Posynomial geometric programming problem subject to max–min fuzzy relation equations

We discuss a class of posynomial geometric programming problem(PGPF), aimed at minimizing a posynomial subject to fuzzy relational equations with max–min composition. By introducing auxiliary variables, we convert the PGPF into an equivalent programming problem whose objective function is a non-decr...

Full description

Saved in:
Bibliographic Details
Published inInformation sciences Vol. 328; pp. 15 - 25
Main Authors Zhou, Xue-Gang, Yang, Xiao-Peng, Cao, Bing-Yuan
Format Journal Article
LanguageEnglish
Published Elsevier Inc 20.01.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We discuss a class of posynomial geometric programming problem(PGPF), aimed at minimizing a posynomial subject to fuzzy relational equations with max–min composition. By introducing auxiliary variables, we convert the PGPF into an equivalent programming problem whose objective function is a non-decreasing function with an auxiliary variable. We show that an optimal solution consists of a maximum feasible solution and one of the minimal feasible solutions by an equivalent programming problem. In addition, we introduce some rules for simplifying the problem. Then by using a branch and bound method and fuzzy relational equations (FRE) path, we present an algorithm to obtain an optimal solution to the PGPF. Finally, numerical examples are provided to illustrate the steps of the procedure.
AbstractList We discuss a class of posynomial geometric programming problem(PGPF), aimed at minimizing a posynomial subject to fuzzy relational equations with max-min composition. By introducing auxiliary variables, we convert the PGPF into an equivalent programming problem whose objective function is a non-decreasing function with an auxiliary variable. We show that an optimal solution consists of a maximum feasible solution and one of the minimal feasible solutions by an equivalent programming problem. In addition, we introduce some rules for simplifying the problem. Then by using a branch and bound method and fuzzy relational equations (FRE) path, we present an algorithm to obtain an optimal solution to the PGPF. Finally, numerical examples are provided to illustrate the steps of the procedure.
Author Cao, Bing-Yuan
Zhou, Xue-Gang
Yang, Xiao-Peng
Author_xml – sequence: 1
  givenname: Xue-Gang
  surname: Zhou
  fullname: Zhou, Xue-Gang
  organization: School of Mathematics and Information Science, Key Laboratory of Mathematics and Interdisciplinary Sciences of Guangdong, Higher Education Institutes, Guangzhou University, Guangzhou, Guangdong, 510006, China
– sequence: 2
  givenname: Xiao-Peng
  surname: Yang
  fullname: Yang, Xiao-Peng
  organization: School of Mathematics and Information Science, Key Laboratory of Mathematics and Interdisciplinary Sciences of Guangdong, Higher Education Institutes, Guangzhou University, Guangzhou, Guangdong, 510006, China
– sequence: 3
  givenname: Bing-Yuan
  surname: Cao
  fullname: Cao, Bing-Yuan
  email: caobingy@163.com, happyyangxp@163.com
  organization: School of Mathematics and Information Science, Key Laboratory of Mathematics and Interdisciplinary Sciences of Guangdong, Higher Education Institutes, Guangzhou University, Guangzhou, Guangdong, 510006, China
BookMark eNp9kL1OwzAQgC1UJFrgAdgysiScnThOxYQq_qRKMACr5TiXylUSt3aCKBPvwBvyJLgtE0NvuZPuvtPdNyGjznZIyAWFhALNr5aJ6XzCgPIERAK8OCJjWggW52xKR2QMwCAGxvkJmXi_BIBM5PmYvD1bv-lsa1QTLdC22Dujo5WzC6fa1nSLbV022EZ-KJeo-6i3Uas-fr6-Qzeqh8_PTeSwUb2xXYTrYVf4M3Jcq8bj-V8-Ja93ty-zh3j-dP84u5nHOk2hj2uOrFKZSoVCzjkroeBZCFZXtKTVdAo11JmuyywHTXWR5YJRDaB0QQVj0_SUXO73hivXA_petsZrbBrVoR28pEJAymjOWBil-1HtrPcOa7lyplVuIynIrUO5lMGh3DqUIGRwGBjxj9Gm333YO2Wag-T1nsTw_btBJ7022GmsjAsWZWXNAfoX8gyQUg
CitedBy_id crossref_primary_10_1155_2018_1610349
crossref_primary_10_1080_16168658_2019_1643078
crossref_primary_10_3934_math_20241481
crossref_primary_10_1016_j_fss_2022_03_017
crossref_primary_10_1016_j_fss_2024_109011
crossref_primary_10_1109_ACCESS_2022_3197611
crossref_primary_10_1109_TFUZZ_2016_2598367
crossref_primary_10_1109_TFUZZ_2020_2991304
crossref_primary_10_1007_s13042_016_0527_x
crossref_primary_10_1016_j_ins_2017_07_035
crossref_primary_10_1016_j_fiae_2017_12_002
crossref_primary_10_3934_math_2024665
crossref_primary_10_1007_s40815_018_0530_3
crossref_primary_10_1007_s10700_019_09306_8
crossref_primary_10_1016_j_fss_2019_08_012
crossref_primary_10_1002_dac_3340
crossref_primary_10_1016_j_fss_2017_04_002
Cites_doi 10.1016/S0165-0114(97)00184-X
10.1007/s00500-001-0157-3
10.1016/S0165-0114(01)00052-5
10.1016/j.amc.2005.11.069
10.1016/S0165-0114(96)00246-1
10.1007/s11424-009-9146-x
10.1109/TFUZZ.2009.2031561
10.1016/j.ins.2011.04.042
10.1109/TFUZZ.2012.2232932
10.1016/0165-0114(84)90026-5
10.1007/s10700-007-9017-7
10.1016/S0165-0114(98)00471-0
10.1023/B:FODM.0000036862.45420.ea
10.1016/0165-0114(93)90198-Q
10.1016/j.ins.2010.10.024
10.1016/j.mcm.2010.07.018
10.1007/s10700-008-9029-y
10.1016/j.ins.2011.06.009
10.1016/j.fss.2005.02.010
10.1002/mcda.4020040103
10.1109/91.784204
10.1016/j.cie.2008.08.015
10.1016/0022-247X(85)90329-4
10.1016/S0019-9958(76)90446-0
10.1016/0165-0114(82)90043-4
10.1016/j.fss.2004.09.010
10.1016/j.amc.2005.04.021
10.1016/0165-0114(91)90173-N
10.1016/0022-247X(91)90222-L
10.1016/j.mcm.2007.04.010
10.1016/j.amc.2005.12.027
10.1109/91.669033
10.1023/A:1022800330844
10.1016/j.ins.2011.09.030
10.1016/j.fss.2012.04.009
10.1023/A:1020955112523
ContentType Journal Article
Copyright 2015 Elsevier Inc.
Copyright_xml – notice: 2015 Elsevier Inc.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.ins.2015.07.058
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 25
ExternalDocumentID 10_1016_j_ins_2015_07_058
S0020025515006064
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABUCO
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
WH7
XPP
ZMT
~02
~G-
1OL
29I
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
HLZ
HVGLF
HZ~
H~9
R2-
SBC
SDS
SEW
SSH
UHS
WUQ
YYP
ZY4
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c330t-f5e2da4a37ae5552b08544442fd1b1d990f0f4cfb460c1c846721c00ac8172293
IEDL.DBID .~1
ISSN 0020-0255
IngestDate Thu Jul 10 19:15:37 EDT 2025
Thu Apr 24 23:02:29 EDT 2025
Tue Jul 01 04:16:31 EDT 2025
Fri Feb 23 02:33:57 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Max–min composition
Posynomial geometric programming
Fuzzy relation equation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c330t-f5e2da4a37ae5552b08544442fd1b1d990f0f4cfb460c1c846721c00ac8172293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1770321622
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_1770321622
crossref_primary_10_1016_j_ins_2015_07_058
crossref_citationtrail_10_1016_j_ins_2015_07_058
elsevier_sciencedirect_doi_10_1016_j_ins_2015_07_058
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-01-20
PublicationDateYYYYMMDD 2016-01-20
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-20
  day: 20
PublicationDecade 2010
PublicationTitle Information sciences
PublicationYear 2016
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Li, Fang (bib0020) 2009; 22
Wu, Guu (bib0037) 2004; 3
Wu (bib0036) 2008; 47
Pedrycz (bib0027) 1993; 59
Shieh (bib0031) 2011; 181
Wang (bib0033) 1995; 4
Li, Fang (bib0021) 2008; 7
Gupta, Qi (bib0012) 1991; 40
Di Nola, Sessa, Pedrycz, Sanchez (bib0005) 1989
Peeva (bib0028) 1994
Ghodousian, Khorram (bib0010) 2012; 206
Wang, Fang, Nuttle (bib0035) 2003; 2
Shivanian, Khorram (bib0032) 2009; 56
Czogala, Drewniak, Pedrycz (bib0004) 1982; 7
Yang, Cao (bib0039) 2005
Ghodousian, Khorram (bib0009) 2006; 180
Yang, Cao (bib0040) 2007; 6
Sanchez (bib0029) 1976; 30
Chang, Shieh (bib0002) 2013; 234
Chen, Wang (bib0003) 2002; 6
Li, Fang (bib0018) 2009; 8
Freson, De Baets, De Meyer (bib0007) 2013; 234
Guo, Pang, Meng, Xia (bib0011) 2013; 252
Bourke, Fisher (bib0001) 1998; 94
Khorram, Ghodousian (bib0015) 2006; 173
Loetamonphong, Fang, Young (bib0023) 2002; 127
Zhou, Ahat (bib0041) 2011; 53
Higashi, Klir (bib0014) 1984; 13
Li, Wang (bib0017) 2013; 21
Lu, Fang (bib0024) 2001; 119
Markovskii (bib0025) 2005; 153
Fang, Li (bib0006) 1999; 103
Ghodousian, Khorram (bib0008) 2006; 178
Loetamonphong, Fang (bib0022) 1999; 7
Sanchez (bib0030) 1977
Wu, Guu (bib0038) 2005; 150
Li, Fang (bib0019) 2009; 17
Guu, Wu (bib0013) 2002; 1
Pedrycz (bib0026) 1985; 107
Wang, Zhang, Sanchez, Lee (bib0034) 1991; 159
Li, Fang (bib0016) 1998; 6
Higashi (10.1016/j.ins.2015.07.058_bib0014) 1984; 13
Wang (10.1016/j.ins.2015.07.058_bib0035) 2003; 2
Li (10.1016/j.ins.2015.07.058_bib0018) 2009; 8
Chen (10.1016/j.ins.2015.07.058_bib0003) 2002; 6
Di Nola (10.1016/j.ins.2015.07.058_bib0005) 1989
Wang (10.1016/j.ins.2015.07.058_bib0034) 1991; 159
Wu (10.1016/j.ins.2015.07.058_bib0037) 2004; 3
Wang (10.1016/j.ins.2015.07.058_bib0033) 1995; 4
Zhou (10.1016/j.ins.2015.07.058_bib0041) 2011; 53
Czogala (10.1016/j.ins.2015.07.058_bib0004) 1982; 7
Ghodousian (10.1016/j.ins.2015.07.058_bib0009) 2006; 180
Peeva (10.1016/j.ins.2015.07.058_bib0028) 1994
Loetamonphong (10.1016/j.ins.2015.07.058_bib0023) 2002; 127
Fang (10.1016/j.ins.2015.07.058_bib0006) 1999; 103
Guu (10.1016/j.ins.2015.07.058_bib0013) 2002; 1
Pedrycz (10.1016/j.ins.2015.07.058_bib0026) 1985; 107
Li (10.1016/j.ins.2015.07.058_bib0021) 2008; 7
Shieh (10.1016/j.ins.2015.07.058_bib0031) 2011; 181
Shivanian (10.1016/j.ins.2015.07.058_bib0032) 2009; 56
Sanchez (10.1016/j.ins.2015.07.058_bib0029) 1976; 30
Loetamonphong (10.1016/j.ins.2015.07.058_bib0022) 1999; 7
Sanchez (10.1016/j.ins.2015.07.058_bib0030) 1977
Gupta (10.1016/j.ins.2015.07.058_bib0012) 1991; 40
Li (10.1016/j.ins.2015.07.058_bib0016) 1998; 6
Chang (10.1016/j.ins.2015.07.058_bib0002) 2013; 234
Khorram (10.1016/j.ins.2015.07.058_bib0015) 2006; 173
Pedrycz (10.1016/j.ins.2015.07.058_bib0027) 1993; 59
Li (10.1016/j.ins.2015.07.058_bib0020) 2009; 22
Wu (10.1016/j.ins.2015.07.058_bib0036) 2008; 47
Wu (10.1016/j.ins.2015.07.058_bib0038) 2005; 150
Guo (10.1016/j.ins.2015.07.058_bib0011) 2013; 252
Yang (10.1016/j.ins.2015.07.058_bib0039) 2005
Markovskii (10.1016/j.ins.2015.07.058_bib0025) 2005; 153
Freson (10.1016/j.ins.2015.07.058_bib0007) 2013; 234
Li (10.1016/j.ins.2015.07.058_bib0019) 2009; 17
Yang (10.1016/j.ins.2015.07.058_bib0040) 2007; 6
Lu (10.1016/j.ins.2015.07.058_bib0024) 2001; 119
Bourke (10.1016/j.ins.2015.07.058_bib0001) 1998; 94
Ghodousian (10.1016/j.ins.2015.07.058_bib0008) 2006; 178
Li (10.1016/j.ins.2015.07.058_bib0017) 2013; 21
Ghodousian (10.1016/j.ins.2015.07.058_bib0010) 2012; 206
References_xml – volume: 159
  start-page: 72
  year: 1991
  end-page: 87
  ident: bib0034
  article-title: Latticized linear programming and fuzzy relation inequalities
  publication-title: J. Math. Anal. Appl.
– volume: 2
  start-page: 41
  year: 2003
  end-page: 60
  ident: bib0035
  article-title: Solution sets of interval-valued fuzzy relational equations
  publication-title: Fuzzy Optim. Decis. Mak.
– volume: 7
  start-page: 169
  year: 2008
  end-page: 214
  ident: bib0021
  article-title: On the resolution and optimization of a system of fuzzy relational equations with sup-T composition
  publication-title: Fuzzy Optim. Decis. Mak.
– volume: 21
  start-page: 781
  year: 2013
  end-page: 788
  ident: bib0017
  article-title: A matrix approach to latticized linear programming with fuzzy-relation inequality constraints
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 180
  start-page: 411
  year: 2006
  end-page: 418
  ident: bib0009
  article-title: Solving a linear programming problem with the convex combination of the max–min and the max-average fuzzy relation equations
  publication-title: Appl. Math. Comput.
– start-page: 221
  year: 1977
  end-page: 234
  ident: bib0030
  article-title: Solutions in composite fuzzy relation equations: application to medical diagnosis in Brouwerian logic
  publication-title: Fuzzy Automata and Decision Processes
– volume: 206
  start-page: 89
  year: 2012
  end-page: 102
  ident: bib0010
  article-title: Linear optimization with an arbitrary fuzzy relational inequality
  publication-title: Fuzzy Sets Syst.
– volume: 1
  start-page: 347
  year: 2002
  end-page: 360
  ident: bib0013
  article-title: Minimizing a linear objective function with fuzzy relation equation constraints
  publication-title: Fuzzy Optim. Decis. Mak.
– volume: 119
  start-page: 1
  year: 2001
  end-page: 20
  ident: bib0024
  article-title: Solving nonlinear optimization problems with fuzzy relation equations constraints
  publication-title: Fuzzy Sets Syst.
– volume: 6
  start-page: 321
  year: 1998
  end-page: 324
  ident: bib0016
  article-title: Solving interval-valued fuzzy relation equations
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 127
  start-page: 141
  year: 2002
  end-page: 164
  ident: bib0023
  article-title: Multi-objective optimization problems with fuzzy relation equation constraints
  publication-title: Fuzzy Sets Syst.
– volume: 30
  start-page: 38C48
  year: 1976
  ident: bib0029
  article-title: Resolution of composite fuzzy relation equation
  publication-title: Inf. Control
– volume: 234
  start-page: 71
  year: 2013
  end-page: 79
  ident: bib0002
  article-title: Linear optimization problem constrained by fuzzy max–min relation equations
  publication-title: Inf. Sci.
– volume: 47
  start-page: 352
  year: 2008
  end-page: 362
  ident: bib0036
  article-title: Optimizing the geometric programming problem with single-term exponents subject to max–min fuzzy relational equation constraints
  publication-title: Math. Comput. Model.
– volume: 6
  start-page: 337
  year: 2007
  end-page: 349
  ident: bib0040
  article-title: Monomial geometric programming with fuzzy relation equation constraints
  publication-title: Fuzzy Optim. Decis. Mak.
– volume: 53
  start-page: 55
  year: 2011
  end-page: 62
  ident: bib0041
  article-title: Geometric programming problem with single-term exponents subject to max-product fuzzy relational equations
  publication-title: Math. Comput. Model.
– volume: 181
  start-page: 832
  year: 2011
  end-page: 841
  ident: bib0031
  article-title: Minimizing a linear objective function under a fuzzy max-t norm relation equation constraint
  publication-title: Inf. Sci.
– volume: 3
  start-page: 271
  year: 2004
  end-page: 278
  ident: bib0037
  article-title: A note on fuzzy relation programming problems with max-strict-t-norm composition
  publication-title: Fuzzy Optim. Decis. Mak.
– volume: 234
  start-page: 3
  year: 2013
  end-page: 15
  ident: bib0007
  article-title: Linear optimization with bipolar max–min constraints
  publication-title: Inf. Sci.
– volume: 6
  start-page: 428
  year: 2002
  end-page: 435
  ident: bib0003
  article-title: Fuzzy relation equations (I): the general and specialized solving algorithms
  publication-title: Soft Comput.
– volume: 17
  start-page: 1353
  year: 2009
  end-page: 1365
  ident: bib0019
  article-title: Latticized linear optimization on the unit interval
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 56
  start-page: 1386
  year: 2009
  end-page: 1392
  ident: bib0032
  article-title: Monomial geometric programming with fuzzy relation inequality constraints with max-product composition
  publication-title: Comput. Ind. Eng.
– volume: 8
  start-page: 179
  year: 2009
  end-page: 229
  ident: bib0018
  article-title: A survey on fuzzy relational equations, part I: classification and solvability
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 173
  start-page: 872
  year: 2006
  end-page: 886
  ident: bib0015
  article-title: Linear objective function optimization with fuzzy relation equation constraints regarding maxCav composition
  publication-title: Appl. Math. Comput.
– start-page: 83
  year: 1994
  end-page: 101
  ident: bib0028
  article-title: Systems of fuzzy equations and inequalities for fuzzy optimization
  publication-title: Fuzzy Optimization, Recent Advances
– volume: 22
  start-page: 49
  year: 2009
  end-page: 62
  ident: bib0020
  article-title: Minimizing a linear fractional function subject to a system of sup-T equations with a continuous Archimedean triangular norm
  publication-title: J. Syst Sci. Complex.
– volume: 150
  start-page: 147
  year: 2005
  end-page: 162
  ident: bib0038
  article-title: Minimizing a linear function under a fuzzy max–min relational equation constraint
  publication-title: Fuzzy Sets Syst.
– volume: 40
  start-page: 473
  year: 1991
  end-page: 489
  ident: bib0012
  article-title: Design of fuzzy logic controllers based on generalized T-operators
  publication-title: Fuzzy Sets Syst.
– volume: 7
  start-page: 89
  year: 1982
  end-page: 101
  ident: bib0004
  article-title: Fuzzy relation equations on a finite set
  publication-title: Fuzzy Sets Syst.
– volume: 107
  start-page: 520C536
  year: 1985
  ident: bib0026
  article-title: On generalized fuzzy relational equations and their applications
  publication-title: J. Math. Anal. Appl.
– volume: 103
  start-page: 107
  year: 1999
  end-page: 113
  ident: bib0006
  article-title: Solving fuzzy relation equations with a linear objective function
  publication-title: Fuzzy Sets Syst.
– volume: 13
  start-page: 65
  year: 1984
  end-page: 82
  ident: bib0014
  article-title: Resolution of finite fuzzy relation equations
  publication-title: Fuzzy Sets Syst.
– volume: 178
  start-page: 502
  year: 2006
  end-page: 509
  ident: bib0008
  article-title: An algorithm for optimizing the linear function with fuzzy relation equation constraints regarding max-prod composition
  publication-title: Appl. Math. Comput.
– volume: 94
  start-page: 61
  year: 1998
  end-page: 69
  ident: bib0001
  article-title: Solution algorithms for fuzzy relational equations with max-product composition
  publication-title: Fuzzy Sets Syst.
– volume: 59
  start-page: 189
  year: 1993
  end-page: 195
  ident: bib0027
  article-title: s-t fuzzy relational equations
  publication-title: Fuzzy Sets Syst.
– volume: 7
  start-page: 441
  year: 1999
  end-page: 445
  ident: bib0022
  article-title: An efficient solution procedure for fuzzy relational equations with max-product composition
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 153
  start-page: 261
  year: 2005
  end-page: 273
  ident: bib0025
  article-title: On the relation between equations with max-product composition and the covering problem
  publication-title: Fuzzy Sets Syst.
– start-page: 557
  year: 2005
  end-page: 560
  ident: bib0039
  article-title: Geometric programming with fuzzy relation equation constraints
  publication-title: Proceedings of IEEE International Conference on Fuzzy Systems
– volume: 4
  start-page: 23
  year: 1995
  end-page: 35
  ident: bib0033
  article-title: A multi-objective mathematical programming problem with fuzzy relation constraints
  publication-title: J. Multi-Criteria Decis. Anal.
– year: 1989
  ident: bib0005
  publication-title: Fuzzy Relation Equations and Their Applications in Knowledge Engineering
– volume: 252
  start-page: 20
  year: 2013
  end-page: 31
  ident: bib0011
  article-title: An algorithm for solving optimization problems with fuzzy relational inequality constraints
  publication-title: Inf. Sci.
– volume: 103
  start-page: 107
  year: 1999
  ident: 10.1016/j.ins.2015.07.058_bib0006
  article-title: Solving fuzzy relation equations with a linear objective function
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/S0165-0114(97)00184-X
– volume: 6
  start-page: 428
  year: 2002
  ident: 10.1016/j.ins.2015.07.058_bib0003
  article-title: Fuzzy relation equations (I): the general and specialized solving algorithms
  publication-title: Soft Comput.
  doi: 10.1007/s00500-001-0157-3
– volume: 8
  start-page: 179
  year: 2009
  ident: 10.1016/j.ins.2015.07.058_bib0018
  article-title: A survey on fuzzy relational equations, part I: classification and solvability
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 127
  start-page: 141
  year: 2002
  ident: 10.1016/j.ins.2015.07.058_bib0023
  article-title: Multi-objective optimization problems with fuzzy relation equation constraints
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/S0165-0114(01)00052-5
– start-page: 221
  year: 1977
  ident: 10.1016/j.ins.2015.07.058_bib0030
  article-title: Solutions in composite fuzzy relation equations: application to medical diagnosis in Brouwerian logic
– volume: 178
  start-page: 502
  year: 2006
  ident: 10.1016/j.ins.2015.07.058_bib0008
  article-title: An algorithm for optimizing the linear function with fuzzy relation equation constraints regarding max-prod composition
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2005.11.069
– volume: 94
  start-page: 61
  year: 1998
  ident: 10.1016/j.ins.2015.07.058_bib0001
  article-title: Solution algorithms for fuzzy relational equations with max-product composition
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/S0165-0114(96)00246-1
– volume: 22
  start-page: 49
  year: 2009
  ident: 10.1016/j.ins.2015.07.058_bib0020
  article-title: Minimizing a linear fractional function subject to a system of sup-T equations with a continuous Archimedean triangular norm
  publication-title: J. Syst Sci. Complex.
  doi: 10.1007/s11424-009-9146-x
– volume: 17
  start-page: 1353
  issue: 6
  year: 2009
  ident: 10.1016/j.ins.2015.07.058_bib0019
  article-title: Latticized linear optimization on the unit interval
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2009.2031561
– volume: 234
  start-page: 71
  year: 2013
  ident: 10.1016/j.ins.2015.07.058_bib0002
  article-title: Linear optimization problem constrained by fuzzy max–min relation equations
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2011.04.042
– volume: 21
  start-page: 781
  issue: 4
  year: 2013
  ident: 10.1016/j.ins.2015.07.058_bib0017
  article-title: A matrix approach to latticized linear programming with fuzzy-relation inequality constraints
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2012.2232932
– volume: 13
  start-page: 65
  year: 1984
  ident: 10.1016/j.ins.2015.07.058_bib0014
  article-title: Resolution of finite fuzzy relation equations
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/0165-0114(84)90026-5
– volume: 6
  start-page: 337
  year: 2007
  ident: 10.1016/j.ins.2015.07.058_bib0040
  article-title: Monomial geometric programming with fuzzy relation equation constraints
  publication-title: Fuzzy Optim. Decis. Mak.
  doi: 10.1007/s10700-007-9017-7
– volume: 119
  start-page: 1
  year: 2001
  ident: 10.1016/j.ins.2015.07.058_bib0024
  article-title: Solving nonlinear optimization problems with fuzzy relation equations constraints
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/S0165-0114(98)00471-0
– volume: 3
  start-page: 271
  year: 2004
  ident: 10.1016/j.ins.2015.07.058_bib0037
  article-title: A note on fuzzy relation programming problems with max-strict-t-norm composition
  publication-title: Fuzzy Optim. Decis. Mak.
  doi: 10.1023/B:FODM.0000036862.45420.ea
– volume: 59
  start-page: 189
  year: 1993
  ident: 10.1016/j.ins.2015.07.058_bib0027
  article-title: s-t fuzzy relational equations
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/0165-0114(93)90198-Q
– volume: 181
  start-page: 832
  year: 2011
  ident: 10.1016/j.ins.2015.07.058_bib0031
  article-title: Minimizing a linear objective function under a fuzzy max-t norm relation equation constraint
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2010.10.024
– volume: 53
  start-page: 55
  year: 2011
  ident: 10.1016/j.ins.2015.07.058_bib0041
  article-title: Geometric programming problem with single-term exponents subject to max-product fuzzy relational equations
  publication-title: Math. Comput. Model.
  doi: 10.1016/j.mcm.2010.07.018
– volume: 7
  start-page: 169
  year: 2008
  ident: 10.1016/j.ins.2015.07.058_bib0021
  article-title: On the resolution and optimization of a system of fuzzy relational equations with sup-T composition
  publication-title: Fuzzy Optim. Decis. Mak.
  doi: 10.1007/s10700-008-9029-y
– volume: 234
  start-page: 3
  year: 2013
  ident: 10.1016/j.ins.2015.07.058_bib0007
  article-title: Linear optimization with bipolar max–min constraints
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2011.06.009
– volume: 153
  start-page: 261
  year: 2005
  ident: 10.1016/j.ins.2015.07.058_bib0025
  article-title: On the relation between equations with max-product composition and the covering problem
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/j.fss.2005.02.010
– volume: 4
  start-page: 23
  year: 1995
  ident: 10.1016/j.ins.2015.07.058_bib0033
  article-title: A multi-objective mathematical programming problem with fuzzy relation constraints
  publication-title: J. Multi-Criteria Decis. Anal.
  doi: 10.1002/mcda.4020040103
– volume: 7
  start-page: 441
  issue: 4
  year: 1999
  ident: 10.1016/j.ins.2015.07.058_bib0022
  article-title: An efficient solution procedure for fuzzy relational equations with max-product composition
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/91.784204
– volume: 56
  start-page: 1386
  year: 2009
  ident: 10.1016/j.ins.2015.07.058_bib0032
  article-title: Monomial geometric programming with fuzzy relation inequality constraints with max-product composition
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2008.08.015
– volume: 107
  start-page: 520C536
  year: 1985
  ident: 10.1016/j.ins.2015.07.058_bib0026
  article-title: On generalized fuzzy relational equations and their applications
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(85)90329-4
– volume: 30
  start-page: 38C48
  year: 1976
  ident: 10.1016/j.ins.2015.07.058_bib0029
  article-title: Resolution of composite fuzzy relation equation
  publication-title: Inf. Control
  doi: 10.1016/S0019-9958(76)90446-0
– volume: 7
  start-page: 89
  year: 1982
  ident: 10.1016/j.ins.2015.07.058_bib0004
  article-title: Fuzzy relation equations on a finite set
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/0165-0114(82)90043-4
– volume: 150
  start-page: 147
  year: 2005
  ident: 10.1016/j.ins.2015.07.058_bib0038
  article-title: Minimizing a linear function under a fuzzy max–min relational equation constraint
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/j.fss.2004.09.010
– start-page: 83
  year: 1994
  ident: 10.1016/j.ins.2015.07.058_bib0028
  article-title: Systems of fuzzy equations and inequalities for fuzzy optimization
– volume: 173
  start-page: 872
  year: 2006
  ident: 10.1016/j.ins.2015.07.058_bib0015
  article-title: Linear objective function optimization with fuzzy relation equation constraints regarding maxCav composition
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2005.04.021
– volume: 40
  start-page: 473
  year: 1991
  ident: 10.1016/j.ins.2015.07.058_bib0012
  article-title: Design of fuzzy logic controllers based on generalized T-operators
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/0165-0114(91)90173-N
– volume: 159
  start-page: 72
  year: 1991
  ident: 10.1016/j.ins.2015.07.058_bib0034
  article-title: Latticized linear programming and fuzzy relation inequalities
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(91)90222-L
– volume: 47
  start-page: 352
  year: 2008
  ident: 10.1016/j.ins.2015.07.058_bib0036
  article-title: Optimizing the geometric programming problem with single-term exponents subject to max–min fuzzy relational equation constraints
  publication-title: Math. Comput. Model.
  doi: 10.1016/j.mcm.2007.04.010
– start-page: 557
  year: 2005
  ident: 10.1016/j.ins.2015.07.058_bib0039
  article-title: Geometric programming with fuzzy relation equation constraints
– year: 1989
  ident: 10.1016/j.ins.2015.07.058_bib0005
– volume: 180
  start-page: 411
  year: 2006
  ident: 10.1016/j.ins.2015.07.058_bib0009
  article-title: Solving a linear programming problem with the convex combination of the max–min and the max-average fuzzy relation equations
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2005.12.027
– volume: 6
  start-page: 321
  issue: 2
  year: 1998
  ident: 10.1016/j.ins.2015.07.058_bib0016
  article-title: Solving interval-valued fuzzy relation equations
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/91.669033
– volume: 2
  start-page: 41
  issue: 1
  year: 2003
  ident: 10.1016/j.ins.2015.07.058_bib0035
  article-title: Solution sets of interval-valued fuzzy relational equations
  publication-title: Fuzzy Optim. Decis. Mak.
  doi: 10.1023/A:1022800330844
– volume: 252
  start-page: 20
  year: 2013
  ident: 10.1016/j.ins.2015.07.058_bib0011
  article-title: An algorithm for solving optimization problems with fuzzy relational inequality constraints
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2011.09.030
– volume: 206
  start-page: 89
  year: 2012
  ident: 10.1016/j.ins.2015.07.058_bib0010
  article-title: Linear optimization with an arbitrary fuzzy relational inequality
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/j.fss.2012.04.009
– volume: 1
  start-page: 347
  issue: 4
  year: 2002
  ident: 10.1016/j.ins.2015.07.058_bib0013
  article-title: Minimizing a linear objective function with fuzzy relation equation constraints
  publication-title: Fuzzy Optim. Decis. Mak.
  doi: 10.1023/A:1020955112523
SSID ssj0004766
Score 2.3306112
Snippet We discuss a class of posynomial geometric programming problem(PGPF), aimed at minimizing a posynomial subject to fuzzy relational equations with max–min...
We discuss a class of posynomial geometric programming problem(PGPF), aimed at minimizing a posynomial subject to fuzzy relational equations with max-min...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 15
SubjectTerms Equivalence
Fuzzy
Fuzzy logic
Fuzzy relation equation
Fuzzy set theory
Mathematical analysis
Mathematical models
Max–min composition
Optimization
Posynomial geometric programming
Programming
Title Posynomial geometric programming problem subject to max–min fuzzy relation equations
URI https://dx.doi.org/10.1016/j.ins.2015.07.058
https://www.proquest.com/docview/1770321622
Volume 328
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA6iFz2IK24jEcSDUE3SdJnjIMqoIB5UvIU2i4w4rTozoB7E_-A_9Jf4Xpu6gR7srWkSystbviRvIWQzz3nWdsYEJsxEIDnKnJU6MEYkpi017MeqbJ8ncfdcHl1Gl2Nkr4mFQbdKr_trnV5pa9-y66m5e9vrYYyvqBAxQBoGMBxzgkqZIJfvPH-6eUBLXLt5sAB7NzeblY9Xr8CM3Tyq83emv9mmH1q6Mj0HM2TaY0baqX9rlozZYo5MfckkOEdaPv6AblEfYIQEp15y58nFaTl4xAhkmOfKln2so6Wpd87qwxTUV5ahg1GORzN0WNJ-9vD28gpfqRs9PT3Se-84R-1dnSB8sEDOD_bP9rqBL6kQ6DBkw8BFVphMZmGS2SiKRA6IS8IjnOE5N2CaHHNSu1zGTHON4ERwzVimU0A6AA0WyXhRFnaJUJdakO04CTGYN2_jxoelLrFO6DgFFlgmrCGm0j7fOJa9uFGNY9m1AvorpL9iiQL6L5PtjyG3dbKNvzrLZoXUN45RYAz-GrbRrKYCScLrkayw5WigeALaT_BYiJX_Tb1KJuGtOqARbI2MD-9HtgWQZZivVzy5TiY6h8fdk3cCQOyZ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BcoAeqpaHCi2tkRAHpAjbcR57RKhoKbDiAIiblfiBtuomC7srFU79D_2H_SWdSZyWViqH5hjHVjT2zHy2Z74B2C1LUfS9tZGNCxkpQTrnlImslZntK4P7sYbtc5gOrtSnm-RmAY66XBgKqwy2v7XpjbUObw6CNA8moxHl-MoGESOk4QjD1SIsETtV0oOlw5PTwfB3emTWXlnSTok6dJebTZjXqCLSbpG0FJ75v9zTX4a68T7Hr-BlgI3ssP2z17DgqlV48YRMcBW2QwoC22Mhx4hkzoLyrsH1RT19oCRkHOfW1WMqpWVYiM8a4xAsFJdh03lJpzNsVrNx8fXHt-_Yyvz88fGB3YfYOebuWo7w6TpcHX-8PBpEoapCZOKYzyKfOGkLVcRZ4ZIkkSWCLoWP9FaUwqJ38twr40uVciMM4RMpDOeFyRHsIDrYgF5VV-4NMJ87VO80iymft-zT3ofnPnNemjTHVbAJvBOmNoFynCpffNFdbNlnjfLXJH_NM43y34T9X10mLd_Gcx-rbob0H4tGoz94rttON5salYluSIrK1fOpFhkaQClSKbf-b-gPsDy4PD_TZyfD07ewgi3NeY3k76A3u5-7bUQws_J9WKE_AR8470o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Posynomial+geometric+programming+problem+subject+to+max%E2%80%93min+fuzzy+relation+equations&rft.jtitle=Information+sciences&rft.au=Zhou%2C+Xue-Gang&rft.au=Yang%2C+Xiao-Peng&rft.au=Cao%2C+Bing-Yuan&rft.date=2016-01-20&rft.issn=0020-0255&rft.volume=328&rft.spage=15&rft.epage=25&rft_id=info:doi/10.1016%2Fj.ins.2015.07.058&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2015_07_058
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon