Simulations on organic Rankine cycle with quasi two-stage expander under cross-seasonal ambient conditions
•A model of ORC in variable condensing ambient conditions was developed.•Using quasi two-stage expander to improve the cross-seasonal performance of ORC.•The cooling power consumption was computed in different operating conditions. Organic Rankine cycle (ORC) plays an important role in addressing th...
Saved in:
Published in | Applied thermal engineering Vol. 222; p. 119939 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
05.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A model of ORC in variable condensing ambient conditions was developed.•Using quasi two-stage expander to improve the cross-seasonal performance of ORC.•The cooling power consumption was computed in different operating conditions.
Organic Rankine cycle (ORC) plays an important role in addressing the issue of energy shortage and climate change. The condenser should release heat to the environment. Due to the seasonal and daily variations of ambient conditions, the condensation temperature, power consumption of the cooling system, the operation conditions of the working medium pump and expander would suffer drastic changes in different condensing ambient conditions. Therefore, the main aim of this study is to investigate the cross-seasonal performance of the organic Rankine cycle under variable condensation conditions. Simultaneously, the single screw expander with quasi two-stage expansion was used to improve the performance of ORC in different condensing ambient conditions. A model was developed to depict the variations of operation parameters of ORC system. The results show that the performance of ORC was adversely correlated with the wet-bulb temperature throughout the year. The net power and net efficiency can be reached at 8.04 kW and 11.31 % when the wet-bulb temperature is 1.1 ℃, respectively. Additionally, the variation in cooling water flow rate has little effect on the volumetric expansion process of the new single screw expander, but has a significant influence on the velocity expansion process, which increases by nearly 56.4 %. Meanwhile, decreasing the pipeline impedance coefficients of cooling system can optimize ORC system performance effectively. It was also discovered that the isentropic efficiency of single screw expander decreases by only 8.68 percentage points during the expansion ratio increase from 3.31 to 11.54. |
---|---|
AbstractList | •A model of ORC in variable condensing ambient conditions was developed.•Using quasi two-stage expander to improve the cross-seasonal performance of ORC.•The cooling power consumption was computed in different operating conditions.
Organic Rankine cycle (ORC) plays an important role in addressing the issue of energy shortage and climate change. The condenser should release heat to the environment. Due to the seasonal and daily variations of ambient conditions, the condensation temperature, power consumption of the cooling system, the operation conditions of the working medium pump and expander would suffer drastic changes in different condensing ambient conditions. Therefore, the main aim of this study is to investigate the cross-seasonal performance of the organic Rankine cycle under variable condensation conditions. Simultaneously, the single screw expander with quasi two-stage expansion was used to improve the performance of ORC in different condensing ambient conditions. A model was developed to depict the variations of operation parameters of ORC system. The results show that the performance of ORC was adversely correlated with the wet-bulb temperature throughout the year. The net power and net efficiency can be reached at 8.04 kW and 11.31 % when the wet-bulb temperature is 1.1 ℃, respectively. Additionally, the variation in cooling water flow rate has little effect on the volumetric expansion process of the new single screw expander, but has a significant influence on the velocity expansion process, which increases by nearly 56.4 %. Meanwhile, decreasing the pipeline impedance coefficients of cooling system can optimize ORC system performance effectively. It was also discovered that the isentropic efficiency of single screw expander decreases by only 8.68 percentage points during the expansion ratio increase from 3.31 to 11.54. |
ArticleNumber | 119939 |
Author | Lei, Biao Wu, Yu-Ting Wang, Hai-Xiao |
Author_xml | – sequence: 1 givenname: Hai-Xiao surname: Wang fullname: Wang, Hai-Xiao – sequence: 2 givenname: Biao surname: Lei fullname: Lei, Biao email: leibiao@bjut.edu.cn – sequence: 3 givenname: Yu-Ting surname: Wu fullname: Wu, Yu-Ting |
BookMark | eNqNkE1PAjEQhnvARED_Qw9eFzv7xW7iRYmoCYmJH-dmtjsLxaXFtoj8exfwoicu817mfTLzDFjPWEOMXYEYgYD8ejnC9boNC3IrbMnMR7GI4xFAWSZlj_UhycooTQDO2cD7pRAQF-O0z5averVpMWhrPLeGWzdHoxV_QfOhDXG1Uy3xrQ4L_rlBr3nY2sgHnBOn7zWamhzfHKZy1vvIE3prsOW4qjSZwJU1tT7gL9hZg62ny98csvfp_dvkMZo9PzxNbmeRShIRohoUKiiUajJQosgIAHOoK1XmOSTYQJUVDWCVCRJQUwFpklGeFuMi7jbTcTJkN0fu4SJHjVw7vUK3kyDk3pVcyr-u5N6VPLrq6nf_6kqHg6DgULenQqZHCHWPfmly0qtOh6JaO1JB1lafBvoB5gOZJw |
CitedBy_id | crossref_primary_10_1016_j_applthermaleng_2025_125896 crossref_primary_10_1016_j_energy_2024_133198 crossref_primary_10_1016_j_applthermaleng_2023_121226 crossref_primary_10_1016_j_heliyon_2024_e33067 crossref_primary_10_1016_j_applthermaleng_2024_122618 crossref_primary_10_32604_ee_2023_042798 |
Cites_doi | 10.1016/j.rser.2015.03.089 10.1016/j.rser.2021.111207 10.1016/j.egypro.2014.11.920 10.1016/j.renene.2019.01.065 10.1016/j.energy.2020.118730 10.1016/j.energy.2017.06.001 10.1016/j.energy.2014.09.039 10.1016/j.applthermaleng.2012.10.013 10.1016/j.enconman.2019.04.036 10.1016/j.enconman.2021.114641 10.1016/j.applthermaleng.2020.115940 10.1016/j.apenergy.2015.02.022 10.1016/j.energy.2016.09.089 10.1002/er.1706 10.1016/j.energy.2021.120690 10.1016/j.rser.2013.03.040 10.1016/j.applthermaleng.2014.05.094 10.1016/j.energy.2021.122586 10.1016/j.applthermaleng.2020.115689 10.1016/j.apenergy.2016.03.014 10.1016/j.applthermaleng.2018.07.136 10.1016/j.enconman.2018.04.058 10.1016/j.renene.2019.12.034 10.1016/j.rser.2015.12.139 10.1016/j.applthermaleng.2021.117715 10.1016/j.energy.2018.09.013 10.1016/j.energy.2021.120007 10.1016/j.energy.2017.01.134 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.applthermaleng.2022.119939 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_applthermaleng_2022_119939 S1359431122018695 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABJNI ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W JARJE JJJVA KOM M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSG SSR SST SSZ T5K TN5 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FGOYB HZ~ R2- RIG SSH |
ID | FETCH-LOGICAL-c330t-d1cac18ccf51c085e11a61dbc96613af1b58f1ab50e01de81435e64878211a473 |
IEDL.DBID | .~1 |
ISSN | 1359-4311 |
IngestDate | Thu Apr 24 22:58:21 EDT 2025 Tue Jul 01 02:05:41 EDT 2025 Fri Feb 23 02:38:49 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Quasi two-stage expansion Cross-seasonal performance Organic Rankine cycle Cooling system |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c330t-d1cac18ccf51c085e11a61dbc96613af1b58f1ab50e01de81435e64878211a473 |
ParticipantIDs | crossref_primary_10_1016_j_applthermaleng_2022_119939 crossref_citationtrail_10_1016_j_applthermaleng_2022_119939 elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2022_119939 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-05 |
PublicationDateYYYYMMDD | 2023-03-05 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-05 day: 05 |
PublicationDecade | 2020 |
PublicationTitle | Applied thermal engineering |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Ziviani, Suman, Lecompte, De Paepe, van den Broek, Spina, Pinelli, Venturini, Beyene (b0075) 2014; 61 Miao, Xu, Zhang (b0110) 2017; 134 Pei, Liu, Wang, Wang (b0140) 2021; 229 Usman, Imran, Yang, Lee, Park (b0050) 2017; 123 Casari, Fadiga, Pinelli, Randi, Suman, Ziviani (b0080) 2020; 213 Collings, Yu, Wang (b0060) 2016; 171 Lei, Yan, Wu, Ma, Shen, Li (b0135) 2021; 245 Zhao, Lei, Wu, Zhi, Wang, Guo, Ma (b0045) 2018; 165 Li, Pei, Ji, Bai, Li, Xia (b0100) 2014; 77 Li, Xu, Tian, Shu (b0030) 2021; 147 Sohel, Sellier, Brackney, Krumdieck (b0105) 2011; 35 Kahraman (b0040) 2019; 192 Wang, Wang, Cheng, Sun, Zhao, Dai (b0020) 2020; 181 Lecompte, Huisseune, van den Broek, Vanslambrouck, De Paepe (b0065) 2015; 47 Emhardt, Tian, Song, Chew, Wei (b0085) 2022; 244 Bao, Zhao (b0090) 2013; 24 Altun, Kilic (b0055) 2020; 148 Dickes, Dumont, Lemort (b0015) 2020; 179 Astolfi, La Diega, Romano, Merlo, Filippini, Macchi (b0115) 2020; 147 Yun, Kim, Yoon, Kim (b0125) 2015; 145 Lei, Wang, Wu, Ma, Wang, Zhang, Li, Zhao, Zhi (b0130) 2016; 116 Pethurajan, Sivan, Joy (b0070) 2018; 166 Khider (b0025) 2021; 230 Mahmoudi, Fazli, Morad (b0005) 2018; 143 Song, Wei, Shi, Danish, Ma (b0095) 2015; 75 Imran, Usman, Park, Lee (b0145) 2016; 57 Ping, Yang, Zhang, Zhang, Zhang, Song (b0035) 2021; 222 Meng, Li, Gao, Liu, Li, Gao (b0010) 2022; 200 He, Wu, Peng, Zhang, Ma, Ma (b0120) 2013; 51 Casari (10.1016/j.applthermaleng.2022.119939_b0080) 2020; 213 Lei (10.1016/j.applthermaleng.2022.119939_b0130) 2016; 116 Kahraman (10.1016/j.applthermaleng.2022.119939_b0040) 2019; 192 Lecompte (10.1016/j.applthermaleng.2022.119939_b0065) 2015; 47 Pethurajan (10.1016/j.applthermaleng.2022.119939_b0070) 2018; 166 Li (10.1016/j.applthermaleng.2022.119939_b0100) 2014; 77 He (10.1016/j.applthermaleng.2022.119939_b0120) 2013; 51 Pei (10.1016/j.applthermaleng.2022.119939_b0140) 2021; 229 Mahmoudi (10.1016/j.applthermaleng.2022.119939_b0005) 2018; 143 Ping (10.1016/j.applthermaleng.2022.119939_b0035) 2021; 222 Zhao (10.1016/j.applthermaleng.2022.119939_b0045) 2018; 165 Usman (10.1016/j.applthermaleng.2022.119939_b0050) 2017; 123 Miao (10.1016/j.applthermaleng.2022.119939_b0110) 2017; 134 Song (10.1016/j.applthermaleng.2022.119939_b0095) 2015; 75 Khider (10.1016/j.applthermaleng.2022.119939_b0025) 2021; 230 Emhardt (10.1016/j.applthermaleng.2022.119939_b0085) 2022; 244 Bao (10.1016/j.applthermaleng.2022.119939_b0090) 2013; 24 Altun (10.1016/j.applthermaleng.2022.119939_b0055) 2020; 148 Dickes (10.1016/j.applthermaleng.2022.119939_b0015) 2020; 179 Astolfi (10.1016/j.applthermaleng.2022.119939_b0115) 2020; 147 Ziviani (10.1016/j.applthermaleng.2022.119939_b0075) 2014; 61 Meng (10.1016/j.applthermaleng.2022.119939_b0010) 2022; 200 Li (10.1016/j.applthermaleng.2022.119939_b0030) 2021; 147 Collings (10.1016/j.applthermaleng.2022.119939_b0060) 2016; 171 Imran (10.1016/j.applthermaleng.2022.119939_b0145) 2016; 57 Yun (10.1016/j.applthermaleng.2022.119939_b0125) 2015; 145 Sohel (10.1016/j.applthermaleng.2022.119939_b0105) 2011; 35 Wang (10.1016/j.applthermaleng.2022.119939_b0020) 2020; 181 Lei (10.1016/j.applthermaleng.2022.119939_b0135) 2021; 245 |
References_xml | – volume: 147 start-page: 111207 year: 2021 ident: b0030 article-title: Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency publication-title: Renew. Sustain. Energy Rev. – volume: 123 start-page: 353 year: 2017 end-page: 366 ident: b0050 article-title: Thermo-economic comparison of air-cooled and cooling tower based Organic Rankine Cycle (ORC) with R245fa and R1233zde as candidate working fluids for different geographical climate conditions publication-title: Energy – volume: 47 start-page: 448 year: 2015 end-page: 461 ident: b0065 article-title: Review of organic Rankine cycle (ORC) architectures for waste heat recovery publication-title: Renew. Sustain. Energy Rev. – volume: 213 start-page: 118730 year: 2020 ident: b0080 article-title: Investigation of flow characteristics in a single screw expander: A numerical approach publication-title: Energy – volume: 75 start-page: 54 year: 2015 end-page: 64 ident: b0095 article-title: Syed Noman Danish, Chaochen Ma, A review of scroll expanders for organic Rankine cycle systems publication-title: Appl. Therm. Eng. – volume: 24 start-page: 325 year: 2013 end-page: 342 ident: b0090 article-title: A review of working fluid and expander selections for organic Rankine cycle publication-title: Renew. Sustain. Energy Rev. – volume: 222 start-page: 120007 year: 2021 ident: b0035 article-title: Introducing machine learning and hybrid algorithm for prediction and optimization of multistage centrifugal pump in an ORC system publication-title: Energy – volume: 147 start-page: 2810 year: 2020 end-page: 2821 ident: b0115 article-title: Macchi, Techno-economic optimization of a geothermal ORC with novel “Emeritus” heat rejection units in hot climates publication-title: Renew. Energy – volume: 35 start-page: 436 year: 2011 end-page: 448 ident: b0105 article-title: An iterative method for modelling the air-cooled organic Rankine cycle geothermal power plant[J] publication-title: Int. J. Energy Res. – volume: 244 start-page: 122586 year: 2022 ident: b0085 article-title: CFD analysis of the influence of variable wall thickness on the aerodynamic performance of small scale ORC scroll expanders publication-title: Energy – volume: 148 start-page: 261 year: 2020 end-page: 274 ident: b0055 article-title: Thermodynamic performance evaluation of a geothermal ORC power plant publication-title: Renew. Energy – volume: 51 start-page: 662 year: 2013 end-page: 669 ident: b0120 article-title: Influence of intake pressure on the performance of single screw expander working with compressed air publication-title: Appl. Therm. Eng. – volume: 166 start-page: 474 year: 2018 end-page: 488 ident: b0070 article-title: Issues, comparisons, turbine selections and applications – An overview in organic Rankine cycle publication-title: Energ. Conver. Manage. – volume: 116 start-page: 43 year: 2016 end-page: 52 ident: b0130 article-title: Development and experimental study on a single screw expander integrated into an Organic Rankine Cycle publication-title: Energy – volume: 165 start-page: 769 year: 2018 end-page: 775 ident: b0045 article-title: Experimental study on the net efficiency of an Organic Rankine Cycle with single screw expander in different seasons publication-title: Energy – volume: 229 start-page: 120690 year: 2021 ident: b0140 article-title: Energy efficiency prediction model and energy characteristics of subsea disc pump based on velocity slip and similarity theory publication-title: Energy – volume: 77 start-page: 579 year: 2014 end-page: 590 ident: b0100 article-title: Design of the ORC (organic Rankine cycle) condensation temperature with respect to the expander characteristics for domestic CHP (combined heat and power) applications publication-title: Energy – volume: 145 start-page: 246 year: 2015 end-page: 254 ident: b0125 article-title: Experimental investigation of an organic Rankine cycle with multiple expanders used in parallel publication-title: Appl. Energy – volume: 134 start-page: 35 year: 2017 end-page: 49 ident: b0110 article-title: Experimental and modeling investigation of an organic Rankine cycle system based on the scroll expander publication-title: Energy – volume: 245 start-page: 114641 year: 2021 ident: b0135 article-title: A study on the single screw expander with exhaust kinetic energy utilization in organic Rankine cycle conditions publication-title: Energ. Conver. Manage. – volume: 181 start-page: 115940 year: 2020 ident: b0020 article-title: Dynamic performance of an organic Rankine cycle system with a dynamic turbine model: A comparison study publication-title: Appl. Therm. Eng. – volume: 57 start-page: 1090 year: 2016 end-page: 1109 ident: b0145 article-title: Volumetric expanders for low grade heat and waste heat recovery applications publication-title: Renew. Sustain. Energy Rev. – volume: 143 start-page: 660 year: 2018 end-page: 675 ident: b0005 article-title: A recent review of waste heat recovery by Organic Rankine Cycle publication-title: Appl. Therm. Eng. – volume: 171 start-page: 581 year: 2016 end-page: 591 ident: b0060 article-title: A dynamic organic Rankine cycle using a zeotropic mixture as the working fluid with composition tuning to match changing ambient conditions publication-title: Appl. Energy – volume: 61 start-page: 117 year: 2014 end-page: 120 ident: b0075 article-title: S, et al, Comparison of a Single-screw and a Scroll Expander under Part-load Conditions for Low-grade Heat Recovery ORC Systems publication-title: Energy Procedia – volume: 192 year: 2019 ident: b0040 article-title: Ali Bahadır Olcay, Esra Sorgüven, Thermodynamic and thermoeconomic analysis of a 21 MW binary type air-cooled geothermal power plant and determination of the effect of ambient temperature variation on the plant performance publication-title: Energ. Conver. Manage. – volume: 200 start-page: 117715 year: 2022 ident: b0010 article-title: Thermodynamic and techno-economic performance comparison of two-stage series organic Rankine cycle and organic Rankine flash cycle for geothermal power generation from hot dry rock publication-title: Appl. Therm. Eng. – volume: 179 start-page: 115689 year: 2020 ident: b0015 article-title: Experimental assessment of the fluid charge distribution in an organic Rankine cycle (ORC) power system publication-title: Appl. Therm. Eng. – volume: 230 year: 2021 ident: b0025 article-title: Experimental study of two cascaded organic Rankine cycles with varying working fluids publication-title: Energ. Conver. Manage. – volume: 230 year: 2021 ident: 10.1016/j.applthermaleng.2022.119939_b0025 article-title: Experimental study of two cascaded organic Rankine cycles with varying working fluids publication-title: Energ. Conver. Manage. – volume: 47 start-page: 448 year: 2015 ident: 10.1016/j.applthermaleng.2022.119939_b0065 article-title: Review of organic Rankine cycle (ORC) architectures for waste heat recovery publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.03.089 – volume: 147 start-page: 111207 year: 2021 ident: 10.1016/j.applthermaleng.2022.119939_b0030 article-title: Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2021.111207 – volume: 61 start-page: 117 year: 2014 ident: 10.1016/j.applthermaleng.2022.119939_b0075 article-title: S, et al, Comparison of a Single-screw and a Scroll Expander under Part-load Conditions for Low-grade Heat Recovery ORC Systems publication-title: Energy Procedia doi: 10.1016/j.egypro.2014.11.920 – volume: 147 start-page: 2810 year: 2020 ident: 10.1016/j.applthermaleng.2022.119939_b0115 article-title: Macchi, Techno-economic optimization of a geothermal ORC with novel “Emeritus” heat rejection units in hot climates publication-title: Renew. Energy doi: 10.1016/j.renene.2019.01.065 – volume: 213 start-page: 118730 year: 2020 ident: 10.1016/j.applthermaleng.2022.119939_b0080 article-title: Investigation of flow characteristics in a single screw expander: A numerical approach publication-title: Energy doi: 10.1016/j.energy.2020.118730 – volume: 134 start-page: 35 year: 2017 ident: 10.1016/j.applthermaleng.2022.119939_b0110 article-title: Experimental and modeling investigation of an organic Rankine cycle system based on the scroll expander publication-title: Energy doi: 10.1016/j.energy.2017.06.001 – volume: 77 start-page: 579 year: 2014 ident: 10.1016/j.applthermaleng.2022.119939_b0100 article-title: Design of the ORC (organic Rankine cycle) condensation temperature with respect to the expander characteristics for domestic CHP (combined heat and power) applications publication-title: Energy doi: 10.1016/j.energy.2014.09.039 – volume: 51 start-page: 662 issue: 1-2 year: 2013 ident: 10.1016/j.applthermaleng.2022.119939_b0120 article-title: Influence of intake pressure on the performance of single screw expander working with compressed air publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2012.10.013 – volume: 192 year: 2019 ident: 10.1016/j.applthermaleng.2022.119939_b0040 article-title: Ali Bahadır Olcay, Esra Sorgüven, Thermodynamic and thermoeconomic analysis of a 21 MW binary type air-cooled geothermal power plant and determination of the effect of ambient temperature variation on the plant performance publication-title: Energ. Conver. Manage. doi: 10.1016/j.enconman.2019.04.036 – volume: 245 start-page: 114641 year: 2021 ident: 10.1016/j.applthermaleng.2022.119939_b0135 article-title: A study on the single screw expander with exhaust kinetic energy utilization in organic Rankine cycle conditions publication-title: Energ. Conver. Manage. doi: 10.1016/j.enconman.2021.114641 – volume: 181 start-page: 115940 year: 2020 ident: 10.1016/j.applthermaleng.2022.119939_b0020 article-title: Dynamic performance of an organic Rankine cycle system with a dynamic turbine model: A comparison study publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2020.115940 – volume: 145 start-page: 246 year: 2015 ident: 10.1016/j.applthermaleng.2022.119939_b0125 article-title: Experimental investigation of an organic Rankine cycle with multiple expanders used in parallel publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.02.022 – volume: 116 start-page: 43 year: 2016 ident: 10.1016/j.applthermaleng.2022.119939_b0130 article-title: Development and experimental study on a single screw expander integrated into an Organic Rankine Cycle publication-title: Energy doi: 10.1016/j.energy.2016.09.089 – volume: 35 start-page: 436 issue: 5 year: 2011 ident: 10.1016/j.applthermaleng.2022.119939_b0105 article-title: An iterative method for modelling the air-cooled organic Rankine cycle geothermal power plant[J] publication-title: Int. J. Energy Res. doi: 10.1002/er.1706 – volume: 229 start-page: 120690 year: 2021 ident: 10.1016/j.applthermaleng.2022.119939_b0140 article-title: Energy efficiency prediction model and energy characteristics of subsea disc pump based on velocity slip and similarity theory publication-title: Energy doi: 10.1016/j.energy.2021.120690 – volume: 24 start-page: 325 year: 2013 ident: 10.1016/j.applthermaleng.2022.119939_b0090 article-title: A review of working fluid and expander selections for organic Rankine cycle publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2013.03.040 – volume: 75 start-page: 54 year: 2015 ident: 10.1016/j.applthermaleng.2022.119939_b0095 article-title: Syed Noman Danish, Chaochen Ma, A review of scroll expanders for organic Rankine cycle systems publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2014.05.094 – volume: 244 start-page: 122586 year: 2022 ident: 10.1016/j.applthermaleng.2022.119939_b0085 article-title: CFD analysis of the influence of variable wall thickness on the aerodynamic performance of small scale ORC scroll expanders publication-title: Energy doi: 10.1016/j.energy.2021.122586 – volume: 179 start-page: 115689 year: 2020 ident: 10.1016/j.applthermaleng.2022.119939_b0015 article-title: Experimental assessment of the fluid charge distribution in an organic Rankine cycle (ORC) power system publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2020.115689 – volume: 171 start-page: 581 year: 2016 ident: 10.1016/j.applthermaleng.2022.119939_b0060 article-title: A dynamic organic Rankine cycle using a zeotropic mixture as the working fluid with composition tuning to match changing ambient conditions publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.03.014 – volume: 143 start-page: 660 year: 2018 ident: 10.1016/j.applthermaleng.2022.119939_b0005 article-title: A recent review of waste heat recovery by Organic Rankine Cycle publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.07.136 – volume: 166 start-page: 474 year: 2018 ident: 10.1016/j.applthermaleng.2022.119939_b0070 article-title: Issues, comparisons, turbine selections and applications – An overview in organic Rankine cycle publication-title: Energ. Conver. Manage. doi: 10.1016/j.enconman.2018.04.058 – volume: 148 start-page: 261 year: 2020 ident: 10.1016/j.applthermaleng.2022.119939_b0055 article-title: Thermodynamic performance evaluation of a geothermal ORC power plant publication-title: Renew. Energy doi: 10.1016/j.renene.2019.12.034 – volume: 57 start-page: 1090 year: 2016 ident: 10.1016/j.applthermaleng.2022.119939_b0145 article-title: Volumetric expanders for low grade heat and waste heat recovery applications publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.12.139 – volume: 200 start-page: 117715 year: 2022 ident: 10.1016/j.applthermaleng.2022.119939_b0010 article-title: Thermodynamic and techno-economic performance comparison of two-stage series organic Rankine cycle and organic Rankine flash cycle for geothermal power generation from hot dry rock publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2021.117715 – volume: 165 start-page: 769 year: 2018 ident: 10.1016/j.applthermaleng.2022.119939_b0045 article-title: Experimental study on the net efficiency of an Organic Rankine Cycle with single screw expander in different seasons publication-title: Energy doi: 10.1016/j.energy.2018.09.013 – volume: 222 start-page: 120007 year: 2021 ident: 10.1016/j.applthermaleng.2022.119939_b0035 article-title: Introducing machine learning and hybrid algorithm for prediction and optimization of multistage centrifugal pump in an ORC system publication-title: Energy doi: 10.1016/j.energy.2021.120007 – volume: 123 start-page: 353 year: 2017 ident: 10.1016/j.applthermaleng.2022.119939_b0050 article-title: Thermo-economic comparison of air-cooled and cooling tower based Organic Rankine Cycle (ORC) with R245fa and R1233zde as candidate working fluids for different geographical climate conditions publication-title: Energy doi: 10.1016/j.energy.2017.01.134 |
SSID | ssj0012874 |
Score | 2.4209318 |
Snippet | •A model of ORC in variable condensing ambient conditions was developed.•Using quasi two-stage expander to improve the cross-seasonal performance of ORC.•The... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 119939 |
SubjectTerms | Cooling system Cross-seasonal performance Organic Rankine cycle Quasi two-stage expansion |
Title | Simulations on organic Rankine cycle with quasi two-stage expander under cross-seasonal ambient conditions |
URI | https://dx.doi.org/10.1016/j.applthermaleng.2022.119939 |
Volume | 222 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5FQfQgPvFNDr3GNpvNPvAgIkpV7EEt9LYk2VlZsQ-1Rb34253Z3dYKHgpe9rBsQpgNM9-XzMzHWB2US8MsVSLU1gkftBMGYjqGi4xxfmDDlG50b9tBq-Nfd3W3xs4ntTCUVln5_tKnF966etOorNkY5nnjXiodY_iTHsawKIip0Nz3Q9rlx1_TNA9J_dwL0qVjQV8vsfpPjhddEhPO6hmSLUG26HnoQzBkx3-HqZnQc7nGVivMyM_KZa2zGvQ32MpMJ8FN9nSf9yohrjc-6PNSrMnxO0PSCMDdJ47kdOjKX8bmLeej94FAYPgIHD6GRYULHxfPYj2Cjg4Jo3PTs1QxyZE2p2V21xbrXF48nLdEJaMgnFLNkUilM05GzmVaOkRYIKUJZGodMh2pTCatjjJprG5CU6YQEYKCAIlMhOTQ-KHaZgv9QR92GDdl51AFYBHJIHMxYJHweDpFoCcz2GUnE6slruoxTlIXz8kkmewp-W3zhGyelDbfZXo6elj22phz3OnkByW_9k6CYWGuGfb-PcM-WyYh-iI7TR-whdHrGA4RrozsUbEfj9ji2dVNq_0Ny__vrw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RkFo4IPpAQIH6sD26i5M4mwghhIDVUhYOBSRuqe1M0CL2Absr4NI_xR9kJg9YJA5IFZccEtmyPjsz32ePZwBq6Lu0kaW-bGjrZIDaSYMxb8NFxrggtI2UT3SPjsPWWfD7XJ9PwUN1F4bDKkvbX9j03FqXb-olmvVBp1M_Ub6Oyf0pj3xYFMZVZOUh3t-SbhtuHezRJP_0vOb-6W5LlqUFpCMBP5KpcsapyLlMK0esA5UyoUqtI_avfJMpq6NMGas3cEOlGDGrwJDIfUSCyQQNn_r9ADMBmQsum_Dr31NcieIE8rnK07Hk4X2E2nNQGZ9KM7HrGq6TQvLU88hoEUeIX_eLE76uuQDzJUkVOwUOn2EKe19gbiJ14Ve4POl0y8pfQ9HviaI6lBN_DNdiQOHuqaXgXV5xPTbDjhjd9iUx0QsUeDfIr9SIcf7MxyN5r5JFgTBdy1c0Ben0tAgn-wZn7wLuIkz3-j1cAmGKVKU-oiXqRFLJoCWF5emUmKXKcBk2K9QSVyY159oaV0kVvXaZvMQ8YcyTAvNl0E-tB0Vyjze2264mKHmxWBPyQ2_qYeW_e_gBn1qnR-2kfXB8-B1m6Yufh8bpVZge3YxxjbjSyK7na1PA3_f-GR4BbYAq3g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulations+on+organic+Rankine+cycle+with+quasi+two-stage+expander+under+cross-seasonal+ambient+conditions&rft.jtitle=Applied+thermal+engineering&rft.au=Wang%2C+Hai-Xiao&rft.au=Lei%2C+Biao&rft.au=Wu%2C+Yu-Ting&rft.date=2023-03-05&rft.issn=1359-4311&rft.volume=222&rft.spage=119939&rft_id=info:doi/10.1016%2Fj.applthermaleng.2022.119939&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_applthermaleng_2022_119939 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon |