Posynomial geometric programming problem subject to max–min fuzzy relation equations
We discuss a class of posynomial geometric programming problem(PGPF), aimed at minimizing a posynomial subject to fuzzy relational equations with max–min composition. By introducing auxiliary variables, we convert the PGPF into an equivalent programming problem whose objective function is a non-decr...
Saved in:
Published in | Information sciences Vol. 328; pp. 15 - 25 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
20.01.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We discuss a class of posynomial geometric programming problem(PGPF), aimed at minimizing a posynomial subject to fuzzy relational equations with max–min composition. By introducing auxiliary variables, we convert the PGPF into an equivalent programming problem whose objective function is a non-decreasing function with an auxiliary variable. We show that an optimal solution consists of a maximum feasible solution and one of the minimal feasible solutions by an equivalent programming problem. In addition, we introduce some rules for simplifying the problem. Then by using a branch and bound method and fuzzy relational equations (FRE) path, we present an algorithm to obtain an optimal solution to the PGPF. Finally, numerical examples are provided to illustrate the steps of the procedure. |
---|---|
AbstractList | We discuss a class of posynomial geometric programming problem(PGPF), aimed at minimizing a posynomial subject to fuzzy relational equations with max-min composition. By introducing auxiliary variables, we convert the PGPF into an equivalent programming problem whose objective function is a non-decreasing function with an auxiliary variable. We show that an optimal solution consists of a maximum feasible solution and one of the minimal feasible solutions by an equivalent programming problem. In addition, we introduce some rules for simplifying the problem. Then by using a branch and bound method and fuzzy relational equations (FRE) path, we present an algorithm to obtain an optimal solution to the PGPF. Finally, numerical examples are provided to illustrate the steps of the procedure. |
Author | Cao, Bing-Yuan Zhou, Xue-Gang Yang, Xiao-Peng |
Author_xml | – sequence: 1 givenname: Xue-Gang surname: Zhou fullname: Zhou, Xue-Gang organization: School of Mathematics and Information Science, Key Laboratory of Mathematics and Interdisciplinary Sciences of Guangdong, Higher Education Institutes, Guangzhou University, Guangzhou, Guangdong, 510006, China – sequence: 2 givenname: Xiao-Peng surname: Yang fullname: Yang, Xiao-Peng organization: School of Mathematics and Information Science, Key Laboratory of Mathematics and Interdisciplinary Sciences of Guangdong, Higher Education Institutes, Guangzhou University, Guangzhou, Guangdong, 510006, China – sequence: 3 givenname: Bing-Yuan surname: Cao fullname: Cao, Bing-Yuan email: caobingy@163.com, happyyangxp@163.com organization: School of Mathematics and Information Science, Key Laboratory of Mathematics and Interdisciplinary Sciences of Guangdong, Higher Education Institutes, Guangzhou University, Guangzhou, Guangdong, 510006, China |
BookMark | eNp9kL1OwzAQgC1UJFrgAdgysiScnThOxYQq_qRKMACr5TiXylUSt3aCKBPvwBvyJLgtE0NvuZPuvtPdNyGjznZIyAWFhALNr5aJ6XzCgPIERAK8OCJjWggW52xKR2QMwCAGxvkJmXi_BIBM5PmYvD1bv-lsa1QTLdC22Dujo5WzC6fa1nSLbV022EZ-KJeo-6i3Uas-fr6-Qzeqh8_PTeSwUb2xXYTrYVf4M3Jcq8bj-V8-Ja93ty-zh3j-dP84u5nHOk2hj2uOrFKZSoVCzjkroeBZCFZXtKTVdAo11JmuyywHTXWR5YJRDaB0QQVj0_SUXO73hivXA_petsZrbBrVoR28pEJAymjOWBil-1HtrPcOa7lyplVuIynIrUO5lMGh3DqUIGRwGBjxj9Gm333YO2Wag-T1nsTw_btBJ7022GmsjAsWZWXNAfoX8gyQUg |
CitedBy_id | crossref_primary_10_1155_2018_1610349 crossref_primary_10_1080_16168658_2019_1643078 crossref_primary_10_3934_math_20241481 crossref_primary_10_1016_j_fss_2022_03_017 crossref_primary_10_1016_j_fss_2024_109011 crossref_primary_10_1109_ACCESS_2022_3197611 crossref_primary_10_1109_TFUZZ_2016_2598367 crossref_primary_10_1109_TFUZZ_2020_2991304 crossref_primary_10_1007_s13042_016_0527_x crossref_primary_10_1016_j_ins_2017_07_035 crossref_primary_10_1016_j_fiae_2017_12_002 crossref_primary_10_3934_math_2024665 crossref_primary_10_1007_s40815_018_0530_3 crossref_primary_10_1007_s10700_019_09306_8 crossref_primary_10_1016_j_fss_2019_08_012 crossref_primary_10_1002_dac_3340 crossref_primary_10_1016_j_fss_2017_04_002 |
Cites_doi | 10.1016/S0165-0114(97)00184-X 10.1007/s00500-001-0157-3 10.1016/S0165-0114(01)00052-5 10.1016/j.amc.2005.11.069 10.1016/S0165-0114(96)00246-1 10.1007/s11424-009-9146-x 10.1109/TFUZZ.2009.2031561 10.1016/j.ins.2011.04.042 10.1109/TFUZZ.2012.2232932 10.1016/0165-0114(84)90026-5 10.1007/s10700-007-9017-7 10.1016/S0165-0114(98)00471-0 10.1023/B:FODM.0000036862.45420.ea 10.1016/0165-0114(93)90198-Q 10.1016/j.ins.2010.10.024 10.1016/j.mcm.2010.07.018 10.1007/s10700-008-9029-y 10.1016/j.ins.2011.06.009 10.1016/j.fss.2005.02.010 10.1002/mcda.4020040103 10.1109/91.784204 10.1016/j.cie.2008.08.015 10.1016/0022-247X(85)90329-4 10.1016/S0019-9958(76)90446-0 10.1016/0165-0114(82)90043-4 10.1016/j.fss.2004.09.010 10.1016/j.amc.2005.04.021 10.1016/0165-0114(91)90173-N 10.1016/0022-247X(91)90222-L 10.1016/j.mcm.2007.04.010 10.1016/j.amc.2005.12.027 10.1109/91.669033 10.1023/A:1022800330844 10.1016/j.ins.2011.09.030 10.1016/j.fss.2012.04.009 10.1023/A:1020955112523 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Inc. |
Copyright_xml | – notice: 2015 Elsevier Inc. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.ins.2015.07.058 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Library & Information Science |
EISSN | 1872-6291 |
EndPage | 25 |
ExternalDocumentID | 10_1016_j_ins_2015_07_058 S0020025515006064 |
GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ABUCO ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ WH7 XPP ZMT ~02 ~G- 1OL 29I AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB HLZ HVGLF HZ~ H~9 R2- SBC SDS SEW SSH UHS WUQ YYP ZY4 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c330t-f5e2da4a37ae5552b08544442fd1b1d990f0f4cfb460c1c846721c00ac8172293 |
IEDL.DBID | .~1 |
ISSN | 0020-0255 |
IngestDate | Thu Jul 10 19:15:37 EDT 2025 Thu Apr 24 23:02:29 EDT 2025 Tue Jul 01 04:16:31 EDT 2025 Fri Feb 23 02:33:57 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Max–min composition Posynomial geometric programming Fuzzy relation equation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c330t-f5e2da4a37ae5552b08544442fd1b1d990f0f4cfb460c1c846721c00ac8172293 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1770321622 |
PQPubID | 23500 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1770321622 crossref_primary_10_1016_j_ins_2015_07_058 crossref_citationtrail_10_1016_j_ins_2015_07_058 elsevier_sciencedirect_doi_10_1016_j_ins_2015_07_058 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-01-20 |
PublicationDateYYYYMMDD | 2016-01-20 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-20 day: 20 |
PublicationDecade | 2010 |
PublicationTitle | Information sciences |
PublicationYear | 2016 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Li, Fang (bib0020) 2009; 22 Wu, Guu (bib0037) 2004; 3 Wu (bib0036) 2008; 47 Pedrycz (bib0027) 1993; 59 Shieh (bib0031) 2011; 181 Wang (bib0033) 1995; 4 Li, Fang (bib0021) 2008; 7 Gupta, Qi (bib0012) 1991; 40 Di Nola, Sessa, Pedrycz, Sanchez (bib0005) 1989 Peeva (bib0028) 1994 Ghodousian, Khorram (bib0010) 2012; 206 Wang, Fang, Nuttle (bib0035) 2003; 2 Shivanian, Khorram (bib0032) 2009; 56 Czogala, Drewniak, Pedrycz (bib0004) 1982; 7 Yang, Cao (bib0039) 2005 Ghodousian, Khorram (bib0009) 2006; 180 Yang, Cao (bib0040) 2007; 6 Sanchez (bib0029) 1976; 30 Chang, Shieh (bib0002) 2013; 234 Chen, Wang (bib0003) 2002; 6 Li, Fang (bib0018) 2009; 8 Freson, De Baets, De Meyer (bib0007) 2013; 234 Guo, Pang, Meng, Xia (bib0011) 2013; 252 Bourke, Fisher (bib0001) 1998; 94 Khorram, Ghodousian (bib0015) 2006; 173 Loetamonphong, Fang, Young (bib0023) 2002; 127 Zhou, Ahat (bib0041) 2011; 53 Higashi, Klir (bib0014) 1984; 13 Li, Wang (bib0017) 2013; 21 Lu, Fang (bib0024) 2001; 119 Markovskii (bib0025) 2005; 153 Fang, Li (bib0006) 1999; 103 Ghodousian, Khorram (bib0008) 2006; 178 Loetamonphong, Fang (bib0022) 1999; 7 Sanchez (bib0030) 1977 Wu, Guu (bib0038) 2005; 150 Li, Fang (bib0019) 2009; 17 Guu, Wu (bib0013) 2002; 1 Pedrycz (bib0026) 1985; 107 Wang, Zhang, Sanchez, Lee (bib0034) 1991; 159 Li, Fang (bib0016) 1998; 6 Higashi (10.1016/j.ins.2015.07.058_bib0014) 1984; 13 Wang (10.1016/j.ins.2015.07.058_bib0035) 2003; 2 Li (10.1016/j.ins.2015.07.058_bib0018) 2009; 8 Chen (10.1016/j.ins.2015.07.058_bib0003) 2002; 6 Di Nola (10.1016/j.ins.2015.07.058_bib0005) 1989 Wang (10.1016/j.ins.2015.07.058_bib0034) 1991; 159 Wu (10.1016/j.ins.2015.07.058_bib0037) 2004; 3 Wang (10.1016/j.ins.2015.07.058_bib0033) 1995; 4 Zhou (10.1016/j.ins.2015.07.058_bib0041) 2011; 53 Czogala (10.1016/j.ins.2015.07.058_bib0004) 1982; 7 Ghodousian (10.1016/j.ins.2015.07.058_bib0009) 2006; 180 Peeva (10.1016/j.ins.2015.07.058_bib0028) 1994 Loetamonphong (10.1016/j.ins.2015.07.058_bib0023) 2002; 127 Fang (10.1016/j.ins.2015.07.058_bib0006) 1999; 103 Guu (10.1016/j.ins.2015.07.058_bib0013) 2002; 1 Pedrycz (10.1016/j.ins.2015.07.058_bib0026) 1985; 107 Li (10.1016/j.ins.2015.07.058_bib0021) 2008; 7 Shieh (10.1016/j.ins.2015.07.058_bib0031) 2011; 181 Shivanian (10.1016/j.ins.2015.07.058_bib0032) 2009; 56 Sanchez (10.1016/j.ins.2015.07.058_bib0029) 1976; 30 Loetamonphong (10.1016/j.ins.2015.07.058_bib0022) 1999; 7 Sanchez (10.1016/j.ins.2015.07.058_bib0030) 1977 Gupta (10.1016/j.ins.2015.07.058_bib0012) 1991; 40 Li (10.1016/j.ins.2015.07.058_bib0016) 1998; 6 Chang (10.1016/j.ins.2015.07.058_bib0002) 2013; 234 Khorram (10.1016/j.ins.2015.07.058_bib0015) 2006; 173 Pedrycz (10.1016/j.ins.2015.07.058_bib0027) 1993; 59 Li (10.1016/j.ins.2015.07.058_bib0020) 2009; 22 Wu (10.1016/j.ins.2015.07.058_bib0036) 2008; 47 Wu (10.1016/j.ins.2015.07.058_bib0038) 2005; 150 Guo (10.1016/j.ins.2015.07.058_bib0011) 2013; 252 Yang (10.1016/j.ins.2015.07.058_bib0039) 2005 Markovskii (10.1016/j.ins.2015.07.058_bib0025) 2005; 153 Freson (10.1016/j.ins.2015.07.058_bib0007) 2013; 234 Li (10.1016/j.ins.2015.07.058_bib0019) 2009; 17 Yang (10.1016/j.ins.2015.07.058_bib0040) 2007; 6 Lu (10.1016/j.ins.2015.07.058_bib0024) 2001; 119 Bourke (10.1016/j.ins.2015.07.058_bib0001) 1998; 94 Ghodousian (10.1016/j.ins.2015.07.058_bib0008) 2006; 178 Li (10.1016/j.ins.2015.07.058_bib0017) 2013; 21 Ghodousian (10.1016/j.ins.2015.07.058_bib0010) 2012; 206 |
References_xml | – volume: 159 start-page: 72 year: 1991 end-page: 87 ident: bib0034 article-title: Latticized linear programming and fuzzy relation inequalities publication-title: J. Math. Anal. Appl. – volume: 2 start-page: 41 year: 2003 end-page: 60 ident: bib0035 article-title: Solution sets of interval-valued fuzzy relational equations publication-title: Fuzzy Optim. Decis. Mak. – volume: 7 start-page: 169 year: 2008 end-page: 214 ident: bib0021 article-title: On the resolution and optimization of a system of fuzzy relational equations with sup-T composition publication-title: Fuzzy Optim. Decis. Mak. – volume: 21 start-page: 781 year: 2013 end-page: 788 ident: bib0017 article-title: A matrix approach to latticized linear programming with fuzzy-relation inequality constraints publication-title: IEEE Trans. Fuzzy Syst. – volume: 180 start-page: 411 year: 2006 end-page: 418 ident: bib0009 article-title: Solving a linear programming problem with the convex combination of the max–min and the max-average fuzzy relation equations publication-title: Appl. Math. Comput. – start-page: 221 year: 1977 end-page: 234 ident: bib0030 article-title: Solutions in composite fuzzy relation equations: application to medical diagnosis in Brouwerian logic publication-title: Fuzzy Automata and Decision Processes – volume: 206 start-page: 89 year: 2012 end-page: 102 ident: bib0010 article-title: Linear optimization with an arbitrary fuzzy relational inequality publication-title: Fuzzy Sets Syst. – volume: 1 start-page: 347 year: 2002 end-page: 360 ident: bib0013 article-title: Minimizing a linear objective function with fuzzy relation equation constraints publication-title: Fuzzy Optim. Decis. Mak. – volume: 119 start-page: 1 year: 2001 end-page: 20 ident: bib0024 article-title: Solving nonlinear optimization problems with fuzzy relation equations constraints publication-title: Fuzzy Sets Syst. – volume: 6 start-page: 321 year: 1998 end-page: 324 ident: bib0016 article-title: Solving interval-valued fuzzy relation equations publication-title: IEEE Trans. Fuzzy Syst. – volume: 127 start-page: 141 year: 2002 end-page: 164 ident: bib0023 article-title: Multi-objective optimization problems with fuzzy relation equation constraints publication-title: Fuzzy Sets Syst. – volume: 30 start-page: 38C48 year: 1976 ident: bib0029 article-title: Resolution of composite fuzzy relation equation publication-title: Inf. Control – volume: 234 start-page: 71 year: 2013 end-page: 79 ident: bib0002 article-title: Linear optimization problem constrained by fuzzy max–min relation equations publication-title: Inf. Sci. – volume: 47 start-page: 352 year: 2008 end-page: 362 ident: bib0036 article-title: Optimizing the geometric programming problem with single-term exponents subject to max–min fuzzy relational equation constraints publication-title: Math. Comput. Model. – volume: 6 start-page: 337 year: 2007 end-page: 349 ident: bib0040 article-title: Monomial geometric programming with fuzzy relation equation constraints publication-title: Fuzzy Optim. Decis. Mak. – volume: 53 start-page: 55 year: 2011 end-page: 62 ident: bib0041 article-title: Geometric programming problem with single-term exponents subject to max-product fuzzy relational equations publication-title: Math. Comput. Model. – volume: 181 start-page: 832 year: 2011 end-page: 841 ident: bib0031 article-title: Minimizing a linear objective function under a fuzzy max-t norm relation equation constraint publication-title: Inf. Sci. – volume: 3 start-page: 271 year: 2004 end-page: 278 ident: bib0037 article-title: A note on fuzzy relation programming problems with max-strict-t-norm composition publication-title: Fuzzy Optim. Decis. Mak. – volume: 234 start-page: 3 year: 2013 end-page: 15 ident: bib0007 article-title: Linear optimization with bipolar max–min constraints publication-title: Inf. Sci. – volume: 6 start-page: 428 year: 2002 end-page: 435 ident: bib0003 article-title: Fuzzy relation equations (I): the general and specialized solving algorithms publication-title: Soft Comput. – volume: 17 start-page: 1353 year: 2009 end-page: 1365 ident: bib0019 article-title: Latticized linear optimization on the unit interval publication-title: IEEE Trans. Fuzzy Syst. – volume: 56 start-page: 1386 year: 2009 end-page: 1392 ident: bib0032 article-title: Monomial geometric programming with fuzzy relation inequality constraints with max-product composition publication-title: Comput. Ind. Eng. – volume: 8 start-page: 179 year: 2009 end-page: 229 ident: bib0018 article-title: A survey on fuzzy relational equations, part I: classification and solvability publication-title: IEEE Trans. Fuzzy Syst. – volume: 173 start-page: 872 year: 2006 end-page: 886 ident: bib0015 article-title: Linear objective function optimization with fuzzy relation equation constraints regarding maxCav composition publication-title: Appl. Math. Comput. – start-page: 83 year: 1994 end-page: 101 ident: bib0028 article-title: Systems of fuzzy equations and inequalities for fuzzy optimization publication-title: Fuzzy Optimization, Recent Advances – volume: 22 start-page: 49 year: 2009 end-page: 62 ident: bib0020 article-title: Minimizing a linear fractional function subject to a system of sup-T equations with a continuous Archimedean triangular norm publication-title: J. Syst Sci. Complex. – volume: 150 start-page: 147 year: 2005 end-page: 162 ident: bib0038 article-title: Minimizing a linear function under a fuzzy max–min relational equation constraint publication-title: Fuzzy Sets Syst. – volume: 40 start-page: 473 year: 1991 end-page: 489 ident: bib0012 article-title: Design of fuzzy logic controllers based on generalized T-operators publication-title: Fuzzy Sets Syst. – volume: 7 start-page: 89 year: 1982 end-page: 101 ident: bib0004 article-title: Fuzzy relation equations on a finite set publication-title: Fuzzy Sets Syst. – volume: 107 start-page: 520C536 year: 1985 ident: bib0026 article-title: On generalized fuzzy relational equations and their applications publication-title: J. Math. Anal. Appl. – volume: 103 start-page: 107 year: 1999 end-page: 113 ident: bib0006 article-title: Solving fuzzy relation equations with a linear objective function publication-title: Fuzzy Sets Syst. – volume: 13 start-page: 65 year: 1984 end-page: 82 ident: bib0014 article-title: Resolution of finite fuzzy relation equations publication-title: Fuzzy Sets Syst. – volume: 178 start-page: 502 year: 2006 end-page: 509 ident: bib0008 article-title: An algorithm for optimizing the linear function with fuzzy relation equation constraints regarding max-prod composition publication-title: Appl. Math. Comput. – volume: 94 start-page: 61 year: 1998 end-page: 69 ident: bib0001 article-title: Solution algorithms for fuzzy relational equations with max-product composition publication-title: Fuzzy Sets Syst. – volume: 59 start-page: 189 year: 1993 end-page: 195 ident: bib0027 article-title: s-t fuzzy relational equations publication-title: Fuzzy Sets Syst. – volume: 7 start-page: 441 year: 1999 end-page: 445 ident: bib0022 article-title: An efficient solution procedure for fuzzy relational equations with max-product composition publication-title: IEEE Trans. Fuzzy Syst. – volume: 153 start-page: 261 year: 2005 end-page: 273 ident: bib0025 article-title: On the relation between equations with max-product composition and the covering problem publication-title: Fuzzy Sets Syst. – start-page: 557 year: 2005 end-page: 560 ident: bib0039 article-title: Geometric programming with fuzzy relation equation constraints publication-title: Proceedings of IEEE International Conference on Fuzzy Systems – volume: 4 start-page: 23 year: 1995 end-page: 35 ident: bib0033 article-title: A multi-objective mathematical programming problem with fuzzy relation constraints publication-title: J. Multi-Criteria Decis. Anal. – year: 1989 ident: bib0005 publication-title: Fuzzy Relation Equations and Their Applications in Knowledge Engineering – volume: 252 start-page: 20 year: 2013 end-page: 31 ident: bib0011 article-title: An algorithm for solving optimization problems with fuzzy relational inequality constraints publication-title: Inf. Sci. – volume: 103 start-page: 107 year: 1999 ident: 10.1016/j.ins.2015.07.058_bib0006 article-title: Solving fuzzy relation equations with a linear objective function publication-title: Fuzzy Sets Syst. doi: 10.1016/S0165-0114(97)00184-X – volume: 6 start-page: 428 year: 2002 ident: 10.1016/j.ins.2015.07.058_bib0003 article-title: Fuzzy relation equations (I): the general and specialized solving algorithms publication-title: Soft Comput. doi: 10.1007/s00500-001-0157-3 – volume: 8 start-page: 179 year: 2009 ident: 10.1016/j.ins.2015.07.058_bib0018 article-title: A survey on fuzzy relational equations, part I: classification and solvability publication-title: IEEE Trans. Fuzzy Syst. – volume: 127 start-page: 141 year: 2002 ident: 10.1016/j.ins.2015.07.058_bib0023 article-title: Multi-objective optimization problems with fuzzy relation equation constraints publication-title: Fuzzy Sets Syst. doi: 10.1016/S0165-0114(01)00052-5 – start-page: 221 year: 1977 ident: 10.1016/j.ins.2015.07.058_bib0030 article-title: Solutions in composite fuzzy relation equations: application to medical diagnosis in Brouwerian logic – volume: 178 start-page: 502 year: 2006 ident: 10.1016/j.ins.2015.07.058_bib0008 article-title: An algorithm for optimizing the linear function with fuzzy relation equation constraints regarding max-prod composition publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2005.11.069 – volume: 94 start-page: 61 year: 1998 ident: 10.1016/j.ins.2015.07.058_bib0001 article-title: Solution algorithms for fuzzy relational equations with max-product composition publication-title: Fuzzy Sets Syst. doi: 10.1016/S0165-0114(96)00246-1 – volume: 22 start-page: 49 year: 2009 ident: 10.1016/j.ins.2015.07.058_bib0020 article-title: Minimizing a linear fractional function subject to a system of sup-T equations with a continuous Archimedean triangular norm publication-title: J. Syst Sci. Complex. doi: 10.1007/s11424-009-9146-x – volume: 17 start-page: 1353 issue: 6 year: 2009 ident: 10.1016/j.ins.2015.07.058_bib0019 article-title: Latticized linear optimization on the unit interval publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2009.2031561 – volume: 234 start-page: 71 year: 2013 ident: 10.1016/j.ins.2015.07.058_bib0002 article-title: Linear optimization problem constrained by fuzzy max–min relation equations publication-title: Inf. Sci. doi: 10.1016/j.ins.2011.04.042 – volume: 21 start-page: 781 issue: 4 year: 2013 ident: 10.1016/j.ins.2015.07.058_bib0017 article-title: A matrix approach to latticized linear programming with fuzzy-relation inequality constraints publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2012.2232932 – volume: 13 start-page: 65 year: 1984 ident: 10.1016/j.ins.2015.07.058_bib0014 article-title: Resolution of finite fuzzy relation equations publication-title: Fuzzy Sets Syst. doi: 10.1016/0165-0114(84)90026-5 – volume: 6 start-page: 337 year: 2007 ident: 10.1016/j.ins.2015.07.058_bib0040 article-title: Monomial geometric programming with fuzzy relation equation constraints publication-title: Fuzzy Optim. Decis. Mak. doi: 10.1007/s10700-007-9017-7 – volume: 119 start-page: 1 year: 2001 ident: 10.1016/j.ins.2015.07.058_bib0024 article-title: Solving nonlinear optimization problems with fuzzy relation equations constraints publication-title: Fuzzy Sets Syst. doi: 10.1016/S0165-0114(98)00471-0 – volume: 3 start-page: 271 year: 2004 ident: 10.1016/j.ins.2015.07.058_bib0037 article-title: A note on fuzzy relation programming problems with max-strict-t-norm composition publication-title: Fuzzy Optim. Decis. Mak. doi: 10.1023/B:FODM.0000036862.45420.ea – volume: 59 start-page: 189 year: 1993 ident: 10.1016/j.ins.2015.07.058_bib0027 article-title: s-t fuzzy relational equations publication-title: Fuzzy Sets Syst. doi: 10.1016/0165-0114(93)90198-Q – volume: 181 start-page: 832 year: 2011 ident: 10.1016/j.ins.2015.07.058_bib0031 article-title: Minimizing a linear objective function under a fuzzy max-t norm relation equation constraint publication-title: Inf. Sci. doi: 10.1016/j.ins.2010.10.024 – volume: 53 start-page: 55 year: 2011 ident: 10.1016/j.ins.2015.07.058_bib0041 article-title: Geometric programming problem with single-term exponents subject to max-product fuzzy relational equations publication-title: Math. Comput. Model. doi: 10.1016/j.mcm.2010.07.018 – volume: 7 start-page: 169 year: 2008 ident: 10.1016/j.ins.2015.07.058_bib0021 article-title: On the resolution and optimization of a system of fuzzy relational equations with sup-T composition publication-title: Fuzzy Optim. Decis. Mak. doi: 10.1007/s10700-008-9029-y – volume: 234 start-page: 3 year: 2013 ident: 10.1016/j.ins.2015.07.058_bib0007 article-title: Linear optimization with bipolar max–min constraints publication-title: Inf. Sci. doi: 10.1016/j.ins.2011.06.009 – volume: 153 start-page: 261 year: 2005 ident: 10.1016/j.ins.2015.07.058_bib0025 article-title: On the relation between equations with max-product composition and the covering problem publication-title: Fuzzy Sets Syst. doi: 10.1016/j.fss.2005.02.010 – volume: 4 start-page: 23 year: 1995 ident: 10.1016/j.ins.2015.07.058_bib0033 article-title: A multi-objective mathematical programming problem with fuzzy relation constraints publication-title: J. Multi-Criteria Decis. Anal. doi: 10.1002/mcda.4020040103 – volume: 7 start-page: 441 issue: 4 year: 1999 ident: 10.1016/j.ins.2015.07.058_bib0022 article-title: An efficient solution procedure for fuzzy relational equations with max-product composition publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/91.784204 – volume: 56 start-page: 1386 year: 2009 ident: 10.1016/j.ins.2015.07.058_bib0032 article-title: Monomial geometric programming with fuzzy relation inequality constraints with max-product composition publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2008.08.015 – volume: 107 start-page: 520C536 year: 1985 ident: 10.1016/j.ins.2015.07.058_bib0026 article-title: On generalized fuzzy relational equations and their applications publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(85)90329-4 – volume: 30 start-page: 38C48 year: 1976 ident: 10.1016/j.ins.2015.07.058_bib0029 article-title: Resolution of composite fuzzy relation equation publication-title: Inf. Control doi: 10.1016/S0019-9958(76)90446-0 – volume: 7 start-page: 89 year: 1982 ident: 10.1016/j.ins.2015.07.058_bib0004 article-title: Fuzzy relation equations on a finite set publication-title: Fuzzy Sets Syst. doi: 10.1016/0165-0114(82)90043-4 – volume: 150 start-page: 147 year: 2005 ident: 10.1016/j.ins.2015.07.058_bib0038 article-title: Minimizing a linear function under a fuzzy max–min relational equation constraint publication-title: Fuzzy Sets Syst. doi: 10.1016/j.fss.2004.09.010 – start-page: 83 year: 1994 ident: 10.1016/j.ins.2015.07.058_bib0028 article-title: Systems of fuzzy equations and inequalities for fuzzy optimization – volume: 173 start-page: 872 year: 2006 ident: 10.1016/j.ins.2015.07.058_bib0015 article-title: Linear objective function optimization with fuzzy relation equation constraints regarding maxCav composition publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2005.04.021 – volume: 40 start-page: 473 year: 1991 ident: 10.1016/j.ins.2015.07.058_bib0012 article-title: Design of fuzzy logic controllers based on generalized T-operators publication-title: Fuzzy Sets Syst. doi: 10.1016/0165-0114(91)90173-N – volume: 159 start-page: 72 year: 1991 ident: 10.1016/j.ins.2015.07.058_bib0034 article-title: Latticized linear programming and fuzzy relation inequalities publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(91)90222-L – volume: 47 start-page: 352 year: 2008 ident: 10.1016/j.ins.2015.07.058_bib0036 article-title: Optimizing the geometric programming problem with single-term exponents subject to max–min fuzzy relational equation constraints publication-title: Math. Comput. Model. doi: 10.1016/j.mcm.2007.04.010 – start-page: 557 year: 2005 ident: 10.1016/j.ins.2015.07.058_bib0039 article-title: Geometric programming with fuzzy relation equation constraints – year: 1989 ident: 10.1016/j.ins.2015.07.058_bib0005 – volume: 180 start-page: 411 year: 2006 ident: 10.1016/j.ins.2015.07.058_bib0009 article-title: Solving a linear programming problem with the convex combination of the max–min and the max-average fuzzy relation equations publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2005.12.027 – volume: 6 start-page: 321 issue: 2 year: 1998 ident: 10.1016/j.ins.2015.07.058_bib0016 article-title: Solving interval-valued fuzzy relation equations publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/91.669033 – volume: 2 start-page: 41 issue: 1 year: 2003 ident: 10.1016/j.ins.2015.07.058_bib0035 article-title: Solution sets of interval-valued fuzzy relational equations publication-title: Fuzzy Optim. Decis. Mak. doi: 10.1023/A:1022800330844 – volume: 252 start-page: 20 year: 2013 ident: 10.1016/j.ins.2015.07.058_bib0011 article-title: An algorithm for solving optimization problems with fuzzy relational inequality constraints publication-title: Inf. Sci. doi: 10.1016/j.ins.2011.09.030 – volume: 206 start-page: 89 year: 2012 ident: 10.1016/j.ins.2015.07.058_bib0010 article-title: Linear optimization with an arbitrary fuzzy relational inequality publication-title: Fuzzy Sets Syst. doi: 10.1016/j.fss.2012.04.009 – volume: 1 start-page: 347 issue: 4 year: 2002 ident: 10.1016/j.ins.2015.07.058_bib0013 article-title: Minimizing a linear objective function with fuzzy relation equation constraints publication-title: Fuzzy Optim. Decis. Mak. doi: 10.1023/A:1020955112523 |
SSID | ssj0004766 |
Score | 2.3306112 |
Snippet | We discuss a class of posynomial geometric programming problem(PGPF), aimed at minimizing a posynomial subject to fuzzy relational equations with max–min... We discuss a class of posynomial geometric programming problem(PGPF), aimed at minimizing a posynomial subject to fuzzy relational equations with max-min... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 15 |
SubjectTerms | Equivalence Fuzzy Fuzzy logic Fuzzy relation equation Fuzzy set theory Mathematical analysis Mathematical models Max–min composition Optimization Posynomial geometric programming Programming |
Title | Posynomial geometric programming problem subject to max–min fuzzy relation equations |
URI | https://dx.doi.org/10.1016/j.ins.2015.07.058 https://www.proquest.com/docview/1770321622 |
Volume | 328 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA6iFz2IK24jEcSDUE3SdJnjIMqoIB5UvIU2i4w4rTozoB7E_-A_9Jf4Xpu6gR7srWkSystbviRvIWQzz3nWdsYEJsxEIDnKnJU6MEYkpi017MeqbJ8ncfdcHl1Gl2Nkr4mFQbdKr_trnV5pa9-y66m5e9vrYYyvqBAxQBoGMBxzgkqZIJfvPH-6eUBLXLt5sAB7NzeblY9Xr8CM3Tyq83emv9mmH1q6Mj0HM2TaY0baqX9rlozZYo5MfckkOEdaPv6AblEfYIQEp15y58nFaTl4xAhkmOfKln2so6Wpd87qwxTUV5ahg1GORzN0WNJ-9vD28gpfqRs9PT3Se-84R-1dnSB8sEDOD_bP9rqBL6kQ6DBkw8BFVphMZmGS2SiKRA6IS8IjnOE5N2CaHHNSu1zGTHON4ERwzVimU0A6AA0WyXhRFnaJUJdakO04CTGYN2_jxoelLrFO6DgFFlgmrCGm0j7fOJa9uFGNY9m1AvorpL9iiQL6L5PtjyG3dbKNvzrLZoXUN45RYAz-GrbRrKYCScLrkayw5WigeALaT_BYiJX_Tb1KJuGtOqARbI2MD-9HtgWQZZivVzy5TiY6h8fdk3cCQOyZ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BcoAeqpaHCi2tkRAHpAjbcR57RKhoKbDiAIiblfiBtuomC7srFU79D_2H_SWdSZyWViqH5hjHVjT2zHy2Z74B2C1LUfS9tZGNCxkpQTrnlImslZntK4P7sYbtc5gOrtSnm-RmAY66XBgKqwy2v7XpjbUObw6CNA8moxHl-MoGESOk4QjD1SIsETtV0oOlw5PTwfB3emTWXlnSTok6dJebTZjXqCLSbpG0FJ75v9zTX4a68T7Hr-BlgI3ssP2z17DgqlV48YRMcBW2QwoC22Mhx4hkzoLyrsH1RT19oCRkHOfW1WMqpWVYiM8a4xAsFJdh03lJpzNsVrNx8fXHt-_Yyvz88fGB3YfYOebuWo7w6TpcHX-8PBpEoapCZOKYzyKfOGkLVcRZ4ZIkkSWCLoWP9FaUwqJ38twr40uVciMM4RMpDOeFyRHsIDrYgF5VV-4NMJ87VO80iymft-zT3ofnPnNemjTHVbAJvBOmNoFynCpffNFdbNlnjfLXJH_NM43y34T9X10mLd_Gcx-rbob0H4tGoz94rttON5salYluSIrK1fOpFhkaQClSKbf-b-gPsDy4PD_TZyfD07ewgi3NeY3k76A3u5-7bUQws_J9WKE_AR8470o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Posynomial+geometric+programming+problem+subject+to+max%E2%80%93min+fuzzy+relation+equations&rft.jtitle=Information+sciences&rft.au=Zhou%2C+Xue-Gang&rft.au=Yang%2C+Xiao-Peng&rft.au=Cao%2C+Bing-Yuan&rft.date=2016-01-20&rft.issn=0020-0255&rft.volume=328&rft.spage=15&rft.epage=25&rft_id=info:doi/10.1016%2Fj.ins.2015.07.058&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2015_07_058 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |