Measurement of rivulet movement on inclined cables during rain–wind induced vibration

•We developed an image processing method to measure the position of rivulets.•This method does not affect the rivulet formation and wind flow field.•For the first time, the rivulet along the entire cable is measured.•The averaged upper rivulet oscillates almost in-phase with the cable vibration. The...

Full description

Saved in:
Bibliographic Details
Published inSensors and actuators. A. Physical. Vol. 230; pp. 17 - 24
Main Authors Li, Yongle, Jing, Haiquan, Xia, Yong, Xu, Youlin, Xiang, Huoyue
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We developed an image processing method to measure the position of rivulets.•This method does not affect the rivulet formation and wind flow field.•For the first time, the rivulet along the entire cable is measured.•The averaged upper rivulet oscillates almost in-phase with the cable vibration. The large amplitude vibration of stay cables has been observed in several cable-stayed bridges under the simultaneous occurrence of rain and wind, which is called rain–wind induced vibration (RWIV). During RWIV, the upper rivulet oscillating circumferentially on the inclined cable surface is widely considered to have an important role in this phenomenon. However, the small size of rivulets and high sensitivity to wind flow make the measurement of the rivulet movement challenging. This study proposes a digital image processing method to measure the rivulet movement in wind tunnel tests. RWIV of a cable model was excited during the test and a digital video camera was used to record the video clips of the rivulets, from which the time history of the rivulet movement along the entire cable is identified through image processing. The oscillation amplitude, equilibrium position, and dominant frequency of the upper rivulet are investigated. Results demonstrated that the proposed non-contact, non-intrusive measurement method is cost-effective and has good resolution in measuring the rivulet vibration. Finally the rivulet vibration characteristics were also studied when the cable was fixed. Comparison demonstrates the relation between the upper rivulet and cable vibration.
AbstractList The large amplitude vibration of stay cables has been observed in several cable-stayed bridges under the simultaneous occurrence of rain and wind, which is called rain-wind induced vibration (RWIV). During RWIV, the upper rivulet oscillating circumferentially on the inclined cable surface is widely considered to have an important role in this phenomenon. However, the small size of rivulets and high sensitivity to wind flow make the measurement of the rivulet movement challenging. This study proposes a digital image processing method to measure the rivulet movement in wind tunnel tests. RWIV of a cable model was excited during the test and a digital video camera was used to record the video clips of the rivulets, from which the time history of the rivulet movement along the entire cable is identified through image processing. The oscillation amplitude, equilibrium position, and dominant frequency of the upper rivulet are investigated. Results demonstrated that the proposed non-contact, non-intrusive measurement method is cost-effective and has good resolution in measuring the rivulet vibration. Finally the rivulet vibration characteristics were also studied when the cable was fixed. Comparison demonstrates the relation between the upper rivulet and cable vibration.
•We developed an image processing method to measure the position of rivulets.•This method does not affect the rivulet formation and wind flow field.•For the first time, the rivulet along the entire cable is measured.•The averaged upper rivulet oscillates almost in-phase with the cable vibration. The large amplitude vibration of stay cables has been observed in several cable-stayed bridges under the simultaneous occurrence of rain and wind, which is called rain–wind induced vibration (RWIV). During RWIV, the upper rivulet oscillating circumferentially on the inclined cable surface is widely considered to have an important role in this phenomenon. However, the small size of rivulets and high sensitivity to wind flow make the measurement of the rivulet movement challenging. This study proposes a digital image processing method to measure the rivulet movement in wind tunnel tests. RWIV of a cable model was excited during the test and a digital video camera was used to record the video clips of the rivulets, from which the time history of the rivulet movement along the entire cable is identified through image processing. The oscillation amplitude, equilibrium position, and dominant frequency of the upper rivulet are investigated. Results demonstrated that the proposed non-contact, non-intrusive measurement method is cost-effective and has good resolution in measuring the rivulet vibration. Finally the rivulet vibration characteristics were also studied when the cable was fixed. Comparison demonstrates the relation between the upper rivulet and cable vibration.
Author Li, Yongle
Xu, Youlin
Xia, Yong
Xiang, Huoyue
Jing, Haiquan
Author_xml – sequence: 1
  givenname: Yongle
  surname: Li
  fullname: Li, Yongle
  organization: Department of Bridge Engineering Southwest Jiaotong University, Chengdu, China
– sequence: 2
  givenname: Haiquan
  surname: Jing
  fullname: Jing, Haiquan
  organization: Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
– sequence: 3
  givenname: Yong
  surname: Xia
  fullname: Xia, Yong
  email: ceyxia@polyu.edu.hk
  organization: Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
– sequence: 4
  givenname: Youlin
  surname: Xu
  fullname: Xu, Youlin
  organization: Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
– sequence: 5
  givenname: Huoyue
  surname: Xiang
  fullname: Xiang, Huoyue
  organization: Department of Bridge Engineering Southwest Jiaotong University, Chengdu, China
BookMark eNp9kL9OwzAQhy1UJNrCA7BlZEk4x06ciAlV_JOKWECMluNckKvEKXZSxMY78IY8CS7txNDpJ51-3-num5GJ7S0Sck4hoUDzy1XirUpSoFkCLAEOR2RKC8FiBnk5IVMoUx7zlIsTMvN-BQCMCTElr4-o_OiwQztEfRM5sxlbHKKu3-xnNjJWt8ZiHWlVteijenTGvkVOGfvz9f1hbB0q9ahDY2MqpwbT21Ny3KjW49k-5-Tl9uZ5cR8vn-4eFtfLWDMGQ9xAQakSnHNURYU1E3kpFAgUSiGr0yoLWaUi1WWpRF7UqtQlNgWvALJMNWxOLnZ7165_H9EPsjNeY9sqi_3oJRUZyxiAoKEqdlXteu8dNlKb4e_YIbzSSgpyq1KuZFAptyolMBlUBpL-I9fOdMp9HmSudgyG7zcGnfTaoA2SjEM9yLo3B-hfwCGRAA
CitedBy_id crossref_primary_10_1177_0020294019842604
crossref_primary_10_1016_j_jfluidstructs_2016_02_008
crossref_primary_10_1007_s11071_020_05541_6
crossref_primary_10_1177_13694332221132316
crossref_primary_10_1063_5_0221343
crossref_primary_10_12989_sss_2016_18_3_485
crossref_primary_10_1063_5_0135668
crossref_primary_10_1088_1873_7005_ab226e
crossref_primary_10_1016_j_jfluidstructs_2018_06_019
crossref_primary_10_1115_1_4067384
crossref_primary_10_1016_j_jfluidstructs_2018_06_017
crossref_primary_10_1016_j_jweia_2018_03_026
crossref_primary_10_1016_j_jfluidstructs_2016_10_006
crossref_primary_10_3390_rs11232871
crossref_primary_10_1155_2016_7103039
crossref_primary_10_1177_16878140211033088
crossref_primary_10_1177_13694332211040136
crossref_primary_10_1016_j_jweia_2017_11_017
crossref_primary_10_1016_j_jfluidstructs_2015_09_008
crossref_primary_10_1016_j_jweia_2019_06_008
crossref_primary_10_1016_j_compfluid_2015_09_016
Cites_doi 10.12989/was.2003.6.4.291
10.1016/j.jweia.2007.02.007
10.1016/S0167-6105(02)00332-X
10.1016/j.jweia.2007.06.046
10.1016/j.sna.2010.01.036
10.1016/0167-6105(95)00010-O
10.1016/j.euromechflu.2010.02.007
10.1016/0167-6105(92)90628-N
10.1016/j.jweia.2013.07.018
10.1016/0167-6105(88)90179-1
10.1016/j.jweia.2009.05.004
10.12989/was.2003.6.6.471
10.1016/S0022-460X(03)00205-0
10.1016/S0167-6105(02)00333-1
10.12989/was.2003.6.6.485
10.1061/(ASCE)BE.1943-5592.0000443
10.1080/10095020.2012.714105
10.1016/j.jweia.2011.03.012
10.1016/j.jfluidstructs.2009.09.003
10.1016/j.sna.2007.05.005
10.1016/S0167-6105(03)00020-5
10.1007/BF00045250
10.1061/(ASCE)0733-9399(2006)132:3(279)
10.1016/j.jweia.2004.09.003
10.1016/j.jweia.2006.07.001
10.1016/0167-6105(90)90022-5
10.12989/was.2003.6.1.041
10.1007/s11340-006-6124-2
10.1016/j.ndteint.2011.06.003
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright_xml – notice: 2015 Elsevier B.V.
DBID AAYXX
CITATION
7TB
7U5
8FD
FR3
L7M
DOI 10.1016/j.sna.2015.03.040
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Solid State and Superconductivity Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3069
EndPage 24
ExternalDocumentID 10_1016_j_sna_2015_03_040
S0924424715001636
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADECG
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSK
SSQ
SST
SSZ
T5K
TN5
YK3
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
AJQLL
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMU
HVGLF
HZ~
R2-
SCB
SCH
SET
SEW
SSH
WUQ
7TB
7U5
8FD
FR3
L7M
ID FETCH-LOGICAL-c330t-f0811a7444ea8bed37697a07e7aae3d2b5aaeb272c99a768da9c9ef84b0055af3
IEDL.DBID .~1
ISSN 0924-4247
IngestDate Fri Jul 11 11:17:10 EDT 2025
Tue Jul 01 01:05:21 EDT 2025
Thu Apr 24 23:05:59 EDT 2025
Fri Feb 23 02:16:31 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Cable
Rain–wind induced vibration
Water rivulets
Image processing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c330t-f0811a7444ea8bed37697a07e7aae3d2b5aaeb272c99a768da9c9ef84b0055af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1753530071
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_1753530071
crossref_citationtrail_10_1016_j_sna_2015_03_040
crossref_primary_10_1016_j_sna_2015_03_040
elsevier_sciencedirect_doi_10_1016_j_sna_2015_03_040
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-07-01
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: 2015-07-01
  day: 01
PublicationDecade 2010
PublicationTitle Sensors and actuators. A. Physical.
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ni, Wang, Chen, Ko (bib0190) 2007; 95
Zuo, Jones, Main (bib0195) 2008; 96
Xu, Wang (bib0255) 2003; 91
Cosentino, Flamand, Ceccoli (bib0220) 2003; 6
Lemaitre, Hémon, de Langre (bib0265) 2007; 95
Gu (bib0210) 2009; 97
Bi, Wang, Shao, Lu, Guan, Li (bib0285) 2013; 121
Wilde, Witkowski (bib0240) 2003; 91
Gu, Du (bib0170) 2005; 93
Yamaguchi (bib0235) 1990; 33
Chen, Tang, Li, Hu (bib0230) 2013; 18
Taylor, Robertson (bib0280) 2011; 99
Hikami, Shiraishi (bib0180) 1988; 29
Cao, Tucker, Wang (bib0245) 2003; 268
Peil, Nahrath (bib0250) 2003; 6
Fujino, Warnitchai, Pacheco (bib0160) 1993; 4
Xia, Fujino (bib0165) 2006; 132
Matsumoto, Shirato, Yagi, Goto, Sakai, Ohya (bib0175) 2003; 91
Choi, Cheung, Kim, Ahn (bib0305) 2011; 44
Lemaitre, de Langre, Hémon (bib0270) 2010; 29
Matsumoto, Shiraishi, Shirato (bib0200) 1992; 43
Li, Chen, Li, Zhang (bib0225) 2010; 159
Robertson, Taylor, Wilson, Duffy, Sullivan (bib0275) 2010; 26
Matsumoto, Saitoh, Kitazawa, Shirato, Nishizaki (bib0205) 1995; 57
Pankanin, Kulinczak, Berlinski (bib0295) 2007; 138
Zhou, Xia, Wei, Wu (bib0300) 2012; 15
Cosentino, Flamand, Ceccoli (bib0215) 2003; 6
Lee, Shinozuka (bib0290) 2006; 46
Wang, Xu (bib0260) 2003; 6
Main, Jones, Yamaguchi (bib0185) 2001
Li, Lu, Tao, Xiong (bib0310) 2007; 21
Wilde (10.1016/j.sna.2015.03.040_bib0240) 2003; 91
Hikami (10.1016/j.sna.2015.03.040_bib0180) 1988; 29
Choi (10.1016/j.sna.2015.03.040_bib0305) 2011; 44
Lee (10.1016/j.sna.2015.03.040_bib0290) 2006; 46
Taylor (10.1016/j.sna.2015.03.040_bib0280) 2011; 99
Cosentino (10.1016/j.sna.2015.03.040_bib0220) 2003; 6
Chen (10.1016/j.sna.2015.03.040_bib0230) 2013; 18
Matsumoto (10.1016/j.sna.2015.03.040_bib0200) 1992; 43
Gu (10.1016/j.sna.2015.03.040_bib0210) 2009; 97
Zuo (10.1016/j.sna.2015.03.040_bib0195) 2008; 96
Fujino (10.1016/j.sna.2015.03.040_bib0160) 1993; 4
Matsumoto (10.1016/j.sna.2015.03.040_bib0175) 2003; 91
Lemaitre (10.1016/j.sna.2015.03.040_bib0270) 2010; 29
Bi (10.1016/j.sna.2015.03.040_bib0285) 2013; 121
Ni (10.1016/j.sna.2015.03.040_bib0190) 2007; 95
Wang (10.1016/j.sna.2015.03.040_bib0260) 2003; 6
Cao (10.1016/j.sna.2015.03.040_bib0245) 2003; 268
Pankanin (10.1016/j.sna.2015.03.040_bib0295) 2007; 138
Robertson (10.1016/j.sna.2015.03.040_bib0275) 2010; 26
Li (10.1016/j.sna.2015.03.040_bib0225) 2010; 159
Lemaitre (10.1016/j.sna.2015.03.040_bib0265) 2007; 95
Main (10.1016/j.sna.2015.03.040_bib0185) 2001
Zhou (10.1016/j.sna.2015.03.040_bib0300) 2012; 15
Xia (10.1016/j.sna.2015.03.040_bib0165) 2006; 132
Matsumoto (10.1016/j.sna.2015.03.040_bib0205) 1995; 57
Yamaguchi (10.1016/j.sna.2015.03.040_bib0235) 1990; 33
Gu (10.1016/j.sna.2015.03.040_bib0170) 2005; 93
Cosentino (10.1016/j.sna.2015.03.040_bib0215) 2003; 6
Li (10.1016/j.sna.2015.03.040_bib0310) 2007; 21
Xu (10.1016/j.sna.2015.03.040_bib0255) 2003; 91
Peil (10.1016/j.sna.2015.03.040_bib0250) 2003; 6
References_xml – volume: 57
  start-page: 323
  year: 1995
  end-page: 333
  ident: bib0205
  article-title: Response characteristics of rain–wind induced vibration of stay-cables of cable-stayed bridges
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 99
  start-page: 931
  year: 2011
  end-page: 944
  ident: bib0280
  article-title: Numerical simulation of the airflow–rivulet interaction associated with the rain–wind induced vibration phenomenon
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 46
  start-page: 105
  year: 2006
  end-page: 114
  ident: bib0290
  article-title: Real-time displacement measurement of a flexible bridge using digital image processing techniques
  publication-title: Exp. Mech.
– volume: 29
  start-page: 408
  year: 1988
  end-page: 418
  ident: bib0180
  article-title: Rain–wind induced vibrations of cables stayed bridges
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 21
  start-page: 36
  year: 2007
  end-page: 44
  ident: bib0310
  article-title: Study on rain–wind induced vibration of cables in cable-stayed bridges by wind tunnel test
  publication-title: J. Exp. Fluid Mech.
– volume: 97
  start-page: 381
  year: 2009
  end-page: 391
  ident: bib0210
  article-title: On wind–rain induced vibration of cables of cable-stayed bridges based on quasi-steady assumption
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 91
  start-page: 13
  year: 2003
  end-page: 26
  ident: bib0175
  article-title: Field observation of the full-scale wind-induced cable vibration
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 6
  start-page: 471
  year: 2003
  end-page: 484
  ident: bib0215
  article-title: Rain–wind induced vibration of inclined stay cables, Part I: experimental investigation and physical explanation
  publication-title: Wind Struct.
– volume: 33
  start-page: 73
  year: 1990
  end-page: 80
  ident: bib0235
  article-title: Analytical study on growth mechanism of rain vibration of cables
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 18
  start-page: 1021
  year: 2013
  end-page: 1031
  ident: bib0230
  article-title: Influence of dynamic properties and position of rivulet on rain–wind-induced vibration of stay cables
  publication-title: J. Bridge Eng.
– volume: 91
  start-page: 27
  year: 2003
  end-page: 40
  ident: bib0255
  article-title: Analytical study of wind–rain-induced cable vibration
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 95
  start-page: 303
  year: 2007
  end-page: 328
  ident: bib0190
  article-title: Field observations of rain–wind-induced cable vibration in cable-stayed Dongting Lake Bridge
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 4
  start-page: 111
  year: 1993
  end-page: 138
  ident: bib0160
  article-title: An experimental and analytical study of autoparametric resonance in a 3DOF model of cable–stayed–beam
  publication-title: Nonlinear Dyn.
– volume: 26
  start-page: 50
  year: 2010
  end-page: 73
  ident: bib0275
  article-title: Numerical simulation of rivulet evolution on a horizontal cable subject to an external aerodynamic field
  publication-title: J. Fluid Struct.
– volume: 6
  start-page: 485
  year: 2003
  end-page: 498
  ident: bib0220
  article-title: Rain–wind induced vibration of inclined stay cables, part II: mechanical modeling and parameter characterization
  publication-title: Wind Struct.
– volume: 121
  start-page: 49
  year: 2013
  end-page: 59
  ident: bib0285
  article-title: 2D numerical analysis on evolution of water film and cable vibration response subject to wind an drain
  publication-title: J. Wind Eng. Ind. Aerodyn.
– start-page: 235
  year: 2001
  end-page: 242
  ident: bib0185
  article-title: Characterization of rain–wind induced stay-cable vibrations from full-scale measurements
  publication-title: Proceedings of the Fourth International Symposium on Cable Dynamics
– volume: 138
  start-page: 366
  year: 2007
  end-page: 375
  ident: bib0295
  article-title: Investigations of Karman vortex street using flow visualization and image processing
  publication-title: Sens. Actuators A
– volume: 159
  start-page: 12
  year: 2010
  end-page: 23
  ident: bib0225
  article-title: An ultrasonic transmission thickness measurement system for study of water rivulets characteristics of stay cables suffering from wind–rain-induced vibration
  publication-title: Sens. Actuators A
– volume: 6
  start-page: 291
  year: 2003
  end-page: 306
  ident: bib0260
  article-title: Analytical study of wind–rain-induced cable vibration: 2DOF model
  publication-title: Wind Struct.
– volume: 132
  start-page: 279
  year: 2006
  end-page: 286
  ident: bib0165
  article-title: Auto-parametric vibration of a cable-stayed-beam structure under random excitation
  publication-title: J. Eng. Mech.
– volume: 268
  start-page: 291
  year: 2003
  end-page: 304
  ident: bib0245
  article-title: A stochastic approach to cable dynamics with moving rivulets
  publication-title: J. Sound Vib.
– volume: 91
  start-page: 873
  year: 2003
  end-page: 891
  ident: bib0240
  article-title: Simple model of rain–wind-induced vibrations of stayed cables
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 29
  start-page: 251
  year: 2010
  end-page: 258
  ident: bib0270
  article-title: Rainwater rivulets running on a stay cable subject to wind
  publication-title: Eur. J. Mech. B
– volume: 43
  start-page: 2011
  year: 1992
  end-page: 2022
  ident: bib0200
  article-title: Rain–wind induced vibration of cables of cable-stayed bridges
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 96
  start-page: 1124
  year: 2008
  end-page: 1133
  ident: bib0195
  article-title: Field observation of vortex- and rain–wind-induced stay-cable vibrations in a three-dimensional environment
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 95
  start-page: 1259
  year: 2007
  end-page: 1271
  ident: bib0265
  article-title: Thin water film around a cable subject to wind
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 93
  start-page: 79
  year: 2005
  end-page: 95
  ident: bib0170
  article-title: Experimental investigation of rain–wind-induced vibration of cables in cable-stayed bridges and its mitigation
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 6
  start-page: 41
  year: 2003
  end-page: 52
  ident: bib0250
  article-title: Modeling of rain–wind induced vibrations
  publication-title: Wind Struct.
– volume: 44
  start-page: 597
  year: 2011
  end-page: 608
  ident: bib0305
  article-title: Structural dynamic displacement vision system using digital image processing
  publication-title: NDT&E Int.
– volume: 15
  start-page: 135
  year: 2012
  end-page: 141
  ident: bib0300
  article-title: A videogrammetric technique for measuring the vibration displacement of stay cables
  publication-title: Geo Spat. Inf. Sci.
– volume: 6
  start-page: 291
  year: 2003
  ident: 10.1016/j.sna.2015.03.040_bib0260
  article-title: Analytical study of wind–rain-induced cable vibration: 2DOF model
  publication-title: Wind Struct.
  doi: 10.12989/was.2003.6.4.291
– volume: 95
  start-page: 1259
  year: 2007
  ident: 10.1016/j.sna.2015.03.040_bib0265
  article-title: Thin water film around a cable subject to wind
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2007.02.007
– volume: 91
  start-page: 13
  year: 2003
  ident: 10.1016/j.sna.2015.03.040_bib0175
  article-title: Field observation of the full-scale wind-induced cable vibration
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/S0167-6105(02)00332-X
– volume: 96
  start-page: 1124
  year: 2008
  ident: 10.1016/j.sna.2015.03.040_bib0195
  article-title: Field observation of vortex- and rain–wind-induced stay-cable vibrations in a three-dimensional environment
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2007.06.046
– volume: 159
  start-page: 12
  year: 2010
  ident: 10.1016/j.sna.2015.03.040_bib0225
  article-title: An ultrasonic transmission thickness measurement system for study of water rivulets characteristics of stay cables suffering from wind–rain-induced vibration
  publication-title: Sens. Actuators A
  doi: 10.1016/j.sna.2010.01.036
– volume: 57
  start-page: 323
  year: 1995
  ident: 10.1016/j.sna.2015.03.040_bib0205
  article-title: Response characteristics of rain–wind induced vibration of stay-cables of cable-stayed bridges
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/0167-6105(95)00010-O
– volume: 29
  start-page: 251
  year: 2010
  ident: 10.1016/j.sna.2015.03.040_bib0270
  article-title: Rainwater rivulets running on a stay cable subject to wind
  publication-title: Eur. J. Mech. B
  doi: 10.1016/j.euromechflu.2010.02.007
– volume: 43
  start-page: 2011
  year: 1992
  ident: 10.1016/j.sna.2015.03.040_bib0200
  article-title: Rain–wind induced vibration of cables of cable-stayed bridges
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/0167-6105(92)90628-N
– volume: 121
  start-page: 49
  year: 2013
  ident: 10.1016/j.sna.2015.03.040_bib0285
  article-title: 2D numerical analysis on evolution of water film and cable vibration response subject to wind an drain
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2013.07.018
– start-page: 235
  year: 2001
  ident: 10.1016/j.sna.2015.03.040_bib0185
  article-title: Characterization of rain–wind induced stay-cable vibrations from full-scale measurements
– volume: 29
  start-page: 408
  year: 1988
  ident: 10.1016/j.sna.2015.03.040_bib0180
  article-title: Rain–wind induced vibrations of cables stayed bridges
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/0167-6105(88)90179-1
– volume: 97
  start-page: 381
  year: 2009
  ident: 10.1016/j.sna.2015.03.040_bib0210
  article-title: On wind–rain induced vibration of cables of cable-stayed bridges based on quasi-steady assumption
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2009.05.004
– volume: 6
  start-page: 471
  year: 2003
  ident: 10.1016/j.sna.2015.03.040_bib0215
  article-title: Rain–wind induced vibration of inclined stay cables, Part I: experimental investigation and physical explanation
  publication-title: Wind Struct.
  doi: 10.12989/was.2003.6.6.471
– volume: 268
  start-page: 291
  year: 2003
  ident: 10.1016/j.sna.2015.03.040_bib0245
  article-title: A stochastic approach to cable dynamics with moving rivulets
  publication-title: J. Sound Vib.
  doi: 10.1016/S0022-460X(03)00205-0
– volume: 91
  start-page: 27
  year: 2003
  ident: 10.1016/j.sna.2015.03.040_bib0255
  article-title: Analytical study of wind–rain-induced cable vibration
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/S0167-6105(02)00333-1
– volume: 6
  start-page: 485
  year: 2003
  ident: 10.1016/j.sna.2015.03.040_bib0220
  article-title: Rain–wind induced vibration of inclined stay cables, part II: mechanical modeling and parameter characterization
  publication-title: Wind Struct.
  doi: 10.12989/was.2003.6.6.485
– volume: 18
  start-page: 1021
  year: 2013
  ident: 10.1016/j.sna.2015.03.040_bib0230
  article-title: Influence of dynamic properties and position of rivulet on rain–wind-induced vibration of stay cables
  publication-title: J. Bridge Eng.
  doi: 10.1061/(ASCE)BE.1943-5592.0000443
– volume: 15
  start-page: 135
  year: 2012
  ident: 10.1016/j.sna.2015.03.040_bib0300
  article-title: A videogrammetric technique for measuring the vibration displacement of stay cables
  publication-title: Geo Spat. Inf. Sci.
  doi: 10.1080/10095020.2012.714105
– volume: 99
  start-page: 931
  year: 2011
  ident: 10.1016/j.sna.2015.03.040_bib0280
  article-title: Numerical simulation of the airflow–rivulet interaction associated with the rain–wind induced vibration phenomenon
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2011.03.012
– volume: 21
  start-page: 36
  year: 2007
  ident: 10.1016/j.sna.2015.03.040_bib0310
  article-title: Study on rain–wind induced vibration of cables in cable-stayed bridges by wind tunnel test
  publication-title: J. Exp. Fluid Mech.
– volume: 26
  start-page: 50
  year: 2010
  ident: 10.1016/j.sna.2015.03.040_bib0275
  article-title: Numerical simulation of rivulet evolution on a horizontal cable subject to an external aerodynamic field
  publication-title: J. Fluid Struct.
  doi: 10.1016/j.jfluidstructs.2009.09.003
– volume: 138
  start-page: 366
  year: 2007
  ident: 10.1016/j.sna.2015.03.040_bib0295
  article-title: Investigations of Karman vortex street using flow visualization and image processing
  publication-title: Sens. Actuators A
  doi: 10.1016/j.sna.2007.05.005
– volume: 91
  start-page: 873
  year: 2003
  ident: 10.1016/j.sna.2015.03.040_bib0240
  article-title: Simple model of rain–wind-induced vibrations of stayed cables
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/S0167-6105(03)00020-5
– volume: 4
  start-page: 111
  year: 1993
  ident: 10.1016/j.sna.2015.03.040_bib0160
  article-title: An experimental and analytical study of autoparametric resonance in a 3DOF model of cable–stayed–beam
  publication-title: Nonlinear Dyn.
  doi: 10.1007/BF00045250
– volume: 132
  start-page: 279
  year: 2006
  ident: 10.1016/j.sna.2015.03.040_bib0165
  article-title: Auto-parametric vibration of a cable-stayed-beam structure under random excitation
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)0733-9399(2006)132:3(279)
– volume: 93
  start-page: 79
  year: 2005
  ident: 10.1016/j.sna.2015.03.040_bib0170
  article-title: Experimental investigation of rain–wind-induced vibration of cables in cable-stayed bridges and its mitigation
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2004.09.003
– volume: 95
  start-page: 303
  year: 2007
  ident: 10.1016/j.sna.2015.03.040_bib0190
  article-title: Field observations of rain–wind-induced cable vibration in cable-stayed Dongting Lake Bridge
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2006.07.001
– volume: 33
  start-page: 73
  year: 1990
  ident: 10.1016/j.sna.2015.03.040_bib0235
  article-title: Analytical study on growth mechanism of rain vibration of cables
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/0167-6105(90)90022-5
– volume: 6
  start-page: 41
  year: 2003
  ident: 10.1016/j.sna.2015.03.040_bib0250
  article-title: Modeling of rain–wind induced vibrations
  publication-title: Wind Struct.
  doi: 10.12989/was.2003.6.1.041
– volume: 46
  start-page: 105
  year: 2006
  ident: 10.1016/j.sna.2015.03.040_bib0290
  article-title: Real-time displacement measurement of a flexible bridge using digital image processing techniques
  publication-title: Exp. Mech.
  doi: 10.1007/s11340-006-6124-2
– volume: 44
  start-page: 597
  year: 2011
  ident: 10.1016/j.sna.2015.03.040_bib0305
  article-title: Structural dynamic displacement vision system using digital image processing
  publication-title: NDT&E Int.
  doi: 10.1016/j.ndteint.2011.06.003
SSID ssj0003377
Score 2.2575877
Snippet •We developed an image processing method to measure the position of rivulets.•This method does not affect the rivulet formation and wind flow field.•For the...
The large amplitude vibration of stay cables has been observed in several cable-stayed bridges under the simultaneous occurrence of rain and wind, which is...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 17
SubjectTerms Actuators
Amplitudes
Cable
Cable-stayed bridges
Cables
Digital imaging
Image processing
Oscillations
Rain–wind induced vibration
Vibration
Water rivulets
Title Measurement of rivulet movement on inclined cables during rain–wind induced vibration
URI https://dx.doi.org/10.1016/j.sna.2015.03.040
https://www.proquest.com/docview/1753530071
Volume 230
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FL3oQn1gfJYInYe1uk3R3j6VYqtJetNhbyCZZqOhu6cub-B_8h_4SZ_ZhVaQHT0vCJCwzyZeZZB6EnHtaMNUUBjQ3wRyOF02hjaEZKBGAQeQxg4HCvX6zO-A3QzGskHYZC4NulQX255ieoXXRUy-4WR-PRvU7F0wH3gBwFai3MEy7zbmPq_zydenmwVhWfRGJHaQuXzYzH69pgqmHPJHlOcX7j7_Ppl8onR09nW2yVeiMtJX_1g6p2GSXbH7LJLhHHnrLuz6axnQyWsxBIvQ5XRR9CR0lGAZpDdUYLjWleYQixRoRH2_vL2CcA4kBURu6QCMaRbZPBp2r-3bXKWomOJoxd-bEcMR7yuecWxVE1gB-hL5yfesrZZlpRAK-UcNv6DBUYGoYFWoQTsBxOwoVswOylqSJPSRUqICxKPLcKNY8VFppsD1EbE2o4tAGXpW4JbekLhKKY12LJ1l6jj1KYLBEBkuXSWBwlVx8DRnn2TRWEfNSBPLHkpCA9quGnZXikrBV8P1DJTadTyUmJRUMlaqj_019TDawlXvrnpC12WRuT0EnmUW1bNHVyHrr-rbb_wTfo-Lo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BOQAHxCp2jMQJKWpS201yrCpQWdoLILhZju1IRZBWdOHKP_CHfAkzWdiEOHCKkthRNGM_z9gzbwCOAiO5bkqLlpvknqCNptileBtpGaFDFHBLicLdXrNzI87v5N0MtKtcGAqrLLG_wPQcrcsn9VKa9WG_X7_y0XUQDQRXSXYLb87CHLFTyRrMtc4uOr0PQOY8L8BI7T3qUB1u5mFeo4zYhwKZU53SFsjvy9MPoM5Xn9NlWCrNRtYq_mwFZly2CotfyATX4Lb7ud3HBil76k8nqBT2OJiWzzLWzygT0llmKGNqxIokRUZlIt5eXp_RP8cmFrVt2ZT8aNLaOtycnly3O15ZNsEznPtjL8VVPtChEMLpKHEWISQOtR-6UGvHbSOReE0aYcPEsUZvw-rYoH4iQTNS6pRvQC0bZG4TmNQR50kS-ElqRKyNNuh-yNTZWKexi4It8CtpKVNyilNpiwdVBY_dKxSwIgErnysU8BYcf3QZFoQafzUWlQrUt1GhEPD_6nZYqUvhbKEjEJ25wWSkiJdUcrKrtv_36QOY71x3L9XlWe9iBxboTRG8uwu18dPE7aGJMk72yyH4Dqg85Zk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measurement+of+rivulet+movement+on+inclined+cables+during+rain%E2%80%93wind+induced+vibration&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Li%2C+Yongle&rft.au=Jing%2C+Haiquan&rft.au=Xia%2C+Yong&rft.au=Xu%2C+Youlin&rft.date=2015-07-01&rft.issn=0924-4247&rft.volume=230&rft.spage=17&rft.epage=24&rft_id=info:doi/10.1016%2Fj.sna.2015.03.040&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sna_2015_03_040
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon