Experimental assessment of film cooling from cylindrical holes subject to particulate deposition

•Coupling effects of particulate deposition and film cooling were experimentally examined.•Links between deposition thickness and film cooling effectiveness were quantitatively assessed.•Film holes with a compound angle is more sensitivity to deposition.•Increasing coolant injection rates is helpful...

Full description

Saved in:
Bibliographic Details
Published inExperimental thermal and fluid science Vol. 154; p. 111155
Main Authors Yang, Xing, Hao, Zihan, Feng, Zhenping
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.05.2024
Subjects
Online AccessGet full text
ISSN0894-1777
1879-2286
DOI10.1016/j.expthermflusci.2024.111155

Cover

Loading…
Abstract •Coupling effects of particulate deposition and film cooling were experimentally examined.•Links between deposition thickness and film cooling effectiveness were quantitatively assessed.•Film holes with a compound angle is more sensitivity to deposition.•Increasing coolant injection rates is helpful to mitigate deposition effects. Particulate deposition has become a significant challenge of developing more efficient film cooling configurations for hot turbine components. To assess the influence of particulate deposition and to better understand the coupling effects of deposition evolution and film cooling, experimental simulations were conducted by injecting low-melting-point wax particles into a low-temperature wind tunnel facility, in which the particle transport and sticking behaviors were properly modeled by matching critical non-dimensional parameters in engine conditions. The sensitivity of film cooling to deposition was assessed on flat plates with a row of simple-angled film holes and compound-angled film holes, respectively. Local deposition patterns were obtained using an optical profile scanner and an infrared thermography technique was implemented to quantify the development of film cooling with the evolution of deposition. Further, flow fields downstream of the holes and coolant trajectories were visualized by means of a five-hole probe and a schlieren photography technique, offering the flow physics backing the observation of film cooling. Inspection of deposition over the flat plates revealed that film cooling was helpful to inhibit deposition, which leads to sparse deposition near the hole exit and dense deposition elsewhere. Film injection from the compound-angled hole was found to be more sensitive to deposition, resulting in decreased cooling effectiveness regardless of coolant blowing conditions. In contrast, deposition reduced film cooling from the simple-angled hole at lower injection rates and then improved film cooling at higher injection rates. Globally, the compound-angled hole exhibited a maximum reduction of 20 % in cooling effectiveness, while that for the simple-angle hole was 8.5 % at an injection ratio of 0.5; and at a high injection ratio of 2.0, an improvement of 13.6 % was obtained, on the contrary.
AbstractList •Coupling effects of particulate deposition and film cooling were experimentally examined.•Links between deposition thickness and film cooling effectiveness were quantitatively assessed.•Film holes with a compound angle is more sensitivity to deposition.•Increasing coolant injection rates is helpful to mitigate deposition effects. Particulate deposition has become a significant challenge of developing more efficient film cooling configurations for hot turbine components. To assess the influence of particulate deposition and to better understand the coupling effects of deposition evolution and film cooling, experimental simulations were conducted by injecting low-melting-point wax particles into a low-temperature wind tunnel facility, in which the particle transport and sticking behaviors were properly modeled by matching critical non-dimensional parameters in engine conditions. The sensitivity of film cooling to deposition was assessed on flat plates with a row of simple-angled film holes and compound-angled film holes, respectively. Local deposition patterns were obtained using an optical profile scanner and an infrared thermography technique was implemented to quantify the development of film cooling with the evolution of deposition. Further, flow fields downstream of the holes and coolant trajectories were visualized by means of a five-hole probe and a schlieren photography technique, offering the flow physics backing the observation of film cooling. Inspection of deposition over the flat plates revealed that film cooling was helpful to inhibit deposition, which leads to sparse deposition near the hole exit and dense deposition elsewhere. Film injection from the compound-angled hole was found to be more sensitive to deposition, resulting in decreased cooling effectiveness regardless of coolant blowing conditions. In contrast, deposition reduced film cooling from the simple-angled hole at lower injection rates and then improved film cooling at higher injection rates. Globally, the compound-angled hole exhibited a maximum reduction of 20 % in cooling effectiveness, while that for the simple-angle hole was 8.5 % at an injection ratio of 0.5; and at a high injection ratio of 2.0, an improvement of 13.6 % was obtained, on the contrary.
ArticleNumber 111155
Author Yang, Xing
Hao, Zihan
Feng, Zhenping
Author_xml – sequence: 1
  givenname: Xing
  surname: Yang
  fullname: Yang, Xing
  email: x.yang@mail.xjtu.edu.cn
– sequence: 2
  givenname: Zihan
  surname: Hao
  fullname: Hao, Zihan
– sequence: 3
  givenname: Zhenping
  surname: Feng
  fullname: Feng, Zhenping
BookMark eNqNkE1PwzAMhiM0JMbgP-TAtSMfbdNKXGDaAGkSFziHNHVYpq6pkgxt_55U4wKn-WK_lv3Kfq7RpHc9IHRHyZwSWt5v53AY4gb8znT7oO2cEZbPaYqiuEBTWok6Y6wqJ2hKqjrPqBDiCl2HsCWEVIySKfpcHgbwdgd9VB1WIUAIo8DOYGO7HdbOdbb_wsa7JI6pbr3VaXbjOgg47Jst6Iijw4Py0ep9pyLgFgYXbLSuv0GXRnUBbn_zDH2slu-Ll2z99vy6eFxnmnMSM2h5VealaE3LDG-5yGtiWGpqRimQkpekKFmjWEOaWgtuKsVFTUtdUN3UteAz9HTy1d6F4MFIbaMaL4he2U5SIkdmciv_MpMjM3lilkwe_pkMiY3yx3PXV6d1SI9-W_AyTUCvobU-QZKts-cZ_QBhoJd4
CitedBy_id crossref_primary_10_1016_j_expthermflusci_2025_111415
crossref_primary_10_1016_j_applthermaleng_2024_124906
crossref_primary_10_1016_j_ijthermalsci_2024_109595
crossref_primary_10_1115_1_4067632
Cites_doi 10.1016/j.ijthermalsci.2021.107434
10.2514/3.47996
10.1115/1.4031318
10.1115/1.2181181
10.1115/1.2098791
10.1115/1.1860380
10.1016/j.expthermflusci.2021.110410
10.1115/1.4003964
10.2514/1.18462
10.1115/1.4050146
10.1016/j.conbuildmat.2004.10.001
10.1115/1.2464141
10.1115/1.4006571
10.1115/1.4026613
10.1016/j.jhazmat.2008.03.043
10.1115/1.4007598
10.1115/1.4003672
10.1115/1.1400115
10.1115/1.3242452
10.3390/en15196968
10.1115/GT2006-90379
10.1016/j.ijheatmasstransfer.2014.04.028
10.2514/1.18034
10.1115/1.3239669
10.1115/1.4007057
10.1016/j.cja.2019.12.023
10.1115/GT2017-64421
10.1115/1.4055387
10.1115/1.1504443
10.1115/GT2006-90577
10.1115/1.4001190
10.1115/1.4000571
10.1016/j.expthermflusci.2015.08.002
10.1016/j.wasman.2006.11.017
10.1016/j.applthermaleng.2021.117447
10.1115/GT2014-27171
10.1115/1.4041036
ContentType Journal Article
Copyright 2024 Elsevier Inc.
Copyright_xml – notice: 2024 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.expthermflusci.2024.111155
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2286
ExternalDocumentID 10_1016_j_expthermflusci_2024_111155
S0894177724000244
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SSG
SST
SSZ
T5K
TN5
UHS
VH1
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c330t-ed386467dfd2f3d37490f2d38c211e06360562ba2b0b9c73f8a37916c51cb9973
IEDL.DBID .~1
ISSN 0894-1777
IngestDate Tue Jul 01 00:38:34 EDT 2025
Thu Apr 24 23:05:59 EDT 2025
Sat Mar 30 16:19:58 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Gas turbine film cooling
Infrared thermography
Particulate deposition
Schlieren photography
Compound angle
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c330t-ed386467dfd2f3d37490f2d38c211e06360562ba2b0b9c73f8a37916c51cb9973
ParticipantIDs crossref_citationtrail_10_1016_j_expthermflusci_2024_111155
crossref_primary_10_1016_j_expthermflusci_2024_111155
elsevier_sciencedirect_doi_10_1016_j_expthermflusci_2024_111155
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2024
2024-05-00
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May 2024
PublicationDecade 2020
PublicationTitle Experimental thermal and fluid science
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Bonilla, Webb, Clum, Casaday, Brewer, Bons (b0055) 2012; 134
Webb, Casaday, Barker, Bons, Gledhill, Padture (b0075) 2013; 135
Waye, Bogard (b0210) 2006; 129
Johnson, Tian, Zhang, Hu (b0205) 2014; 76
R. Prenter, S.M. Whitaker, A. Ameri, J.P. Bons, The effects of slot film cooling on deposition on a nozzle guide vane, ASME Paper No. GT2014-27171, doi: 10.1115/GT2014-27171.
Lawson, Thole, Okita, Nakamata (b0095) 2012; 134
Bons, Lo, Nied, Han (b0125) 2022; 144
Hamed, Tabakoff (b0170) 2006; 22
Baldauf, Scheurlen, Schulz, Wittig (b0200) 2002; 124
Kistenmacher, Todd Davidson, Bogard (b0110) 2014; 136
Zhang, Zhang, Wang, Tan (b0025) 2020; 33
Lawson, Thole (b0105) 2012; 134
Bons, Crosby, Wammack, Bentley, Fletcher (b0175) 2007; 129
Krishnaiah, Singh (b0185) 2006; 20
Dutta, Kaur, Singh (b0030) 2022; 15
Bons, Taylor, McClain, Rivir (b0065) 2001; 123
Goldstein, Eckert, Chiang, Elovic (b0035) 1985; 107
Lawson, Lynch, Thole (b0090) 2013; 135
Zheng, Tian, Qin, Hu (b0005) 2021; 127
Dring, Caspar, Suo (b0120) 1979; 3
Lawson, Thole (b0085) 2011; 133
Laycock, Fletcher (b0130) 2016; 138
Pu, Wang, Ma, Wu (b0010) 2015; 69
Yang, Zhao, Feng (b0015) 2022; 174
B. Barker, K. Hsu, B. Varney, A. Boulanger, J. Hutchinson, W.F. Ng, An experiment-based sticking model for heated sand, ASME Paper No. GT2017-64421, doi: 10.1115/GT2017-64421.
P. Demling, D.G. Bogard, The effects of obstructions on film cooling effectiveness on the suction side of a gas turbine vane, ASME Paper No. GT2006-90577, doi: 10.1115/GT2006-90577.
Jensen, Squire, Bons, Fletcher (b0160) 2005; 127
Elms, Pawley, Bojdo, Jones, Clarkson (b0135) 2021; 143
Forsyth, Gillespie, McGilvray (b0140) 2019; 141
Albert, Bogard (b0115) 2012; 134
Lewis, Barker, Bons, Ai, Fletcher (b0080) 2011; 133
Crowe (b0165) 2009
Li, Lei, Yang, Raninger (b0180) 2007; 27
Ai, Murray, Fletcher, Harding, Lewis, Bons (b0070) 2012; 134
Yang, Hao, Feng (b0100) 2021; 198
Ranz, Marshall (b0150) 1952; 48
Bogard, Thole (b0020) 2006; 22
N. Sundaram, K.A. Thole, Effects of surface deposition, hole blockage, and TBC spallation on vane endwall film-cooling, ASME Paper No. GT2006-90379, doi: 10.1115/GT2006-90379.
Cardwell, Sundaram, Thole (b0050) 2006; 128
Ranz, Marshall (b0155) 1952; 48
Wang, Tian, Wang, Huang, Yang (b0190) 2008; 160
Moffat (b0195) 1985; 107
Bonilla (10.1016/j.expthermflusci.2024.111155_b0055) 2012; 134
10.1016/j.expthermflusci.2024.111155_b0045
10.1016/j.expthermflusci.2024.111155_b0145
Zhang (10.1016/j.expthermflusci.2024.111155_b0025) 2020; 33
Lawson (10.1016/j.expthermflusci.2024.111155_b0090) 2013; 135
10.1016/j.expthermflusci.2024.111155_b0040
Crowe (10.1016/j.expthermflusci.2024.111155_b0165) 2009
Lawson (10.1016/j.expthermflusci.2024.111155_b0105) 2012; 134
10.1016/j.expthermflusci.2024.111155_b0060
Albert (10.1016/j.expthermflusci.2024.111155_b0115) 2012; 134
Goldstein (10.1016/j.expthermflusci.2024.111155_b0035) 1985; 107
Cardwell (10.1016/j.expthermflusci.2024.111155_b0050) 2006; 128
Pu (10.1016/j.expthermflusci.2024.111155_b0010) 2015; 69
Bogard (10.1016/j.expthermflusci.2024.111155_b0020) 2006; 22
Bons (10.1016/j.expthermflusci.2024.111155_b0065) 2001; 123
Bons (10.1016/j.expthermflusci.2024.111155_b0125) 2022; 144
Waye (10.1016/j.expthermflusci.2024.111155_b0210) 2006; 129
Lawson (10.1016/j.expthermflusci.2024.111155_b0095) 2012; 134
Bons (10.1016/j.expthermflusci.2024.111155_b0175) 2007; 129
Li (10.1016/j.expthermflusci.2024.111155_b0180) 2007; 27
Wang (10.1016/j.expthermflusci.2024.111155_b0190) 2008; 160
Lewis (10.1016/j.expthermflusci.2024.111155_b0080) 2011; 133
Yang (10.1016/j.expthermflusci.2024.111155_b0100) 2021; 198
Kistenmacher (10.1016/j.expthermflusci.2024.111155_b0110) 2014; 136
Webb (10.1016/j.expthermflusci.2024.111155_b0075) 2013; 135
Hamed (10.1016/j.expthermflusci.2024.111155_b0170) 2006; 22
Baldauf (10.1016/j.expthermflusci.2024.111155_b0200) 2002; 124
Ranz (10.1016/j.expthermflusci.2024.111155_b0155) 1952; 48
Johnson (10.1016/j.expthermflusci.2024.111155_b0205) 2014; 76
Forsyth (10.1016/j.expthermflusci.2024.111155_b0140) 2019; 141
Yang (10.1016/j.expthermflusci.2024.111155_b0015) 2022; 174
Jensen (10.1016/j.expthermflusci.2024.111155_b0160) 2005; 127
Ranz (10.1016/j.expthermflusci.2024.111155_b0150) 1952; 48
Zheng (10.1016/j.expthermflusci.2024.111155_b0005) 2021; 127
Ai (10.1016/j.expthermflusci.2024.111155_b0070) 2012; 134
Laycock (10.1016/j.expthermflusci.2024.111155_b0130) 2016; 138
Dring (10.1016/j.expthermflusci.2024.111155_b0120) 1979; 3
Krishnaiah (10.1016/j.expthermflusci.2024.111155_b0185) 2006; 20
Lawson (10.1016/j.expthermflusci.2024.111155_b0085) 2011; 133
Dutta (10.1016/j.expthermflusci.2024.111155_b0030) 2022; 15
Moffat (10.1016/j.expthermflusci.2024.111155_b0195) 1985; 107
Elms (10.1016/j.expthermflusci.2024.111155_b0135) 2021; 143
References_xml – year: 2009
  ident: b0165
  article-title: Multiphase Flow Handbook
– volume: 33
  start-page: 1119
  year: 2020
  end-page: 1136
  ident: b0025
  article-title: Recent advances in film cooling enhancement: a review
  publication-title: Chin. J. Aeronaut.
– volume: 136
  year: 2014
  ident: b0110
  article-title: Realistic trench film cooling with a thermal barrier coating and deposition
  publication-title: ASME J. Turbomach.
– volume: 144
  year: 2022
  ident: b0125
  article-title: The effect of gas and surface temperature on cold-side and hot-side turbine deposition
  publication-title: ASME J. Turbomach.
– volume: 20
  start-page: 193
  year: 2006
  end-page: 198
  ident: b0185
  article-title: Determination of thermal properties of some supplementary cementing materials used in cement and concrete
  publication-title: Constr. Build. Mater.
– volume: 198
  year: 2021
  ident: b0100
  article-title: An experimental study on turbine vane leading-edge film cooling with deposition
  publication-title: Appl. Therm. Eng.
– volume: 107
  start-page: 173
  year: 1985
  end-page: 181
  ident: b0195
  article-title: Uncertainty analysis in the planning of an experiment
  publication-title: ASME J. Fluids Eng.
– volume: 134
  year: 2012
  ident: b0105
  article-title: Simulations of multiphase particle deposition on endwall film-cooling holes in transverse trenches
  publication-title: ASME J. Turbomach.
– volume: 22
  start-page: 350
  year: 2006
  end-page: 360
  ident: b0170
  article-title: Erosion and deposition in turbomachinery
  publication-title: AIAA J. Propul. Power
– volume: 69
  start-page: 58
  year: 2015
  end-page: 72
  ident: b0010
  article-title: An experimental investigation of geometric effect of upstream converging slot-hole on end-wall film cooling and secondary vortex characteristics
  publication-title: Exp. Therm. Fluid Sci.
– volume: 48
  start-page: 141
  year: 1952
  end-page: 146
  ident: b0150
  article-title: Evaporation from drops, part i
  publication-title: Chem. Eng. Prog.
– reference: P. Demling, D.G. Bogard, The effects of obstructions on film cooling effectiveness on the suction side of a gas turbine vane, ASME Paper No. GT2006-90577, doi: 10.1115/GT2006-90577.
– volume: 123
  start-page: 739
  year: 2001
  end-page: 748
  ident: b0065
  article-title: The many faces of turbine surface roughness
  publication-title: ASME J. Turbomach.
– volume: 129
  start-page: 135
  year: 2007
  end-page: 143
  ident: b0175
  article-title: High-pressure turbine deposition in land-based gas turbines from various synfuels
  publication-title: ASME J. Eng. Gas Turbines Power
– volume: 134
  year: 2012
  ident: b0115
  article-title: Experimental simulation of contaminant deposition on a film cooled turbine airfoil leading edge
  publication-title: ASME J. Turbomach.
– volume: 133
  year: 2011
  ident: b0085
  article-title: Effects of simulated particle deposition on film cooling
  publication-title: ASME J. Turbomach.
– volume: 3
  start-page: 161
  year: 1979
  end-page: 166
  ident: b0120
  article-title: Particle trajectories in turbine cascades
  publication-title: J. Energy
– volume: 141
  year: 2019
  ident: b0140
  article-title: Experimental deposition of NaCl particles from turbulent flows at gas turbine temperatures
  publication-title: ASME J. Turbomach.
– reference: N. Sundaram, K.A. Thole, Effects of surface deposition, hole blockage, and TBC spallation on vane endwall film-cooling, ASME Paper No. GT2006-90379, doi: 10.1115/GT2006-90379.
– volume: 174
  year: 2022
  ident: b0015
  article-title: Experimental evaluation of cooling effectiveness from novel film holes over turbine endwalls with inlet swirl
  publication-title: Int. J. Therm. Sci.
– volume: 127
  start-page: 462
  year: 2005
  end-page: 470
  ident: b0160
  article-title: Simulated land-based turbine deposits generated in an accelerated deposition facility
  publication-title: ASME J. Turbomach.
– volume: 76
  start-page: 337
  year: 2014
  end-page: 349
  ident: b0205
  article-title: An experimental study of density ratio effects on the film cooling injection from discrete holes by using PIV and PSP techniques
  publication-title: Int. J. Heat Mass Transf.
– volume: 129
  start-page: 294
  year: 2006
  end-page: 302
  ident: b0210
  article-title: High-resolution film cooling effectiveness measurements of axial holes embedded in a transverse trench with various trench configurations
  publication-title: ASME J. Turbomach.
– volume: 15
  year: 2022
  ident: b0030
  article-title: Review of film cooling in gas turbines with an emphasis on additive manufacturing-based design evolutions
  publication-title: Energies
– volume: 135
  year: 2013
  ident: b0075
  article-title: Coal ash deposition on nozzle guide vanes—part i: experimental characteristics of four coal ash types
  publication-title: ASME J. Turbomach.
– volume: 22
  start-page: 249
  year: 2006
  end-page: 270
  ident: b0020
  article-title: Gas turbine film cooling
  publication-title: AIAA J. Propuls. Power
– volume: 134
  year: 2012
  ident: b0055
  article-title: The effect of particle size and film cooling on nozzle guide vane deposition
  publication-title: ASME J. Eng. Gas Turbines Power
– volume: 124
  start-page: 686
  year: 2002
  end-page: 698
  ident: b0200
  article-title: Correlation of film cooling effectiveness from thermographic measurements at enginelike conditions
  publication-title: ASME J. Turbomach.
– reference: R. Prenter, S.M. Whitaker, A. Ameri, J.P. Bons, The effects of slot film cooling on deposition on a nozzle guide vane, ASME Paper No. GT2014-27171, doi: 10.1115/GT2014-27171.
– volume: 133
  year: 2011
  ident: b0080
  article-title: Film cooling effectiveness and heat transfer near deposit-laden film holes
  publication-title: ASME J. Turbomach.
– volume: 134
  year: 2012
  ident: b0095
  article-title: Simulations of multiphase particle deposition on a showerhead with staggered film-cooling holes
  publication-title: ASME J. Turbomach.
– volume: 127
  year: 2021
  ident: b0005
  article-title: An experimental study on the improvements in the film cooling performance by an upstream micro-vortex generator
  publication-title: Exp. Therm. Fluid Sci.
– volume: 128
  start-page: 62
  year: 2006
  end-page: 70
  ident: b0050
  article-title: Effect of midpassage gap, endwall misalignment, and roughness on endwall film-cooling
  publication-title: ASME J. Turbomach.
– volume: 143
  year: 2021
  ident: b0135
  article-title: Formation of high-temperature minerals from an evaporite-rich dust in gas turbine engine ingestion tests
  publication-title: ASME J. Turbomach.
– reference: B. Barker, K. Hsu, B. Varney, A. Boulanger, J. Hutchinson, W.F. Ng, An experiment-based sticking model for heated sand, ASME Paper No. GT2017-64421, doi: 10.1115/GT2017-64421.
– volume: 48
  start-page: 173
  year: 1952
  end-page: 180
  ident: b0155
  article-title: Evaporation from drops, part ii
  publication-title: Chem. Eng. Prog.
– volume: 160
  start-page: 375
  year: 2008
  end-page: 381
  ident: b0190
  article-title: Melting characteristics during the vitrification of MSWI fly ash with a pilot-scale diesel oil furnace
  publication-title: J. Hazard. Mater.
– volume: 135
  year: 2013
  ident: b0090
  article-title: Simulations of multiphase particle deposition on a nonaxisymmetric contoured endwall with film-cooling
  publication-title: ASME J. Turbomach.
– volume: 27
  start-page: 1383
  year: 2007
  end-page: 1392
  ident: b0180
  article-title: Investigation of MSWI fly ash melting characteristic by DSC-DTA
  publication-title: Waste Manag.
– volume: 134
  year: 2012
  ident: b0070
  article-title: Deposition near film cooling holes on a high pressure turbine vane
  publication-title: ASME J. Turbomach.
– volume: 138
  year: 2016
  ident: b0130
  article-title: Independent effects of surface and gas temperature on coal fly ash deposition in gas turbines at temperatures up to 1400 °C
  publication-title: ASME J. Eng. Gas Turbines Power
– volume: 107
  start-page: 111
  year: 1985
  end-page: 116
  ident: b0035
  article-title: Effect of surface roughness on film cooling performance
  publication-title: ASME J. Eng. Gas Turbines Power
– volume: 174
  year: 2022
  ident: 10.1016/j.expthermflusci.2024.111155_b0015
  article-title: Experimental evaluation of cooling effectiveness from novel film holes over turbine endwalls with inlet swirl
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2021.107434
– volume: 3
  start-page: 161
  year: 1979
  ident: 10.1016/j.expthermflusci.2024.111155_b0120
  article-title: Particle trajectories in turbine cascades
  publication-title: J. Energy
  doi: 10.2514/3.47996
– volume: 138
  year: 2016
  ident: 10.1016/j.expthermflusci.2024.111155_b0130
  article-title: Independent effects of surface and gas temperature on coal fly ash deposition in gas turbines at temperatures up to 1400 °C
  publication-title: ASME J. Eng. Gas Turbines Power
  doi: 10.1115/1.4031318
– volume: 129
  start-page: 135
  year: 2007
  ident: 10.1016/j.expthermflusci.2024.111155_b0175
  article-title: High-pressure turbine deposition in land-based gas turbines from various synfuels
  publication-title: ASME J. Eng. Gas Turbines Power
  doi: 10.1115/1.2181181
– volume: 128
  start-page: 62
  year: 2006
  ident: 10.1016/j.expthermflusci.2024.111155_b0050
  article-title: Effect of midpassage gap, endwall misalignment, and roughness on endwall film-cooling
  publication-title: ASME J. Turbomach.
  doi: 10.1115/1.2098791
– volume: 127
  start-page: 462
  year: 2005
  ident: 10.1016/j.expthermflusci.2024.111155_b0160
  article-title: Simulated land-based turbine deposits generated in an accelerated deposition facility
  publication-title: ASME J. Turbomach.
  doi: 10.1115/1.1860380
– volume: 48
  start-page: 173
  year: 1952
  ident: 10.1016/j.expthermflusci.2024.111155_b0155
  article-title: Evaporation from drops, part ii
  publication-title: Chem. Eng. Prog.
– volume: 127
  year: 2021
  ident: 10.1016/j.expthermflusci.2024.111155_b0005
  article-title: An experimental study on the improvements in the film cooling performance by an upstream micro-vortex generator
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2021.110410
– volume: 134
  year: 2012
  ident: 10.1016/j.expthermflusci.2024.111155_b0115
  article-title: Experimental simulation of contaminant deposition on a film cooled turbine airfoil leading edge
  publication-title: ASME J. Turbomach.
  doi: 10.1115/1.4003964
– year: 2009
  ident: 10.1016/j.expthermflusci.2024.111155_b0165
– volume: 22
  start-page: 350
  year: 2006
  ident: 10.1016/j.expthermflusci.2024.111155_b0170
  article-title: Erosion and deposition in turbomachinery
  publication-title: AIAA J. Propul. Power
  doi: 10.2514/1.18462
– volume: 143
  year: 2021
  ident: 10.1016/j.expthermflusci.2024.111155_b0135
  article-title: Formation of high-temperature minerals from an evaporite-rich dust in gas turbine engine ingestion tests
  publication-title: ASME J. Turbomach.
  doi: 10.1115/1.4050146
– volume: 20
  start-page: 193
  year: 2006
  ident: 10.1016/j.expthermflusci.2024.111155_b0185
  article-title: Determination of thermal properties of some supplementary cementing materials used in cement and concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2004.10.001
– volume: 48
  start-page: 141
  year: 1952
  ident: 10.1016/j.expthermflusci.2024.111155_b0150
  article-title: Evaporation from drops, part i
  publication-title: Chem. Eng. Prog.
– volume: 129
  start-page: 294
  year: 2006
  ident: 10.1016/j.expthermflusci.2024.111155_b0210
  article-title: High-resolution film cooling effectiveness measurements of axial holes embedded in a transverse trench with various trench configurations
  publication-title: ASME J. Turbomach.
  doi: 10.1115/1.2464141
– volume: 135
  year: 2013
  ident: 10.1016/j.expthermflusci.2024.111155_b0075
  article-title: Coal ash deposition on nozzle guide vanes—part i: experimental characteristics of four coal ash types
  publication-title: ASME J. Turbomach.
  doi: 10.1115/1.4006571
– volume: 136
  year: 2014
  ident: 10.1016/j.expthermflusci.2024.111155_b0110
  article-title: Realistic trench film cooling with a thermal barrier coating and deposition
  publication-title: ASME J. Turbomach.
  doi: 10.1115/1.4026613
– volume: 160
  start-page: 375
  year: 2008
  ident: 10.1016/j.expthermflusci.2024.111155_b0190
  article-title: Melting characteristics during the vitrification of MSWI fly ash with a pilot-scale diesel oil furnace
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2008.03.043
– volume: 135
  year: 2013
  ident: 10.1016/j.expthermflusci.2024.111155_b0090
  article-title: Simulations of multiphase particle deposition on a nonaxisymmetric contoured endwall with film-cooling
  publication-title: ASME J. Turbomach.
  doi: 10.1115/1.4007598
– volume: 134
  year: 2012
  ident: 10.1016/j.expthermflusci.2024.111155_b0070
  article-title: Deposition near film cooling holes on a high pressure turbine vane
  publication-title: ASME J. Turbomach.
  doi: 10.1115/1.4003672
– volume: 134
  year: 2012
  ident: 10.1016/j.expthermflusci.2024.111155_b0105
  article-title: Simulations of multiphase particle deposition on endwall film-cooling holes in transverse trenches
  publication-title: ASME J. Turbomach.
– volume: 123
  start-page: 739
  year: 2001
  ident: 10.1016/j.expthermflusci.2024.111155_b0065
  article-title: The many faces of turbine surface roughness
  publication-title: ASME J. Turbomach.
  doi: 10.1115/1.1400115
– volume: 107
  start-page: 173
  year: 1985
  ident: 10.1016/j.expthermflusci.2024.111155_b0195
  article-title: Uncertainty analysis in the planning of an experiment
  publication-title: ASME J. Fluids Eng.
  doi: 10.1115/1.3242452
– volume: 15
  year: 2022
  ident: 10.1016/j.expthermflusci.2024.111155_b0030
  article-title: Review of film cooling in gas turbines with an emphasis on additive manufacturing-based design evolutions
  publication-title: Energies
  doi: 10.3390/en15196968
– ident: 10.1016/j.expthermflusci.2024.111155_b0045
  doi: 10.1115/GT2006-90379
– volume: 76
  start-page: 337
  year: 2014
  ident: 10.1016/j.expthermflusci.2024.111155_b0205
  article-title: An experimental study of density ratio effects on the film cooling injection from discrete holes by using PIV and PSP techniques
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2014.04.028
– volume: 22
  start-page: 249
  year: 2006
  ident: 10.1016/j.expthermflusci.2024.111155_b0020
  article-title: Gas turbine film cooling
  publication-title: AIAA J. Propuls. Power
  doi: 10.2514/1.18034
– volume: 107
  start-page: 111
  year: 1985
  ident: 10.1016/j.expthermflusci.2024.111155_b0035
  article-title: Effect of surface roughness on film cooling performance
  publication-title: ASME J. Eng. Gas Turbines Power
  doi: 10.1115/1.3239669
– volume: 134
  year: 2012
  ident: 10.1016/j.expthermflusci.2024.111155_b0055
  article-title: The effect of particle size and film cooling on nozzle guide vane deposition
  publication-title: ASME J. Eng. Gas Turbines Power
  doi: 10.1115/1.4007057
– volume: 33
  start-page: 1119
  year: 2020
  ident: 10.1016/j.expthermflusci.2024.111155_b0025
  article-title: Recent advances in film cooling enhancement: a review
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/j.cja.2019.12.023
– ident: 10.1016/j.expthermflusci.2024.111155_b0145
  doi: 10.1115/GT2017-64421
– volume: 144
  year: 2022
  ident: 10.1016/j.expthermflusci.2024.111155_b0125
  article-title: The effect of gas and surface temperature on cold-side and hot-side turbine deposition
  publication-title: ASME J. Turbomach.
  doi: 10.1115/1.4055387
– volume: 124
  start-page: 686
  year: 2002
  ident: 10.1016/j.expthermflusci.2024.111155_b0200
  article-title: Correlation of film cooling effectiveness from thermographic measurements at enginelike conditions
  publication-title: ASME J. Turbomach.
  doi: 10.1115/1.1504443
– ident: 10.1016/j.expthermflusci.2024.111155_b0040
  doi: 10.1115/GT2006-90577
– volume: 133
  year: 2011
  ident: 10.1016/j.expthermflusci.2024.111155_b0080
  article-title: Film cooling effectiveness and heat transfer near deposit-laden film holes
  publication-title: ASME J. Turbomach.
  doi: 10.1115/1.4001190
– volume: 133
  year: 2011
  ident: 10.1016/j.expthermflusci.2024.111155_b0085
  article-title: Effects of simulated particle deposition on film cooling
  publication-title: ASME J. Turbomach.
  doi: 10.1115/1.4000571
– volume: 134
  year: 2012
  ident: 10.1016/j.expthermflusci.2024.111155_b0095
  article-title: Simulations of multiphase particle deposition on a showerhead with staggered film-cooling holes
  publication-title: ASME J. Turbomach.
– volume: 69
  start-page: 58
  year: 2015
  ident: 10.1016/j.expthermflusci.2024.111155_b0010
  article-title: An experimental investigation of geometric effect of upstream converging slot-hole on end-wall film cooling and secondary vortex characteristics
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2015.08.002
– volume: 27
  start-page: 1383
  year: 2007
  ident: 10.1016/j.expthermflusci.2024.111155_b0180
  article-title: Investigation of MSWI fly ash melting characteristic by DSC-DTA
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2006.11.017
– volume: 198
  year: 2021
  ident: 10.1016/j.expthermflusci.2024.111155_b0100
  article-title: An experimental study on turbine vane leading-edge film cooling with deposition
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2021.117447
– ident: 10.1016/j.expthermflusci.2024.111155_b0060
  doi: 10.1115/GT2014-27171
– volume: 141
  year: 2019
  ident: 10.1016/j.expthermflusci.2024.111155_b0140
  article-title: Experimental deposition of NaCl particles from turbulent flows at gas turbine temperatures
  publication-title: ASME J. Turbomach.
  doi: 10.1115/1.4041036
SSID ssj0008210
Score 2.4216976
Snippet •Coupling effects of particulate deposition and film cooling were experimentally examined.•Links between deposition thickness and film cooling effectiveness...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 111155
SubjectTerms Compound angle
Gas turbine film cooling
Infrared thermography
Particulate deposition
Schlieren photography
Title Experimental assessment of film cooling from cylindrical holes subject to particulate deposition
URI https://dx.doi.org/10.1016/j.expthermflusci.2024.111155
Volume 154
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6KguhBfGJ9lD30GpvubpINHqSUlqrYixZ6i9mXVNqm2BT04m93J48-wEPBW7LsbpLJZPbb8M03CNVjwlTMQu5Qw0KHGS4cbgLPIUSFivuGiExM57nv9wbscegNK6hd5sIArbKI_XlMz6J10dIorNmYjUaNF5eHrBlYdMjgs2agCQrqddanb39WNA9OMkUC6OxA7z1UX3G89NcMYNbEjBf2Ena3SFgWQyDx769lam3p6R6hwwIz4lZ-W8eooqcn6GBNSfAUvXXWlPpxvJTbxInBZjSeYJlAdZ53DOkkWH7bY5WJg2CojzvH84WAHzI4TfAse3yo6qWx0iWp6wwNup3Xds8piic4klI3dbSi3LdRUBlFDFU0YKFriG2UdsunXZAJs9BHxES4IpQBNTymgcWK0mtKEYYBPUc702SqLxAWvtDEMySILVox3MSGUYsbPBVTFbhGVNFdaatIFsriUOBiHJUUso9o09IRWDrKLV1F3nL0LFfY2HLcfflaog2PiexisNUMl_-e4Qrtw1lOgLxGO-nnQt9YkJKKWuaFNbTbenjq9X8B69_sDQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JasMwEB3SBLocSlearjrkauJIsi3TQwkhIWmWSxPIzbUsqaRkMU0C7d9X8pIm0EOhNyN7ZDOW3zyZmTcAlRBTEVKfWURR36KKcYspz7EwFr5grsI8EdPpD9z2iD6PnXEBGnktjEmrzLA_xfQErbORaubNajyZVF9s5tOap9khNZ81pXtQMupUtAileqfbHmwAmeFElMBcbxmDfaj8pHnJz9gwrZmarvVd9IYR0wRGTO3fb5FqK_q0TuA4o42onj7ZKRTk_AyOtsQEz-G1uSXWj8KN4iZaKKQm0xmKFqZBzxsyFSUo-tLHItEHQaZF7hIt19z8k0GrBYoTD5jGXhIJmed1XcCo1Rw22lbWP8GKCLFXlhSEuRoIhRJYEUE86tsK68FI7_qkbZTCNPvhIeY29yOPKBYST9PFyKlF3Pc9cgnF-WIurwBxl0vsKOyFmrAopkJFiaYOjgiJ8GzFy_CY-yqIMnFx0-NiGuRZZO_BrqcD4-kg9XQZnI11nIps_NHuKX8twc6iCXQ8-NMM1_-e4QEO2sN-L-h1Bt0bODRn0nzIWyiuPtbyTnOWFb_P1uQ3-aTuvg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+assessment+of+film+cooling+from+cylindrical+holes+subject+to+particulate+deposition&rft.jtitle=Experimental+thermal+and+fluid+science&rft.au=Yang%2C+Xing&rft.au=Hao%2C+Zihan&rft.au=Feng%2C+Zhenping&rft.date=2024-05-01&rft.pub=Elsevier+Inc&rft.issn=0894-1777&rft.eissn=1879-2286&rft.volume=154&rft_id=info:doi/10.1016%2Fj.expthermflusci.2024.111155&rft.externalDocID=S0894177724000244
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-1777&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-1777&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-1777&client=summon