Application of portable gas chromatography–mass spectrometer for rapid field based determination of TCE in soil vapour and groundwater

The application of portable chromatography–mass spectrometer (GC–MS) is restrained by its detection limits without the development of proper sample pre-concentration methods. The primary focus of this paper is to introduce a practical field measurement methodology for the analysis of volatile organi...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental technology & innovation Vol. 21; p. 101274
Main Authors Wang, Liang, Cheng, Ying, Naidu, Ravi, Chadalavada, Sreenivasulu, Bekele, Dawit, Gell, Peter, Donaghey, Mark, Bowman, Mark
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The application of portable chromatography–mass spectrometer (GC–MS) is restrained by its detection limits without the development of proper sample pre-concentration methods. The primary focus of this paper is to introduce a practical field measurement methodology for the analysis of volatile organic compounds (VOCs) in soil vapour and groundwater using a portable gas (GC–MS)system for application to in situ assessment of vapour intrusion from VOC contamination. A solid-phase micro-extraction (SPME) technique was applied for sample pre-concentration before the GC–MS​ measurement. Practical in-field soil gas SPME sampling methods have been developed to optimise the SPME extraction efficiency to then ultimately improve the detection limits of portable GC–MS. An Australian site impacted by a chlorinated VOC, trichloroethylene (TCE), was the subject of the case study. To rapidly assess soil vapour samples in subsurface soil, in-house-developed retractable soil vapour sampling probes (SVSPs) were installed at the site in clusters at depths of 1 m, 2 m and 3 m below ground level at each sampling location. Use of the SVSPs for sampling enabled the generation of a three-dimensional map and distribution contours for TCE concentrations using the in situ measurement results of a portable GC–MS analysis for vapour intrusion investigation. The results of the portable GC–MS​ analysis were compared with the results from conventional USEPA methods, such as TO-15 and Method 8265 for soil vapour and groundwater samples, respectively. This work demonstrates that the developed methodology of using a portable GC–MS system has the capability for in-field quantitative analysis of VOCs for rapid contaminated site vapour intrusion assessment. [Display omitted] •A novel field-based soil vapour VOC detection method using a portable GC–MS​ system.•In-house-developed retractable soil vapour probes were installed for sampling.•3D distribution contour map for TCE concentrations in soil vapour was generated.
AbstractList The application of portable chromatography–mass spectrometer (GC–MS) is restrained by its detection limits without the development of proper sample pre-concentration methods. The primary focus of this paper is to introduce a practical field measurement methodology for the analysis of volatile organic compounds (VOCs) in soil vapour and groundwater using a portable gas (GC–MS)system for application to in situ assessment of vapour intrusion from VOC contamination. A solid-phase micro-extraction (SPME) technique was applied for sample pre-concentration before the GC–MS​ measurement. Practical in-field soil gas SPME sampling methods have been developed to optimise the SPME extraction efficiency to then ultimately improve the detection limits of portable GC–MS. An Australian site impacted by a chlorinated VOC, trichloroethylene (TCE), was the subject of the case study. To rapidly assess soil vapour samples in subsurface soil, in-house-developed retractable soil vapour sampling probes (SVSPs) were installed at the site in clusters at depths of 1 m, 2 m and 3 m below ground level at each sampling location. Use of the SVSPs for sampling enabled the generation of a three-dimensional map and distribution contours for TCE concentrations using the in situ measurement results of a portable GC–MS analysis for vapour intrusion investigation. The results of the portable GC–MS​ analysis were compared with the results from conventional USEPA methods, such as TO-15 and Method 8265 for soil vapour and groundwater samples, respectively. This work demonstrates that the developed methodology of using a portable GC–MS system has the capability for in-field quantitative analysis of VOCs for rapid contaminated site vapour intrusion assessment.
The application of portable chromatography–mass spectrometer (GC–MS) is restrained by its detection limits without the development of proper sample pre-concentration methods. The primary focus of this paper is to introduce a practical field measurement methodology for the analysis of volatile organic compounds (VOCs) in soil vapour and groundwater using a portable gas (GC–MS)system for application to in situ assessment of vapour intrusion from VOC contamination. A solid-phase micro-extraction (SPME) technique was applied for sample pre-concentration before the GC–MS​ measurement. Practical in-field soil gas SPME sampling methods have been developed to optimise the SPME extraction efficiency to then ultimately improve the detection limits of portable GC–MS. An Australian site impacted by a chlorinated VOC, trichloroethylene (TCE), was the subject of the case study. To rapidly assess soil vapour samples in subsurface soil, in-house-developed retractable soil vapour sampling probes (SVSPs) were installed at the site in clusters at depths of 1 m, 2 m and 3 m below ground level at each sampling location. Use of the SVSPs for sampling enabled the generation of a three-dimensional map and distribution contours for TCE concentrations using the in situ measurement results of a portable GC–MS analysis for vapour intrusion investigation. The results of the portable GC–MS​ analysis were compared with the results from conventional USEPA methods, such as TO-15 and Method 8265 for soil vapour and groundwater samples, respectively. This work demonstrates that the developed methodology of using a portable GC–MS system has the capability for in-field quantitative analysis of VOCs for rapid contaminated site vapour intrusion assessment. [Display omitted] •A novel field-based soil vapour VOC detection method using a portable GC–MS​ system.•In-house-developed retractable soil vapour probes were installed for sampling.•3D distribution contour map for TCE concentrations in soil vapour was generated.
ArticleNumber 101274
Author Donaghey, Mark
Cheng, Ying
Gell, Peter
Bekele, Dawit
Bowman, Mark
Chadalavada, Sreenivasulu
Wang, Liang
Naidu, Ravi
Author_xml – sequence: 1
  givenname: Liang
  orcidid: 0000-0002-5552-566X
  surname: Wang
  fullname: Wang, Liang
  email: Liang.Wang@newcastle.edu.au
  organization: Global Centre for Environmental Remediation, Faculty of Science, University of Newcastle, Callaghan, NSW 2308, Australia
– sequence: 2
  givenname: Ying
  orcidid: 0000-0001-6125-0677
  surname: Cheng
  fullname: Cheng, Ying
  organization: Global Centre for Environmental Remediation, Faculty of Science, University of Newcastle, Callaghan, NSW 2308, Australia
– sequence: 3
  givenname: Ravi
  surname: Naidu
  fullname: Naidu, Ravi
  organization: Global Centre for Environmental Remediation, Faculty of Science, University of Newcastle, Callaghan, NSW 2308, Australia
– sequence: 4
  givenname: Sreenivasulu
  surname: Chadalavada
  fullname: Chadalavada, Sreenivasulu
  organization: CRC for Contamination Assessment and Remediation of the Environment, University of Newcastle, Callaghan NSW 2308, Australia
– sequence: 5
  givenname: Dawit
  surname: Bekele
  fullname: Bekele, Dawit
  organization: Global Centre for Environmental Remediation, Faculty of Science, University of Newcastle, Callaghan, NSW 2308, Australia
– sequence: 6
  givenname: Peter
  surname: Gell
  fullname: Gell, Peter
  organization: CRC for Contamination Assessment and Remediation of the Environment, University of Newcastle, Callaghan NSW 2308, Australia
– sequence: 7
  givenname: Mark
  surname: Donaghey
  fullname: Donaghey, Mark
  organization: CRC for Contamination Assessment and Remediation of the Environment, University of Newcastle, Callaghan NSW 2308, Australia
– sequence: 8
  givenname: Mark
  surname: Bowman
  fullname: Bowman, Mark
  organization: The Department of Defence, Canberra BC ACT 2610, Australia
BookMark eNp9kD1v2zAQhokiBfLR_IBsHLPYJSVRkpHJMJy0gIEu7kycjyeHhkSqJO0iW8fs-Yf5JaXjoig6ZOIR7_sccM8lO3PeEWM3UkylkPXn3ZSSnRaiePsXTfWBXRSlKiayrauzf-Zzdh3jTghRlFLVqr5gz_Nx7C1Cst5x3_HRhwSbnvgWIsfH4AdIfhtgfHx6_fUyQIw8joQpB5Qo8M4HnlNreGepN3wDkQw3x2yw7u_a9WLJrePR254fYPT7wMEZvg1-78xPyO1P7GMHfaTrP-8V-36_XC--TFbfHr4u5qsJlqVIE4MVCgUVlhshNhXWdYMdKpJiZtqZMdAQ5rhtCJQSRVurElsFqgOZI9mWV-z2tHcM_seeYtKDjUh9D478PupCKTmbtaIWudqcqhh8jIE6jTa9nZQC2F5LoY_69U5n_fqoX5_0Z1L-R47BDhCe3mXuTgzl6w-Wgo5oySEZG7Jwbbx9h_4Nv-yjMQ
CitedBy_id crossref_primary_10_3389_fenvs_2021_746195
crossref_primary_10_3390_s24237777
crossref_primary_10_1016_j_algal_2024_103478
crossref_primary_10_1039_D4AN01484G
crossref_primary_10_3389_fenvs_2021_756404
crossref_primary_10_1016_j_greeac_2024_100164
crossref_primary_10_1016_j_jchromb_2024_124107
crossref_primary_10_1007_s00604_025_07055_7
crossref_primary_10_1021_acs_analchem_1c02193
crossref_primary_10_1007_s11356_023_28648_w
crossref_primary_10_1021_acssensors_2c02810
crossref_primary_10_3390_agronomy14102374
crossref_primary_10_1109_TIM_2023_3273674
crossref_primary_10_1016_j_chroma_2023_463980
Cites_doi 10.1155/2010/278078
10.1021/es00034a008
10.3390/chromatography2010066
10.1046/j.1365-3156.1997.d01-403.x
10.1021/acs.analchem.5b02539
10.1039/c1ay05358b
10.1002/1520-6521(2000)4:2/3<73::AID-FACT2>3.0.CO;2-7
10.1016/j.chroma.2008.09.005
10.1177/0003702816638294
10.1007/s10661-012-2771-1
10.1365/s10337-007-0353-0
10.1002/9780470682494
10.1520/JFS2004029
10.1111/j.1745-6592.2011.01357.x
10.1021/acs.est.8b03241
10.1016/S0165-9936(02)00708-2
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.eti.2020.101274
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2352-1864
ExternalDocumentID 10_1016_j_eti_2020_101274
S2352186420315741
GroupedDBID --M
0R~
4.4
457
4G.
7-5
AACTN
AAEDT
AAEDW
AAIAV
AAKOC
AALRI
AAOAW
AAXUO
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AFKWA
AFPKN
AFTJW
AFXIZ
AGHFR
AGUBO
AHEUO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
GROUPED_DOAJ
HZ~
KOM
M41
M~E
O9-
OAUVE
OK1
ROL
SPCBC
SSJ
SSZ
T5K
~G-
AAFWJ
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACVFH
ADCNI
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c330t-dc4c05a4c3b00b4c667cfc5e109d89dda7ec5a487ea55028653c85a5fa1a7e183
IEDL.DBID AIKHN
ISSN 2352-1864
IngestDate Fri Jul 11 04:15:36 EDT 2025
Tue Jul 01 03:36:34 EDT 2025
Thu Apr 24 22:54:17 EDT 2025
Fri Feb 23 02:46:47 EST 2024
IsPeerReviewed false
IsScholarly true
Keywords Trichloroethylene (TCE)
Three-dimensional (3D) mapping
Vapour intrusion
Portable gas chromatography–mass spectrometer (GC–MS)
Retractable soil vapour sampling probe
Solid-phase micro-extraction (SPME)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c330t-dc4c05a4c3b00b4c667cfc5e109d89dda7ec5a487ea55028653c85a5fa1a7e183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6125-0677
0000-0002-5552-566X
PQID 2551998060
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2551998060
crossref_citationtrail_10_1016_j_eti_2020_101274
crossref_primary_10_1016_j_eti_2020_101274
elsevier_sciencedirect_doi_10_1016_j_eti_2020_101274
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2021
2021-02-00
20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: February 2021
PublicationDecade 2020
PublicationTitle Environmental technology & innovation
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Leary, Doboson, Reffner (b16) 2016; 70
Pawliszyn (b18) 1997
Kleinfelder Australia Pty Ltd (b15) 2017
Shakoor, Taylor, Behrens (b19) 1997; 2
Jia, Koziel, Pawliszyn (b14) 2000; 4
Haddadi, Pawliszyn (b10) 2009; 1216
Hewitt (b11) 1992; 26
Fabbri, D., Bezzi, R., Torri, C., Galletti, P., Tagliavini, E., 2007. Determination of tetrachloroethylene and other volatile halogenated organic compounds in oil wastes by headspace SPME GC–MS. 66, 377–382.
Zhao, Song, Wang, Wu, Wang (b23) 2011; 3
Barnes, Dolan, Kuk, Siegel (b1) 2004; 49
Fair (b6) 2010; 2010
Gorder, Dettenmaier (b9) 2011; 31
Zhou, Yu, Yan, Zhang, Xie, Ma, Gu, Li (b24) 2011; 185
Hopler (b13) 2012
Waitz, Freijer, Kreule, Swartjes (b20) 1996
(b17) 1999
Zhang, Harrington (b21) 2015; 2
Zhang, Jiang, Zhong, Han, Zheng, Fu, Zhou, Ma (b22) 2019; 53
Dean (b3) 2009
Fitzpatrick, N.A., Fitzgerald, J.J., 1997. An evaluation of vapor intrusion into buildings through a study of field data. In: Soil Vapor Transport to Indoor Air Workshop, February 6-7, 1997, Brea, California.
Dechellis, Yee (b4) 2018
(b2) 1997
Hook (b12) 2002; 21
George, Marjanovic, Bradley, Williams (b8) 2015; 87
Kleinfelder Australia Pty Ltd (10.1016/j.eti.2020.101274_b15) 2017
10.1016/j.eti.2020.101274_b7
Leary (10.1016/j.eti.2020.101274_b16) 2016; 70
Waitz (10.1016/j.eti.2020.101274_b20) 1996
Dean (10.1016/j.eti.2020.101274_b3) 2009
George (10.1016/j.eti.2020.101274_b8) 2015; 87
Hopler (10.1016/j.eti.2020.101274_b13) 2012
10.1016/j.eti.2020.101274_b5
Zhang (10.1016/j.eti.2020.101274_b21) 2015; 2
Zhang (10.1016/j.eti.2020.101274_b22) 2019; 53
Zhou (10.1016/j.eti.2020.101274_b24) 2011; 185
Jia (10.1016/j.eti.2020.101274_b14) 2000; 4
Barnes (10.1016/j.eti.2020.101274_b1) 2004; 49
Fair (10.1016/j.eti.2020.101274_b6) 2010; 2010
Gorder (10.1016/j.eti.2020.101274_b9) 2011; 31
Haddadi (10.1016/j.eti.2020.101274_b10) 2009; 1216
(10.1016/j.eti.2020.101274_b17) 1999
(10.1016/j.eti.2020.101274_b2) 1997
Dechellis (10.1016/j.eti.2020.101274_b4) 2018
Pawliszyn (10.1016/j.eti.2020.101274_b18) 1997
Hook (10.1016/j.eti.2020.101274_b12) 2002; 21
Zhao (10.1016/j.eti.2020.101274_b23) 2011; 3
Hewitt (10.1016/j.eti.2020.101274_b11) 1992; 26
Shakoor (10.1016/j.eti.2020.101274_b19) 1997; 2
References_xml – volume: 2
  start-page: 839
  year: 1997
  end-page: 845
  ident: b19
  article-title: Assessment of the incidence of substandard drugs in developing countries
  publication-title: Trop. Med. Int. Health
– reference: Fitzpatrick, N.A., Fitzgerald, J.J., 1997. An evaluation of vapor intrusion into buildings through a study of field data. In: Soil Vapor Transport to Indoor Air Workshop, February 6-7, 1997, Brea, California.
– volume: 87
  start-page: 9559
  year: 2015
  end-page: 9562
  ident: b8
  article-title: Solvent-assisted headspace sampling using solid phase microextraction for the analysis of phenols in water
  publication-title: Anal. Chem.
– volume: 3
  start-page: 2929
  year: 2011
  ident: b23
  article-title: Solid-phase microextraction with a novel graphene-coated fiber coupled with high-performance liquid chromatography for the determination of some carbamates in water samples
  publication-title: Anal. Methods
– volume: 70
  start-page: 888
  year: 2016
  end-page: 896
  ident: b16
  article-title: Development and applications of portable gas chromatography–mass spectrometry for emergency responders, the military, and law-enforcement organizations
  publication-title: Appl. Spectrosc.
– volume: 2010
  start-page: 6
  year: 2010
  ident: b6
  article-title: Quantitation by portable gas chromatography: Mass spectrometry of VOCs associated with vapor intrusion
  publication-title: Int. J. Anal. Chem.
– volume: 53
  start-page: 789
  year: 2019
  end-page: 797
  ident: b22
  article-title: Applicability of soil concentration for VOC-contaminated site assessments explored using field data from the Beijing-Tianjin-Hebei Urban agglomeration
  publication-title: Environ. Sci. Technol.
– year: 1999
  ident: b17
  article-title: Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air
– year: 2009
  ident: b3
  publication-title: Extraction Techniques in Analytical Sciences
– year: 1997
  ident: b18
  article-title: Solid Phase Microextraction: Theory and Practice
– volume: 185
  start-page: 3037
  year: 2011
  end-page: 3048
  ident: b24
  article-title: Application of portable gas chromatography-photo ionization detector combined with headspace sampling for field analysis of benzene, toluene, ethylbenzene, and xylene in soils
  publication-title: Environ. Monit. Assess.
– reference: Fabbri, D., Bezzi, R., Torri, C., Galletti, P., Tagliavini, E., 2007. Determination of tetrachloroethylene and other volatile halogenated organic compounds in oil wastes by headspace SPME GC–MS. 66, 377–382.
– volume: 26
  start-page: 1932
  year: 1992
  end-page: 1938
  ident: b11
  article-title: Comparison of analytical methods for determination of volatile organic compounds in soils
  publication-title: Environ. Sci. Technol.
– year: 2017
  ident: b15
  article-title: Stage 4A Beverley Environmental Site Assessment, (2017) South Australia EPA
– year: 2018
  ident: b4
  article-title: Glenelg East Stage 5 Environmental Assessment Work
– volume: 21
  start-page: 534
  year: 2002
  end-page: 543
  ident: b12
  article-title: Solid-phase microextraction (SPME) for rapid field sampling and analysis by gas chromatography-mass spectrometry (GC-MS)
  publication-title: TRAC Trends Anal. Chem.
– year: 1996
  ident: b20
  article-title: The VOLASOIL Risk Assessment Model Based on CSOIL for Soils Contaminated with Volatile Compounds
– volume: 2
  start-page: 66
  year: 2015
  end-page: 78
  ident: b21
  article-title: Determination of trichloroethylene in water by liquid-liquid microextraction assisted solid phase microextraction
  publication-title: Chromatography
– year: 1997
  ident: b2
  article-title: Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS)
– start-page: 1
  year: 2012
  end-page: 17
  ident: b13
  article-title: The history, development and characterization of explosives and propellants
  publication-title: Forensic Investigations of Explosives
– volume: 1216
  start-page: 2783
  year: 2009
  ident: b10
  article-title: Cold fibre solid-phase microextraction device based on thermoelectric cooling of metal fibre
  publication-title: J. Chromatogr. Anal.
– volume: 31
  start-page: 113
  year: 2011
  end-page: 119
  ident: b9
  article-title: Portable GC/MS methods to evaluate sources of cVOC contamination in indoor air
  publication-title: Ground Water Monit. Remediat.
– volume: 49
  start-page: 1018
  year: 2004
  end-page: 1023
  ident: b1
  article-title: Comparison of gasolines using gas chromatography-mass spectrometry and target ion response
  publication-title: J. Forensic Sci.
– volume: 4
  start-page: 73
  year: 2000
  end-page: 84
  ident: b14
  article-title: Fast field sampling/sample preparation and quantification of volatile organic compounds in indoor air by solid-phase microextraction and portable gas chromatography
  publication-title: Field Anal. Chem. Technol.
– year: 1997
  ident: 10.1016/j.eti.2020.101274_b2
– volume: 2010
  start-page: 6
  year: 2010
  ident: 10.1016/j.eti.2020.101274_b6
  article-title: Quantitation by portable gas chromatography: Mass spectrometry of VOCs associated with vapor intrusion
  publication-title: Int. J. Anal. Chem.
  doi: 10.1155/2010/278078
– volume: 26
  start-page: 1932
  issue: 10
  year: 1992
  ident: 10.1016/j.eti.2020.101274_b11
  article-title: Comparison of analytical methods for determination of volatile organic compounds in soils
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00034a008
– volume: 2
  start-page: 66
  year: 2015
  ident: 10.1016/j.eti.2020.101274_b21
  article-title: Determination of trichloroethylene in water by liquid-liquid microextraction assisted solid phase microextraction
  publication-title: Chromatography
  doi: 10.3390/chromatography2010066
– volume: 2
  start-page: 839
  issue: 9
  year: 1997
  ident: 10.1016/j.eti.2020.101274_b19
  article-title: Assessment of the incidence of substandard drugs in developing countries
  publication-title: Trop. Med. Int. Health
  doi: 10.1046/j.1365-3156.1997.d01-403.x
– volume: 87
  start-page: 9559
  year: 2015
  ident: 10.1016/j.eti.2020.101274_b8
  article-title: Solvent-assisted headspace sampling using solid phase microextraction for the analysis of phenols in water
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.5b02539
– year: 1996
  ident: 10.1016/j.eti.2020.101274_b20
– volume: 3
  start-page: 2929
  year: 2011
  ident: 10.1016/j.eti.2020.101274_b23
  article-title: Solid-phase microextraction with a novel graphene-coated fiber coupled with high-performance liquid chromatography for the determination of some carbamates in water samples
  publication-title: Anal. Methods
  doi: 10.1039/c1ay05358b
– volume: 4
  start-page: 73
  year: 2000
  ident: 10.1016/j.eti.2020.101274_b14
  article-title: Fast field sampling/sample preparation and quantification of volatile organic compounds in indoor air by solid-phase microextraction and portable gas chromatography
  publication-title: Field Anal. Chem. Technol.
  doi: 10.1002/1520-6521(2000)4:2/3<73::AID-FACT2>3.0.CO;2-7
– volume: 1216
  start-page: 2783
  year: 2009
  ident: 10.1016/j.eti.2020.101274_b10
  article-title: Cold fibre solid-phase microextraction device based on thermoelectric cooling of metal fibre
  publication-title: J. Chromatogr. Anal.
  doi: 10.1016/j.chroma.2008.09.005
– ident: 10.1016/j.eti.2020.101274_b7
– volume: 70
  start-page: 888
  issue: 5
  year: 2016
  ident: 10.1016/j.eti.2020.101274_b16
  article-title: Development and applications of portable gas chromatography–mass spectrometry for emergency responders, the military, and law-enforcement organizations
  publication-title: Appl. Spectrosc.
  doi: 10.1177/0003702816638294
– start-page: 1
  year: 2012
  ident: 10.1016/j.eti.2020.101274_b13
  article-title: The history, development and characterization of explosives and propellants
– volume: 185
  start-page: 3037
  year: 2011
  ident: 10.1016/j.eti.2020.101274_b24
  article-title: Application of portable gas chromatography-photo ionization detector combined with headspace sampling for field analysis of benzene, toluene, ethylbenzene, and xylene in soils
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-012-2771-1
– year: 1999
  ident: 10.1016/j.eti.2020.101274_b17
– ident: 10.1016/j.eti.2020.101274_b5
  doi: 10.1365/s10337-007-0353-0
– year: 1997
  ident: 10.1016/j.eti.2020.101274_b18
– year: 2009
  ident: 10.1016/j.eti.2020.101274_b3
  doi: 10.1002/9780470682494
– volume: 49
  start-page: 1018
  issue: 5
  year: 2004
  ident: 10.1016/j.eti.2020.101274_b1
  article-title: Comparison of gasolines using gas chromatography-mass spectrometry and target ion response
  publication-title: J. Forensic Sci.
  doi: 10.1520/JFS2004029
– volume: 31
  start-page: 113
  issue: 4
  year: 2011
  ident: 10.1016/j.eti.2020.101274_b9
  article-title: Portable GC/MS methods to evaluate sources of cVOC contamination in indoor air
  publication-title: Ground Water Monit. Remediat.
  doi: 10.1111/j.1745-6592.2011.01357.x
– volume: 53
  start-page: 789
  year: 2019
  ident: 10.1016/j.eti.2020.101274_b22
  article-title: Applicability of soil concentration for VOC-contaminated site assessments explored using field data from the Beijing-Tianjin-Hebei Urban agglomeration
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b03241
– year: 2018
  ident: 10.1016/j.eti.2020.101274_b4
– volume: 21
  start-page: 534
  issue: 8
  year: 2002
  ident: 10.1016/j.eti.2020.101274_b12
  article-title: Solid-phase microextraction (SPME) for rapid field sampling and analysis by gas chromatography-mass spectrometry (GC-MS)
  publication-title: TRAC Trends Anal. Chem.
  doi: 10.1016/S0165-9936(02)00708-2
– year: 2017
  ident: 10.1016/j.eti.2020.101274_b15
SSID ssj0002315656
Score 2.277047
Snippet The application of portable chromatography–mass spectrometer (GC–MS) is restrained by its detection limits without the development of proper sample...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 101274
SubjectTerms case studies
environmental technology
groundwater
Portable gas chromatography–mass spectrometer (GC–MS)
quantitative analysis
Retractable soil vapour sampling probe
soil air
Solid-phase micro-extraction (SPME)
spectrometers
subsurface soil layers
Three-dimensional (3D) mapping
trichloroethylene
Trichloroethylene (TCE)
United States Environmental Protection Agency
vapors
Vapour intrusion
volatile organic compounds
Title Application of portable gas chromatography–mass spectrometer for rapid field based determination of TCE in soil vapour and groundwater
URI https://dx.doi.org/10.1016/j.eti.2020.101274
https://www.proquest.com/docview/2551998060
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZ4XMoB0dKqPDWVOCFFm43txD6uVou2ILgAEjfLsR2aaklWuwu9VRx77z_klzB2EmiR4ICUS-LYsjz2zGf7mxlCDgQtrBSMRgWVJmJOmEhKl0Q2QxEXXODjzyFPz9LxJTu-4ldLZNj5wnhaZav7G50etHX7pdeOZm9alr3zBLFDXyB-9okKMu-8vppQmeLUXh18PxmfPR21IITxsCWkmeNJ5Ot095uB6eUWJW4Uk_CeZOw1C_VCVwcDdLRB1lvkCIOmcx_Jkqs-kbV_4glukj-D5-toqAsI2DqfOLjWczA_ZjXC0zZE9cP93xvEzRA8LX3IAhxfQAALWFpaCMQ28CbOgu0YM12zF8MRlBXM63ICd3qKHQNdWfAOIpX9heB19plcHo0uhuOoTbUQGUrjRWQNMzHXzFBchjkzaZqZwnDXj6UV0lqdOYPFInMatzTem5UawTUvdB-LUC18IStVXbmvBGJmZRMFJ5GsiLXMrUllLrjVtM8KvkXibniVaeOQ-3QYE9URzn4qlIjyElGNRLbI4VOVaROE462fWScz9d9MUmgk3qr2rZOvwhXmr0105erbucJNl3dEjNN4-31N75APiWfCBK73LllZzG7dHkKZRb7fTtV9snz6e_QIghz09Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbQcoAeEKVF3ULLIPWEFG02sRP7uFqBltdeWCRulmM7bdA2We0ucOXIvf-wv6RjJ-FRCQ5IuSSOLctjz3y2v5kh5AePcyM4jYM8FjqglutACBsFJkUR54zj484hz8fJ6JKeXLGrFTJsfWEcrbLR_bVO99q6-dJrRrM3K4reRYTYoc8RP7tEBalzXl910alYh6wOjk9H48ejFoQwDrb4NHMsClyd9n7TM73sssCNYuTfo5S-ZqH-09XeAB1tko0GOcKg7txHsmLLLfLhWTzBT-Rh8HQdDVUOHltnUws_1QL0r3mF8LQJUf33_s9vxM3gPS1dyAIcX0AAC1haGPDENnAmzoBpGTNts5PhIRQlLKpiCrdqhh0DVRpwDiKluUPwOv9MLo8OJ8NR0KRaCHQch8vAaKpDpqiOcRlmVCdJqnPNbD8UhgtjVGo1FvPUKtzSOG_WWHOmWK76WIRqYZt0yqq0XwiE1Ig6Ck4kaB4qkRmdiIwzo-I-zVmXhO3wSt3EIXfpMKayJZxdS5SIdBKRtUS65OCxyqwOwvHWz7SVmXwxkyQaibeq7bfylbjC3LWJKm11s5C46XKOiGESfn1f03tkbTQ5P5Nnx-PTHbIeOVaM533vks5yfmO_IaxZZt-bafsPS2X2qg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+portable+gas+chromatography%E2%80%93mass+spectrometer+for+rapid+field+based+determination+of+TCE+in+soil+vapour+and+groundwater&rft.jtitle=Environmental+technology+%26+innovation&rft.au=Wang%2C+Liang&rft.au=Cheng%2C+Ying&rft.au=Naidu%2C+Ravi&rft.au=Chadalavada%2C+Sreenivasulu&rft.date=2021-02-01&rft.issn=2352-1864&rft.eissn=2352-1864&rft.volume=21&rft.spage=101274&rft_id=info:doi/10.1016%2Fj.eti.2020.101274&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eti_2020_101274
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-1864&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-1864&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-1864&client=summon