Vacancy‐Rich Ni(OH)2 Drives the Electrooxidation of Amino C−N Bonds to Nitrile C≡N Bonds

Electrochemical synthesis based on electrons as reagents provides a broad prospect for commodity chemical manufacturing. A direct one‐step route for the electrooxidation of amino C−N bonds to nitrile C≡N bonds offers an alternative pathway for nitrile production. However, this route has not been ful...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 59; no. 39; pp. 16974 - 16981
Main Authors Wang, Wenbin, Wang, Yutang, Yang, Ruoou, Wen, Qunlei, Liu, Youwen, Jiang, Zheng, Li, Huiqiao, Zhai, Tianyou
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 21.09.2020
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electrochemical synthesis based on electrons as reagents provides a broad prospect for commodity chemical manufacturing. A direct one‐step route for the electrooxidation of amino C−N bonds to nitrile C≡N bonds offers an alternative pathway for nitrile production. However, this route has not been fully explored with respect to either the chemical bond reforming process or the performance optimization. Proposed here is a model of vacancy‐rich Ni(OH)2 atomic layers for studying the performance relationship with respect to structure. Theoretical calculations show the vacancy‐induced local electropositive sites chemisorb the N atom with a lone pair of electrons and then attack the corresponding N(sp3)−H, thus accelerating amino C−N bond activation for dehydrogenation directly into the C≡N bond. Vacancy‐rich nanosheets exhibit up to 96.5 % propionitrile selectivity at a moderate potential of 1.38 V. These findings can lead to a new pathway for facilitating catalytic reactions in the chemicals industry. Vacancy‐rich Ni(OH)2 nanosheets are proposed to realize a direct one‐step route for the electrooxidation of amino C−N bonds to nitrile C≡N bonds for nitrile production. During the catalytic reaction the local vacancy‐induced electropositive site chemisorbs the N atom with a lone pair of electrons and then attacks the corresponding N−H bond.
AbstractList Electrochemical synthesis based on electrons as reagents provides a broad prospect for commodity chemical manufacturing. A direct one‐step route for the electrooxidation of amino C−N bonds to nitrile C≡N bonds offers an alternative pathway for nitrile production. However, this route has not been fully explored with respect to either the chemical bond reforming process or the performance optimization. Proposed here is a model of vacancy‐rich Ni(OH)2 atomic layers for studying the performance relationship with respect to structure. Theoretical calculations show the vacancy‐induced local electropositive sites chemisorb the N atom with a lone pair of electrons and then attack the corresponding N(sp3)−H, thus accelerating amino C−N bond activation for dehydrogenation directly into the C≡N bond. Vacancy‐rich nanosheets exhibit up to 96.5 % propionitrile selectivity at a moderate potential of 1.38 V. These findings can lead to a new pathway for facilitating catalytic reactions in the chemicals industry.
Electrochemical synthesis based on electrons as reagents provides a broad prospect for commodity chemical manufacturing. A direct one-step route for the electrooxidation of amino C-N bonds to nitrile C≡N bonds offers an alternative pathway for nitrile production. However, this route has not been fully explored with respect to either the chemical bond reforming process or the performance optimization. Proposed here is a model of vacancy-rich Ni(OH)2 atomic layers for studying the performance relationship with respect to structure. Theoretical calculations show the vacancy-induced local electropositive sites chemisorb the N atom with a lone pair of electrons and then attack the corresponding N(sp3 )-H, thus accelerating amino C-N bond activation for dehydrogenation directly into the C≡N bond. Vacancy-rich nanosheets exhibit up to 96.5 % propionitrile selectivity at a moderate potential of 1.38 V. These findings can lead to a new pathway for facilitating catalytic reactions in the chemicals industry.Electrochemical synthesis based on electrons as reagents provides a broad prospect for commodity chemical manufacturing. A direct one-step route for the electrooxidation of amino C-N bonds to nitrile C≡N bonds offers an alternative pathway for nitrile production. However, this route has not been fully explored with respect to either the chemical bond reforming process or the performance optimization. Proposed here is a model of vacancy-rich Ni(OH)2 atomic layers for studying the performance relationship with respect to structure. Theoretical calculations show the vacancy-induced local electropositive sites chemisorb the N atom with a lone pair of electrons and then attack the corresponding N(sp3 )-H, thus accelerating amino C-N bond activation for dehydrogenation directly into the C≡N bond. Vacancy-rich nanosheets exhibit up to 96.5 % propionitrile selectivity at a moderate potential of 1.38 V. These findings can lead to a new pathway for facilitating catalytic reactions in the chemicals industry.
Electrochemical synthesis based on electrons as reagents provides a broad prospect for commodity chemical manufacturing. A direct one‐step route for the electrooxidation of amino C−N bonds to nitrile C≡N bonds offers an alternative pathway for nitrile production. However, this route has not been fully explored with respect to either the chemical bond reforming process or the performance optimization. Proposed here is a model of vacancy‐rich Ni(OH)2 atomic layers for studying the performance relationship with respect to structure. Theoretical calculations show the vacancy‐induced local electropositive sites chemisorb the N atom with a lone pair of electrons and then attack the corresponding N(sp3)−H, thus accelerating amino C−N bond activation for dehydrogenation directly into the C≡N bond. Vacancy‐rich nanosheets exhibit up to 96.5 % propionitrile selectivity at a moderate potential of 1.38 V. These findings can lead to a new pathway for facilitating catalytic reactions in the chemicals industry. Vacancy‐rich Ni(OH)2 nanosheets are proposed to realize a direct one‐step route for the electrooxidation of amino C−N bonds to nitrile C≡N bonds for nitrile production. During the catalytic reaction the local vacancy‐induced electropositive site chemisorbs the N atom with a lone pair of electrons and then attacks the corresponding N−H bond.
Electrochemical synthesis based on electrons as reagents provides a broad prospect for commodity chemical manufacturing. A direct one‐step route for the electrooxidation of amino C−N bonds to nitrile C≡N bonds offers an alternative pathway for nitrile production. However, this route has not been fully explored with respect to either the chemical bond reforming process or the performance optimization. Proposed here is a model of vacancy‐rich Ni(OH) 2 atomic layers for studying the performance relationship with respect to structure. Theoretical calculations show the vacancy‐induced local electropositive sites chemisorb the N atom with a lone pair of electrons and then attack the corresponding N(sp 3 )−H, thus accelerating amino C−N bond activation for dehydrogenation directly into the C≡N bond. Vacancy‐rich nanosheets exhibit up to 96.5 % propionitrile selectivity at a moderate potential of 1.38 V. These findings can lead to a new pathway for facilitating catalytic reactions in the chemicals industry.
Author Li, Huiqiao
Yang, Ruoou
Liu, Youwen
Wang, Yutang
Wen, Qunlei
Zhai, Tianyou
Wang, Wenbin
Jiang, Zheng
Author_xml – sequence: 1
  givenname: Wenbin
  surname: Wang
  fullname: Wang, Wenbin
  organization: Huazhong University of Science and Technology
– sequence: 2
  givenname: Yutang
  surname: Wang
  fullname: Wang, Yutang
  organization: Huazhong University of Science and Technology
– sequence: 3
  givenname: Ruoou
  surname: Yang
  fullname: Yang, Ruoou
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Qunlei
  surname: Wen
  fullname: Wen, Qunlei
  organization: Huazhong University of Science and Technology
– sequence: 5
  givenname: Youwen
  surname: Liu
  fullname: Liu, Youwen
  email: ywliu@hust.edu.cn
  organization: Huazhong University of Science and Technology
– sequence: 6
  givenname: Zheng
  surname: Jiang
  fullname: Jiang, Zheng
  email: jiangzheng@sinap.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Huiqiao
  surname: Li
  fullname: Li, Huiqiao
  organization: Huazhong University of Science and Technology
– sequence: 8
  givenname: Tianyou
  orcidid: 0000-0003-0985-4806
  surname: Zhai
  fullname: Zhai, Tianyou
  email: zhaity@hust.edu.cn
  organization: Huazhong University of Science and Technology
BookMark eNqFkM9KAzEQh4NUsK1ePS94qYet-bfZ7bHWagWpIOrRJc0mNGWb1GSr9uZRb-Ib-Gp9ElMrCgXxNMPwfcPMrwFqxhoJwD6CbQQhPuJGyzaGGMIkSekWqKMEo5ikKamFnhISp1mCdkDD-0ngswyyOri75YIbsVg-v11pMY6GunU5OMTRidMP0kfVWEb9UorKWfukC15payKrou5UGxv1li_vw-jYmiKQNriV06UM49eP7_Eu2Fa89HLvuzbBzWn_ujeILy7Pznvdi1gQgmhMEOYJHY2QKhSkMiESKpoiRTgknKhUZBlFirICUpJl4SXOGO9IyThlKVGYNEFrvXfm7P1c-iqfai9kWXIj7dznmCIKIWI0CejBBjqxc2fCdYGimEHCCAwUXVPCWe-dVLnQ1df7leO6zBHMV6Hnq9Dzn9CD1t7QZk5PuVv8LXTWwmNIbvEPnXeH5_1f9xPgPJac
CitedBy_id crossref_primary_10_3390_inorganics11060236
crossref_primary_10_1002_adma_202306108
crossref_primary_10_1016_j_apcatb_2023_123073
crossref_primary_10_1016_j_jcis_2024_10_192
crossref_primary_10_1021_acsami_1c16048
crossref_primary_10_1038_s41467_022_29699_2
crossref_primary_10_1039_D1GC00914A
crossref_primary_10_1002_aenm_202400374
crossref_primary_10_1039_D3QI02542J
crossref_primary_10_1016_j_apcatb_2024_123915
crossref_primary_10_1002_adfm_202301884
crossref_primary_10_1002_aenm_202203595
crossref_primary_10_1002_anie_202217411
crossref_primary_10_1002_ange_202110000
crossref_primary_10_1002_cctc_202301332
crossref_primary_10_1002_smll_202411363
crossref_primary_10_1007_s40820_023_01150_1
crossref_primary_10_1016_j_cclet_2025_111001
crossref_primary_10_1002_ange_202416763
crossref_primary_10_1016_j_micromeso_2021_111402
crossref_primary_10_1016_j_ces_2022_117769
crossref_primary_10_1021_jacs_2c05403
crossref_primary_10_1021_acs_chemmater_3c02863
crossref_primary_10_1002_anie_202402176
crossref_primary_10_1002_anie_202209014
crossref_primary_10_1016_j_catcom_2023_106698
crossref_primary_10_1039_D4SC01571A
crossref_primary_10_1039_D1TA10499C
crossref_primary_10_1002_ange_202101522
crossref_primary_10_1002_cssc_202401601
crossref_primary_10_1515_revic_2024_0057
crossref_primary_10_1039_D2TA01758J
crossref_primary_10_1021_jacs_3c02570
crossref_primary_10_1021_acsami_1c01091
crossref_primary_10_6023_A23050202
crossref_primary_10_1002_anie_202110000
crossref_primary_10_1016_j_apcatb_2024_124064
crossref_primary_10_1039_D5GC00572H
crossref_primary_10_1021_acs_energyfuels_3c00732
crossref_primary_10_1038_s41467_024_47765_9
crossref_primary_10_1016_j_apsusc_2024_159321
crossref_primary_10_1016_j_electacta_2024_144678
crossref_primary_10_1016_j_cej_2022_140947
crossref_primary_10_1002_anie_202207282
crossref_primary_10_1002_ange_202209014
crossref_primary_10_1002_anie_202206077
crossref_primary_10_1039_D3TA01931D
crossref_primary_10_1002_anie_202101522
crossref_primary_10_1002_adfm_202422063
crossref_primary_10_1007_s12274_023_6011_5
crossref_primary_10_1016_j_electacta_2022_139831
crossref_primary_10_1016_j_cclet_2022_03_042
crossref_primary_10_1039_D3EE02467A
crossref_primary_10_1039_D3CC03889K
crossref_primary_10_1039_D2EE00951J
crossref_primary_10_1002_ange_202112953
crossref_primary_10_1016_j_chempr_2024_08_009
crossref_primary_10_1021_jacs_4c09252
crossref_primary_10_1002_ange_202217411
crossref_primary_10_1007_s12274_022_5163_z
crossref_primary_10_1002_anie_202415132
crossref_primary_10_1002_aenm_202102292
crossref_primary_10_1016_S1872_2067_23_64565_6
crossref_primary_10_1002_cssc_202100811
crossref_primary_10_1021_acsami_2c09004
crossref_primary_10_1039_D1CC04680B
crossref_primary_10_1016_j_chempr_2022_07_010
crossref_primary_10_1002_aenm_202400696
crossref_primary_10_1021_acssuschemeng_3c08543
crossref_primary_10_1016_j_jpowsour_2022_231461
crossref_primary_10_1002_cey2_672
crossref_primary_10_1002_ange_202415132
crossref_primary_10_1039_D4QI00145A
crossref_primary_10_1002_adsu_202200364
crossref_primary_10_1021_acscatal_2c02489
crossref_primary_10_1002_anie_202112953
crossref_primary_10_1007_s40843_023_2480_x
crossref_primary_10_1007_s12274_022_4858_5
crossref_primary_10_1002_ange_202109211
crossref_primary_10_1021_acsanm_4c04165
crossref_primary_10_1002_ange_202402176
crossref_primary_10_1002_aenm_202203955
crossref_primary_10_1039_D0TA11566E
crossref_primary_10_1039_D4CC01830C
crossref_primary_10_1002_ange_202207282
crossref_primary_10_1002_adma_202211603
crossref_primary_10_1002_ange_202206077
crossref_primary_10_1038_s41467_023_36830_4
crossref_primary_10_1016_j_jcis_2023_07_123
crossref_primary_10_1007_s12274_022_4727_2
crossref_primary_10_1039_D3CC00936J
crossref_primary_10_1002_anie_202416763
crossref_primary_10_1039_D3CC05861A
crossref_primary_10_1002_ppsc_202300103
crossref_primary_10_1007_s12274_023_5431_6
crossref_primary_10_1007_s12274_021_3568_8
crossref_primary_10_1002_anie_202109211
crossref_primary_10_1002_aenm_202102353
crossref_primary_10_1016_j_jechem_2022_02_054
crossref_primary_10_1038_s41570_024_00589_z
crossref_primary_10_1039_D3QI00277B
crossref_primary_10_1021_acs_joc_1c03011
crossref_primary_10_1002_smll_202403270
crossref_primary_10_1016_j_jechem_2023_03_025
crossref_primary_10_1021_acsnano_2c10327
crossref_primary_10_1002_smll_202104513
crossref_primary_10_1016_j_apcatb_2022_122207
crossref_primary_10_1007_s12274_021_3434_8
crossref_primary_10_1007_s12274_024_6473_0
crossref_primary_10_1002_sstr_202100134
crossref_primary_10_1007_s41918_025_00241_4
crossref_primary_10_1021_acsnano_2c02838
crossref_primary_10_1016_j_apsusc_2021_152065
crossref_primary_10_1002_sstr_202100095
crossref_primary_10_1021_acsorginorgau_4c00025
crossref_primary_10_1002_adma_202404806
crossref_primary_10_1016_j_jcis_2024_06_085
crossref_primary_10_1002_adfm_202304403
crossref_primary_10_1016_j_flatc_2022_100361
crossref_primary_10_1021_jacs_4c12451
crossref_primary_10_1002_adma_202008631
crossref_primary_10_1002_slct_202201305
Cites_doi 10.1002/ange.201300193
10.31635/ccschem.019.20190022
10.1002/anie.201908722
10.1038/s41560-019-0355-9
10.1016/j.scriptamat.2004.05.007
10.1021/acscatal.9b00043
10.1002/ange.201807717
10.1039/C9EE02565K
10.1002/anie.201800320
10.1002/aenm.201801775
10.1021/acscatal.8b01332
10.1039/C5CC02968F
10.1002/ange.201908722
10.1021/jacs.5b03105
10.1002/aenm.201900881
10.1021/jm100762r
10.1002/adma.201900528
10.1021/jacs.8b00643
10.1002/ange.201800320
10.1126/science.aav3506
10.1002/ange.201809411
10.1038/s41467-019-09788-5
10.1038/s41467-019-13052-1
10.1039/C8CC09229J
10.1002/anie.201608899
10.1002/ange.201904658
10.1021/ar400259e
10.1021/acscatal.7b03334
10.1016/j.solidstatesciences.2007.04.003
10.1002/anie.201809411
10.1126/science.aaf1525
10.1021/jacs.8b05009
10.1016/j.nanoen.2014.10.025
10.1002/ange.201502836
10.1038/ncomms5123
10.1002/anie.201300193
10.1038/s41929-019-0252-4
10.1002/anie.201904658
10.1126/science.aad4998
10.1021/ja00116a009
10.1002/ange.201608899
10.1021/jacs.6b07127
10.1021/jacs.5b10525
10.1002/anie.201807717
10.1038/ncomms3899
10.1016/j.jqsrt.2014.11.002
10.1002/adfm.201807651
10.1002/cctc.201000173
10.1016/j.nanoen.2018.10.050
10.1039/C6CP08110J
10.1002/anie.201502836
10.1002/adfm.201804361
ContentType Journal Article
Copyright 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 Wiley‐VCH GmbH
2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
7TM
K9.
7X8
DOI 10.1002/anie.202005574
DatabaseName CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 16981
ExternalDocumentID 10_1002_anie_202005574
ANIE202005574
Genre article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central University
  funderid: 2019kfyXMBZ018
– fundername: National Natural Science Foundation of China
  funderid: 21805102; 21825103; 51727809
– fundername: Hubei Provincial Natural Science Foundation of China
  funderid: 2019CFA002
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
7TM
K9.
7X8
ID FETCH-LOGICAL-c3314-312a54bb1fdf04e53e0f471f3a03a3f7c8841f46d04388377a66a9ee6a4673f23
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 03:57:16 EDT 2025
Sun Jul 13 02:51:49 EDT 2025
Thu Apr 24 23:05:24 EDT 2025
Tue Jul 01 01:17:42 EDT 2025
Wed Jan 22 16:32:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 39
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3314-312a54bb1fdf04e53e0f471f3a03a3f7c8841f46d04388377a66a9ee6a4673f23
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0985-4806
PQID 2442603630
PQPubID 946352
PageCount 8
ParticipantIDs proquest_miscellaneous_2414001645
proquest_journals_2442603630
crossref_citationtrail_10_1002_anie_202005574
crossref_primary_10_1002_anie_202005574
wiley_primary_10_1002_anie_202005574_ANIE202005574
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 21, 2020
PublicationDateYYYYMMDD 2020-09-21
PublicationDate_xml – month: 09
  year: 2020
  text: September 21, 2020
  day: 21
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 53
2019; 9
2018; 28
2019; 4
2013; 4
2018; 140
2019; 31
2015; 51
2019; 2
2019; 55
2019; 10
2019; 1
2015; 11
1995; 117
2014; 47
2020; 13
2017 2017; 56 129
2017; 355
2019; 364
2019 2019; 58 131
2013 2013; 52 125
2015; 152
2018; 8
2014; 5
2004; 51
2015; 137
2018 2018; 57 130
2007; 9
2015 2015; 54 127
2019; 29
2016; 352
2017; 19
2016; 138
2010; 2
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_30_2
e_1_2_6_19_1
e_1_2_6_19_2
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_34_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_15_2
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_2
e_1_2_6_9_2
e_1_2_6_3_2
e_1_2_6_7_1
e_1_2_6_5_2
e_1_2_6_1_1
e_1_2_6_24_2
e_1_2_6_22_3
e_1_2_6_49_1
e_1_2_6_22_2
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_24_3
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_12_2
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_10_3
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_18_1
e_1_2_6_37_1
e_1_2_6_42_2
e_1_2_6_40_1
e_1_2_6_6_3
e_1_2_6_8_1
e_1_2_6_29_3
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_48_1
e_1_2_6_2_2
e_1_2_6_23_1
e_1_2_6_21_2
e_1_2_6_44_1
e_1_2_6_25_3
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_25_2
e_1_2_6_46_2
References_xml – volume: 51
  start-page: 9969
  year: 2015
  end-page: 9971
  publication-title: Chem. Commun.
– volume: 57 130
  start-page: 5379 5477
  year: 2018 2018
  end-page: 5383 5481
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 2
  start-page: 290
  year: 2019
  end-page: 296
  publication-title: Nat. Catal.
– volume: 1
  start-page: 396
  year: 2019
  end-page: 406
  publication-title: CCS Chem.
– volume: 9
  start-page: 6681
  year: 2019
  end-page: 6691
  publication-title: ACS Catal.
– volume: 8
  start-page: 5382
  year: 2018
  end-page: 5390
  publication-title: ACS Catal.
– volume: 13
  start-page: 229
  year: 2020
  end-page: 237
  publication-title: Energy Environ. Sci.
– volume: 53
  start-page: 7902
  year: 2010
  end-page: 7917
  publication-title: J. Med. Chem.
– volume: 47
  start-page: 1137
  year: 2014
  end-page: 1145
  publication-title: Acc. Chem. Res.
– volume: 137
  start-page: 6393
  year: 2015
  end-page: 6399
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 1627
  year: 2018
  end-page: 1631
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 329
  year: 2019
  end-page: 338
  publication-title: Nat. Energy
– volume: 4
  start-page: 2899
  year: 2013
  publication-title: Nat. Commun.
– volume: 364
  year: 2019
  publication-title: Science
– volume: 8
  start-page: 258
  year: 2018
  end-page: 271
  publication-title: ACS Catal.
– volume: 117
  start-page: 3037
  year: 1995
  end-page: 3043
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 1779
  year: 2019
  publication-title: Nat. Commun.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 19
  start-page: 2915
  year: 2017
  end-page: 2925
  publication-title: Phys. Chem. Chem. Phys.
– volume: 352
  start-page: 333
  year: 2016
  end-page: 337
  publication-title: Science
– volume: 51
  start-page: 777
  year: 2004
  end-page: 781
  publication-title: Scr. Mater.
– volume: 57 130
  start-page: 14240 14436
  year: 2018 2018
  end-page: 14244 14440
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 54 127
  start-page: 8722 8846
  year: 2015 2015
  end-page: 8727 8851
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 9
  start-page: 465
  year: 2007
  end-page: 471
  publication-title: Solid State Sci.
– volume: 10
  start-page: 5074
  year: 2019
  publication-title: Nat. Commun.
– volume: 5
  start-page: 4123
  year: 2014
  publication-title: Nat. Commun.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 55
  start-page: 458
  year: 2019
  end-page: 461
  publication-title: Chem. Commun.
– volume: 55
  start-page: 37
  year: 2019
  end-page: 41
  publication-title: Nano Energy
– volume: 57 130
  start-page: 13163 13347
  year: 2018 2018
  end-page: 13166 13350
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 11
  start-page: 419
  year: 2015
  end-page: 427
  publication-title: Nano Energy
– volume: 58 131
  start-page: 15895 16042
  year: 2019 2019
  end-page: 15903 16050
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 355
  year: 2017
  publication-title: Science
– volume: 140
  start-page: 8662
  year: 2018
  end-page: 8666
  publication-title: J. Am. Chem. Soc.
– volume: 58 131
  start-page: 11033 11149
  year: 2019 2019
  end-page: 11038 11154
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 52 125
  start-page: 6677 6809
  year: 2013 2013
  end-page: 6680 6812
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 138
  start-page: 13639
  year: 2016
  end-page: 13646
  publication-title: J. Am. Chem. Soc.
– volume: 56 129
  start-page: 842 860
  year: 2017 2017
  end-page: 846 864
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 138
  start-page: 36
  year: 2016
  end-page: 39
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 1504
  year: 2010
  end-page: 1522
  publication-title: ChemCatChem
– volume: 152
  start-page: 107
  year: 2015
  end-page: 113
  publication-title: J. Quant. Spectrosc. Radiat. Transfer
– ident: e_1_2_6_10_3
  doi: 10.1002/ange.201300193
– ident: e_1_2_6_23_1
– ident: e_1_2_6_45_1
  doi: 10.31635/ccschem.019.20190022
– ident: e_1_2_6_46_1
  doi: 10.1002/anie.201908722
– ident: e_1_2_6_31_1
– ident: e_1_2_6_42_2
  doi: 10.1038/s41560-019-0355-9
– ident: e_1_2_6_40_1
– ident: e_1_2_6_39_2
  doi: 10.1016/j.scriptamat.2004.05.007
– ident: e_1_2_6_12_2
  doi: 10.1021/acscatal.9b00043
– ident: e_1_2_6_19_2
  doi: 10.1002/ange.201807717
– ident: e_1_2_6_30_2
  doi: 10.1039/C9EE02565K
– ident: e_1_2_6_25_2
  doi: 10.1002/anie.201800320
– ident: e_1_2_6_37_1
– ident: e_1_2_6_14_1
– ident: e_1_2_6_28_1
– ident: e_1_2_6_51_1
  doi: 10.1002/aenm.201801775
– ident: e_1_2_6_36_1
  doi: 10.1021/acscatal.8b01332
– ident: e_1_2_6_9_2
  doi: 10.1039/C5CC02968F
– ident: e_1_2_6_46_2
  doi: 10.1002/ange.201908722
– ident: e_1_2_6_52_1
  doi: 10.1021/jacs.5b03105
– ident: e_1_2_6_27_1
  doi: 10.1002/aenm.201900881
– ident: e_1_2_6_2_2
  doi: 10.1021/jm100762r
– ident: e_1_2_6_34_2
  doi: 10.1002/adma.201900528
– ident: e_1_2_6_4_2
  doi: 10.1021/jacs.8b00643
– ident: e_1_2_6_25_3
  doi: 10.1002/ange.201800320
– ident: e_1_2_6_18_1
  doi: 10.1126/science.aav3506
– ident: e_1_2_6_24_3
  doi: 10.1002/ange.201809411
– ident: e_1_2_6_48_1
  doi: 10.1038/s41467-019-09788-5
– ident: e_1_2_6_41_2
  doi: 10.1038/s41467-019-13052-1
– ident: e_1_2_6_20_1
– ident: e_1_2_6_26_1
  doi: 10.1039/C8CC09229J
– ident: e_1_2_6_22_2
  doi: 10.1002/anie.201608899
– ident: e_1_2_6_1_1
– ident: e_1_2_6_6_3
  doi: 10.1002/ange.201904658
– ident: e_1_2_6_11_2
  doi: 10.1021/ar400259e
– ident: e_1_2_6_5_2
  doi: 10.1021/acscatal.7b03334
– ident: e_1_2_6_35_1
  doi: 10.1016/j.solidstatesciences.2007.04.003
– ident: e_1_2_6_24_2
  doi: 10.1002/anie.201809411
– ident: e_1_2_6_44_1
  doi: 10.1126/science.aaf1525
– ident: e_1_2_6_53_1
  doi: 10.1021/jacs.8b05009
– ident: e_1_2_6_38_2
  doi: 10.1016/j.nanoen.2014.10.025
– ident: e_1_2_6_29_3
  doi: 10.1002/ange.201502836
– ident: e_1_2_6_13_1
  doi: 10.1038/ncomms5123
– ident: e_1_2_6_10_2
  doi: 10.1002/anie.201300193
– ident: e_1_2_6_16_2
  doi: 10.1038/s41929-019-0252-4
– ident: e_1_2_6_6_2
  doi: 10.1002/anie.201904658
– ident: e_1_2_6_17_2
  doi: 10.1126/science.aad4998
– ident: e_1_2_6_7_1
  doi: 10.1021/ja00116a009
– ident: e_1_2_6_22_3
  doi: 10.1002/ange.201608899
– ident: e_1_2_6_15_2
  doi: 10.1021/jacs.6b07127
– ident: e_1_2_6_47_1
  doi: 10.1021/jacs.5b10525
– ident: e_1_2_6_19_1
  doi: 10.1002/anie.201807717
– ident: e_1_2_6_43_1
  doi: 10.1038/ncomms3899
– ident: e_1_2_6_8_1
– ident: e_1_2_6_50_1
  doi: 10.1016/j.jqsrt.2014.11.002
– ident: e_1_2_6_21_2
  doi: 10.1002/adfm.201807651
– ident: e_1_2_6_3_2
  doi: 10.1002/cctc.201000173
– ident: e_1_2_6_32_2
  doi: 10.1016/j.nanoen.2018.10.050
– ident: e_1_2_6_49_1
  doi: 10.1039/C6CP08110J
– ident: e_1_2_6_29_2
  doi: 10.1002/anie.201502836
– ident: e_1_2_6_33_2
  doi: 10.1002/adfm.201804361
SSID ssj0028806
Score 2.6267114
Snippet Electrochemical synthesis based on electrons as reagents provides a broad prospect for commodity chemical manufacturing. A direct one‐step route for the...
Electrochemical synthesis based on electrons as reagents provides a broad prospect for commodity chemical manufacturing. A direct one-step route for the...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 16974
SubjectTerms amines
Chemical bonds
Chemical industry
Dehydrogenation
Electrochemistry
Electrons
Electropositivity
nanostructures
Nickel compounds
Optimization
oxidation
Propionitrile
Reagents
Reforming
Selectivity
surface chemistry
Vacancies
Title Vacancy‐Rich Ni(OH)2 Drives the Electrooxidation of Amino C−N Bonds to Nitrile C≡N Bonds
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202005574
https://www.proquest.com/docview/2442603630
https://www.proquest.com/docview/2414001645
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYll_TSpi-6ybaoUEh7cCJLstZ7XLa7bAt1IDQhpxpJlmBJYoddL4Seemxvof-gf21_SWf8ygNKobnZ8gjLeoy-sWa-IeStHTomMy8D7pgOZMazAFCRC7wbMKuc0THD4OTPiZodyU8n0cmNKP6aH6L74YYro9LXuMC1We5fk4ZiBDbYd7xikUJCUHTYQlR02PFHcZicdXiREAFmoW9ZGxnfv1399q50DTVvAtZqx5k-Jrpta-1ocrq3Ks2e_XaHxvE-H7NFHjVwlI7q-fOEPHD5U7I5brPAPSNfj7VFBbz-foUx-DSZvzuYvef0wwL5ainARzqpM-kUl_M6PxMtPB2dz_OCjtc_fiUUMxeDZAF1ywW0Dop__m6Kn5Oj6eTLeBY0ORkCK0QoQWVzHUljQp95Jl0kHPOwv3mhmdDCD2wcy9BLleEJIxi_A62UHjqnNGhk4bl4QTbyIncvCXVGGsnDTAyVl5b52AijYusAYiJ5su-RoB2T1DaE5Zg34yytqZZ5ir2Wdr3WI7ud_EVN1fFXyX47xGmzZJcp4Byw7YQSrEfedI-ht_EEReeuWKEM2KNIShb1CK_G8x9vSkfJx0l3t_0_lXbIQ7xGHxUe9slGuVi5VwCESvO6mux_ABT4ACM
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1BOZRLgQLqlgJGqgQc0jq215s9rpatttCmEmoRJyLbsaUVNKmWXQlx4gg3xD_gr_WXMJOvUiSERI9xxorjzze25z2AbTf0XOVBRcJzE6lc5BGiIh8FP-BOe2sSTsHJh6menqiXb_vtbUKKhan5IboNNxoZ1XxNA5w2pHcvWEMpBBsdPFHRSKnrcINkvSuv6nXHICWwe9YBRlJGpEPf8jZysXs5_-V16QJs_g5ZqzVn7xbYtrT1VZP3O8uF3XGf_yByvNLv3Ia1BpGyUd2F7sA1X6zD6rgVgrsL794YR3Pw-ZfvFIbP0tmzo-lzwV7MibKWIYJkk1pMp_w0qyWaWBnY6HRWlGx8_vVHyki8GC1LzLuYY_Ew-dvPJvkenOxNjsfTqJFliJyUscJZW5i-sjYOeeDK96XnAZe4IA2XRoaBSxIVB6VzOmRE_3dgtDZD77XBSVkGIe_DSlEWfgOYt8oqEedyqINyPCRWWp04jyiT-JNDD6K2UTLXcJaTdMaHrGZbFhnVWtbVWg-edvZnNVvHXy232jbOmlH7MUOog-6d1JL34En3GmubDlFM4csl2aBLSrxk_R6IqkH_8aVslO5PuqfN_8n0GFanx4cH2cF--uoB3KR0urIi4i1YWcyX_iHiooV9VPX8XxsSBD4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkYAL74qFAkZCAg5pHdvrzR5X-9CWR0CIop6IbMeWVi1JtexKiBNHuCH-AX-tv4SZvNoiISQ4xhkrjj0ef2N7vgF45IaeqzyoSHhuIpWLPEJU5KPgB9xpb03CKTj5Zarne-rZfn__VBR_zQ_RbbjRzKjsNU3wozzsnJCGUgQ2-neiYpFS5-GC0jwhvZ686QikBGpnHV8kZURp6FvaRi52ztY_uyydYM3TiLVacmZXwbSNrW-aHGyvV3bbff6Nx_F__uYaXGnwKBvVCnQdzvniBlwat2ngbsL7d8aRBT7-8p2C8Fm6ePJq_lSwyZIIaxniRzatU-mUnxZ1giZWBjb6sChKNj7--iNllLoYJUusu1pi67D428-m-BbszaZvx_OoScoQOSljhTZbmL6yNg554Mr3pecBF7ggDZdGhoFLEhUHpXM6YkTvd2C0NkPvtUGTLIOQm7BRlIW_DcxbZZWIcznUQTkeEiutTpxHjEnsyaEHUTsmmWsYyylxxmFWcy2LjHot63qtB487-aOaq-OPklvtEGfNnP2YIdBB505qyXvwsHuNvU1HKKbw5Zpk0CElVrJ-D0Q1nn_5UjZKd6fd051_qfQALr6ezLIXu-nzu3CZium-ioi3YGO1XPt7CIpW9n6l978AH68C9g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vacancy-Rich+Ni%28OH%292+Drives+the+Electrooxidation+of+Amino+C-N+Bonds+to+Nitrile+C%E2%89%A1N+Bonds&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wang%2C+Wenbin&rft.au=Wang%2C+Yutang&rft.au=Yang%2C+Ruoou&rft.au=Wen%2C+Qunlei&rft.date=2020-09-21&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=59&rft.issue=39&rft.spage=16974&rft_id=info:doi/10.1002%2Fanie.202005574&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon