Influence of sample geometry on determination of magnetocaloric effect for Gd60Co30Al10 glassy ribbons using direct and indirect methods

Rare-earth based metallic glasses with high saturation magnetization show a sizeable magnetocaloric effect (MCE) and are subject of extensive research concerning magnetic refrigeration materials. In this work, the magnetic phase transition from paramagnetic to ferromagnetic of Gd60Co30Al10 metallic...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetism and magnetic materials Vol. 323; no. 13; pp. 1782 - 1786
Main Authors Schwarz, B., Mattern, N., Moore, J.D., Skokov, K.P., Gutfleisch, O., Eckert, J.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.07.2011
Elsevier
Subjects
Online AccessGet full text
ISSN0304-8853
DOI10.1016/j.jmmm.2011.02.004

Cover

Loading…
Abstract Rare-earth based metallic glasses with high saturation magnetization show a sizeable magnetocaloric effect (MCE) and are subject of extensive research concerning magnetic refrigeration materials. In this work, the magnetic phase transition from paramagnetic to ferromagnetic of Gd60Co30Al10 metallic glass has been characterized and three different methods were applied for the determination of its magnetocaloric specific parameters: (a) direct measurement of the adiabatic temperature change by exposing the material to an adiabatically applied magnetic field; (b) determination of the magnetization M(H,T) and calculation of the temperature dependent magnetic field induced entropy change ΔSm by application of the Maxwell relation and (c) measuring the total heat capacity Cp(H,T) in zero and non-zero magnetic field. Gd60Co30Al10 glassy ribbons were prepared by melt spinning, a technique that offers very high cooling rates due to the low dimensionality of the sample. Depending on the particular method of measurement, pieces of these glassy ribbons form samples with different appropriate total volume and dimensions. We show that the combination of the pronounced two-dimensionality of the ribbon pieces (aspect ratio ∼100) together with the very high magnetic permeability principally can cause strong internal demagnetizing fields that cannot be neglected when evaluating the intrinsic MCE parameters obtained from different methods. ► Direct measurement of the adiabatic temperature change. ► Magnetic field induced entropy change by application of the Maxwell relation. ► Measuring the total heat capacity Cp(H,T) in zero and non-zero magnetic field. ► Two-dimensionality of the ribbon pieces causes strong internal demagnetizing fields. ► Important when evaluating the intrinsic MCE parameters from different methods.
AbstractList Rare-earth based metallic glasses with high saturation magnetization show a sizeable magnetocaloric effect (MCE) and are subject of extensive research concerning magnetic refrigeration materials. In this work, the magnetic phase transition from paramagnetic to ferromagnetic of Gd60Co30Al10 metallic glass has been characterized and three different methods were applied for the determination of its magnetocaloric specific parameters: (a) direct measurement of the adiabatic temperature change by exposing the material to an adiabatically applied magnetic field; (b) determination of the magnetization M(H,T) and calculation of the temperature dependent magnetic field induced entropy change ΔSm by application of the Maxwell relation and (c) measuring the total heat capacity Cp(H,T) in zero and non-zero magnetic field. Gd60Co30Al10 glassy ribbons were prepared by melt spinning, a technique that offers very high cooling rates due to the low dimensionality of the sample. Depending on the particular method of measurement, pieces of these glassy ribbons form samples with different appropriate total volume and dimensions. We show that the combination of the pronounced two-dimensionality of the ribbon pieces (aspect ratio ∼100) together with the very high magnetic permeability principally can cause strong internal demagnetizing fields that cannot be neglected when evaluating the intrinsic MCE parameters obtained from different methods. ► Direct measurement of the adiabatic temperature change. ► Magnetic field induced entropy change by application of the Maxwell relation. ► Measuring the total heat capacity Cp(H,T) in zero and non-zero magnetic field. ► Two-dimensionality of the ribbon pieces causes strong internal demagnetizing fields. ► Important when evaluating the intrinsic MCE parameters from different methods.
Author Moore, J.D.
Mattern, N.
Schwarz, B.
Skokov, K.P.
Eckert, J.
Gutfleisch, O.
Author_xml – sequence: 1
  givenname: B.
  surname: Schwarz
  fullname: Schwarz, B.
  email: b.schwarz@ifw-dresden.de
  organization: Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Institute for Complex Materials, P.O. Box 270116, Helmholtzstrasse 20, D-01171 Dresden, Germany
– sequence: 2
  givenname: N.
  surname: Mattern
  fullname: Mattern, N.
  organization: Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Institute for Complex Materials, P.O. Box 270116, Helmholtzstrasse 20, D-01171 Dresden, Germany
– sequence: 3
  givenname: J.D.
  surname: Moore
  fullname: Moore, J.D.
  organization: Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Institute for Complex Materials, P.O. Box 270116, Helmholtzstrasse 20, D-01171 Dresden, Germany
– sequence: 4
  givenname: K.P.
  surname: Skokov
  fullname: Skokov, K.P.
  organization: Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Institute for Complex Materials, P.O. Box 270116, Helmholtzstrasse 20, D-01171 Dresden, Germany
– sequence: 5
  givenname: O.
  surname: Gutfleisch
  fullname: Gutfleisch, O.
  organization: Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Institute for Complex Materials, P.O. Box 270116, Helmholtzstrasse 20, D-01171 Dresden, Germany
– sequence: 6
  givenname: J.
  surname: Eckert
  fullname: Eckert, J.
  organization: Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Institute for Complex Materials, P.O. Box 270116, Helmholtzstrasse 20, D-01171 Dresden, Germany
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23976364$$DView record in Pascal Francis
BookMark eNp9kU1LAzEQhnNQsH78AU-5eOw6-ehuCl5K8QsEL3oO2eykpuwmJVmF_gN_tlkrHjx4mTDwvDPMk1NyFGJAQi4ZVAxYfb2ttsMwVBwYq4BXAPKIzECAnCu1ECfkNOctADCp6hn5fAyuf8dgkUZHsxl2PdINxgHHtKcx0A5HTIMPZvSlK8xgNgHHaE0fk7cUnUM7UhcTve9qWEcBq54B3fQm5z1Nvm1jyPQ9-7ChnU8TbEJHffhpyqa32OVzcuxMn_Hi5z0jr3e3L-uH-dPz_eN69TS3QsA4R1OLulPcymaphDNggCnbLoRqrLLSWdu6hi8XtVt0rWxB8habplRjGAe5FGfk6jB3Z3K5wSUTrM96l_xg0l5zsWzKBlk4fuBsijkndL8IAz151ls9edaTZw1cF88lpP6ErB-_zY3J-P7_6M0hiuX4D49JZ-unfzlo0l30_8W_AHrTnzs
CODEN JMMMDC
CitedBy_id crossref_primary_10_1016_j_intermet_2017_05_001
crossref_primary_10_1063_1_4885110
crossref_primary_10_1016_j_jmmm_2018_11_018
crossref_primary_10_1063_1_4923415
crossref_primary_10_1016_j_jallcom_2014_03_053
crossref_primary_10_1016_j_jmmm_2017_10_020
crossref_primary_10_1007_s40553_015_0050_0
crossref_primary_10_1063_1_4740062
crossref_primary_10_1063_1_5140765
crossref_primary_10_1016_j_jallcom_2018_03_279
crossref_primary_10_1016_j_jmmm_2020_166819
crossref_primary_10_1063_1_4890394
crossref_primary_10_1016_j_jnoncrysol_2021_121222
crossref_primary_10_1016_j_jmmm_2019_166015
crossref_primary_10_1088_1361_6463_aa7ebc
crossref_primary_10_1016_j_jmmm_2019_166179
crossref_primary_10_1063_1_4943137
crossref_primary_10_1063_1_3632983
crossref_primary_10_1088_0953_8984_25_49_496010
crossref_primary_10_1016_j_jallcom_2017_03_363
crossref_primary_10_1002_ente_201800163
crossref_primary_10_1002_aenm_201200167
crossref_primary_10_1088_1361_6463_ad958f
crossref_primary_10_1016_j_intermet_2014_12_005
crossref_primary_10_1016_j_jmmm_2021_167817
crossref_primary_10_1063_1_4968592
Cites_doi 10.1063/1.3335498
10.1016/j.intermet.2007.09.005
10.1063/1.2338770
10.1088/0034-4885/68/6/R04
10.1007/BF02995816
10.1103/PhysRevLett.78.4494
10.1016/j.jallcom.2007.03.101
10.1016/S0304-8853(99)00397-2
10.1063/1.1703091
10.1063/1.3056220
10.1063/1.126677
10.1007/s003390101034
10.1063/1.367113
10.1016/j.jmmm.2006.10.1146
10.1016/j.jmmm.2009.06.021
10.1038/415150a
10.1002/adma.201002180
10.1063/1.1847871
10.1016/j.ssc.2008.12.006
10.1103/PhysRevLett.93.237202
10.1063/1.2162807
10.1016/j.jmmm.2008.04.116
10.1016/j.jallcom.2007.09.041
10.1063/1.1419048
10.1063/1.2741120
10.1103/PhysRevB.59.503
10.1016/j.jallcom.2006.10.093
10.1103/PhysRevB.64.052401
10.1063/1.2829031
10.1016/j.mseb.2007.10.017
10.1007/BF01587243
10.1103/PhysRevB.67.104416
10.1016/j.jallcom.2007.03.119
10.1016/j.jmmm.2010.02.029
10.1016/j.intermet.2010.02.015
ContentType Journal Article
Copyright 2011 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2011 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/j.jmmm.2011.02.004
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EndPage 1786
ExternalDocumentID 23976364
10_1016_j_jmmm_2011_02_004
S0304885311000874
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMV
HZ~
IHE
J1W
K-O
KOM
M24
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
WUQ
XPP
XXG
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
ID FETCH-LOGICAL-c330t-ea636d82c47983fa0a018cb5387c8c4fccbf72956f5db4b042be7742baa120493
IEDL.DBID .~1
ISSN 0304-8853
IngestDate Mon Jul 21 09:16:23 EDT 2025
Tue Jul 01 00:35:33 EDT 2025
Thu Apr 24 22:56:56 EDT 2025
Fri Feb 23 02:22:03 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords Magnetocaloric effect
Magnetic cooling
Magnetic phase transition
Gadolinium base alloys
Cooling rate
Magnetic field effects
Melt spinning
Magnetic transitions
Magnetic refrigerators
Specific heat
Metallic glasses
Aluminium alloys
Magnetocaloric effects
Temperature effects
Flow planar casting
Ferromagnetic-paramagnetic transitions
Cobalt alloys
Saturation magnetization
Transition element alloys
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c330t-ea636d82c47983fa0a018cb5387c8c4fccbf72956f5db4b042be7742baa120493
PageCount 5
ParticipantIDs pascalfrancis_primary_23976364
crossref_primary_10_1016_j_jmmm_2011_02_004
crossref_citationtrail_10_1016_j_jmmm_2011_02_004
elsevier_sciencedirect_doi_10_1016_j_jmmm_2011_02_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-07-01
PublicationDateYYYYMMDD 2011-07-01
PublicationDate_xml – month: 07
  year: 2011
  text: 2011-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of magnetism and magnetic materials
PublicationYear 2011
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Si, Ding, Li, Yao, Tan (bib20) 2002; 75
Dong, Shen, Chen, Shen, Wang, Zhang, Sun (bib35) 2009; 149
Fang, Lai, Hsieh, Zhao, Chang, Chang, Li (bib38) 2010; 107
Brück, Tegus, Thanh, Buschow (bib2) 2007; 310
Sznajd (bib29) 2001; 64
Pecharsky, Gschneidner (bib25) 1999; 200
Ramanan (bib26) 1991; 13
Gama, Coelho, de Campos, Carvalho, Gandra, von Ranke, de Oliveira (bib10) 2004; 93
Hu, Shen, Sun (bib14) 2000; 76
Fujita, Fujieda, Hasegawa, Fukamichi (bib6) 2003; 67
O. Gutfleisch, J.P. Liu, M. Willard, E. Brück, C. Chen, S.G. Shankar, Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient (invited review), Advanced Materials, in press, doi
Jo, Xia, Ding, Dong, Gracien (bib18) 2008; 458
Aharoni (bib32) 1998; 83
Chang, Hui, Xu, Lu, Chen (bib37) 2010; 18
Gscheidner, Pecharsky (bib4) 1997; 78
Gutfleisch, Yan, Müller (bib7) 2005; 97
Yan, Mueller, Gutfleisch (bib13) 2008; 450
Joseph, Schloemann (bib30) 1965; 36
Tishin, Gscheidner, Pecharsky (bib33) 1999; 59
Luo, Zhao, Pan, Wang (bib23) 2007; 90
Tegus, Bruck, Buschow, de Boer (bib12) 2002; 415
K.P. Skokov, Y. Skourski, O. Gutfleisch, Phys. Rev. B., submitted for publication.
Fu, Guo, Yu, Zu (bib19) 2009; 321
Hu, Shen, Sun, Zhang (bib5) 2000; 9
Bahl, Nielsen (bib27) 2009; 105
.
Kraus, Frait (bib31) 1973; 23
Schwarz, Podmilsak, Mattern, Eckert (bib21) 2010; 322
Yan, Müller, Schultz, Gutfleisch (bib11) 2006; 99
Liang, Hui, Zhang, Chen (bib22) 2008; 16
Pecharsky, Gscheidner (bib34) 1996; 42
Fang, Chang, Yeh, Chang, Li, Chang (bib36) 2008; 103
Gschneidner, Pecharsky, Tsokol (bib1) 2005; 68
Wada, Tanabe (bib9) 2001; 79
Liang, Hui, Wu, Chen (bib24) 2008; 463
Lyubina, Gutfleisch, Kuzmin, Richter (bib8) 2008; 320
Liang, Hui, Wu, Chen (bib16) 2008; 457
Luo, Zhao, Pan, Wang (bib15) 2006; 89
Liang, Hui, Chen (bib17) 2008; 147
Fujita (10.1016/j.jmmm.2011.02.004_bib6) 2003; 67
Tegus (10.1016/j.jmmm.2011.02.004_bib12) 2002; 415
Luo (10.1016/j.jmmm.2011.02.004_bib15) 2006; 89
Luo (10.1016/j.jmmm.2011.02.004_bib23) 2007; 90
Brück (10.1016/j.jmmm.2011.02.004_bib2) 2007; 310
Hu (10.1016/j.jmmm.2011.02.004_bib5) 2000; 9
Kraus (10.1016/j.jmmm.2011.02.004_bib31) 1973; 23
Fu (10.1016/j.jmmm.2011.02.004_bib19) 2009; 321
Pecharsky (10.1016/j.jmmm.2011.02.004_bib34) 1996; 42
Fang (10.1016/j.jmmm.2011.02.004_bib38) 2010; 107
Gschneidner (10.1016/j.jmmm.2011.02.004_bib1) 2005; 68
Pecharsky (10.1016/j.jmmm.2011.02.004_bib25) 1999; 200
Schwarz (10.1016/j.jmmm.2011.02.004_bib21) 2010; 322
Tishin (10.1016/j.jmmm.2011.02.004_bib33) 1999; 59
Chang (10.1016/j.jmmm.2011.02.004_bib37) 2010; 18
Gscheidner (10.1016/j.jmmm.2011.02.004_bib4) 1997; 78
Wada (10.1016/j.jmmm.2011.02.004_bib9) 2001; 79
Hu (10.1016/j.jmmm.2011.02.004_bib14) 2000; 76
10.1016/j.jmmm.2011.02.004_bib3
Liang (10.1016/j.jmmm.2011.02.004_bib24) 2008; 463
Yan (10.1016/j.jmmm.2011.02.004_bib11) 2006; 99
Liang (10.1016/j.jmmm.2011.02.004_bib16) 2008; 457
10.1016/j.jmmm.2011.02.004_bib28
Si (10.1016/j.jmmm.2011.02.004_bib20) 2002; 75
Yan (10.1016/j.jmmm.2011.02.004_bib13) 2008; 450
Gama (10.1016/j.jmmm.2011.02.004_bib10) 2004; 93
Liang (10.1016/j.jmmm.2011.02.004_bib17) 2008; 147
Aharoni (10.1016/j.jmmm.2011.02.004_bib32) 1998; 83
Gutfleisch (10.1016/j.jmmm.2011.02.004_bib7) 2005; 97
Bahl (10.1016/j.jmmm.2011.02.004_bib27) 2009; 105
Fang (10.1016/j.jmmm.2011.02.004_bib36) 2008; 103
Ramanan (10.1016/j.jmmm.2011.02.004_bib26) 1991; 13
Jo (10.1016/j.jmmm.2011.02.004_bib18) 2008; 458
Sznajd (10.1016/j.jmmm.2011.02.004_bib29) 2001; 64
Liang (10.1016/j.jmmm.2011.02.004_bib22) 2008; 16
Dong (10.1016/j.jmmm.2011.02.004_bib35) 2009; 149
Joseph (10.1016/j.jmmm.2011.02.004_bib30) 1965; 36
Lyubina (10.1016/j.jmmm.2011.02.004_bib8) 2008; 320
References_xml – volume: 9
  start-page: 50
  year: 2000
  ident: bib5
  publication-title: Chin. Phys.
– volume: 450
  start-page: 18
  year: 2008
  ident: bib13
  publication-title: J. Alloys Compd.
– volume: 200
  start-page: 44
  year: 1999
  ident: bib25
  publication-title: J. Magn. Magn. Mater.
– volume: 23
  start-page: 188
  year: 1973
  ident: bib31
  publication-title: Czech. J. Phys. B
– volume: 310
  start-page: 2793
  year: 2007
  ident: bib2
  publication-title: J. Magn. Magn. Mater.
– volume: 67
  start-page: 104416
  year: 2003
  ident: bib6
  publication-title: Phys. Rev. B
– reference: K.P. Skokov, Y. Skourski, O. Gutfleisch, Phys. Rev. B., submitted for publication.
– volume: 97
  start-page: 10M305
  year: 2005
  ident: bib7
  publication-title: J. Appl. Phys.
– volume: 320
  start-page: 2252
  year: 2008
  ident: bib8
  publication-title: J. Magn. Magn. Mater.
– volume: 42
  start-page: 423
  year: 1996
  ident: bib34
  publication-title: Adv. Cryog. Eng.
– volume: 89
  start-page: 081914
  year: 2006
  ident: bib15
  publication-title: Appl. Phys. Lett.
– volume: 105
  start-page: 013916
  year: 2009
  ident: bib27
  publication-title: J. Appl. Phys.
– reference: O. Gutfleisch, J.P. Liu, M. Willard, E. Brück, C. Chen, S.G. Shankar, Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient (invited review), Advanced Materials, in press, doi:
– volume: 321
  start-page: 3342
  year: 2009
  ident: bib19
  publication-title: J. Magn. Magn. Mater.
– volume: 90
  start-page: 211903
  year: 2007
  ident: bib23
  publication-title: Appl. Phys. Lett.
– volume: 103
  start-page: 07B302
  year: 2008
  ident: bib36
  publication-title: J. Appl. Phys.
– volume: 99
  start-page: 08K903
  year: 2006
  ident: bib11
  publication-title: J. Appl. Phys.
– volume: 458
  start-page: 18
  year: 2008
  ident: bib18
  publication-title: J. Alloys Compd.
– volume: 149
  start-page: 417
  year: 2009
  ident: bib35
  publication-title: Solid State Commun.
– volume: 322
  start-page: 2298
  year: 2010
  ident: bib21
  publication-title: J. Magn. Magn. Mater.
– volume: 79
  start-page: 3302
  year: 2001
  ident: bib9
  publication-title: Appl. Phys. Lett.
– volume: 415
  start-page: 150
  year: 2002
  ident: bib12
  publication-title: Nature (London)
– volume: 107
  start-page: 09A901
  year: 2010
  ident: bib38
  publication-title: J. Appl. Phys.
– volume: 36
  start-page: 1579
  year: 1965
  ident: bib30
  publication-title: J. Appl. Phys.
– volume: 457
  start-page: 541
  year: 2008
  ident: bib16
  publication-title: J. Alloys Compd.
– volume: 18
  start-page: 1132
  year: 2010
  ident: bib37
  publication-title: Intermetallics
– volume: 16
  start-page: 198
  year: 2008
  ident: bib22
  publication-title: Intermetallics
– volume: 75
  start-page: 535
  year: 2002
  ident: bib20
  publication-title: Appl. Phys. A
– volume: 147
  start-page: 13
  year: 2008
  ident: bib17
  publication-title: Mater. Sci. Eng. B
– reference: .
– volume: 64
  start-page: 052401
  year: 2001
  ident: bib29
  publication-title: Phys. Rev. B
– volume: 83
  start-page: 3432
  year: 1998
  ident: bib32
  publication-title: J. Appl. Phys.
– volume: 68
  start-page: 1479
  year: 2005
  ident: bib1
  publication-title: Rep. Prog. Phys.
– volume: 463
  start-page: 30
  year: 2008
  ident: bib24
  publication-title: J. Alloys Compd.
– volume: 76
  start-page: 3460
  year: 2000
  ident: bib14
  publication-title: Appl. Phys. Lett.
– volume: 78
  start-page: 4494
  year: 1997
  ident: bib4
  publication-title: Phys. Rev. Lett.
– volume: 93
  start-page: 237202
  year: 2004
  ident: bib10
  publication-title: Phys. Rev. Lett.
– volume: 13
  start-page: 119
  year: 1991
  ident: bib26
  publication-title: J. Mater. Eng.
– volume: 59
  start-page: 503
  year: 1999
  ident: bib33
  publication-title: Phys. Rev. B
– volume: 107
  start-page: 09A901
  year: 2010
  ident: 10.1016/j.jmmm.2011.02.004_bib38
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3335498
– volume: 16
  start-page: 198
  year: 2008
  ident: 10.1016/j.jmmm.2011.02.004_bib22
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2007.09.005
– volume: 9
  start-page: 50
  year: 2000
  ident: 10.1016/j.jmmm.2011.02.004_bib5
  publication-title: Chin. Phys.
– volume: 89
  start-page: 081914
  year: 2006
  ident: 10.1016/j.jmmm.2011.02.004_bib15
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2338770
– volume: 68
  start-page: 1479
  year: 2005
  ident: 10.1016/j.jmmm.2011.02.004_bib1
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/68/6/R04
– volume: 13
  start-page: 119
  year: 1991
  ident: 10.1016/j.jmmm.2011.02.004_bib26
  publication-title: J. Mater. Eng.
  doi: 10.1007/BF02995816
– volume: 78
  start-page: 4494
  year: 1997
  ident: 10.1016/j.jmmm.2011.02.004_bib4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.78.4494
– volume: 457
  start-page: 541
  year: 2008
  ident: 10.1016/j.jmmm.2011.02.004_bib16
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2007.03.101
– volume: 200
  start-page: 44
  year: 1999
  ident: 10.1016/j.jmmm.2011.02.004_bib25
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/S0304-8853(99)00397-2
– volume: 36
  start-page: 1579
  year: 1965
  ident: 10.1016/j.jmmm.2011.02.004_bib30
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1703091
– volume: 105
  start-page: 013916
  year: 2009
  ident: 10.1016/j.jmmm.2011.02.004_bib27
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3056220
– volume: 76
  start-page: 3460
  year: 2000
  ident: 10.1016/j.jmmm.2011.02.004_bib14
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.126677
– volume: 75
  start-page: 535
  year: 2002
  ident: 10.1016/j.jmmm.2011.02.004_bib20
  publication-title: Appl. Phys. A
  doi: 10.1007/s003390101034
– volume: 83
  start-page: 3432
  year: 1998
  ident: 10.1016/j.jmmm.2011.02.004_bib32
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.367113
– volume: 310
  start-page: 2793
  year: 2007
  ident: 10.1016/j.jmmm.2011.02.004_bib2
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2006.10.1146
– volume: 321
  start-page: 3342
  year: 2009
  ident: 10.1016/j.jmmm.2011.02.004_bib19
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2009.06.021
– volume: 415
  start-page: 150
  year: 2002
  ident: 10.1016/j.jmmm.2011.02.004_bib12
  publication-title: Nature (London)
  doi: 10.1038/415150a
– ident: 10.1016/j.jmmm.2011.02.004_bib3
  doi: 10.1002/adma.201002180
– volume: 97
  start-page: 10M305
  year: 2005
  ident: 10.1016/j.jmmm.2011.02.004_bib7
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1847871
– volume: 149
  start-page: 417
  year: 2009
  ident: 10.1016/j.jmmm.2011.02.004_bib35
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2008.12.006
– volume: 93
  start-page: 237202
  year: 2004
  ident: 10.1016/j.jmmm.2011.02.004_bib10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.237202
– volume: 99
  start-page: 08K903
  year: 2006
  ident: 10.1016/j.jmmm.2011.02.004_bib11
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2162807
– volume: 320
  start-page: 2252
  year: 2008
  ident: 10.1016/j.jmmm.2011.02.004_bib8
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2008.04.116
– volume: 463
  start-page: 30
  year: 2008
  ident: 10.1016/j.jmmm.2011.02.004_bib24
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2007.09.041
– volume: 79
  start-page: 3302
  year: 2001
  ident: 10.1016/j.jmmm.2011.02.004_bib9
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1419048
– volume: 90
  start-page: 211903
  year: 2007
  ident: 10.1016/j.jmmm.2011.02.004_bib23
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2741120
– volume: 59
  start-page: 503
  year: 1999
  ident: 10.1016/j.jmmm.2011.02.004_bib33
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.503
– volume: 450
  start-page: 18
  year: 2008
  ident: 10.1016/j.jmmm.2011.02.004_bib13
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2006.10.093
– volume: 64
  start-page: 052401
  year: 2001
  ident: 10.1016/j.jmmm.2011.02.004_bib29
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.64.052401
– volume: 103
  start-page: 07B302
  year: 2008
  ident: 10.1016/j.jmmm.2011.02.004_bib36
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2829031
– volume: 147
  start-page: 13
  year: 2008
  ident: 10.1016/j.jmmm.2011.02.004_bib17
  publication-title: Mater. Sci. Eng. B
  doi: 10.1016/j.mseb.2007.10.017
– ident: 10.1016/j.jmmm.2011.02.004_bib28
– volume: 23
  start-page: 188
  year: 1973
  ident: 10.1016/j.jmmm.2011.02.004_bib31
  publication-title: Czech. J. Phys. B
  doi: 10.1007/BF01587243
– volume: 67
  start-page: 104416
  year: 2003
  ident: 10.1016/j.jmmm.2011.02.004_bib6
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.67.104416
– volume: 458
  start-page: 18
  year: 2008
  ident: 10.1016/j.jmmm.2011.02.004_bib18
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2007.03.119
– volume: 322
  start-page: 2298
  year: 2010
  ident: 10.1016/j.jmmm.2011.02.004_bib21
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2010.02.029
– volume: 42
  start-page: 423
  year: 1996
  ident: 10.1016/j.jmmm.2011.02.004_bib34
  publication-title: Adv. Cryog. Eng.
– volume: 18
  start-page: 1132
  year: 2010
  ident: 10.1016/j.jmmm.2011.02.004_bib37
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2010.02.015
SSID ssj0001486
Score 2.1428998
Snippet Rare-earth based metallic glasses with high saturation magnetization show a sizeable magnetocaloric effect (MCE) and are subject of extensive research...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 1782
SubjectTerms Condensed matter: electronic structure, electrical, magnetic, and optical properties
Exact sciences and technology
Magnetic cooling
Magnetic phase boundaries (including magnetic transitions, metamagnetism, etc.)
Magnetic phase transition
Magnetic properties and materials
Magnetically ordered materials: other intrinsic properties
Magnetocaloric effect
Magnetocaloric effect, magnetic cooling
Physics
Title Influence of sample geometry on determination of magnetocaloric effect for Gd60Co30Al10 glassy ribbons using direct and indirect methods
URI https://dx.doi.org/10.1016/j.jmmm.2011.02.004
Volume 323
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUQCAmpqigFlbasfOBWhXVix0mOqxWwFMGFInGL_LlaRJLVbnrg0jM_m5k4gXIohx4T2Uk0M5l5iZ_fEHIMNSMz3MaRYTqPBDg2KlIPr7tJTAHpUOYdq_LqWs5uxc-79G6DTIe9MEir7HN_yOldtu7PjHtrjpeLxfgGF_VyqDYoesbyDDVBUb0OYvrkzyvNA-B-WK9kIsLR_caZwPG6r6qql_FE3U7xr-L0YanWYDIfel38VYDOdsnHHjnSSXi4T2TD1Xtku2NwmvVn8nQxtBuhjadrhaq_dO6ayrWrR9rU1A7EF3QFjqnUvHYt1jLUCaGB2UEBxNJzK9m04WzyEDPa4etHulpoDRFKkSg_p8FqVNWW4qJ3dxCaUa_3ye3Z6a_pLOrbLESGc9ZGTkkubZ4YkRU594opFudGQybMTG6EN0Z7gOCp9KnV4E2RaAegMdFKxQl8YPADslk3tftCqNNKFhIQQ-algE8XnWrLrc0UwBLmi-KQxIN9S9NrkGMrjIdyIJvdl-iTEn1SsqQEnxySHy9zlkGB493R6eC28k0clVAi3p03euPjl1slCNi4FF__88LfyE74DY0M3-9ks139dkeAY1o96gJ1RLYmF5ez62dhsvJ8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9swGLZY0bRJE9qnxtiYD7tNUZ3YcZJjVcHaAb0MJG6WP6siklRtduAf8LN5HTvVOIwDx0RxEvlx3vdx_Ph5EfoBOaPQ1KSJJqpMGACbVLmDz11nuoJwyMteVXmx4LMr9vs6v95D02EvjJdVxtgfYnofreOZcezN8Xq1Gv_xi3olZBtvekbKgr1A-96dio3Q_mR-NlvsAjIw_rBkSVjiG8S9M0HmdVPXdXTy9Nad7H_56c1abqHXXCh38U8OOn2LDiJ5xJPwfu_Qnm3eo5e9iFNvP6D7-VBxBLcOb6U3_sVL29a229zhtsFm0L54NPw1tVw2tvPpzFuF4CDuwMBj8S_DybSlZHKbEtxT7Du8WSkFgxR7rfwSh47DsjHYr3v3B6Ee9fYjujo9uZzOklhpIdGUki6xklNuykyzoiqpk0SStNQKgmGhS82c1soBC8-5y40CQFmmLPDGTEmZZjDHoJ_QqGkb-xlhqySvOJCGwnEGsxeVK0ONKSQwE-Kq6hClQ_8KHW3IfTWMWzHozW6Ex0R4TATJBGByiH7u2qyDCceTV-cDbOLRUBKQJZ5sd_wI492jMs_ZKGdfnnnj7-jV7PLiXJzPF2dH6HX4K-0Fv1_RqNv8td-A1nTqOA7bB68F9S0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+sample+geometry+on+determination+of+magnetocaloric+effect+for+Gd60Co30Al10+glassy+ribbons+using+direct+and+indirect+methods&rft.jtitle=Journal+of+magnetism+and+magnetic+materials&rft.au=SCHWARZ%2C+B&rft.au=MATTERN%2C+N&rft.au=MOORE%2C+J.+D&rft.au=SKOKOV%2C+K.+P&rft.date=2011-07-01&rft.pub=Elsevier&rft.issn=0304-8853&rft.volume=323&rft.issue=13&rft.spage=1782&rft.epage=1786&rft_id=info:doi/10.1016%2Fj.jmmm.2011.02.004&rft.externalDBID=n%2Fa&rft.externalDocID=23976364
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-8853&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-8853&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-8853&client=summon