3O8uF3XGf_yByvNLv3Ia1BpGyUd2F7sA1X6zD6rgVgrsL794YR3Pw-ZfvFIbP0tmzo-lzwV7MibKWIYJkk1pMp_w0qyWaWBnY6HRWlGx8_vVHyki8GC1LzLuYY_Ew-dvPJvkenOxNjsfTqJFliJyUscJZW5i-sjYOeeDK96XnAZe4IA2XRoaBSxIVB6VzOmRE_3dgtDZD77XBSVkGIe_DSlEWfgOYt8oqEedyqINyPCRWWp04jyiT-JNDD6K2UTLXcJaTdMaHrGZbFhnVWtbVWg-edvZnNVvHXy232jbOmlH7MUOog-6d1JL34En3GmubDlFM4csl2aBLSrxk_R6IqkH_8aVslO5PuqfN_8n0GFanx4cH2cF--uoB3KR0urIi4i1YWcyX_iHiooV9VPX8XxsSBD4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkYAL74qFAkZCAg5pHdvrzR5X-9CWR0CIop6IbMeWVi1JtexKiBNHuCH-AX-tv4SZvNoiISQ4xhkrjj0ef2N7vgF45IaeqzyoSHhuIpWLPEJU5KPgB9xpb03CKTj5Zarne-rZfn__VBR_zQ_RbbjRzKjsNU3wozzsnJCGUgQ2-neiYpFS5-GC0jwhvZ686QikBGpnHV8kZURp6FvaRi52ztY_uyydYM3TiLVacmZXwbSNrW-aHGyvV3bbff6Nx_F__uYaXGnwKBvVCnQdzvniBlwat2ngbsL7d8aRBT7-8p2C8Fm6ePJq_lSwyZIIaxniRzatU-mUnxZ1giZWBjb6sChKNj7--iNllLoYJUusu1pi67D428-m-BbszaZvx_OoScoQOSljhTZbmL6yNg554Mr3pecBF7ggDZdGhoFLEhUHpXM6YkTvd2C0NkPvtUGTLIOQm7BRlIW_DcxbZZWIcznUQTkeEiutTpxHjEnsyaEHUTsmmWsYyylxxmFWcy2LjHot63qtB487-aOaq-OPklvtEGfNnP2YIdBB505qyXvwsHuNvU1HKKbw5Zpk0CElVrJ-D0Q1nn_5UjZKd6fd051_qfQALr6ezLIXu-nzu3CZium-ioi3YGO1XPt7CIpW9n6l978AH68C9g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vacancy-Rich+Ni%28OH%292+Drives+the+Electrooxidation+of+Amino+C-N+Bonds+to+Nitrile+C%E2%89%A1N+Bonds&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wang%2C+Wenbin&rft.au=Wang%2C+Yutang&rft.au=Yang%2C+Ruoou&rft.au=Wen%2C+Qunlei&rft.date=2020-09-21&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=59&rft.issue=39&rft.spage=16974&rft_id=info:doi/10.1002%2Fanie.202005574&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |