Experimental assessment of film cooling from cylindrical holes subject to particulate deposition
•Coupling effects of particulate deposition and film cooling were experimentally examined.•Links between deposition thickness and film cooling effectiveness were quantitatively assessed.•Film holes with a compound angle is more sensitivity to deposition.•Increasing coolant injection rates is helpful...
Saved in:
Published in | Experimental thermal and fluid science Vol. 154; p. 111155 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.05.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0894-1777 1879-2286 |
DOI | 10.1016/j.expthermflusci.2024.111155 |
Cover
Loading…
Abstract | •Coupling effects of particulate deposition and film cooling were experimentally examined.•Links between deposition thickness and film cooling effectiveness were quantitatively assessed.•Film holes with a compound angle is more sensitivity to deposition.•Increasing coolant injection rates is helpful to mitigate deposition effects.
Particulate deposition has become a significant challenge of developing more efficient film cooling configurations for hot turbine components. To assess the influence of particulate deposition and to better understand the coupling effects of deposition evolution and film cooling, experimental simulations were conducted by injecting low-melting-point wax particles into a low-temperature wind tunnel facility, in which the particle transport and sticking behaviors were properly modeled by matching critical non-dimensional parameters in engine conditions. The sensitivity of film cooling to deposition was assessed on flat plates with a row of simple-angled film holes and compound-angled film holes, respectively. Local deposition patterns were obtained using an optical profile scanner and an infrared thermography technique was implemented to quantify the development of film cooling with the evolution of deposition. Further, flow fields downstream of the holes and coolant trajectories were visualized by means of a five-hole probe and a schlieren photography technique, offering the flow physics backing the observation of film cooling. Inspection of deposition over the flat plates revealed that film cooling was helpful to inhibit deposition, which leads to sparse deposition near the hole exit and dense deposition elsewhere. Film injection from the compound-angled hole was found to be more sensitive to deposition, resulting in decreased cooling effectiveness regardless of coolant blowing conditions. In contrast, deposition reduced film cooling from the simple-angled hole at lower injection rates and then improved film cooling at higher injection rates. Globally, the compound-angled hole exhibited a maximum reduction of 20 % in cooling effectiveness, while that for the simple-angle hole was 8.5 % at an injection ratio of 0.5; and at a high injection ratio of 2.0, an improvement of 13.6 % was obtained, on the contrary. |
---|---|
AbstractList | •Coupling effects of particulate deposition and film cooling were experimentally examined.•Links between deposition thickness and film cooling effectiveness were quantitatively assessed.•Film holes with a compound angle is more sensitivity to deposition.•Increasing coolant injection rates is helpful to mitigate deposition effects.
Particulate deposition has become a significant challenge of developing more efficient film cooling configurations for hot turbine components. To assess the influence of particulate deposition and to better understand the coupling effects of deposition evolution and film cooling, experimental simulations were conducted by injecting low-melting-point wax particles into a low-temperature wind tunnel facility, in which the particle transport and sticking behaviors were properly modeled by matching critical non-dimensional parameters in engine conditions. The sensitivity of film cooling to deposition was assessed on flat plates with a row of simple-angled film holes and compound-angled film holes, respectively. Local deposition patterns were obtained using an optical profile scanner and an infrared thermography technique was implemented to quantify the development of film cooling with the evolution of deposition. Further, flow fields downstream of the holes and coolant trajectories were visualized by means of a five-hole probe and a schlieren photography technique, offering the flow physics backing the observation of film cooling. Inspection of deposition over the flat plates revealed that film cooling was helpful to inhibit deposition, which leads to sparse deposition near the hole exit and dense deposition elsewhere. Film injection from the compound-angled hole was found to be more sensitive to deposition, resulting in decreased cooling effectiveness regardless of coolant blowing conditions. In contrast, deposition reduced film cooling from the simple-angled hole at lower injection rates and then improved film cooling at higher injection rates. Globally, the compound-angled hole exhibited a maximum reduction of 20 % in cooling effectiveness, while that for the simple-angle hole was 8.5 % at an injection ratio of 0.5; and at a high injection ratio of 2.0, an improvement of 13.6 % was obtained, on the contrary. |
ArticleNumber | 111155 |
Author | Yang, Xing Hao, Zihan Feng, Zhenping |
Author_xml | – sequence: 1 givenname: Xing surname: Yang fullname: Yang, Xing email: x.yang@mail.xjtu.edu.cn – sequence: 2 givenname: Zihan surname: Hao fullname: Hao, Zihan – sequence: 3 givenname: Zhenping surname: Feng fullname: Feng, Zhenping |
BookMark | eNqNkE1PwzAMhiM0JMbgP-TAtSMfbdNKXGDaAGkSFziHNHVYpq6pkgxt_55U4wKn-WK_lv3Kfq7RpHc9IHRHyZwSWt5v53AY4gb8znT7oO2cEZbPaYqiuEBTWok6Y6wqJ2hKqjrPqBDiCl2HsCWEVIySKfpcHgbwdgd9VB1WIUAIo8DOYGO7HdbOdbb_wsa7JI6pbr3VaXbjOgg47Jst6Iijw4Py0ep9pyLgFgYXbLSuv0GXRnUBbn_zDH2slu-Ll2z99vy6eFxnmnMSM2h5VealaE3LDG-5yGtiWGpqRimQkpekKFmjWEOaWgtuKsVFTUtdUN3UteAz9HTy1d6F4MFIbaMaL4he2U5SIkdmciv_MpMjM3lilkwe_pkMiY3yx3PXV6d1SI9-W_AyTUCvobU-QZKts-cZ_QBhoJd4 |
CitedBy_id | crossref_primary_10_1016_j_expthermflusci_2025_111415 crossref_primary_10_1016_j_applthermaleng_2024_124906 crossref_primary_10_1016_j_ijthermalsci_2024_109595 crossref_primary_10_1115_1_4067632 |
Cites_doi | 10.1016/j.ijthermalsci.2021.107434 10.2514/3.47996 10.1115/1.4031318 10.1115/1.2181181 10.1115/1.2098791 10.1115/1.1860380 10.1016/j.expthermflusci.2021.110410 10.1115/1.4003964 10.2514/1.18462 10.1115/1.4050146 10.1016/j.conbuildmat.2004.10.001 10.1115/1.2464141 10.1115/1.4006571 10.1115/1.4026613 10.1016/j.jhazmat.2008.03.043 10.1115/1.4007598 10.1115/1.4003672 10.1115/1.1400115 10.1115/1.3242452 10.3390/en15196968 10.1115/GT2006-90379 10.1016/j.ijheatmasstransfer.2014.04.028 10.2514/1.18034 10.1115/1.3239669 10.1115/1.4007057 10.1016/j.cja.2019.12.023 10.1115/GT2017-64421 10.1115/1.4055387 10.1115/1.1504443 10.1115/GT2006-90577 10.1115/1.4001190 10.1115/1.4000571 10.1016/j.expthermflusci.2015.08.002 10.1016/j.wasman.2006.11.017 10.1016/j.applthermaleng.2021.117447 10.1115/GT2014-27171 10.1115/1.4041036 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Inc. |
Copyright_xml | – notice: 2024 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.expthermflusci.2024.111155 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2286 |
ExternalDocumentID | 10_1016_j_expthermflusci_2024_111155 S0894177724000244 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SPD SSG SST SSZ T5K TN5 UHS VH1 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c330t-ed386467dfd2f3d37490f2d38c211e06360562ba2b0b9c73f8a37916c51cb9973 |
IEDL.DBID | .~1 |
ISSN | 0894-1777 |
IngestDate | Tue Jul 01 00:38:34 EDT 2025 Thu Apr 24 23:05:59 EDT 2025 Sat Mar 30 16:19:58 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Gas turbine film cooling Infrared thermography Particulate deposition Schlieren photography Compound angle |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c330t-ed386467dfd2f3d37490f2d38c211e06360562ba2b0b9c73f8a37916c51cb9973 |
ParticipantIDs | crossref_citationtrail_10_1016_j_expthermflusci_2024_111155 crossref_primary_10_1016_j_expthermflusci_2024_111155 elsevier_sciencedirect_doi_10_1016_j_expthermflusci_2024_111155 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2024 2024-05-00 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: May 2024 |
PublicationDecade | 2020 |
PublicationTitle | Experimental thermal and fluid science |
PublicationYear | 2024 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Bonilla, Webb, Clum, Casaday, Brewer, Bons (b0055) 2012; 134 Webb, Casaday, Barker, Bons, Gledhill, Padture (b0075) 2013; 135 Waye, Bogard (b0210) 2006; 129 Johnson, Tian, Zhang, Hu (b0205) 2014; 76 R. Prenter, S.M. Whitaker, A. Ameri, J.P. Bons, The effects of slot film cooling on deposition on a nozzle guide vane, ASME Paper No. GT2014-27171, doi: 10.1115/GT2014-27171. Lawson, Thole, Okita, Nakamata (b0095) 2012; 134 Bons, Lo, Nied, Han (b0125) 2022; 144 Hamed, Tabakoff (b0170) 2006; 22 Baldauf, Scheurlen, Schulz, Wittig (b0200) 2002; 124 Kistenmacher, Todd Davidson, Bogard (b0110) 2014; 136 Zhang, Zhang, Wang, Tan (b0025) 2020; 33 Lawson, Thole (b0105) 2012; 134 Bons, Crosby, Wammack, Bentley, Fletcher (b0175) 2007; 129 Krishnaiah, Singh (b0185) 2006; 20 Dutta, Kaur, Singh (b0030) 2022; 15 Bons, Taylor, McClain, Rivir (b0065) 2001; 123 Goldstein, Eckert, Chiang, Elovic (b0035) 1985; 107 Lawson, Lynch, Thole (b0090) 2013; 135 Zheng, Tian, Qin, Hu (b0005) 2021; 127 Dring, Caspar, Suo (b0120) 1979; 3 Lawson, Thole (b0085) 2011; 133 Laycock, Fletcher (b0130) 2016; 138 Pu, Wang, Ma, Wu (b0010) 2015; 69 Yang, Zhao, Feng (b0015) 2022; 174 B. Barker, K. Hsu, B. Varney, A. Boulanger, J. Hutchinson, W.F. Ng, An experiment-based sticking model for heated sand, ASME Paper No. GT2017-64421, doi: 10.1115/GT2017-64421. P. Demling, D.G. Bogard, The effects of obstructions on film cooling effectiveness on the suction side of a gas turbine vane, ASME Paper No. GT2006-90577, doi: 10.1115/GT2006-90577. Jensen, Squire, Bons, Fletcher (b0160) 2005; 127 Elms, Pawley, Bojdo, Jones, Clarkson (b0135) 2021; 143 Forsyth, Gillespie, McGilvray (b0140) 2019; 141 Albert, Bogard (b0115) 2012; 134 Lewis, Barker, Bons, Ai, Fletcher (b0080) 2011; 133 Crowe (b0165) 2009 Li, Lei, Yang, Raninger (b0180) 2007; 27 Ai, Murray, Fletcher, Harding, Lewis, Bons (b0070) 2012; 134 Yang, Hao, Feng (b0100) 2021; 198 Ranz, Marshall (b0150) 1952; 48 Bogard, Thole (b0020) 2006; 22 N. Sundaram, K.A. Thole, Effects of surface deposition, hole blockage, and TBC spallation on vane endwall film-cooling, ASME Paper No. GT2006-90379, doi: 10.1115/GT2006-90379. Cardwell, Sundaram, Thole (b0050) 2006; 128 Ranz, Marshall (b0155) 1952; 48 Wang, Tian, Wang, Huang, Yang (b0190) 2008; 160 Moffat (b0195) 1985; 107 Bonilla (10.1016/j.expthermflusci.2024.111155_b0055) 2012; 134 10.1016/j.expthermflusci.2024.111155_b0045 10.1016/j.expthermflusci.2024.111155_b0145 Zhang (10.1016/j.expthermflusci.2024.111155_b0025) 2020; 33 Lawson (10.1016/j.expthermflusci.2024.111155_b0090) 2013; 135 10.1016/j.expthermflusci.2024.111155_b0040 Crowe (10.1016/j.expthermflusci.2024.111155_b0165) 2009 Lawson (10.1016/j.expthermflusci.2024.111155_b0105) 2012; 134 10.1016/j.expthermflusci.2024.111155_b0060 Albert (10.1016/j.expthermflusci.2024.111155_b0115) 2012; 134 Goldstein (10.1016/j.expthermflusci.2024.111155_b0035) 1985; 107 Cardwell (10.1016/j.expthermflusci.2024.111155_b0050) 2006; 128 Pu (10.1016/j.expthermflusci.2024.111155_b0010) 2015; 69 Bogard (10.1016/j.expthermflusci.2024.111155_b0020) 2006; 22 Bons (10.1016/j.expthermflusci.2024.111155_b0065) 2001; 123 Bons (10.1016/j.expthermflusci.2024.111155_b0125) 2022; 144 Waye (10.1016/j.expthermflusci.2024.111155_b0210) 2006; 129 Lawson (10.1016/j.expthermflusci.2024.111155_b0095) 2012; 134 Bons (10.1016/j.expthermflusci.2024.111155_b0175) 2007; 129 Li (10.1016/j.expthermflusci.2024.111155_b0180) 2007; 27 Wang (10.1016/j.expthermflusci.2024.111155_b0190) 2008; 160 Lewis (10.1016/j.expthermflusci.2024.111155_b0080) 2011; 133 Yang (10.1016/j.expthermflusci.2024.111155_b0100) 2021; 198 Kistenmacher (10.1016/j.expthermflusci.2024.111155_b0110) 2014; 136 Webb (10.1016/j.expthermflusci.2024.111155_b0075) 2013; 135 Hamed (10.1016/j.expthermflusci.2024.111155_b0170) 2006; 22 Baldauf (10.1016/j.expthermflusci.2024.111155_b0200) 2002; 124 Ranz (10.1016/j.expthermflusci.2024.111155_b0155) 1952; 48 Johnson (10.1016/j.expthermflusci.2024.111155_b0205) 2014; 76 Forsyth (10.1016/j.expthermflusci.2024.111155_b0140) 2019; 141 Yang (10.1016/j.expthermflusci.2024.111155_b0015) 2022; 174 Jensen (10.1016/j.expthermflusci.2024.111155_b0160) 2005; 127 Ranz (10.1016/j.expthermflusci.2024.111155_b0150) 1952; 48 Zheng (10.1016/j.expthermflusci.2024.111155_b0005) 2021; 127 Ai (10.1016/j.expthermflusci.2024.111155_b0070) 2012; 134 Laycock (10.1016/j.expthermflusci.2024.111155_b0130) 2016; 138 Dring (10.1016/j.expthermflusci.2024.111155_b0120) 1979; 3 Krishnaiah (10.1016/j.expthermflusci.2024.111155_b0185) 2006; 20 Lawson (10.1016/j.expthermflusci.2024.111155_b0085) 2011; 133 Dutta (10.1016/j.expthermflusci.2024.111155_b0030) 2022; 15 Moffat (10.1016/j.expthermflusci.2024.111155_b0195) 1985; 107 Elms (10.1016/j.expthermflusci.2024.111155_b0135) 2021; 143 |
References_xml | – year: 2009 ident: b0165 article-title: Multiphase Flow Handbook – volume: 33 start-page: 1119 year: 2020 end-page: 1136 ident: b0025 article-title: Recent advances in film cooling enhancement: a review publication-title: Chin. J. Aeronaut. – volume: 136 year: 2014 ident: b0110 article-title: Realistic trench film cooling with a thermal barrier coating and deposition publication-title: ASME J. Turbomach. – volume: 144 year: 2022 ident: b0125 article-title: The effect of gas and surface temperature on cold-side and hot-side turbine deposition publication-title: ASME J. Turbomach. – volume: 20 start-page: 193 year: 2006 end-page: 198 ident: b0185 article-title: Determination of thermal properties of some supplementary cementing materials used in cement and concrete publication-title: Constr. Build. Mater. – volume: 198 year: 2021 ident: b0100 article-title: An experimental study on turbine vane leading-edge film cooling with deposition publication-title: Appl. Therm. Eng. – volume: 107 start-page: 173 year: 1985 end-page: 181 ident: b0195 article-title: Uncertainty analysis in the planning of an experiment publication-title: ASME J. Fluids Eng. – volume: 134 year: 2012 ident: b0105 article-title: Simulations of multiphase particle deposition on endwall film-cooling holes in transverse trenches publication-title: ASME J. Turbomach. – volume: 22 start-page: 350 year: 2006 end-page: 360 ident: b0170 article-title: Erosion and deposition in turbomachinery publication-title: AIAA J. Propul. Power – volume: 69 start-page: 58 year: 2015 end-page: 72 ident: b0010 article-title: An experimental investigation of geometric effect of upstream converging slot-hole on end-wall film cooling and secondary vortex characteristics publication-title: Exp. Therm. Fluid Sci. – volume: 48 start-page: 141 year: 1952 end-page: 146 ident: b0150 article-title: Evaporation from drops, part i publication-title: Chem. Eng. Prog. – reference: P. Demling, D.G. Bogard, The effects of obstructions on film cooling effectiveness on the suction side of a gas turbine vane, ASME Paper No. GT2006-90577, doi: 10.1115/GT2006-90577. – volume: 123 start-page: 739 year: 2001 end-page: 748 ident: b0065 article-title: The many faces of turbine surface roughness publication-title: ASME J. Turbomach. – volume: 129 start-page: 135 year: 2007 end-page: 143 ident: b0175 article-title: High-pressure turbine deposition in land-based gas turbines from various synfuels publication-title: ASME J. Eng. Gas Turbines Power – volume: 134 year: 2012 ident: b0115 article-title: Experimental simulation of contaminant deposition on a film cooled turbine airfoil leading edge publication-title: ASME J. Turbomach. – volume: 133 year: 2011 ident: b0085 article-title: Effects of simulated particle deposition on film cooling publication-title: ASME J. Turbomach. – volume: 3 start-page: 161 year: 1979 end-page: 166 ident: b0120 article-title: Particle trajectories in turbine cascades publication-title: J. Energy – volume: 141 year: 2019 ident: b0140 article-title: Experimental deposition of NaCl particles from turbulent flows at gas turbine temperatures publication-title: ASME J. Turbomach. – reference: N. Sundaram, K.A. Thole, Effects of surface deposition, hole blockage, and TBC spallation on vane endwall film-cooling, ASME Paper No. GT2006-90379, doi: 10.1115/GT2006-90379. – volume: 174 year: 2022 ident: b0015 article-title: Experimental evaluation of cooling effectiveness from novel film holes over turbine endwalls with inlet swirl publication-title: Int. J. Therm. Sci. – volume: 127 start-page: 462 year: 2005 end-page: 470 ident: b0160 article-title: Simulated land-based turbine deposits generated in an accelerated deposition facility publication-title: ASME J. Turbomach. – volume: 76 start-page: 337 year: 2014 end-page: 349 ident: b0205 article-title: An experimental study of density ratio effects on the film cooling injection from discrete holes by using PIV and PSP techniques publication-title: Int. J. Heat Mass Transf. – volume: 129 start-page: 294 year: 2006 end-page: 302 ident: b0210 article-title: High-resolution film cooling effectiveness measurements of axial holes embedded in a transverse trench with various trench configurations publication-title: ASME J. Turbomach. – volume: 15 year: 2022 ident: b0030 article-title: Review of film cooling in gas turbines with an emphasis on additive manufacturing-based design evolutions publication-title: Energies – volume: 135 year: 2013 ident: b0075 article-title: Coal ash deposition on nozzle guide vanes—part i: experimental characteristics of four coal ash types publication-title: ASME J. Turbomach. – volume: 22 start-page: 249 year: 2006 end-page: 270 ident: b0020 article-title: Gas turbine film cooling publication-title: AIAA J. Propuls. Power – volume: 134 year: 2012 ident: b0055 article-title: The effect of particle size and film cooling on nozzle guide vane deposition publication-title: ASME J. Eng. Gas Turbines Power – volume: 124 start-page: 686 year: 2002 end-page: 698 ident: b0200 article-title: Correlation of film cooling effectiveness from thermographic measurements at enginelike conditions publication-title: ASME J. Turbomach. – reference: R. Prenter, S.M. Whitaker, A. Ameri, J.P. Bons, The effects of slot film cooling on deposition on a nozzle guide vane, ASME Paper No. GT2014-27171, doi: 10.1115/GT2014-27171. – volume: 133 year: 2011 ident: b0080 article-title: Film cooling effectiveness and heat transfer near deposit-laden film holes publication-title: ASME J. Turbomach. – volume: 134 year: 2012 ident: b0095 article-title: Simulations of multiphase particle deposition on a showerhead with staggered film-cooling holes publication-title: ASME J. Turbomach. – volume: 127 year: 2021 ident: b0005 article-title: An experimental study on the improvements in the film cooling performance by an upstream micro-vortex generator publication-title: Exp. Therm. Fluid Sci. – volume: 128 start-page: 62 year: 2006 end-page: 70 ident: b0050 article-title: Effect of midpassage gap, endwall misalignment, and roughness on endwall film-cooling publication-title: ASME J. Turbomach. – volume: 143 year: 2021 ident: b0135 article-title: Formation of high-temperature minerals from an evaporite-rich dust in gas turbine engine ingestion tests publication-title: ASME J. Turbomach. – reference: B. Barker, K. Hsu, B. Varney, A. Boulanger, J. Hutchinson, W.F. Ng, An experiment-based sticking model for heated sand, ASME Paper No. GT2017-64421, doi: 10.1115/GT2017-64421. – volume: 48 start-page: 173 year: 1952 end-page: 180 ident: b0155 article-title: Evaporation from drops, part ii publication-title: Chem. Eng. Prog. – volume: 160 start-page: 375 year: 2008 end-page: 381 ident: b0190 article-title: Melting characteristics during the vitrification of MSWI fly ash with a pilot-scale diesel oil furnace publication-title: J. Hazard. Mater. – volume: 135 year: 2013 ident: b0090 article-title: Simulations of multiphase particle deposition on a nonaxisymmetric contoured endwall with film-cooling publication-title: ASME J. Turbomach. – volume: 27 start-page: 1383 year: 2007 end-page: 1392 ident: b0180 article-title: Investigation of MSWI fly ash melting characteristic by DSC-DTA publication-title: Waste Manag. – volume: 134 year: 2012 ident: b0070 article-title: Deposition near film cooling holes on a high pressure turbine vane publication-title: ASME J. Turbomach. – volume: 138 year: 2016 ident: b0130 article-title: Independent effects of surface and gas temperature on coal fly ash deposition in gas turbines at temperatures up to 1400 °C publication-title: ASME J. Eng. Gas Turbines Power – volume: 107 start-page: 111 year: 1985 end-page: 116 ident: b0035 article-title: Effect of surface roughness on film cooling performance publication-title: ASME J. Eng. Gas Turbines Power – volume: 174 year: 2022 ident: 10.1016/j.expthermflusci.2024.111155_b0015 article-title: Experimental evaluation of cooling effectiveness from novel film holes over turbine endwalls with inlet swirl publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2021.107434 – volume: 3 start-page: 161 year: 1979 ident: 10.1016/j.expthermflusci.2024.111155_b0120 article-title: Particle trajectories in turbine cascades publication-title: J. Energy doi: 10.2514/3.47996 – volume: 138 year: 2016 ident: 10.1016/j.expthermflusci.2024.111155_b0130 article-title: Independent effects of surface and gas temperature on coal fly ash deposition in gas turbines at temperatures up to 1400 °C publication-title: ASME J. Eng. Gas Turbines Power doi: 10.1115/1.4031318 – volume: 129 start-page: 135 year: 2007 ident: 10.1016/j.expthermflusci.2024.111155_b0175 article-title: High-pressure turbine deposition in land-based gas turbines from various synfuels publication-title: ASME J. Eng. Gas Turbines Power doi: 10.1115/1.2181181 – volume: 128 start-page: 62 year: 2006 ident: 10.1016/j.expthermflusci.2024.111155_b0050 article-title: Effect of midpassage gap, endwall misalignment, and roughness on endwall film-cooling publication-title: ASME J. Turbomach. doi: 10.1115/1.2098791 – volume: 127 start-page: 462 year: 2005 ident: 10.1016/j.expthermflusci.2024.111155_b0160 article-title: Simulated land-based turbine deposits generated in an accelerated deposition facility publication-title: ASME J. Turbomach. doi: 10.1115/1.1860380 – volume: 48 start-page: 173 year: 1952 ident: 10.1016/j.expthermflusci.2024.111155_b0155 article-title: Evaporation from drops, part ii publication-title: Chem. Eng. Prog. – volume: 127 year: 2021 ident: 10.1016/j.expthermflusci.2024.111155_b0005 article-title: An experimental study on the improvements in the film cooling performance by an upstream micro-vortex generator publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2021.110410 – volume: 134 year: 2012 ident: 10.1016/j.expthermflusci.2024.111155_b0115 article-title: Experimental simulation of contaminant deposition on a film cooled turbine airfoil leading edge publication-title: ASME J. Turbomach. doi: 10.1115/1.4003964 – year: 2009 ident: 10.1016/j.expthermflusci.2024.111155_b0165 – volume: 22 start-page: 350 year: 2006 ident: 10.1016/j.expthermflusci.2024.111155_b0170 article-title: Erosion and deposition in turbomachinery publication-title: AIAA J. Propul. Power doi: 10.2514/1.18462 – volume: 143 year: 2021 ident: 10.1016/j.expthermflusci.2024.111155_b0135 article-title: Formation of high-temperature minerals from an evaporite-rich dust in gas turbine engine ingestion tests publication-title: ASME J. Turbomach. doi: 10.1115/1.4050146 – volume: 20 start-page: 193 year: 2006 ident: 10.1016/j.expthermflusci.2024.111155_b0185 article-title: Determination of thermal properties of some supplementary cementing materials used in cement and concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2004.10.001 – volume: 48 start-page: 141 year: 1952 ident: 10.1016/j.expthermflusci.2024.111155_b0150 article-title: Evaporation from drops, part i publication-title: Chem. Eng. Prog. – volume: 129 start-page: 294 year: 2006 ident: 10.1016/j.expthermflusci.2024.111155_b0210 article-title: High-resolution film cooling effectiveness measurements of axial holes embedded in a transverse trench with various trench configurations publication-title: ASME J. Turbomach. doi: 10.1115/1.2464141 – volume: 135 year: 2013 ident: 10.1016/j.expthermflusci.2024.111155_b0075 article-title: Coal ash deposition on nozzle guide vanes—part i: experimental characteristics of four coal ash types publication-title: ASME J. Turbomach. doi: 10.1115/1.4006571 – volume: 136 year: 2014 ident: 10.1016/j.expthermflusci.2024.111155_b0110 article-title: Realistic trench film cooling with a thermal barrier coating and deposition publication-title: ASME J. Turbomach. doi: 10.1115/1.4026613 – volume: 160 start-page: 375 year: 2008 ident: 10.1016/j.expthermflusci.2024.111155_b0190 article-title: Melting characteristics during the vitrification of MSWI fly ash with a pilot-scale diesel oil furnace publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2008.03.043 – volume: 135 year: 2013 ident: 10.1016/j.expthermflusci.2024.111155_b0090 article-title: Simulations of multiphase particle deposition on a nonaxisymmetric contoured endwall with film-cooling publication-title: ASME J. Turbomach. doi: 10.1115/1.4007598 – volume: 134 year: 2012 ident: 10.1016/j.expthermflusci.2024.111155_b0070 article-title: Deposition near film cooling holes on a high pressure turbine vane publication-title: ASME J. Turbomach. doi: 10.1115/1.4003672 – volume: 134 year: 2012 ident: 10.1016/j.expthermflusci.2024.111155_b0105 article-title: Simulations of multiphase particle deposition on endwall film-cooling holes in transverse trenches publication-title: ASME J. Turbomach. – volume: 123 start-page: 739 year: 2001 ident: 10.1016/j.expthermflusci.2024.111155_b0065 article-title: The many faces of turbine surface roughness publication-title: ASME J. Turbomach. doi: 10.1115/1.1400115 – volume: 107 start-page: 173 year: 1985 ident: 10.1016/j.expthermflusci.2024.111155_b0195 article-title: Uncertainty analysis in the planning of an experiment publication-title: ASME J. Fluids Eng. doi: 10.1115/1.3242452 – volume: 15 year: 2022 ident: 10.1016/j.expthermflusci.2024.111155_b0030 article-title: Review of film cooling in gas turbines with an emphasis on additive manufacturing-based design evolutions publication-title: Energies doi: 10.3390/en15196968 – ident: 10.1016/j.expthermflusci.2024.111155_b0045 doi: 10.1115/GT2006-90379 – volume: 76 start-page: 337 year: 2014 ident: 10.1016/j.expthermflusci.2024.111155_b0205 article-title: An experimental study of density ratio effects on the film cooling injection from discrete holes by using PIV and PSP techniques publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2014.04.028 – volume: 22 start-page: 249 year: 2006 ident: 10.1016/j.expthermflusci.2024.111155_b0020 article-title: Gas turbine film cooling publication-title: AIAA J. Propuls. Power doi: 10.2514/1.18034 – volume: 107 start-page: 111 year: 1985 ident: 10.1016/j.expthermflusci.2024.111155_b0035 article-title: Effect of surface roughness on film cooling performance publication-title: ASME J. Eng. Gas Turbines Power doi: 10.1115/1.3239669 – volume: 134 year: 2012 ident: 10.1016/j.expthermflusci.2024.111155_b0055 article-title: The effect of particle size and film cooling on nozzle guide vane deposition publication-title: ASME J. Eng. Gas Turbines Power doi: 10.1115/1.4007057 – volume: 33 start-page: 1119 year: 2020 ident: 10.1016/j.expthermflusci.2024.111155_b0025 article-title: Recent advances in film cooling enhancement: a review publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2019.12.023 – ident: 10.1016/j.expthermflusci.2024.111155_b0145 doi: 10.1115/GT2017-64421 – volume: 144 year: 2022 ident: 10.1016/j.expthermflusci.2024.111155_b0125 article-title: The effect of gas and surface temperature on cold-side and hot-side turbine deposition publication-title: ASME J. Turbomach. doi: 10.1115/1.4055387 – volume: 124 start-page: 686 year: 2002 ident: 10.1016/j.expthermflusci.2024.111155_b0200 article-title: Correlation of film cooling effectiveness from thermographic measurements at enginelike conditions publication-title: ASME J. Turbomach. doi: 10.1115/1.1504443 – ident: 10.1016/j.expthermflusci.2024.111155_b0040 doi: 10.1115/GT2006-90577 – volume: 133 year: 2011 ident: 10.1016/j.expthermflusci.2024.111155_b0080 article-title: Film cooling effectiveness and heat transfer near deposit-laden film holes publication-title: ASME J. Turbomach. doi: 10.1115/1.4001190 – volume: 133 year: 2011 ident: 10.1016/j.expthermflusci.2024.111155_b0085 article-title: Effects of simulated particle deposition on film cooling publication-title: ASME J. Turbomach. doi: 10.1115/1.4000571 – volume: 134 year: 2012 ident: 10.1016/j.expthermflusci.2024.111155_b0095 article-title: Simulations of multiphase particle deposition on a showerhead with staggered film-cooling holes publication-title: ASME J. Turbomach. – volume: 69 start-page: 58 year: 2015 ident: 10.1016/j.expthermflusci.2024.111155_b0010 article-title: An experimental investigation of geometric effect of upstream converging slot-hole on end-wall film cooling and secondary vortex characteristics publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2015.08.002 – volume: 27 start-page: 1383 year: 2007 ident: 10.1016/j.expthermflusci.2024.111155_b0180 article-title: Investigation of MSWI fly ash melting characteristic by DSC-DTA publication-title: Waste Manag. doi: 10.1016/j.wasman.2006.11.017 – volume: 198 year: 2021 ident: 10.1016/j.expthermflusci.2024.111155_b0100 article-title: An experimental study on turbine vane leading-edge film cooling with deposition publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2021.117447 – ident: 10.1016/j.expthermflusci.2024.111155_b0060 doi: 10.1115/GT2014-27171 – volume: 141 year: 2019 ident: 10.1016/j.expthermflusci.2024.111155_b0140 article-title: Experimental deposition of NaCl particles from turbulent flows at gas turbine temperatures publication-title: ASME J. Turbomach. doi: 10.1115/1.4041036 |
SSID | ssj0008210 |
Score | 2.4216976 |
Snippet | •Coupling effects of particulate deposition and film cooling were experimentally examined.•Links between deposition thickness and film cooling effectiveness... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 111155 |
SubjectTerms | Compound angle Gas turbine film cooling Infrared thermography Particulate deposition Schlieren photography |
Title | Experimental assessment of film cooling from cylindrical holes subject to particulate deposition |
URI | https://dx.doi.org/10.1016/j.expthermflusci.2024.111155 |
Volume | 154 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6KguhBfGJ9lD30GpvubpINHqSUlqrYixZ6i9mXVNqm2BT04m93J48-wEPBW7LsbpLJZPbb8M03CNVjwlTMQu5Qw0KHGS4cbgLPIUSFivuGiExM57nv9wbscegNK6hd5sIArbKI_XlMz6J10dIorNmYjUaNF5eHrBlYdMjgs2agCQrqddanb39WNA9OMkUC6OxA7z1UX3G89NcMYNbEjBf2Ena3SFgWQyDx769lam3p6R6hwwIz4lZ-W8eooqcn6GBNSfAUvXXWlPpxvJTbxInBZjSeYJlAdZ53DOkkWH7bY5WJg2CojzvH84WAHzI4TfAse3yo6qWx0iWp6wwNup3Xds8piic4klI3dbSi3LdRUBlFDFU0YKFriG2UdsunXZAJs9BHxES4IpQBNTymgcWK0mtKEYYBPUc702SqLxAWvtDEMySILVox3MSGUYsbPBVTFbhGVNFdaatIFsriUOBiHJUUso9o09IRWDrKLV1F3nL0LFfY2HLcfflaog2PiexisNUMl_-e4Qrtw1lOgLxGO-nnQt9YkJKKWuaFNbTbenjq9X8B69_sDQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JasMwEB3SBLocSlearjrkauJIsi3TQwkhIWmWSxPIzbUsqaRkMU0C7d9X8pIm0EOhNyN7ZDOW3zyZmTcAlRBTEVKfWURR36KKcYspz7EwFr5grsI8EdPpD9z2iD6PnXEBGnktjEmrzLA_xfQErbORaubNajyZVF9s5tOap9khNZ81pXtQMupUtAileqfbHmwAmeFElMBcbxmDfaj8pHnJz9gwrZmarvVd9IYR0wRGTO3fb5FqK_q0TuA4o42onj7ZKRTk_AyOtsQEz-G1uSXWj8KN4iZaKKQm0xmKFqZBzxsyFSUo-tLHItEHQaZF7hIt19z8k0GrBYoTD5jGXhIJmed1XcCo1Rw22lbWP8GKCLFXlhSEuRoIhRJYEUE86tsK68FI7_qkbZTCNPvhIeY29yOPKBYST9PFyKlF3Pc9cgnF-WIurwBxl0vsKOyFmrAopkJFiaYOjgiJ8GzFy_CY-yqIMnFx0-NiGuRZZO_BrqcD4-kg9XQZnI11nIps_NHuKX8twc6iCXQ8-NMM1_-e4QEO2sN-L-h1Bt0bODRn0nzIWyiuPtbyTnOWFb_P1uQ3-aTuvg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+assessment+of+film+cooling+from+cylindrical+holes+subject+to+particulate+deposition&rft.jtitle=Experimental+thermal+and+fluid+science&rft.au=Yang%2C+Xing&rft.au=Hao%2C+Zihan&rft.au=Feng%2C+Zhenping&rft.date=2024-05-01&rft.pub=Elsevier+Inc&rft.issn=0894-1777&rft.eissn=1879-2286&rft.volume=154&rft_id=info:doi/10.1016%2Fj.expthermflusci.2024.111155&rft.externalDocID=S0894177724000244 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-1777&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-1777&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-1777&client=summon |