GraphDTA: predicting drug–target binding affinity with graph neural networks

Abstract Summary The development of new drugs is costly, time consuming and often accompanied with safety issues. Drug repurposing can avoid the expensive and lengthy process of drug development by finding new uses for already approved drugs. In order to repurpose drugs effectively, it is useful to...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics Vol. 37; no. 8; pp. 1140 - 1147
Main Authors Nguyen, Thin, Le, Hang, Quinn, Thomas P, Nguyen, Tri, Le, Thuc Duy, Venkatesh, Svetha
Format Journal Article
LanguageEnglish
Published Oxford University Press 23.05.2021
Online AccessGet full text

Cover

Loading…
Abstract Abstract Summary The development of new drugs is costly, time consuming and often accompanied with safety issues. Drug repurposing can avoid the expensive and lengthy process of drug development by finding new uses for already approved drugs. In order to repurpose drugs effectively, it is useful to know which proteins are targeted by which drugs. Computational models that estimate the interaction strength of new drug–target pairs have the potential to expedite drug repurposing. Several models have been proposed for this task. However, these models represent the drugs as strings, which is not a natural way to represent molecules. We propose a new model called GraphDTA that represents drugs as graphs and uses graph neural networks to predict drug–target affinity. We show that graph neural networks not only predict drug–target affinity better than non-deep learning models, but also outperform competing deep learning methods. Our results confirm that deep learning models are appropriate for drug–target binding affinity prediction, and that representing drugs as graphs can lead to further improvements. Availability of implementation The proposed models are implemented in Python. Related data, pre-trained models and source code are publicly available at https://github.com/thinng/GraphDTA. All scripts and data needed to reproduce the post hoc statistical analysis are available from https://doi.org/10.5281/zenodo.3603523. Supplementary information Supplementary data are available at Bioinformatics online.
AbstractList Abstract Summary The development of new drugs is costly, time consuming and often accompanied with safety issues. Drug repurposing can avoid the expensive and lengthy process of drug development by finding new uses for already approved drugs. In order to repurpose drugs effectively, it is useful to know which proteins are targeted by which drugs. Computational models that estimate the interaction strength of new drug–target pairs have the potential to expedite drug repurposing. Several models have been proposed for this task. However, these models represent the drugs as strings, which is not a natural way to represent molecules. We propose a new model called GraphDTA that represents drugs as graphs and uses graph neural networks to predict drug–target affinity. We show that graph neural networks not only predict drug–target affinity better than non-deep learning models, but also outperform competing deep learning methods. Our results confirm that deep learning models are appropriate for drug–target binding affinity prediction, and that representing drugs as graphs can lead to further improvements. Availability of implementation The proposed models are implemented in Python. Related data, pre-trained models and source code are publicly available at https://github.com/thinng/GraphDTA. All scripts and data needed to reproduce the post hoc statistical analysis are available from https://doi.org/10.5281/zenodo.3603523. Supplementary information Supplementary data are available at Bioinformatics online.
The development of new drugs is costly, time consuming and often accompanied with safety issues. Drug repurposing can avoid the expensive and lengthy process of drug development by finding new uses for already approved drugs. In order to repurpose drugs effectively, it is useful to know which proteins are targeted by which drugs. Computational models that estimate the interaction strength of new drug-target pairs have the potential to expedite drug repurposing. Several models have been proposed for this task. However, these models represent the drugs as strings, which is not a natural way to represent molecules. We propose a new model called GraphDTA that represents drugs as graphs and uses graph neural networks to predict drug-target affinity. We show that graph neural networks not only predict drug-target affinity better than non-deep learning models, but also outperform competing deep learning methods. Our results confirm that deep learning models are appropriate for drug-target binding affinity prediction, and that representing drugs as graphs can lead to further improvements.SUMMARYThe development of new drugs is costly, time consuming and often accompanied with safety issues. Drug repurposing can avoid the expensive and lengthy process of drug development by finding new uses for already approved drugs. In order to repurpose drugs effectively, it is useful to know which proteins are targeted by which drugs. Computational models that estimate the interaction strength of new drug-target pairs have the potential to expedite drug repurposing. Several models have been proposed for this task. However, these models represent the drugs as strings, which is not a natural way to represent molecules. We propose a new model called GraphDTA that represents drugs as graphs and uses graph neural networks to predict drug-target affinity. We show that graph neural networks not only predict drug-target affinity better than non-deep learning models, but also outperform competing deep learning methods. Our results confirm that deep learning models are appropriate for drug-target binding affinity prediction, and that representing drugs as graphs can lead to further improvements.The proposed models are implemented in Python. Related data, pre-trained models and source code are publicly available at https://github.com/thinng/GraphDTA. All scripts and data needed to reproduce the post hoc statistical analysis are available from https://doi.org/10.5281/zenodo.3603523.AVAILABILITY OF IMPLEMENTATIONThe proposed models are implemented in Python. Related data, pre-trained models and source code are publicly available at https://github.com/thinng/GraphDTA. All scripts and data needed to reproduce the post hoc statistical analysis are available from https://doi.org/10.5281/zenodo.3603523.Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online.
Author Nguyen, Thin
Quinn, Thomas P
Le, Hang
Le, Thuc Duy
Nguyen, Tri
Venkatesh, Svetha
Author_xml – sequence: 1
  givenname: Thin
  surname: Nguyen
  fullname: Nguyen, Thin
  email: thin.nguyen@deakin.edu.au
  organization: Applied Artificial Intelligence Institute, Deakin University, Geelong, VIC, 3216, Australia
– sequence: 2
  givenname: Hang
  surname: Le
  fullname: Le, Hang
  organization: Faculty of Information Technology, Nha Trang University, Nha Trang, Khanh Hoa, Viet Nam
– sequence: 3
  givenname: Thomas P
  orcidid: 0000-0003-0286-6329
  surname: Quinn
  fullname: Quinn, Thomas P
  organization: Applied Artificial Intelligence Institute, Deakin University, Geelong, VIC, 3216, Australia
– sequence: 4
  givenname: Tri
  surname: Nguyen
  fullname: Nguyen, Tri
  email: thin.nguyen@deakin.edu.au
  organization: Applied Artificial Intelligence Institute, Deakin University, Geelong, VIC, 3216, Australia
– sequence: 5
  givenname: Thuc Duy
  orcidid: 0000-0002-9732-4313
  surname: Le
  fullname: Le, Thuc Duy
  organization: School of Information Technology and Mathematical Sciences, University of South Australia, Adelaide, SA, 5095, Australia
– sequence: 6
  givenname: Svetha
  surname: Venkatesh
  fullname: Venkatesh, Svetha
  organization: Applied Artificial Intelligence Institute, Deakin University, Geelong, VIC, 3216, Australia
BookMark eNqNkL1OwzAURi1UJNrCK6CMLKF2bOcHsVQFClIFS_fIduzUkNrBdlR14x14Q56EVOkCC0z36uo7n3TPBIyMNRKASwSvESzwjGurjbJuy4IWfsYDY0WCTsAYkRTGCaTFqN9xmsUkh_gMTLx_hZAiQsgYPC8dazd36_lN1DpZaRG0qaPKdfXXx2dgrpYh4tpUhytTShsd9tFOh01UH8DIyM6xph9hZ92bPwenijVeXhznFKwf7teLx3j1snxazFexwBiGWAmZk0JglauMEwoFJirDnMusSlIOUSJwmtIq6f9TjBDEEZEZk5DlRUETiqfgaqhtnX3vpA_lVnshm4YZaTtfJoTSnMC-o4_eDlHhrPdOqlLo0JuyJjimmxLB8mCx_GmxPFrs8fQX3jq9ZW7_N4gG0Hbtf5lvyR-U2A
CitedBy_id crossref_primary_10_1039_D3CP03651K
crossref_primary_10_3390_ijms23158453
crossref_primary_10_1016_j_patcog_2025_111463
crossref_primary_10_1109_TCBB_2022_3144008
crossref_primary_10_3389_fgene_2024_1452339
crossref_primary_10_1007_s13755_024_00300_y
crossref_primary_10_1016_j_heliyon_2025_e42222
crossref_primary_10_1039_D1SC05180F
crossref_primary_10_1021_acs_jcim_4c01554
crossref_primary_10_3390_ijms25147982
crossref_primary_10_1021_acs_jcim_4c00584
crossref_primary_10_1038_s41573_023_00774_7
crossref_primary_10_1038_s41598_023_27995_5
crossref_primary_10_1016_j_fmre_2024_02_011
crossref_primary_10_1093_bib_bbac578
crossref_primary_10_2174_1574893618666230707123817
crossref_primary_10_1016_j_neunet_2024_107068
crossref_primary_10_1109_TCBB_2022_3190266
crossref_primary_10_1016_j_compbiomed_2024_108435
crossref_primary_10_7717_peerj_13163
crossref_primary_10_1016_j_cmpb_2023_108003
crossref_primary_10_1109_JBHI_2024_3354953
crossref_primary_10_1109_JBHI_2023_3334239
crossref_primary_10_1093_bib_bbac446
crossref_primary_10_1016_j_eswa_2023_120754
crossref_primary_10_1016_j_ailsci_2022_100037
crossref_primary_10_1016_j_artmed_2025_103067
crossref_primary_10_1021_acs_jcim_2c00060
crossref_primary_10_1186_s13321_021_00574_4
crossref_primary_10_3389_fgene_2021_690049
crossref_primary_10_1088_2632_2153_ad3ee4
crossref_primary_10_3390_molecules29010230
crossref_primary_10_1093_bib_bbad451
crossref_primary_10_1021_acs_jcim_4c01893
crossref_primary_10_3389_fbinf_2022_885983
crossref_primary_10_1186_s13321_023_00731_x
crossref_primary_10_14778_3681954_3681976
crossref_primary_10_1021_acs_jcim_4c01528
crossref_primary_10_2174_1574893618666230825121841
crossref_primary_10_1109_JBHI_2024_3383245
crossref_primary_10_1038_s42256_023_00785_4
crossref_primary_10_1016_j_isci_2023_108285
crossref_primary_10_1109_TCSS_2023_3312395
crossref_primary_10_1093_bib_bbae654
crossref_primary_10_1016_j_compbiomed_2024_108699
crossref_primary_10_3390_ijms25147753
crossref_primary_10_1093_bib_bbac231
crossref_primary_10_1016_j_compbiomed_2024_108339
crossref_primary_10_1016_j_heliyon_2025_e42476
crossref_primary_10_1016_j_jhip_2024_12_002
crossref_primary_10_1038_s42256_024_00847_1
crossref_primary_10_1016_j_compbiolchem_2024_108326
crossref_primary_10_1093_bib_bbac226
crossref_primary_10_1093_bib_bbac468
crossref_primary_10_1016_j_ymeth_2024_02_008
crossref_primary_10_1016_j_neunet_2023_12_037
crossref_primary_10_1016_j_compbiomed_2023_107199
crossref_primary_10_1039_D3RA03796G
crossref_primary_10_1007_s11030_024_11044_y
crossref_primary_10_1109_TCBB_2021_3084397
crossref_primary_10_1109_JBHI_2024_3350666
crossref_primary_10_1093_bioinformatics_btac731
crossref_primary_10_3389_fgene_2022_1032779
crossref_primary_10_1002_jcc_27388
crossref_primary_10_1016_j_compbiolchem_2024_108137
crossref_primary_10_1016_j_sbi_2025_103017
crossref_primary_10_1093_bib_bbac533
crossref_primary_10_1016_j_isci_2022_105892
crossref_primary_10_1186_s13040_024_00419_4
crossref_primary_10_1016_j_compbiolchem_2025_108416
crossref_primary_10_1021_acs_jcim_2c01057
crossref_primary_10_1038_s42003_023_05133_1
crossref_primary_10_1109_JBHI_2024_3497591
crossref_primary_10_1016_j_compbiomed_2024_108239
crossref_primary_10_1021_acs_jcim_4c00310
crossref_primary_10_1103_PhysRevResearch_6_023006
crossref_primary_10_1002_jcc_27499
crossref_primary_10_1007_s10489_023_04977_8
crossref_primary_10_1093_bib_bbac403
crossref_primary_10_1007_s12539_024_00609_y
crossref_primary_10_1371_journal_pcbi_1012100
crossref_primary_10_3390_pharmaceutics15020675
crossref_primary_10_1039_D2RA05566J
crossref_primary_10_1186_s13321_023_00766_0
crossref_primary_10_1021_acscentsci_4c00656
crossref_primary_10_1007_s10489_024_05936_7
crossref_primary_10_1093_bioinformatics_btab548
crossref_primary_10_3390_cells13090771
crossref_primary_10_1016_j_ymeth_2024_01_017
crossref_primary_10_1016_j_compbiomed_2024_108127
crossref_primary_10_1016_j_ymeth_2023_08_006
crossref_primary_10_1038_s41598_023_30026_y
crossref_primary_10_1021_acs_jcim_4c00403
crossref_primary_10_1016_j_csbj_2023_11_009
crossref_primary_10_1093_bib_bbac434
crossref_primary_10_1016_j_neunet_2024_107088
crossref_primary_10_1186_s12859_024_05746_1
crossref_primary_10_1093_bioinformatics_btad615
crossref_primary_10_1016_j_compbiomed_2024_108376
crossref_primary_10_1371_journal_pone_0291223
crossref_primary_10_1016_j_drudis_2024_104067
crossref_primary_10_1093_bib_bbab340
crossref_primary_10_1186_s12859_023_05447_1
crossref_primary_10_1093_bib_bbad516
crossref_primary_10_1016_j_asoc_2024_111898
crossref_primary_10_1371_journal_pcbi_1011036
crossref_primary_10_1038_s41598_025_86918_8
crossref_primary_10_3390_ijms241814142
crossref_primary_10_1021_acs_est_4c10081
crossref_primary_10_1109_JBHI_2024_3500027
crossref_primary_10_1007_s12539_025_00692_9
crossref_primary_10_1186_s12859_023_05618_0
crossref_primary_10_1016_j_prmedi_2024_10_002
crossref_primary_10_1002_aisy_202300546
crossref_primary_10_3390_app14020785
crossref_primary_10_3390_math11173691
crossref_primary_10_1186_s12920_024_02073_5
crossref_primary_10_3389_fphar_2022_1003480
crossref_primary_10_1109_JBHI_2024_3386815
crossref_primary_10_1109_TCBB_2024_3402661
crossref_primary_10_1016_j_future_2025_107819
crossref_primary_10_1016_j_artmed_2024_102983
crossref_primary_10_1080_10643389_2024_2320753
crossref_primary_10_1016_j_drudis_2024_103946
crossref_primary_10_1007_s12519_024_00834_x
crossref_primary_10_1016_j_sbi_2023_102771
crossref_primary_10_1029_2023WR036741
crossref_primary_10_1016_j_ijbiomac_2024_136678
crossref_primary_10_1016_j_asoc_2024_111875
crossref_primary_10_1021_acs_jmedchem_4c02668
crossref_primary_10_1016_j_ejmech_2023_115199
crossref_primary_10_1186_s12859_022_05107_w
crossref_primary_10_1016_j_engappai_2025_110239
crossref_primary_10_1021_acs_jcim_4c00165
crossref_primary_10_3390_ijms25105126
crossref_primary_10_1016_j_apsb_2024_03_002
crossref_primary_10_1007_s11030_024_11065_7
crossref_primary_10_1186_s13321_024_00808_1
crossref_primary_10_1021_acs_jcim_4c00160
crossref_primary_10_1109_TCBB_2024_3451985
crossref_primary_10_1093_bioinformatics_btad524
crossref_primary_10_1021_acs_jcim_4c01255
crossref_primary_10_1021_acs_jctc_4c01391
crossref_primary_10_7717_peerj_cs_2622
crossref_primary_10_1016_j_bmc_2022_117003
crossref_primary_10_1186_s13321_023_00795_9
crossref_primary_10_1186_s12859_022_05119_6
crossref_primary_10_1021_acs_jcim_3c01280
crossref_primary_10_1186_s12859_024_05783_w
crossref_primary_10_1021_acs_jcim_4c00055
crossref_primary_10_1093_bioinformatics_btad778
crossref_primary_10_1021_acs_jcim_4c02357
crossref_primary_10_3390_math12152372
crossref_primary_10_1021_acs_jcim_4c00171
crossref_primary_10_1002_advs_202405404
crossref_primary_10_1016_j_knosys_2021_107835
crossref_primary_10_1186_s12915_024_02012_x
crossref_primary_10_1002_wcms_1716
crossref_primary_10_1007_s00521_024_10814_x
crossref_primary_10_1002_qub2_39
crossref_primary_10_1093_bioinformatics_btad411
crossref_primary_10_1016_j_compbiomed_2023_106946
crossref_primary_10_1007_s00530_024_01650_z
crossref_primary_10_1093_bib_bbac628
crossref_primary_10_3390_biomedicines13020262
crossref_primary_10_1002_jcc_26786
crossref_primary_10_1186_s12859_022_05073_3
crossref_primary_10_1016_j_inffus_2023_101909
crossref_primary_10_1002_jcc_27518
crossref_primary_10_1016_j_compbiomed_2024_108181
crossref_primary_10_1038_s41467_021_27137_3
crossref_primary_10_1007_s13755_024_00287_6
crossref_primary_10_1371_journal_pone_0266435
crossref_primary_10_1093_biomethods_bpae043
crossref_primary_10_1186_s12859_023_05369_y
crossref_primary_10_1186_s12864_023_09664_z
crossref_primary_10_1038_s42256_023_00751_0
crossref_primary_10_1186_s12859_024_05684_y
crossref_primary_10_1089_cmb_2023_0452
crossref_primary_10_1016_j_isci_2024_109509
crossref_primary_10_1016_j_csbj_2024_04_030
crossref_primary_10_1038_s41392_022_00994_0
crossref_primary_10_26599_BDMA_2022_9020005
crossref_primary_10_1109_JBHI_2021_3121798
crossref_primary_10_1109_TCBB_2024_3404889
crossref_primary_10_1016_j_ailsci_2024_100100
crossref_primary_10_1007_s10462_023_10669_z
crossref_primary_10_1016_j_ailsci_2024_100115
crossref_primary_10_1093_bfgp_elab036
crossref_primary_10_1089_cmb_2023_0208
crossref_primary_10_3389_frai_2024_1408843
crossref_primary_10_1021_acs_chemrestox_3c00352
crossref_primary_10_1021_acs_jcim_3c00045
crossref_primary_10_1371_journal_pone_0302281
crossref_primary_10_1038_s41746_025_01464_x
crossref_primary_10_1093_bioinformatics_btac100
crossref_primary_10_1093_bioinformatics_btac222
crossref_primary_10_1109_TKDE_2023_3314502
crossref_primary_10_1021_acs_jcim_4c02332
crossref_primary_10_1016_j_compbiomed_2022_105214
crossref_primary_10_1021_acs_jpclett_2c03906
crossref_primary_10_1038_s41467_025_57536_9
crossref_primary_10_3389_fmolb_2022_963912
crossref_primary_10_1093_bioinformatics_btad560
crossref_primary_10_1142_S0219720023500300
crossref_primary_10_1002_jcc_27538
crossref_primary_10_1093_bioinformatics_btad207
crossref_primary_10_1016_j_csbj_2024_11_050
crossref_primary_10_2217_fmai_2023_0019
crossref_primary_10_1016_j_ymeth_2024_08_008
crossref_primary_10_3390_ijms231911136
crossref_primary_10_3390_ijms23062966
crossref_primary_10_1016_j_csbj_2024_10_004
crossref_primary_10_1021_acs_jcim_0c01285
crossref_primary_10_1093_bib_bbab506
crossref_primary_10_1080_07391102_2025_2475229
crossref_primary_10_1021_acsomega_4c08048
crossref_primary_10_2174_0113894501330963240905083020
crossref_primary_10_2174_0113816128282837240130102817
crossref_primary_10_1093_bioinformatics_btae308
crossref_primary_10_1109_JBHI_2023_3240305
crossref_primary_10_1186_s12859_024_05671_3
crossref_primary_10_1186_s12864_022_08648_9
crossref_primary_10_1016_j_eswa_2024_123821
crossref_primary_10_1021_acs_jcim_3c00269
crossref_primary_10_1093_bioinformatics_btac485
crossref_primary_10_1093_bioinformatics_btad456
crossref_primary_10_1186_s13321_024_00938_6
crossref_primary_10_1039_D4DD00162A
crossref_primary_10_3390_pharmaceutics14030625
crossref_primary_10_1021_acs_jpclett_1c00867
crossref_primary_10_1254_fpj_22072
crossref_primary_10_1186_s12864_025_11234_4
crossref_primary_10_1007_s11063_021_10617_4
crossref_primary_10_1109_TETC_2023_3238963
crossref_primary_10_1587_transinf_2022DLP0023
crossref_primary_10_1038_s41598_024_57879_1
crossref_primary_10_3390_molecules29122912
crossref_primary_10_3390_biom15030405
crossref_primary_10_1016_j_eswa_2024_123730
crossref_primary_10_1093_bioinformatics_btae319
crossref_primary_10_3233_IDT_230145
crossref_primary_10_1093_bioinformatics_btad465
crossref_primary_10_1016_j_isci_2023_107646
crossref_primary_10_1093_bioinformatics_btac496
crossref_primary_10_1093_bioinformatics_btac377
crossref_primary_10_1109_TCBB_2023_3262821
crossref_primary_10_1038_s41467_025_57828_0
crossref_primary_10_1093_bioinformatics_btae678
crossref_primary_10_1371_journal_pone_0307146
crossref_primary_10_1109_TCBB_2024_3468434
crossref_primary_10_1016_j_ipha_2025_01_001
crossref_primary_10_1021_acs_jcim_2c00960
crossref_primary_10_1049_cit2_12194
crossref_primary_10_2174_1574893618666230912141426
crossref_primary_10_1007_s12539_023_00582_y
crossref_primary_10_1186_s12864_024_10326_x
crossref_primary_10_3390_biomedinformatics4010020
crossref_primary_10_1155_2023_1066057
crossref_primary_10_1186_s12859_022_04905_6
crossref_primary_10_1039_D1SC02087K
crossref_primary_10_1063_1674_0068_cjcp2312128
crossref_primary_10_1016_j_eswa_2023_121274
crossref_primary_10_2144_fsoa_2023_0318
crossref_primary_10_1021_acs_jcim_3c01211
crossref_primary_10_1093_bioinformatics_btae563
crossref_primary_10_12677_hjcb_2024_141001
crossref_primary_10_1093_bioinformatics_btad355
crossref_primary_10_1007_s13721_021_00351_1
crossref_primary_10_1016_j_jmb_2024_168843
crossref_primary_10_1007_s12539_024_00644_9
crossref_primary_10_1007_s41870_025_02404_4
crossref_primary_10_1002_wcms_1653
crossref_primary_10_1016_j_engappai_2024_109472
crossref_primary_10_1063_5_0097589
crossref_primary_10_1093_bioinformatics_btae693
crossref_primary_10_1021_acs_jmedchem_5c00271
crossref_primary_10_1186_s12859_024_05753_2
crossref_primary_10_1063_4_0000271
crossref_primary_10_3390_ijms23073780
crossref_primary_10_3390_life15030436
crossref_primary_10_1021_acs_est_4c00458
crossref_primary_10_1093_bioinformatics_btac155
crossref_primary_10_1016_j_crmeth_2024_100865
crossref_primary_10_1007_s12539_025_00697_4
crossref_primary_10_1021_acs_jcim_3c01208
crossref_primary_10_1002_jcc_26831
crossref_primary_10_1093_bioinformatics_btae581
crossref_primary_10_1109_ACCESS_2022_3209285
crossref_primary_10_1016_j_compbiomed_2023_107621
crossref_primary_10_1109_TCBB_2022_3204188
crossref_primary_10_1515_mr_2023_0030
crossref_primary_10_3389_fphar_2025_1553743
crossref_primary_10_1021_acs_jmedchem_2c00487
crossref_primary_10_1186_s12859_023_05460_4
crossref_primary_10_3389_frai_2024_1372161
crossref_primary_10_3390_s23218936
crossref_primary_10_1016_j_patcog_2024_110887
crossref_primary_10_1093_bioinformatics_btac048
crossref_primary_10_1093_bioinformatics_btae346
crossref_primary_10_1109_TCBB_2021_3121275
crossref_primary_10_1109_TCBB_2022_3205282
crossref_primary_10_1016_j_compbiomed_2023_107512
crossref_primary_10_1002_bies_202400155
crossref_primary_10_1016_j_ymeth_2023_11_005
crossref_primary_10_1093_bioinformatics_btae594
crossref_primary_10_1109_TCBB_2023_3237863
crossref_primary_10_1021_acs_jctc_4c01438
crossref_primary_10_1016_j_ailsci_2023_100079
crossref_primary_10_1038_s42256_024_00876_w
crossref_primary_10_3390_molecules30061262
crossref_primary_10_1360_SSV_2023_0297
crossref_primary_10_1038_s42256_022_00605_1
crossref_primary_10_3390_app15062901
crossref_primary_10_1093_bib_bbae281
crossref_primary_10_1186_s12859_023_05496_6
crossref_primary_10_1093_bioinformatics_btae240
crossref_primary_10_1016_j_aichem_2023_100035
crossref_primary_10_1016_j_ins_2024_121135
crossref_primary_10_1186_s13321_024_00862_9
crossref_primary_10_2174_1570163820666230901160043
crossref_primary_10_1002_wcms_1581
crossref_primary_10_1021_acsomega_4c02308
crossref_primary_10_1063_1674_0068_cjcp2209136
crossref_primary_10_3389_fgene_2021_638330
crossref_primary_10_1021_acs_jcim_3c01417
crossref_primary_10_2174_1574893618666230816090548
crossref_primary_10_1016_j_microc_2024_111444
crossref_primary_10_1016_j_cels_2023_05_005
crossref_primary_10_1038_s42256_023_00756_9
crossref_primary_10_1109_TCBB_2022_3172340
crossref_primary_10_1021_acs_jcim_4c01175
crossref_primary_10_1016_j_bspc_2024_106110
crossref_primary_10_1021_acs_jpclett_4c01509
crossref_primary_10_1021_acsomega_4c05607
crossref_primary_10_1016_j_eswa_2024_124647
crossref_primary_10_1093_bioinformatics_btae496
crossref_primary_10_1093_bioinformatics_btae135
crossref_primary_10_1016_j_ejps_2024_106938
crossref_primary_10_1186_s12859_023_05497_5
crossref_primary_10_2174_0115734099266731231115065030
crossref_primary_10_3390_sym13091570
crossref_primary_10_1109_TNNLS_2023_3314928
crossref_primary_10_1016_j_csbj_2023_01_036
crossref_primary_10_1093_bib_bbaf024
crossref_primary_10_1016_j_eswa_2024_124873
crossref_primary_10_1109_TPAMI_2021_3120428
crossref_primary_10_1016_j_ymeth_2024_12_014
crossref_primary_10_1186_s12859_022_04767_y
crossref_primary_10_1016_j_ymeth_2022_02_007
crossref_primary_10_1021_acs_jcim_4c01061
crossref_primary_10_1093_bioinformatics_btad056
crossref_primary_10_1093_bioinformatics_btae386
crossref_primary_10_1002_cpz1_302
crossref_primary_10_1186_s12859_024_05698_6
crossref_primary_10_1093_bfgp_elad037
crossref_primary_10_1371_journal_pone_0315718
crossref_primary_10_1016_j_imu_2024_101604
crossref_primary_10_1186_s12859_023_05485_9
crossref_primary_10_1021_acs_est_4c02421
crossref_primary_10_1002_wcms_1597
crossref_primary_10_2174_0115748936285519240110070209
crossref_primary_10_1093_bioinformatics_btae271
crossref_primary_10_1109_TCBB_2021_3096960
crossref_primary_10_3934_mbe_2023012
crossref_primary_10_1186_s13321_024_00852_x
crossref_primary_10_1109_JBHI_2023_3315073
crossref_primary_10_1093_bib_bbad393
crossref_primary_10_1039_D3RA00281K
crossref_primary_10_1109_TNB_2024_3441590
crossref_primary_10_3390_biom12091246
crossref_primary_10_1016_j_csbj_2022_06_004
crossref_primary_10_1007_s41060_022_00371_8
crossref_primary_10_1142_S2737416524500613
crossref_primary_10_1093_bioinformatics_btaf002
crossref_primary_10_1016_j_str_2024_02_004
crossref_primary_10_1093_bib_bbad396
crossref_primary_10_3389_fphar_2024_1375522
crossref_primary_10_1021_acsomega_3c00085
crossref_primary_10_1016_j_compbiolchem_2024_108058
crossref_primary_10_1016_j_knosys_2023_111195
crossref_primary_10_1021_acs_jcim_4c01828
crossref_primary_10_2174_0115748936280392240219054047
crossref_primary_10_1007_s13721_023_00409_2
crossref_primary_10_1021_acs_jpcb_2c07592
crossref_primary_10_1093_bib_bbae238
crossref_primary_10_1142_S0219720024500161
crossref_primary_10_1016_j_ejmech_2023_115500
crossref_primary_10_3390_biomedicines11010067
crossref_primary_10_1021_acsomega_2c06781
crossref_primary_10_1016_j_eswa_2024_125740
crossref_primary_10_1016_j_ymeth_2024_11_010
crossref_primary_10_1093_bib_bbad145
crossref_primary_10_1093_bib_bbad386
crossref_primary_10_1002_jcc_27292
crossref_primary_10_1016_j_ins_2022_09_043
crossref_primary_10_3390_molecules28124691
crossref_primary_10_1038_s41401_025_01513_x
crossref_primary_10_1093_bioinformatics_btae176
crossref_primary_10_1038_s41467_023_43597_1
crossref_primary_10_1038_s41598_024_70893_7
crossref_primary_10_3390_ijms252111818
crossref_primary_10_1016_j_xcrm_2022_100875
crossref_primary_10_1016_j_ymeth_2022_07_009
crossref_primary_10_1109_TCBB_2022_3170365
crossref_primary_10_1007_s00894_023_05492_w
crossref_primary_10_1007_s10462_022_10321_2
crossref_primary_10_2139_ssrn_4161090
crossref_primary_10_3389_fgene_2025_1527300
crossref_primary_10_2174_1574893617666220513114917
crossref_primary_10_1021_acs_jcim_3c01841
crossref_primary_10_1016_j_neucom_2023_127079
crossref_primary_10_1109_TCBB_2021_3094217
crossref_primary_10_1021_acs_jcim_4c00957
crossref_primary_10_1186_s13065_024_01219_x
crossref_primary_10_1007_s12559_024_10384_z
crossref_primary_10_1093_bib_bbac073
crossref_primary_10_1371_journal_pone_0276609
crossref_primary_10_1093_bib_bbad161
crossref_primary_10_1016_j_chemolab_2021_104405
crossref_primary_10_1038_s41598_023_46382_8
crossref_primary_10_1021_acs_jcim_3c00866
crossref_primary_10_1097_PRS_0000000000010350
crossref_primary_10_1109_TCBB_2022_3206888
crossref_primary_10_1016_j_slasd_2023_10_002
crossref_primary_10_1038_s41598_022_16493_9
crossref_primary_10_1016_j_compbiolchem_2022_107719
crossref_primary_10_3390_ijms25158239
crossref_primary_10_1093_bib_bbac260
crossref_primary_10_1093_bioadv_vbad116
crossref_primary_10_1080_17460441_2024_2367014
crossref_primary_10_1002_asia_202200269
crossref_primary_10_1038_s42256_024_00856_0
crossref_primary_10_1021_acs_jcim_4c01907
crossref_primary_10_1097_CM9_0000000000003387
crossref_primary_10_1016_j_compbiolchem_2023_107968
crossref_primary_10_1109_TPAMI_2024_3400515
crossref_primary_10_1186_s12859_023_05503_w
crossref_primary_10_3390_molecules28248005
crossref_primary_10_1016_j_ymeth_2023_02_007
crossref_primary_10_34133_hds_0113
crossref_primary_10_1002_minf_202400044
crossref_primary_10_1093_bib_bbab165
crossref_primary_10_1109_TCBB_2021_3054738
crossref_primary_10_1016_j_ymeth_2024_04_010
crossref_primary_10_1093_bib_bbad462
crossref_primary_10_2174_0115748936285690240101041704
crossref_primary_10_1016_j_compbiomed_2023_107136
crossref_primary_10_1016_j_neunet_2023_11_018
crossref_primary_10_1038_s41598_023_42952_y
crossref_primary_10_1186_s12859_024_05984_3
crossref_primary_10_1016_j_compbiomed_2023_107372
crossref_primary_10_1038_s41467_023_39856_w
crossref_primary_10_1093_bib_bbad371
crossref_primary_10_7717_peerj_16625
crossref_primary_10_1016_j_inffus_2024_102894
crossref_primary_10_1093_bib_bbae103
crossref_primary_10_1007_s11030_024_11100_7
crossref_primary_10_1016_j_drudis_2022_02_023
crossref_primary_10_2174_0115748936276510231123121404
crossref_primary_10_1016_j_phrs_2024_107381
crossref_primary_10_1093_bib_bbad136
crossref_primary_10_1016_j_commatsci_2023_112619
crossref_primary_10_1002_cbic_202200776
crossref_primary_10_1007_s13042_023_02058_3
crossref_primary_10_1016_j_ejmech_2025_117269
crossref_primary_10_1109_JBHI_2024_3402529
crossref_primary_10_3390_ijms24098326
crossref_primary_10_1093_bib_bbae333
crossref_primary_10_1016_j_future_2024_07_012
crossref_primary_10_1186_s13321_023_00691_2
crossref_primary_10_1016_j_future_2024_07_014
crossref_primary_10_1016_j_compbiomed_2025_109927
crossref_primary_10_1093_bib_bbad484
crossref_primary_10_1093_bib_bbac272
crossref_primary_10_1038_s42004_024_01204_4
crossref_primary_10_1021_acs_jctc_4c00663
crossref_primary_10_1093_bib_bbac148
crossref_primary_10_1093_bib_bbac269
Cites_doi 10.1371/journal.pcbi.1005678
10.1038/nrd1468
10.1186/s13321-017-0209-z
10.1039/C8SC00148K
10.1038/nrd773
10.1021/jm5006429
10.1186/s12859-018-2523-5
10.1093/bioinformatics/bty593
10.1093/bioinformatics/bty277
10.1021/ci00057a005
10.1038/nbt.1990
10.1093/nar/gkr320
10.1093/bib/bbaa205
10.1021/ci400709d
10.1021/ci100369f
10.1126/science.1075762
10.1093/nar/gkp885
10.1038/nm.3595
10.1109/TKDE.2005.127
10.1007/s10822-016-9938-8
10.1038/nrd2593
10.1038/nm.4306
10.1126/science.1095920
10.3390/ijms20143389
10.1101/2020.03.22.002386
10.1093/bib/bbz042
10.1021/ci034233w
10.1186/s12864-020-6652-7
10.1007/s12539-019-00327-w
10.1016/j.copbio.2011.11.010
10.1021/acs.jcim.9b00628
10.1038/s41598-018-25440-6
ContentType Journal Article
Copyright The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2020
The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2020
– notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DBID AAYXX
CITATION
7X8
DOI 10.1093/bioinformatics/btaa921
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1460-2059
1367-4811
EndPage 1147
ExternalDocumentID 10_1093_bioinformatics_btaa921
10.1093/bioinformatics/btaa921
GroupedDBID -~X
.2P
.I3
482
48X
53G
5GY
6.Y
AAIMJ
AAJKP
AAKPC
AAMVS
AAPQZ
AAPXW
AARHZ
AAVAP
ABEFU
ABNKS
ABPTD
ABSAR
ABSMQ
ABWST
ABXVV
ABZBJ
ACGFS
ACMRT
ACPQN
ACUFI
ACYTK
ADEYI
ADFTL
ADGZP
ADHKW
ADOCK
ADRIX
ADRTK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKPW
AEKSI
AELWJ
AEPUE
AETBJ
AFFNX
AFFZL
AFOFC
AFSHK
AFXEN
AGINJ
AGKRT
AGQXC
AI.
ALMA_UNASSIGNED_HOLDINGS
ALTZX
AQDSO
ARIXL
ASAOO
ATDFG
ATTQO
AXUDD
AYOIW
AZFZN
AZVOD
BCRHZ
BHONS
CXTWN
CZ4
DFGAJ
EE~
ELUNK
F5P
F9B
FEDTE
H5~
HAR
HVGLF
HW0
IOX
KOP
KSI
KSN
MBTAY
MVM
NGC
PB-
Q1.
Q5Y
QBD
RD5
RIG
ROL
ROX
ROZ
RXO
TCN
TLC
TN5
TOX
TR2
VH1
WH7
XJT
ZGI
~91
---
-E4
.DC
0R~
23N
2WC
4.4
5WA
70D
AAIJN
AAMDB
AAOGV
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABPQP
ABQLI
ACIWK
ACPRK
ACUXJ
ADBBV
ADEZT
ADGKP
ADHZD
ADMLS
ADPDF
ADRDM
ADVEK
AEMDU
AENEX
AENZO
AEWNT
AFGWE
AFIYH
AFRAH
AGKEF
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALUQC
AMNDL
APIBT
APWMN
ASPBG
AVWKF
BAWUL
BAYMD
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EMOBN
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
HZ~
J21
JXSIZ
KAQDR
KQ8
M-Z
MK~
ML0
N9A
NLBLG
NMDNZ
NOMLY
NU-
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
R44
RNS
RPM
RUSNO
RW1
SV3
TEORI
TJP
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~KM
7X8
ID FETCH-LOGICAL-c330t-fce849c3f8f7b450c34f73bbe7d26b012c3665d2109fa441b14e7ae0a8995253
IEDL.DBID TOX
ISSN 1367-4803
1367-4811
IngestDate Fri Jul 11 01:03:14 EDT 2025
Thu Apr 24 22:56:56 EDT 2025
Tue Jul 01 02:33:54 EDT 2025
Wed Aug 28 03:17:23 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c330t-fce849c3f8f7b450c34f73bbe7d26b012c3665d2109fa441b14e7ae0a8995253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0286-6329
0000-0002-9732-4313
PQID 2455840665
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2455840665
crossref_citationtrail_10_1093_bioinformatics_btaa921
crossref_primary_10_1093_bioinformatics_btaa921
oup_primary_10_1093_bioinformatics_btaa921
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210523
PublicationDateYYYYMMDD 2021-05-23
PublicationDate_xml – month: 05
  year: 2021
  text: 20210523
  day: 23
PublicationDecade 2020
PublicationTitle Bioinformatics
PublicationYear 2021
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Gordon (2023051612060429600_btaa921-B14) 2020
Torng (2023051612060429600_btaa921-B38) 2019; 59
Le (2023051612060429600_btaa921-B22) 2020
Kearnes (2023051612060429600_btaa921-B18) 2016; 30
Weininger (2023051612060429600_btaa921-B41) 1988; 28
Gao (2023051612060429600_btaa921-B13) 2018
Öztürk (2023051612060429600_btaa921-B29) 2018; 34
Davis (2023051612060429600_btaa921-B9) 2011; 29
Strittmatter (2023051612060429600_btaa921-B35) 2014; 20
Veličković (2023051612060429600_btaa921-B39) 2018
Stachel (2023051612060429600_btaa921-B34) 2014; 57
Landrum (2023051612060429600_btaa921-B21) 2006
Roses (2023051612060429600_btaa921-B32) 2008; 7
Mullard (2023051612060429600_btaa921-B27) 2014; 13
Ramsundar (2023051612060429600_btaa921-B31) 2019
Sun (2023051612060429600_btaa921-B36) 2020; 21
Noble (2023051612060429600_btaa921-B28) 2004; 303
Ashburn (2023051612060429600_btaa921-B1) 2004; 3
Hirohara (2023051612060429600_btaa921-B16) 2018; 19
Liu (2023051612060429600_btaa921-B24) 2019; 20
Chu (2023051612060429600_btaa921-B4) 2020
Chu (2023051612060429600_btaa921-B3) 2019
Backman (2023051612060429600_btaa921-B2) 2011; 39
Kinnings (2023051612060429600_btaa921-B19) 2011; 51
Mayr (2023051612060429600_btaa921-B26) 2018; 9
Corsello (2023051612060429600_btaa921-B8) 2017; 23
Cohen (2023051612060429600_btaa921-B7) 2002; 1
Kipf (2023051612060429600_btaa921-B20) 2017
Li (2023051612060429600_btaa921-B23) 2019; 11
Feng (2023051612060429600_btaa921-B11) 2018
Öztürk (2023051612060429600_btaa921-B30) 2019
Manning (2023051612060429600_btaa921-B25) 2002; 298
Iskar (2023051612060429600_btaa921-B17) 2012; 23
Wegner (2023051612060429600_btaa921-B40) 2004; 44
He (2023051612060429600_btaa921-B15) 2017; 9
Deshpande (2023051612060429600_btaa921-B10) 2005; 17
Sigrist (2023051612060429600_btaa921-B33) 2010; 38
Cichonska (2023051612060429600_btaa921-B5) 2017; 13
Xu (2023051612060429600_btaa921-B43) 2019
Cichonska (2023051612060429600_btaa921-B6) 2018; 34
Tang (2023051612060429600_btaa921-B37) 2014; 54
Gao (2023051612060429600_btaa921-B12) 2018
Woźniak (2023051612060429600_btaa921-B42) 2018; 8
References_xml – volume: 13
  start-page: e1005678
  year: 2017
  ident: 2023051612060429600_btaa921-B5
  article-title: Computational-experimental approach to drug–target interaction mapping: a case study on kinase inhibitors
  publication-title: PLoS Comput. Biol
  doi: 10.1371/journal.pcbi.1005678
– year: 2017
  ident: 2023051612060429600_btaa921-B20
– year: 2019
  ident: 2023051612060429600_btaa921-B43
– volume: 3
  start-page: 673
  year: 2004
  ident: 2023051612060429600_btaa921-B1
  article-title: Drug repositioning: identifying and developing new uses for existing drugs
  publication-title: Nat. Rev. Drug Disc
  doi: 10.1038/nrd1468
– volume: 9
  start-page: 24
  year: 2017
  ident: 2023051612060429600_btaa921-B15
  article-title: SimBoost: a read-across approach for predicting drug–target binding affinities using gradient boosting machines
  publication-title: J. Cheminf
  doi: 10.1186/s13321-017-0209-z
– volume: 9
  start-page: 5441
  year: 2018
  ident: 2023051612060429600_btaa921-B26
  article-title: Large-scale comparison of machine learning methods for drug target prediction on ChEMBL
  publication-title: Chem. Sci
  doi: 10.1039/C8SC00148K
– volume: 1
  start-page: 309
  year: 2002
  ident: 2023051612060429600_btaa921-B7
  article-title: Protein kinases—the major drug targets of the twenty-first century?
  publication-title: Nat. Rev. Drug Disc
  doi: 10.1038/nrd773
– volume-title: Deep Learning for the Life Sciences: Applying Deep Learning to Genomics, Microscopy, Drug Discovery, and More
  year: 2019
  ident: 2023051612060429600_btaa921-B31
– volume: 57
  start-page: 5800
  year: 2014
  ident: 2023051612060429600_btaa921-B34
  article-title: Maximizing diversity from a kinase screen: identification of novel and selective pan-Trk inhibitors for chronic pain
  publication-title: J. Med. Chem
  doi: 10.1021/jm5006429
– volume: 19
  start-page: 526
  year: 2018
  ident: 2023051612060429600_btaa921-B16
  article-title: Convolutional neural network based on SMILES representation of compounds for detecting chemical motif
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-018-2523-5
– volume: 34
  start-page: i821
  year: 2018
  ident: 2023051612060429600_btaa921-B29
  article-title: DeepDTA: deep drug–target binding affinity prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty593
– year: 2019
  ident: 2023051612060429600_btaa921-B30
– volume: 34
  start-page: i509
  year: 2018
  ident: 2023051612060429600_btaa921-B6
  article-title: Learning with multiple pairwise kernels for drug bioactivity prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty277
– volume: 28
  start-page: 31
  year: 1988
  ident: 2023051612060429600_btaa921-B41
  article-title: SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules
  publication-title: J. Chem. Inf. Comput. Sci
  doi: 10.1021/ci00057a005
– volume: 29
  start-page: 1046
  year: 2011
  ident: 2023051612060429600_btaa921-B9
  article-title: Comprehensive analysis of kinase inhibitor selectivity
  publication-title: Nat. Biotechnol
  doi: 10.1038/nbt.1990
– volume: 39
  start-page: W486
  year: 2011
  ident: 2023051612060429600_btaa921-B2
  article-title: ChemMine tools: an online service for analyzing and clustering small molecules
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr320
– year: 2019
  ident: 2023051612060429600_btaa921-B3
  article-title: DTI-CDF: a cascade deep forest model towards the prediction of drug-target interactions based on hybrid features
  publication-title: Brief. Bioinf
  doi: 10.1093/bib/bbaa205
– volume: 54
  start-page: 735
  year: 2014
  ident: 2023051612060429600_btaa921-B37
  article-title: Making sense of large-scale kinase inhibitor bioactivity data sets: a comparative and integrative analysis
  publication-title: J. Chem. Inf. Model
  doi: 10.1021/ci400709d
– volume: 51
  start-page: 408
  year: 2011
  ident: 2023051612060429600_btaa921-B19
  article-title: A machine learning-based method to improve docking scoring functions and its application to drug repurposing
  publication-title: J. Chem. Inf. Model
  doi: 10.1021/ci100369f
– volume: 298
  start-page: 1912
  year: 2002
  ident: 2023051612060429600_btaa921-B25
  article-title: The protein kinase complement of the human genome
  publication-title: Science
  doi: 10.1126/science.1075762
– volume: 38
  start-page: D161
  year: 2010
  ident: 2023051612060429600_btaa921-B33
  article-title: PROSITE, a protein domain database for functional characterization and annotation
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkp885
– volume: 20
  start-page: 590
  year: 2014
  ident: 2023051612060429600_btaa921-B35
  article-title: Overcoming drug development bottlenecks with repurposing: old drugs learn new tricks
  publication-title: Nat. Med
  doi: 10.1038/nm.3595
– volume: 17
  start-page: 1036
  year: 2005
  ident: 2023051612060429600_btaa921-B10
  article-title: Frequent substructure-based approaches for classifying chemical compounds
  publication-title: IEEE Trans. Knowl. Data Eng
  doi: 10.1109/TKDE.2005.127
– volume: 30
  start-page: 595
  year: 2016
  ident: 2023051612060429600_btaa921-B18
  article-title: Molecular graph convolutions: moving beyond fingerprints
  publication-title: J. Comput. Aided Mol. Des
  doi: 10.1007/s10822-016-9938-8
– volume: 7
  start-page: 807
  year: 2008
  ident: 2023051612060429600_btaa921-B32
  article-title: Pharmacogenetics in drug discovery and development: a translational perspective
  publication-title: Nat. Rev. Drug Disc
  doi: 10.1038/nrd2593
– volume: 13
  start-page: 877
  year: 2014
  ident: 2023051612060429600_btaa921-B27
  article-title: New drugs cost US $2.6 billion to develop
  publication-title: Nat. Rev. Drug Disc
– year: 2020
  ident: 2023051612060429600_btaa921-B4
– volume: 23
  start-page: 405
  year: 2017
  ident: 2023051612060429600_btaa921-B8
  article-title: The Drug Repurposing Hub: a next-generation drug library and information resource
  publication-title: Nat. Med
  doi: 10.1038/nm.4306
– volume: 303
  start-page: 1800
  year: 2004
  ident: 2023051612060429600_btaa921-B28
  article-title: Protein kinase inhibitors: insights into drug design from structure
  publication-title: Science
  doi: 10.1126/science.1095920
– year: 2006
  ident: 2023051612060429600_btaa921-B21
– volume: 20
  start-page: 3389
  year: 2019
  ident: 2023051612060429600_btaa921-B24
  article-title: Chemi-Net: a molecular graph convolutional network for accurate drug property prediction
  publication-title: Int. J. Mol. Sci
  doi: 10.3390/ijms20143389
– year: 2020
  ident: 2023051612060429600_btaa921-B14
  doi: 10.1101/2020.03.22.002386
– year: 2018
  ident: 2023051612060429600_btaa921-B39
– volume: 21
  start-page: 919
  year: 2020
  ident: 2023051612060429600_btaa921-B36
  article-title: Graph convolutional networks for computational drug development and discovery
  publication-title: Brief. Bioinf
  doi: 10.1093/bib/bbz042
– year: 2018
  ident: 2023051612060429600_btaa921-B11
– start-page: 1416
  year: 2018
  ident: 2023051612060429600_btaa921-B12
– volume: 44
  start-page: 931
  year: 2004
  ident: 2023051612060429600_btaa921-B40
  article-title: Feature selection for descriptor based classification models. 2. Human intestinal absorption (HIA)
  publication-title: J. Chem. Inf. Comput. Sci
  doi: 10.1021/ci034233w
– year: 2020
  ident: 2023051612060429600_btaa921-B22
  article-title: Deep in the bowel: highly interpretable neural encoder-decoder networks predict gut metabolites from gut microbiome
  publication-title: BMC Genomics
  doi: 10.1186/s12864-020-6652-7
– volume: 11
  start-page: 320
  issue: 2
  year: 2019
  ident: 2023051612060429600_btaa921-B23
  article-title: An overview of scoring functions used for protein–ligand interactions in molecular docking
  publication-title: Interdiscip. Sci. Comput. Life Sci
  doi: 10.1007/s12539-019-00327-w
– volume: 23
  start-page: 609
  year: 2012
  ident: 2023051612060429600_btaa921-B17
  article-title: Drug discovery in the age of systems biology: the rise of computational approaches for data integration
  publication-title: Curr. Opin. Biotechnol
  doi: 10.1016/j.copbio.2011.11.010
– volume: 59
  start-page: 4131
  year: 2019
  ident: 2023051612060429600_btaa921-B38
  article-title: Graph convolutional neural networks for predicting drug-target interactions
  publication-title: J. Chem. Inf. Model
  doi: 10.1021/acs.jcim.9b00628
– volume: 8
  year: 2018
  ident: 2023051612060429600_btaa921-B42
  article-title: Linguistic measures of chemical diversity and the ‘keywords’ of molecular collections
  publication-title: Sci. Rep
  doi: 10.1038/s41598-018-25440-6
– start-page: 3371
  year: 2018
  ident: 2023051612060429600_btaa921-B13
SSID ssj0051444
ssj0005056
Score 2.731803
Snippet Abstract Summary The development of new drugs is costly, time consuming and often accompanied with safety issues. Drug repurposing can avoid the expensive and...
The development of new drugs is costly, time consuming and often accompanied with safety issues. Drug repurposing can avoid the expensive and lengthy process...
SourceID proquest
crossref
oup
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1140
Title GraphDTA: predicting drug–target binding affinity with graph neural networks
URI https://www.proquest.com/docview/2455840665
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6KIHgRn1hfrOBJWJpkX4m3otbioV4i9Bb2KQVJS5seevM_-A_9Je5mE6WCqMdAdg6zmZ1vM998A8Cl0jETLCWI8QQjolOJMqsYIrEDx6kmnNiaIDtiwyfyMKbjDojbXpjvJfwM9-Rk2oiIeuHinqyEyOrWcZeJvVp-_jj-InVEXhomPDgoQMJMWy_tnUa4bRD-0eZablrrd2sP6DrrDHbAdgMXYT_s7y7omHIPbIYBkqt9MLr3etO3ef8azua-5OJJzFDPl8_vr2-B5A3lpG5cgcLaiYvfFfS_XmEtVA29mqUzXwYu-OIA5IO7_GaImgkJSGEcVcgqk5JMYZtaLgmNFCaWYykN1wmTLvcozBjV7lqXWeGAj4yJ4cJEwt2yaELxIdgop6U5AlCnLhotUzrhhhiPYkxmuDvIqXSWI9EFtHVNoRr1cD_E4qUIVWxcrLu0aFzaBb3PdbOgn_Hriivn-T-_fNFuUOHiwhc7RGmmy0WREOqwlS8sHf_H4AnYSjxrJaIowadgo5ovzZmDHZU8r7-0DzJY24w
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GraphDTA%3A+predicting+drug%E2%80%93target+binding+affinity+with+graph+neural+networks&rft.jtitle=Bioinformatics&rft.au=Nguyen%2C+Thin&rft.au=Le%2C+Hang&rft.au=Quinn%2C+Thomas+P&rft.au=Nguyen%2C+Tri&rft.date=2021-05-23&rft.pub=Oxford+University+Press&rft.issn=1367-4803&rft.eissn=1460-2059&rft.volume=37&rft.issue=8&rft.spage=1140&rft.epage=1147&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtaa921&rft.externalDocID=10.1093%2Fbioinformatics%2Fbtaa921
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon