GraphDTA: predicting drug–target binding affinity with graph neural networks
Abstract Summary The development of new drugs is costly, time consuming and often accompanied with safety issues. Drug repurposing can avoid the expensive and lengthy process of drug development by finding new uses for already approved drugs. In order to repurpose drugs effectively, it is useful to...
Saved in:
Published in | Bioinformatics Vol. 37; no. 8; pp. 1140 - 1147 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford University Press
23.05.2021
|
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Summary
The development of new drugs is costly, time consuming and often accompanied with safety issues. Drug repurposing can avoid the expensive and lengthy process of drug development by finding new uses for already approved drugs. In order to repurpose drugs effectively, it is useful to know which proteins are targeted by which drugs. Computational models that estimate the interaction strength of new drug–target pairs have the potential to expedite drug repurposing. Several models have been proposed for this task. However, these models represent the drugs as strings, which is not a natural way to represent molecules. We propose a new model called GraphDTA that represents drugs as graphs and uses graph neural networks to predict drug–target affinity. We show that graph neural networks not only predict drug–target affinity better than non-deep learning models, but also outperform competing deep learning methods. Our results confirm that deep learning models are appropriate for drug–target binding affinity prediction, and that representing drugs as graphs can lead to further improvements.
Availability of implementation
The proposed models are implemented in Python. Related data, pre-trained models and source code are publicly available at https://github.com/thinng/GraphDTA. All scripts and data needed to reproduce the post hoc statistical analysis are available from https://doi.org/10.5281/zenodo.3603523.
Supplementary information
Supplementary data are available at Bioinformatics online. |
---|---|
AbstractList | Abstract
Summary
The development of new drugs is costly, time consuming and often accompanied with safety issues. Drug repurposing can avoid the expensive and lengthy process of drug development by finding new uses for already approved drugs. In order to repurpose drugs effectively, it is useful to know which proteins are targeted by which drugs. Computational models that estimate the interaction strength of new drug–target pairs have the potential to expedite drug repurposing. Several models have been proposed for this task. However, these models represent the drugs as strings, which is not a natural way to represent molecules. We propose a new model called GraphDTA that represents drugs as graphs and uses graph neural networks to predict drug–target affinity. We show that graph neural networks not only predict drug–target affinity better than non-deep learning models, but also outperform competing deep learning methods. Our results confirm that deep learning models are appropriate for drug–target binding affinity prediction, and that representing drugs as graphs can lead to further improvements.
Availability of implementation
The proposed models are implemented in Python. Related data, pre-trained models and source code are publicly available at https://github.com/thinng/GraphDTA. All scripts and data needed to reproduce the post hoc statistical analysis are available from https://doi.org/10.5281/zenodo.3603523.
Supplementary information
Supplementary data are available at Bioinformatics online. The development of new drugs is costly, time consuming and often accompanied with safety issues. Drug repurposing can avoid the expensive and lengthy process of drug development by finding new uses for already approved drugs. In order to repurpose drugs effectively, it is useful to know which proteins are targeted by which drugs. Computational models that estimate the interaction strength of new drug-target pairs have the potential to expedite drug repurposing. Several models have been proposed for this task. However, these models represent the drugs as strings, which is not a natural way to represent molecules. We propose a new model called GraphDTA that represents drugs as graphs and uses graph neural networks to predict drug-target affinity. We show that graph neural networks not only predict drug-target affinity better than non-deep learning models, but also outperform competing deep learning methods. Our results confirm that deep learning models are appropriate for drug-target binding affinity prediction, and that representing drugs as graphs can lead to further improvements.SUMMARYThe development of new drugs is costly, time consuming and often accompanied with safety issues. Drug repurposing can avoid the expensive and lengthy process of drug development by finding new uses for already approved drugs. In order to repurpose drugs effectively, it is useful to know which proteins are targeted by which drugs. Computational models that estimate the interaction strength of new drug-target pairs have the potential to expedite drug repurposing. Several models have been proposed for this task. However, these models represent the drugs as strings, which is not a natural way to represent molecules. We propose a new model called GraphDTA that represents drugs as graphs and uses graph neural networks to predict drug-target affinity. We show that graph neural networks not only predict drug-target affinity better than non-deep learning models, but also outperform competing deep learning methods. Our results confirm that deep learning models are appropriate for drug-target binding affinity prediction, and that representing drugs as graphs can lead to further improvements.The proposed models are implemented in Python. Related data, pre-trained models and source code are publicly available at https://github.com/thinng/GraphDTA. All scripts and data needed to reproduce the post hoc statistical analysis are available from https://doi.org/10.5281/zenodo.3603523.AVAILABILITY OF IMPLEMENTATIONThe proposed models are implemented in Python. Related data, pre-trained models and source code are publicly available at https://github.com/thinng/GraphDTA. All scripts and data needed to reproduce the post hoc statistical analysis are available from https://doi.org/10.5281/zenodo.3603523.Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online. |
Author | Nguyen, Thin Quinn, Thomas P Le, Hang Le, Thuc Duy Nguyen, Tri Venkatesh, Svetha |
Author_xml | – sequence: 1 givenname: Thin surname: Nguyen fullname: Nguyen, Thin email: thin.nguyen@deakin.edu.au organization: Applied Artificial Intelligence Institute, Deakin University, Geelong, VIC, 3216, Australia – sequence: 2 givenname: Hang surname: Le fullname: Le, Hang organization: Faculty of Information Technology, Nha Trang University, Nha Trang, Khanh Hoa, Viet Nam – sequence: 3 givenname: Thomas P orcidid: 0000-0003-0286-6329 surname: Quinn fullname: Quinn, Thomas P organization: Applied Artificial Intelligence Institute, Deakin University, Geelong, VIC, 3216, Australia – sequence: 4 givenname: Tri surname: Nguyen fullname: Nguyen, Tri email: thin.nguyen@deakin.edu.au organization: Applied Artificial Intelligence Institute, Deakin University, Geelong, VIC, 3216, Australia – sequence: 5 givenname: Thuc Duy orcidid: 0000-0002-9732-4313 surname: Le fullname: Le, Thuc Duy organization: School of Information Technology and Mathematical Sciences, University of South Australia, Adelaide, SA, 5095, Australia – sequence: 6 givenname: Svetha surname: Venkatesh fullname: Venkatesh, Svetha organization: Applied Artificial Intelligence Institute, Deakin University, Geelong, VIC, 3216, Australia |
BookMark | eNqNkL1OwzAURi1UJNrCK6CMLKF2bOcHsVQFClIFS_fIduzUkNrBdlR14x14Q56EVOkCC0z36uo7n3TPBIyMNRKASwSvESzwjGurjbJuy4IWfsYDY0WCTsAYkRTGCaTFqN9xmsUkh_gMTLx_hZAiQsgYPC8dazd36_lN1DpZaRG0qaPKdfXXx2dgrpYh4tpUhytTShsd9tFOh01UH8DIyM6xph9hZ92bPwenijVeXhznFKwf7teLx3j1snxazFexwBiGWAmZk0JglauMEwoFJirDnMusSlIOUSJwmtIq6f9TjBDEEZEZk5DlRUETiqfgaqhtnX3vpA_lVnshm4YZaTtfJoTSnMC-o4_eDlHhrPdOqlLo0JuyJjimmxLB8mCx_GmxPFrs8fQX3jq9ZW7_N4gG0Hbtf5lvyR-U2A |
CitedBy_id | crossref_primary_10_1039_D3CP03651K crossref_primary_10_3390_ijms23158453 crossref_primary_10_1016_j_patcog_2025_111463 crossref_primary_10_1109_TCBB_2022_3144008 crossref_primary_10_3389_fgene_2024_1452339 crossref_primary_10_1007_s13755_024_00300_y crossref_primary_10_1016_j_heliyon_2025_e42222 crossref_primary_10_1039_D1SC05180F crossref_primary_10_1021_acs_jcim_4c01554 crossref_primary_10_3390_ijms25147982 crossref_primary_10_1021_acs_jcim_4c00584 crossref_primary_10_1038_s41573_023_00774_7 crossref_primary_10_1038_s41598_023_27995_5 crossref_primary_10_1016_j_fmre_2024_02_011 crossref_primary_10_1093_bib_bbac578 crossref_primary_10_2174_1574893618666230707123817 crossref_primary_10_1016_j_neunet_2024_107068 crossref_primary_10_1109_TCBB_2022_3190266 crossref_primary_10_1016_j_compbiomed_2024_108435 crossref_primary_10_7717_peerj_13163 crossref_primary_10_1016_j_cmpb_2023_108003 crossref_primary_10_1109_JBHI_2024_3354953 crossref_primary_10_1109_JBHI_2023_3334239 crossref_primary_10_1093_bib_bbac446 crossref_primary_10_1016_j_eswa_2023_120754 crossref_primary_10_1016_j_ailsci_2022_100037 crossref_primary_10_1016_j_artmed_2025_103067 crossref_primary_10_1021_acs_jcim_2c00060 crossref_primary_10_1186_s13321_021_00574_4 crossref_primary_10_3389_fgene_2021_690049 crossref_primary_10_1088_2632_2153_ad3ee4 crossref_primary_10_3390_molecules29010230 crossref_primary_10_1093_bib_bbad451 crossref_primary_10_1021_acs_jcim_4c01893 crossref_primary_10_3389_fbinf_2022_885983 crossref_primary_10_1186_s13321_023_00731_x crossref_primary_10_14778_3681954_3681976 crossref_primary_10_1021_acs_jcim_4c01528 crossref_primary_10_2174_1574893618666230825121841 crossref_primary_10_1109_JBHI_2024_3383245 crossref_primary_10_1038_s42256_023_00785_4 crossref_primary_10_1016_j_isci_2023_108285 crossref_primary_10_1109_TCSS_2023_3312395 crossref_primary_10_1093_bib_bbae654 crossref_primary_10_1016_j_compbiomed_2024_108699 crossref_primary_10_3390_ijms25147753 crossref_primary_10_1093_bib_bbac231 crossref_primary_10_1016_j_compbiomed_2024_108339 crossref_primary_10_1016_j_heliyon_2025_e42476 crossref_primary_10_1016_j_jhip_2024_12_002 crossref_primary_10_1038_s42256_024_00847_1 crossref_primary_10_1016_j_compbiolchem_2024_108326 crossref_primary_10_1093_bib_bbac226 crossref_primary_10_1093_bib_bbac468 crossref_primary_10_1016_j_ymeth_2024_02_008 crossref_primary_10_1016_j_neunet_2023_12_037 crossref_primary_10_1016_j_compbiomed_2023_107199 crossref_primary_10_1039_D3RA03796G crossref_primary_10_1007_s11030_024_11044_y crossref_primary_10_1109_TCBB_2021_3084397 crossref_primary_10_1109_JBHI_2024_3350666 crossref_primary_10_1093_bioinformatics_btac731 crossref_primary_10_3389_fgene_2022_1032779 crossref_primary_10_1002_jcc_27388 crossref_primary_10_1016_j_compbiolchem_2024_108137 crossref_primary_10_1016_j_sbi_2025_103017 crossref_primary_10_1093_bib_bbac533 crossref_primary_10_1016_j_isci_2022_105892 crossref_primary_10_1186_s13040_024_00419_4 crossref_primary_10_1016_j_compbiolchem_2025_108416 crossref_primary_10_1021_acs_jcim_2c01057 crossref_primary_10_1038_s42003_023_05133_1 crossref_primary_10_1109_JBHI_2024_3497591 crossref_primary_10_1016_j_compbiomed_2024_108239 crossref_primary_10_1021_acs_jcim_4c00310 crossref_primary_10_1103_PhysRevResearch_6_023006 crossref_primary_10_1002_jcc_27499 crossref_primary_10_1007_s10489_023_04977_8 crossref_primary_10_1093_bib_bbac403 crossref_primary_10_1007_s12539_024_00609_y crossref_primary_10_1371_journal_pcbi_1012100 crossref_primary_10_3390_pharmaceutics15020675 crossref_primary_10_1039_D2RA05566J crossref_primary_10_1186_s13321_023_00766_0 crossref_primary_10_1021_acscentsci_4c00656 crossref_primary_10_1007_s10489_024_05936_7 crossref_primary_10_1093_bioinformatics_btab548 crossref_primary_10_3390_cells13090771 crossref_primary_10_1016_j_ymeth_2024_01_017 crossref_primary_10_1016_j_compbiomed_2024_108127 crossref_primary_10_1016_j_ymeth_2023_08_006 crossref_primary_10_1038_s41598_023_30026_y crossref_primary_10_1021_acs_jcim_4c00403 crossref_primary_10_1016_j_csbj_2023_11_009 crossref_primary_10_1093_bib_bbac434 crossref_primary_10_1016_j_neunet_2024_107088 crossref_primary_10_1186_s12859_024_05746_1 crossref_primary_10_1093_bioinformatics_btad615 crossref_primary_10_1016_j_compbiomed_2024_108376 crossref_primary_10_1371_journal_pone_0291223 crossref_primary_10_1016_j_drudis_2024_104067 crossref_primary_10_1093_bib_bbab340 crossref_primary_10_1186_s12859_023_05447_1 crossref_primary_10_1093_bib_bbad516 crossref_primary_10_1016_j_asoc_2024_111898 crossref_primary_10_1371_journal_pcbi_1011036 crossref_primary_10_1038_s41598_025_86918_8 crossref_primary_10_3390_ijms241814142 crossref_primary_10_1021_acs_est_4c10081 crossref_primary_10_1109_JBHI_2024_3500027 crossref_primary_10_1007_s12539_025_00692_9 crossref_primary_10_1186_s12859_023_05618_0 crossref_primary_10_1016_j_prmedi_2024_10_002 crossref_primary_10_1002_aisy_202300546 crossref_primary_10_3390_app14020785 crossref_primary_10_3390_math11173691 crossref_primary_10_1186_s12920_024_02073_5 crossref_primary_10_3389_fphar_2022_1003480 crossref_primary_10_1109_JBHI_2024_3386815 crossref_primary_10_1109_TCBB_2024_3402661 crossref_primary_10_1016_j_future_2025_107819 crossref_primary_10_1016_j_artmed_2024_102983 crossref_primary_10_1080_10643389_2024_2320753 crossref_primary_10_1016_j_drudis_2024_103946 crossref_primary_10_1007_s12519_024_00834_x crossref_primary_10_1016_j_sbi_2023_102771 crossref_primary_10_1029_2023WR036741 crossref_primary_10_1016_j_ijbiomac_2024_136678 crossref_primary_10_1016_j_asoc_2024_111875 crossref_primary_10_1021_acs_jmedchem_4c02668 crossref_primary_10_1016_j_ejmech_2023_115199 crossref_primary_10_1186_s12859_022_05107_w crossref_primary_10_1016_j_engappai_2025_110239 crossref_primary_10_1021_acs_jcim_4c00165 crossref_primary_10_3390_ijms25105126 crossref_primary_10_1016_j_apsb_2024_03_002 crossref_primary_10_1007_s11030_024_11065_7 crossref_primary_10_1186_s13321_024_00808_1 crossref_primary_10_1021_acs_jcim_4c00160 crossref_primary_10_1109_TCBB_2024_3451985 crossref_primary_10_1093_bioinformatics_btad524 crossref_primary_10_1021_acs_jcim_4c01255 crossref_primary_10_1021_acs_jctc_4c01391 crossref_primary_10_7717_peerj_cs_2622 crossref_primary_10_1016_j_bmc_2022_117003 crossref_primary_10_1186_s13321_023_00795_9 crossref_primary_10_1186_s12859_022_05119_6 crossref_primary_10_1021_acs_jcim_3c01280 crossref_primary_10_1186_s12859_024_05783_w crossref_primary_10_1021_acs_jcim_4c00055 crossref_primary_10_1093_bioinformatics_btad778 crossref_primary_10_1021_acs_jcim_4c02357 crossref_primary_10_3390_math12152372 crossref_primary_10_1021_acs_jcim_4c00171 crossref_primary_10_1002_advs_202405404 crossref_primary_10_1016_j_knosys_2021_107835 crossref_primary_10_1186_s12915_024_02012_x crossref_primary_10_1002_wcms_1716 crossref_primary_10_1007_s00521_024_10814_x crossref_primary_10_1002_qub2_39 crossref_primary_10_1093_bioinformatics_btad411 crossref_primary_10_1016_j_compbiomed_2023_106946 crossref_primary_10_1007_s00530_024_01650_z crossref_primary_10_1093_bib_bbac628 crossref_primary_10_3390_biomedicines13020262 crossref_primary_10_1002_jcc_26786 crossref_primary_10_1186_s12859_022_05073_3 crossref_primary_10_1016_j_inffus_2023_101909 crossref_primary_10_1002_jcc_27518 crossref_primary_10_1016_j_compbiomed_2024_108181 crossref_primary_10_1038_s41467_021_27137_3 crossref_primary_10_1007_s13755_024_00287_6 crossref_primary_10_1371_journal_pone_0266435 crossref_primary_10_1093_biomethods_bpae043 crossref_primary_10_1186_s12859_023_05369_y crossref_primary_10_1186_s12864_023_09664_z crossref_primary_10_1038_s42256_023_00751_0 crossref_primary_10_1186_s12859_024_05684_y crossref_primary_10_1089_cmb_2023_0452 crossref_primary_10_1016_j_isci_2024_109509 crossref_primary_10_1016_j_csbj_2024_04_030 crossref_primary_10_1038_s41392_022_00994_0 crossref_primary_10_26599_BDMA_2022_9020005 crossref_primary_10_1109_JBHI_2021_3121798 crossref_primary_10_1109_TCBB_2024_3404889 crossref_primary_10_1016_j_ailsci_2024_100100 crossref_primary_10_1007_s10462_023_10669_z crossref_primary_10_1016_j_ailsci_2024_100115 crossref_primary_10_1093_bfgp_elab036 crossref_primary_10_1089_cmb_2023_0208 crossref_primary_10_3389_frai_2024_1408843 crossref_primary_10_1021_acs_chemrestox_3c00352 crossref_primary_10_1021_acs_jcim_3c00045 crossref_primary_10_1371_journal_pone_0302281 crossref_primary_10_1038_s41746_025_01464_x crossref_primary_10_1093_bioinformatics_btac100 crossref_primary_10_1093_bioinformatics_btac222 crossref_primary_10_1109_TKDE_2023_3314502 crossref_primary_10_1021_acs_jcim_4c02332 crossref_primary_10_1016_j_compbiomed_2022_105214 crossref_primary_10_1021_acs_jpclett_2c03906 crossref_primary_10_1038_s41467_025_57536_9 crossref_primary_10_3389_fmolb_2022_963912 crossref_primary_10_1093_bioinformatics_btad560 crossref_primary_10_1142_S0219720023500300 crossref_primary_10_1002_jcc_27538 crossref_primary_10_1093_bioinformatics_btad207 crossref_primary_10_1016_j_csbj_2024_11_050 crossref_primary_10_2217_fmai_2023_0019 crossref_primary_10_1016_j_ymeth_2024_08_008 crossref_primary_10_3390_ijms231911136 crossref_primary_10_3390_ijms23062966 crossref_primary_10_1016_j_csbj_2024_10_004 crossref_primary_10_1021_acs_jcim_0c01285 crossref_primary_10_1093_bib_bbab506 crossref_primary_10_1080_07391102_2025_2475229 crossref_primary_10_1021_acsomega_4c08048 crossref_primary_10_2174_0113894501330963240905083020 crossref_primary_10_2174_0113816128282837240130102817 crossref_primary_10_1093_bioinformatics_btae308 crossref_primary_10_1109_JBHI_2023_3240305 crossref_primary_10_1186_s12859_024_05671_3 crossref_primary_10_1186_s12864_022_08648_9 crossref_primary_10_1016_j_eswa_2024_123821 crossref_primary_10_1021_acs_jcim_3c00269 crossref_primary_10_1093_bioinformatics_btac485 crossref_primary_10_1093_bioinformatics_btad456 crossref_primary_10_1186_s13321_024_00938_6 crossref_primary_10_1039_D4DD00162A crossref_primary_10_3390_pharmaceutics14030625 crossref_primary_10_1021_acs_jpclett_1c00867 crossref_primary_10_1254_fpj_22072 crossref_primary_10_1186_s12864_025_11234_4 crossref_primary_10_1007_s11063_021_10617_4 crossref_primary_10_1109_TETC_2023_3238963 crossref_primary_10_1587_transinf_2022DLP0023 crossref_primary_10_1038_s41598_024_57879_1 crossref_primary_10_3390_molecules29122912 crossref_primary_10_3390_biom15030405 crossref_primary_10_1016_j_eswa_2024_123730 crossref_primary_10_1093_bioinformatics_btae319 crossref_primary_10_3233_IDT_230145 crossref_primary_10_1093_bioinformatics_btad465 crossref_primary_10_1016_j_isci_2023_107646 crossref_primary_10_1093_bioinformatics_btac496 crossref_primary_10_1093_bioinformatics_btac377 crossref_primary_10_1109_TCBB_2023_3262821 crossref_primary_10_1038_s41467_025_57828_0 crossref_primary_10_1093_bioinformatics_btae678 crossref_primary_10_1371_journal_pone_0307146 crossref_primary_10_1109_TCBB_2024_3468434 crossref_primary_10_1016_j_ipha_2025_01_001 crossref_primary_10_1021_acs_jcim_2c00960 crossref_primary_10_1049_cit2_12194 crossref_primary_10_2174_1574893618666230912141426 crossref_primary_10_1007_s12539_023_00582_y crossref_primary_10_1186_s12864_024_10326_x crossref_primary_10_3390_biomedinformatics4010020 crossref_primary_10_1155_2023_1066057 crossref_primary_10_1186_s12859_022_04905_6 crossref_primary_10_1039_D1SC02087K crossref_primary_10_1063_1674_0068_cjcp2312128 crossref_primary_10_1016_j_eswa_2023_121274 crossref_primary_10_2144_fsoa_2023_0318 crossref_primary_10_1021_acs_jcim_3c01211 crossref_primary_10_1093_bioinformatics_btae563 crossref_primary_10_12677_hjcb_2024_141001 crossref_primary_10_1093_bioinformatics_btad355 crossref_primary_10_1007_s13721_021_00351_1 crossref_primary_10_1016_j_jmb_2024_168843 crossref_primary_10_1007_s12539_024_00644_9 crossref_primary_10_1007_s41870_025_02404_4 crossref_primary_10_1002_wcms_1653 crossref_primary_10_1016_j_engappai_2024_109472 crossref_primary_10_1063_5_0097589 crossref_primary_10_1093_bioinformatics_btae693 crossref_primary_10_1021_acs_jmedchem_5c00271 crossref_primary_10_1186_s12859_024_05753_2 crossref_primary_10_1063_4_0000271 crossref_primary_10_3390_ijms23073780 crossref_primary_10_3390_life15030436 crossref_primary_10_1021_acs_est_4c00458 crossref_primary_10_1093_bioinformatics_btac155 crossref_primary_10_1016_j_crmeth_2024_100865 crossref_primary_10_1007_s12539_025_00697_4 crossref_primary_10_1021_acs_jcim_3c01208 crossref_primary_10_1002_jcc_26831 crossref_primary_10_1093_bioinformatics_btae581 crossref_primary_10_1109_ACCESS_2022_3209285 crossref_primary_10_1016_j_compbiomed_2023_107621 crossref_primary_10_1109_TCBB_2022_3204188 crossref_primary_10_1515_mr_2023_0030 crossref_primary_10_3389_fphar_2025_1553743 crossref_primary_10_1021_acs_jmedchem_2c00487 crossref_primary_10_1186_s12859_023_05460_4 crossref_primary_10_3389_frai_2024_1372161 crossref_primary_10_3390_s23218936 crossref_primary_10_1016_j_patcog_2024_110887 crossref_primary_10_1093_bioinformatics_btac048 crossref_primary_10_1093_bioinformatics_btae346 crossref_primary_10_1109_TCBB_2021_3121275 crossref_primary_10_1109_TCBB_2022_3205282 crossref_primary_10_1016_j_compbiomed_2023_107512 crossref_primary_10_1002_bies_202400155 crossref_primary_10_1016_j_ymeth_2023_11_005 crossref_primary_10_1093_bioinformatics_btae594 crossref_primary_10_1109_TCBB_2023_3237863 crossref_primary_10_1021_acs_jctc_4c01438 crossref_primary_10_1016_j_ailsci_2023_100079 crossref_primary_10_1038_s42256_024_00876_w crossref_primary_10_3390_molecules30061262 crossref_primary_10_1360_SSV_2023_0297 crossref_primary_10_1038_s42256_022_00605_1 crossref_primary_10_3390_app15062901 crossref_primary_10_1093_bib_bbae281 crossref_primary_10_1186_s12859_023_05496_6 crossref_primary_10_1093_bioinformatics_btae240 crossref_primary_10_1016_j_aichem_2023_100035 crossref_primary_10_1016_j_ins_2024_121135 crossref_primary_10_1186_s13321_024_00862_9 crossref_primary_10_2174_1570163820666230901160043 crossref_primary_10_1002_wcms_1581 crossref_primary_10_1021_acsomega_4c02308 crossref_primary_10_1063_1674_0068_cjcp2209136 crossref_primary_10_3389_fgene_2021_638330 crossref_primary_10_1021_acs_jcim_3c01417 crossref_primary_10_2174_1574893618666230816090548 crossref_primary_10_1016_j_microc_2024_111444 crossref_primary_10_1016_j_cels_2023_05_005 crossref_primary_10_1038_s42256_023_00756_9 crossref_primary_10_1109_TCBB_2022_3172340 crossref_primary_10_1021_acs_jcim_4c01175 crossref_primary_10_1016_j_bspc_2024_106110 crossref_primary_10_1021_acs_jpclett_4c01509 crossref_primary_10_1021_acsomega_4c05607 crossref_primary_10_1016_j_eswa_2024_124647 crossref_primary_10_1093_bioinformatics_btae496 crossref_primary_10_1093_bioinformatics_btae135 crossref_primary_10_1016_j_ejps_2024_106938 crossref_primary_10_1186_s12859_023_05497_5 crossref_primary_10_2174_0115734099266731231115065030 crossref_primary_10_3390_sym13091570 crossref_primary_10_1109_TNNLS_2023_3314928 crossref_primary_10_1016_j_csbj_2023_01_036 crossref_primary_10_1093_bib_bbaf024 crossref_primary_10_1016_j_eswa_2024_124873 crossref_primary_10_1109_TPAMI_2021_3120428 crossref_primary_10_1016_j_ymeth_2024_12_014 crossref_primary_10_1186_s12859_022_04767_y crossref_primary_10_1016_j_ymeth_2022_02_007 crossref_primary_10_1021_acs_jcim_4c01061 crossref_primary_10_1093_bioinformatics_btad056 crossref_primary_10_1093_bioinformatics_btae386 crossref_primary_10_1002_cpz1_302 crossref_primary_10_1186_s12859_024_05698_6 crossref_primary_10_1093_bfgp_elad037 crossref_primary_10_1371_journal_pone_0315718 crossref_primary_10_1016_j_imu_2024_101604 crossref_primary_10_1186_s12859_023_05485_9 crossref_primary_10_1021_acs_est_4c02421 crossref_primary_10_1002_wcms_1597 crossref_primary_10_2174_0115748936285519240110070209 crossref_primary_10_1093_bioinformatics_btae271 crossref_primary_10_1109_TCBB_2021_3096960 crossref_primary_10_3934_mbe_2023012 crossref_primary_10_1186_s13321_024_00852_x crossref_primary_10_1109_JBHI_2023_3315073 crossref_primary_10_1093_bib_bbad393 crossref_primary_10_1039_D3RA00281K crossref_primary_10_1109_TNB_2024_3441590 crossref_primary_10_3390_biom12091246 crossref_primary_10_1016_j_csbj_2022_06_004 crossref_primary_10_1007_s41060_022_00371_8 crossref_primary_10_1142_S2737416524500613 crossref_primary_10_1093_bioinformatics_btaf002 crossref_primary_10_1016_j_str_2024_02_004 crossref_primary_10_1093_bib_bbad396 crossref_primary_10_3389_fphar_2024_1375522 crossref_primary_10_1021_acsomega_3c00085 crossref_primary_10_1016_j_compbiolchem_2024_108058 crossref_primary_10_1016_j_knosys_2023_111195 crossref_primary_10_1021_acs_jcim_4c01828 crossref_primary_10_2174_0115748936280392240219054047 crossref_primary_10_1007_s13721_023_00409_2 crossref_primary_10_1021_acs_jpcb_2c07592 crossref_primary_10_1093_bib_bbae238 crossref_primary_10_1142_S0219720024500161 crossref_primary_10_1016_j_ejmech_2023_115500 crossref_primary_10_3390_biomedicines11010067 crossref_primary_10_1021_acsomega_2c06781 crossref_primary_10_1016_j_eswa_2024_125740 crossref_primary_10_1016_j_ymeth_2024_11_010 crossref_primary_10_1093_bib_bbad145 crossref_primary_10_1093_bib_bbad386 crossref_primary_10_1002_jcc_27292 crossref_primary_10_1016_j_ins_2022_09_043 crossref_primary_10_3390_molecules28124691 crossref_primary_10_1038_s41401_025_01513_x crossref_primary_10_1093_bioinformatics_btae176 crossref_primary_10_1038_s41467_023_43597_1 crossref_primary_10_1038_s41598_024_70893_7 crossref_primary_10_3390_ijms252111818 crossref_primary_10_1016_j_xcrm_2022_100875 crossref_primary_10_1016_j_ymeth_2022_07_009 crossref_primary_10_1109_TCBB_2022_3170365 crossref_primary_10_1007_s00894_023_05492_w crossref_primary_10_1007_s10462_022_10321_2 crossref_primary_10_2139_ssrn_4161090 crossref_primary_10_3389_fgene_2025_1527300 crossref_primary_10_2174_1574893617666220513114917 crossref_primary_10_1021_acs_jcim_3c01841 crossref_primary_10_1016_j_neucom_2023_127079 crossref_primary_10_1109_TCBB_2021_3094217 crossref_primary_10_1021_acs_jcim_4c00957 crossref_primary_10_1186_s13065_024_01219_x crossref_primary_10_1007_s12559_024_10384_z crossref_primary_10_1093_bib_bbac073 crossref_primary_10_1371_journal_pone_0276609 crossref_primary_10_1093_bib_bbad161 crossref_primary_10_1016_j_chemolab_2021_104405 crossref_primary_10_1038_s41598_023_46382_8 crossref_primary_10_1021_acs_jcim_3c00866 crossref_primary_10_1097_PRS_0000000000010350 crossref_primary_10_1109_TCBB_2022_3206888 crossref_primary_10_1016_j_slasd_2023_10_002 crossref_primary_10_1038_s41598_022_16493_9 crossref_primary_10_1016_j_compbiolchem_2022_107719 crossref_primary_10_3390_ijms25158239 crossref_primary_10_1093_bib_bbac260 crossref_primary_10_1093_bioadv_vbad116 crossref_primary_10_1080_17460441_2024_2367014 crossref_primary_10_1002_asia_202200269 crossref_primary_10_1038_s42256_024_00856_0 crossref_primary_10_1021_acs_jcim_4c01907 crossref_primary_10_1097_CM9_0000000000003387 crossref_primary_10_1016_j_compbiolchem_2023_107968 crossref_primary_10_1109_TPAMI_2024_3400515 crossref_primary_10_1186_s12859_023_05503_w crossref_primary_10_3390_molecules28248005 crossref_primary_10_1016_j_ymeth_2023_02_007 crossref_primary_10_34133_hds_0113 crossref_primary_10_1002_minf_202400044 crossref_primary_10_1093_bib_bbab165 crossref_primary_10_1109_TCBB_2021_3054738 crossref_primary_10_1016_j_ymeth_2024_04_010 crossref_primary_10_1093_bib_bbad462 crossref_primary_10_2174_0115748936285690240101041704 crossref_primary_10_1016_j_compbiomed_2023_107136 crossref_primary_10_1016_j_neunet_2023_11_018 crossref_primary_10_1038_s41598_023_42952_y crossref_primary_10_1186_s12859_024_05984_3 crossref_primary_10_1016_j_compbiomed_2023_107372 crossref_primary_10_1038_s41467_023_39856_w crossref_primary_10_1093_bib_bbad371 crossref_primary_10_7717_peerj_16625 crossref_primary_10_1016_j_inffus_2024_102894 crossref_primary_10_1093_bib_bbae103 crossref_primary_10_1007_s11030_024_11100_7 crossref_primary_10_1016_j_drudis_2022_02_023 crossref_primary_10_2174_0115748936276510231123121404 crossref_primary_10_1016_j_phrs_2024_107381 crossref_primary_10_1093_bib_bbad136 crossref_primary_10_1016_j_commatsci_2023_112619 crossref_primary_10_1002_cbic_202200776 crossref_primary_10_1007_s13042_023_02058_3 crossref_primary_10_1016_j_ejmech_2025_117269 crossref_primary_10_1109_JBHI_2024_3402529 crossref_primary_10_3390_ijms24098326 crossref_primary_10_1093_bib_bbae333 crossref_primary_10_1016_j_future_2024_07_012 crossref_primary_10_1186_s13321_023_00691_2 crossref_primary_10_1016_j_future_2024_07_014 crossref_primary_10_1016_j_compbiomed_2025_109927 crossref_primary_10_1093_bib_bbad484 crossref_primary_10_1093_bib_bbac272 crossref_primary_10_1038_s42004_024_01204_4 crossref_primary_10_1021_acs_jctc_4c00663 crossref_primary_10_1093_bib_bbac148 crossref_primary_10_1093_bib_bbac269 |
Cites_doi | 10.1371/journal.pcbi.1005678 10.1038/nrd1468 10.1186/s13321-017-0209-z 10.1039/C8SC00148K 10.1038/nrd773 10.1021/jm5006429 10.1186/s12859-018-2523-5 10.1093/bioinformatics/bty593 10.1093/bioinformatics/bty277 10.1021/ci00057a005 10.1038/nbt.1990 10.1093/nar/gkr320 10.1093/bib/bbaa205 10.1021/ci400709d 10.1021/ci100369f 10.1126/science.1075762 10.1093/nar/gkp885 10.1038/nm.3595 10.1109/TKDE.2005.127 10.1007/s10822-016-9938-8 10.1038/nrd2593 10.1038/nm.4306 10.1126/science.1095920 10.3390/ijms20143389 10.1101/2020.03.22.002386 10.1093/bib/bbz042 10.1021/ci034233w 10.1186/s12864-020-6652-7 10.1007/s12539-019-00327-w 10.1016/j.copbio.2011.11.010 10.1021/acs.jcim.9b00628 10.1038/s41598-018-25440-6 |
ContentType | Journal Article |
Copyright | The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2020 The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
Copyright_xml | – notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2020 – notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1093/bioinformatics/btaa921 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1460-2059 1367-4811 |
EndPage | 1147 |
ExternalDocumentID | 10_1093_bioinformatics_btaa921 10.1093/bioinformatics/btaa921 |
GroupedDBID | -~X .2P .I3 482 48X 53G 5GY 6.Y AAIMJ AAJKP AAKPC AAMVS AAPQZ AAPXW AARHZ AAVAP ABEFU ABNKS ABPTD ABSAR ABSMQ ABWST ABXVV ABZBJ ACGFS ACMRT ACPQN ACUFI ACYTK ADEYI ADFTL ADGZP ADHKW ADOCK ADRIX ADRTK ADYVW ADZTZ ADZXQ AECKG AEGPL AEJOX AEKKA AEKPW AEKSI AELWJ AEPUE AETBJ AFFNX AFFZL AFOFC AFSHK AFXEN AGINJ AGKRT AGQXC AI. ALMA_UNASSIGNED_HOLDINGS ALTZX AQDSO ARIXL ASAOO ATDFG ATTQO AXUDD AYOIW AZFZN AZVOD BCRHZ BHONS CXTWN CZ4 DFGAJ EE~ ELUNK F5P F9B FEDTE H5~ HAR HVGLF HW0 IOX KOP KSI KSN MBTAY MVM NGC PB- Q1. Q5Y QBD RD5 RIG ROL ROX ROZ RXO TCN TLC TN5 TOX TR2 VH1 WH7 XJT ZGI ~91 --- -E4 .DC 0R~ 23N 2WC 4.4 5WA 70D AAIJN AAMDB AAOGV AAVLN AAYXX ABEJV ABEUO ABGNP ABIXL ABPQP ABQLI ACIWK ACPRK ACUXJ ADBBV ADEZT ADGKP ADHZD ADMLS ADPDF ADRDM ADVEK AEMDU AENEX AENZO AEWNT AFGWE AFIYH AFRAH AGKEF AGSYK AHMBA AHXPO AIJHB AJEEA AJEUX AKHUL AKWXX ALUQC AMNDL APIBT APWMN ASPBG AVWKF BAWUL BAYMD BQDIO BQUQU BSWAC BTQHN C45 CDBKE CITATION CS3 DAKXR DIK DILTD DU5 D~K EBD EBS EMOBN FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 HZ~ J21 JXSIZ KAQDR KQ8 M-Z MK~ ML0 N9A NLBLG NMDNZ NOMLY NU- O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ R44 RNS RPM RUSNO RW1 SV3 TEORI TJP W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~KM 7X8 |
ID | FETCH-LOGICAL-c330t-fce849c3f8f7b450c34f73bbe7d26b012c3665d2109fa441b14e7ae0a8995253 |
IEDL.DBID | TOX |
ISSN | 1367-4803 1367-4811 |
IngestDate | Fri Jul 11 01:03:14 EDT 2025 Thu Apr 24 22:56:56 EDT 2025 Tue Jul 01 02:33:54 EDT 2025 Wed Aug 28 03:17:23 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c330t-fce849c3f8f7b450c34f73bbe7d26b012c3665d2109fa441b14e7ae0a8995253 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0286-6329 0000-0002-9732-4313 |
PQID | 2455840665 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2455840665 crossref_citationtrail_10_1093_bioinformatics_btaa921 crossref_primary_10_1093_bioinformatics_btaa921 oup_primary_10_1093_bioinformatics_btaa921 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210523 |
PublicationDateYYYYMMDD | 2021-05-23 |
PublicationDate_xml | – month: 05 year: 2021 text: 20210523 day: 23 |
PublicationDecade | 2020 |
PublicationTitle | Bioinformatics |
PublicationYear | 2021 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Gordon (2023051612060429600_btaa921-B14) 2020 Torng (2023051612060429600_btaa921-B38) 2019; 59 Le (2023051612060429600_btaa921-B22) 2020 Kearnes (2023051612060429600_btaa921-B18) 2016; 30 Weininger (2023051612060429600_btaa921-B41) 1988; 28 Gao (2023051612060429600_btaa921-B13) 2018 Öztürk (2023051612060429600_btaa921-B29) 2018; 34 Davis (2023051612060429600_btaa921-B9) 2011; 29 Strittmatter (2023051612060429600_btaa921-B35) 2014; 20 Veličković (2023051612060429600_btaa921-B39) 2018 Stachel (2023051612060429600_btaa921-B34) 2014; 57 Landrum (2023051612060429600_btaa921-B21) 2006 Roses (2023051612060429600_btaa921-B32) 2008; 7 Mullard (2023051612060429600_btaa921-B27) 2014; 13 Ramsundar (2023051612060429600_btaa921-B31) 2019 Sun (2023051612060429600_btaa921-B36) 2020; 21 Noble (2023051612060429600_btaa921-B28) 2004; 303 Ashburn (2023051612060429600_btaa921-B1) 2004; 3 Hirohara (2023051612060429600_btaa921-B16) 2018; 19 Liu (2023051612060429600_btaa921-B24) 2019; 20 Chu (2023051612060429600_btaa921-B4) 2020 Chu (2023051612060429600_btaa921-B3) 2019 Backman (2023051612060429600_btaa921-B2) 2011; 39 Kinnings (2023051612060429600_btaa921-B19) 2011; 51 Mayr (2023051612060429600_btaa921-B26) 2018; 9 Corsello (2023051612060429600_btaa921-B8) 2017; 23 Cohen (2023051612060429600_btaa921-B7) 2002; 1 Kipf (2023051612060429600_btaa921-B20) 2017 Li (2023051612060429600_btaa921-B23) 2019; 11 Feng (2023051612060429600_btaa921-B11) 2018 Öztürk (2023051612060429600_btaa921-B30) 2019 Manning (2023051612060429600_btaa921-B25) 2002; 298 Iskar (2023051612060429600_btaa921-B17) 2012; 23 Wegner (2023051612060429600_btaa921-B40) 2004; 44 He (2023051612060429600_btaa921-B15) 2017; 9 Deshpande (2023051612060429600_btaa921-B10) 2005; 17 Sigrist (2023051612060429600_btaa921-B33) 2010; 38 Cichonska (2023051612060429600_btaa921-B5) 2017; 13 Xu (2023051612060429600_btaa921-B43) 2019 Cichonska (2023051612060429600_btaa921-B6) 2018; 34 Tang (2023051612060429600_btaa921-B37) 2014; 54 Gao (2023051612060429600_btaa921-B12) 2018 Woźniak (2023051612060429600_btaa921-B42) 2018; 8 |
References_xml | – volume: 13 start-page: e1005678 year: 2017 ident: 2023051612060429600_btaa921-B5 article-title: Computational-experimental approach to drug–target interaction mapping: a case study on kinase inhibitors publication-title: PLoS Comput. Biol doi: 10.1371/journal.pcbi.1005678 – year: 2017 ident: 2023051612060429600_btaa921-B20 – year: 2019 ident: 2023051612060429600_btaa921-B43 – volume: 3 start-page: 673 year: 2004 ident: 2023051612060429600_btaa921-B1 article-title: Drug repositioning: identifying and developing new uses for existing drugs publication-title: Nat. Rev. Drug Disc doi: 10.1038/nrd1468 – volume: 9 start-page: 24 year: 2017 ident: 2023051612060429600_btaa921-B15 article-title: SimBoost: a read-across approach for predicting drug–target binding affinities using gradient boosting machines publication-title: J. Cheminf doi: 10.1186/s13321-017-0209-z – volume: 9 start-page: 5441 year: 2018 ident: 2023051612060429600_btaa921-B26 article-title: Large-scale comparison of machine learning methods for drug target prediction on ChEMBL publication-title: Chem. Sci doi: 10.1039/C8SC00148K – volume: 1 start-page: 309 year: 2002 ident: 2023051612060429600_btaa921-B7 article-title: Protein kinases—the major drug targets of the twenty-first century? publication-title: Nat. Rev. Drug Disc doi: 10.1038/nrd773 – volume-title: Deep Learning for the Life Sciences: Applying Deep Learning to Genomics, Microscopy, Drug Discovery, and More year: 2019 ident: 2023051612060429600_btaa921-B31 – volume: 57 start-page: 5800 year: 2014 ident: 2023051612060429600_btaa921-B34 article-title: Maximizing diversity from a kinase screen: identification of novel and selective pan-Trk inhibitors for chronic pain publication-title: J. Med. Chem doi: 10.1021/jm5006429 – volume: 19 start-page: 526 year: 2018 ident: 2023051612060429600_btaa921-B16 article-title: Convolutional neural network based on SMILES representation of compounds for detecting chemical motif publication-title: BMC Bioinformatics doi: 10.1186/s12859-018-2523-5 – volume: 34 start-page: i821 year: 2018 ident: 2023051612060429600_btaa921-B29 article-title: DeepDTA: deep drug–target binding affinity prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty593 – year: 2019 ident: 2023051612060429600_btaa921-B30 – volume: 34 start-page: i509 year: 2018 ident: 2023051612060429600_btaa921-B6 article-title: Learning with multiple pairwise kernels for drug bioactivity prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty277 – volume: 28 start-page: 31 year: 1988 ident: 2023051612060429600_btaa921-B41 article-title: SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules publication-title: J. Chem. Inf. Comput. Sci doi: 10.1021/ci00057a005 – volume: 29 start-page: 1046 year: 2011 ident: 2023051612060429600_btaa921-B9 article-title: Comprehensive analysis of kinase inhibitor selectivity publication-title: Nat. Biotechnol doi: 10.1038/nbt.1990 – volume: 39 start-page: W486 year: 2011 ident: 2023051612060429600_btaa921-B2 article-title: ChemMine tools: an online service for analyzing and clustering small molecules publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr320 – year: 2019 ident: 2023051612060429600_btaa921-B3 article-title: DTI-CDF: a cascade deep forest model towards the prediction of drug-target interactions based on hybrid features publication-title: Brief. Bioinf doi: 10.1093/bib/bbaa205 – volume: 54 start-page: 735 year: 2014 ident: 2023051612060429600_btaa921-B37 article-title: Making sense of large-scale kinase inhibitor bioactivity data sets: a comparative and integrative analysis publication-title: J. Chem. Inf. Model doi: 10.1021/ci400709d – volume: 51 start-page: 408 year: 2011 ident: 2023051612060429600_btaa921-B19 article-title: A machine learning-based method to improve docking scoring functions and its application to drug repurposing publication-title: J. Chem. Inf. Model doi: 10.1021/ci100369f – volume: 298 start-page: 1912 year: 2002 ident: 2023051612060429600_btaa921-B25 article-title: The protein kinase complement of the human genome publication-title: Science doi: 10.1126/science.1075762 – volume: 38 start-page: D161 year: 2010 ident: 2023051612060429600_btaa921-B33 article-title: PROSITE, a protein domain database for functional characterization and annotation publication-title: Nucleic Acids Res doi: 10.1093/nar/gkp885 – volume: 20 start-page: 590 year: 2014 ident: 2023051612060429600_btaa921-B35 article-title: Overcoming drug development bottlenecks with repurposing: old drugs learn new tricks publication-title: Nat. Med doi: 10.1038/nm.3595 – volume: 17 start-page: 1036 year: 2005 ident: 2023051612060429600_btaa921-B10 article-title: Frequent substructure-based approaches for classifying chemical compounds publication-title: IEEE Trans. Knowl. Data Eng doi: 10.1109/TKDE.2005.127 – volume: 30 start-page: 595 year: 2016 ident: 2023051612060429600_btaa921-B18 article-title: Molecular graph convolutions: moving beyond fingerprints publication-title: J. Comput. Aided Mol. Des doi: 10.1007/s10822-016-9938-8 – volume: 7 start-page: 807 year: 2008 ident: 2023051612060429600_btaa921-B32 article-title: Pharmacogenetics in drug discovery and development: a translational perspective publication-title: Nat. Rev. Drug Disc doi: 10.1038/nrd2593 – volume: 13 start-page: 877 year: 2014 ident: 2023051612060429600_btaa921-B27 article-title: New drugs cost US $2.6 billion to develop publication-title: Nat. Rev. Drug Disc – year: 2020 ident: 2023051612060429600_btaa921-B4 – volume: 23 start-page: 405 year: 2017 ident: 2023051612060429600_btaa921-B8 article-title: The Drug Repurposing Hub: a next-generation drug library and information resource publication-title: Nat. Med doi: 10.1038/nm.4306 – volume: 303 start-page: 1800 year: 2004 ident: 2023051612060429600_btaa921-B28 article-title: Protein kinase inhibitors: insights into drug design from structure publication-title: Science doi: 10.1126/science.1095920 – year: 2006 ident: 2023051612060429600_btaa921-B21 – volume: 20 start-page: 3389 year: 2019 ident: 2023051612060429600_btaa921-B24 article-title: Chemi-Net: a molecular graph convolutional network for accurate drug property prediction publication-title: Int. J. Mol. Sci doi: 10.3390/ijms20143389 – year: 2020 ident: 2023051612060429600_btaa921-B14 doi: 10.1101/2020.03.22.002386 – year: 2018 ident: 2023051612060429600_btaa921-B39 – volume: 21 start-page: 919 year: 2020 ident: 2023051612060429600_btaa921-B36 article-title: Graph convolutional networks for computational drug development and discovery publication-title: Brief. Bioinf doi: 10.1093/bib/bbz042 – year: 2018 ident: 2023051612060429600_btaa921-B11 – start-page: 1416 year: 2018 ident: 2023051612060429600_btaa921-B12 – volume: 44 start-page: 931 year: 2004 ident: 2023051612060429600_btaa921-B40 article-title: Feature selection for descriptor based classification models. 2. Human intestinal absorption (HIA) publication-title: J. Chem. Inf. Comput. Sci doi: 10.1021/ci034233w – year: 2020 ident: 2023051612060429600_btaa921-B22 article-title: Deep in the bowel: highly interpretable neural encoder-decoder networks predict gut metabolites from gut microbiome publication-title: BMC Genomics doi: 10.1186/s12864-020-6652-7 – volume: 11 start-page: 320 issue: 2 year: 2019 ident: 2023051612060429600_btaa921-B23 article-title: An overview of scoring functions used for protein–ligand interactions in molecular docking publication-title: Interdiscip. Sci. Comput. Life Sci doi: 10.1007/s12539-019-00327-w – volume: 23 start-page: 609 year: 2012 ident: 2023051612060429600_btaa921-B17 article-title: Drug discovery in the age of systems biology: the rise of computational approaches for data integration publication-title: Curr. Opin. Biotechnol doi: 10.1016/j.copbio.2011.11.010 – volume: 59 start-page: 4131 year: 2019 ident: 2023051612060429600_btaa921-B38 article-title: Graph convolutional neural networks for predicting drug-target interactions publication-title: J. Chem. Inf. Model doi: 10.1021/acs.jcim.9b00628 – volume: 8 year: 2018 ident: 2023051612060429600_btaa921-B42 article-title: Linguistic measures of chemical diversity and the ‘keywords’ of molecular collections publication-title: Sci. Rep doi: 10.1038/s41598-018-25440-6 – start-page: 3371 year: 2018 ident: 2023051612060429600_btaa921-B13 |
SSID | ssj0051444 ssj0005056 |
Score | 2.731803 |
Snippet | Abstract
Summary
The development of new drugs is costly, time consuming and often accompanied with safety issues. Drug repurposing can avoid the expensive and... The development of new drugs is costly, time consuming and often accompanied with safety issues. Drug repurposing can avoid the expensive and lengthy process... |
SourceID | proquest crossref oup |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1140 |
Title | GraphDTA: predicting drug–target binding affinity with graph neural networks |
URI | https://www.proquest.com/docview/2455840665 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6KIHgRn1hfrOBJWJpkX4m3otbioV4i9Bb2KQVJS5seevM_-A_9Je5mE6WCqMdAdg6zmZ1vM998A8Cl0jETLCWI8QQjolOJMqsYIrEDx6kmnNiaIDtiwyfyMKbjDojbXpjvJfwM9-Rk2oiIeuHinqyEyOrWcZeJvVp-_jj-InVEXhomPDgoQMJMWy_tnUa4bRD-0eZablrrd2sP6DrrDHbAdgMXYT_s7y7omHIPbIYBkqt9MLr3etO3ef8azua-5OJJzFDPl8_vr2-B5A3lpG5cgcLaiYvfFfS_XmEtVA29mqUzXwYu-OIA5IO7_GaImgkJSGEcVcgqk5JMYZtaLgmNFCaWYykN1wmTLvcozBjV7lqXWeGAj4yJ4cJEwt2yaELxIdgop6U5AlCnLhotUzrhhhiPYkxmuDvIqXSWI9EFtHVNoRr1cD_E4qUIVWxcrLu0aFzaBb3PdbOgn_Hriivn-T-_fNFuUOHiwhc7RGmmy0WREOqwlS8sHf_H4AnYSjxrJaIowadgo5ovzZmDHZU8r7-0DzJY24w |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GraphDTA%3A+predicting+drug%E2%80%93target+binding+affinity+with+graph+neural+networks&rft.jtitle=Bioinformatics&rft.au=Nguyen%2C+Thin&rft.au=Le%2C+Hang&rft.au=Quinn%2C+Thomas+P&rft.au=Nguyen%2C+Tri&rft.date=2021-05-23&rft.pub=Oxford+University+Press&rft.issn=1367-4803&rft.eissn=1460-2059&rft.volume=37&rft.issue=8&rft.spage=1140&rft.epage=1147&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtaa921&rft.externalDocID=10.1093%2Fbioinformatics%2Fbtaa921 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon |