Simulations on organic Rankine cycle with quasi two-stage expander under cross-seasonal ambient conditions

•A model of ORC in variable condensing ambient conditions was developed.•Using quasi two-stage expander to improve the cross-seasonal performance of ORC.•The cooling power consumption was computed in different operating conditions. Organic Rankine cycle (ORC) plays an important role in addressing th...

Full description

Saved in:
Bibliographic Details
Published inApplied thermal engineering Vol. 222; p. 119939
Main Authors Wang, Hai-Xiao, Lei, Biao, Wu, Yu-Ting
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 05.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A model of ORC in variable condensing ambient conditions was developed.•Using quasi two-stage expander to improve the cross-seasonal performance of ORC.•The cooling power consumption was computed in different operating conditions. Organic Rankine cycle (ORC) plays an important role in addressing the issue of energy shortage and climate change. The condenser should release heat to the environment. Due to the seasonal and daily variations of ambient conditions, the condensation temperature, power consumption of the cooling system, the operation conditions of the working medium pump and expander would suffer drastic changes in different condensing ambient conditions. Therefore, the main aim of this study is to investigate the cross-seasonal performance of the organic Rankine cycle under variable condensation conditions. Simultaneously, the single screw expander with quasi two-stage expansion was used to improve the performance of ORC in different condensing ambient conditions. A model was developed to depict the variations of operation parameters of ORC system. The results show that the performance of ORC was adversely correlated with the wet-bulb temperature throughout the year. The net power and net efficiency can be reached at 8.04 kW and 11.31 % when the wet-bulb temperature is 1.1 ℃, respectively. Additionally, the variation in cooling water flow rate has little effect on the volumetric expansion process of the new single screw expander, but has a significant influence on the velocity expansion process, which increases by nearly 56.4 %. Meanwhile, decreasing the pipeline impedance coefficients of cooling system can optimize ORC system performance effectively. It was also discovered that the isentropic efficiency of single screw expander decreases by only 8.68 percentage points during the expansion ratio increase from 3.31 to 11.54.
AbstractList •A model of ORC in variable condensing ambient conditions was developed.•Using quasi two-stage expander to improve the cross-seasonal performance of ORC.•The cooling power consumption was computed in different operating conditions. Organic Rankine cycle (ORC) plays an important role in addressing the issue of energy shortage and climate change. The condenser should release heat to the environment. Due to the seasonal and daily variations of ambient conditions, the condensation temperature, power consumption of the cooling system, the operation conditions of the working medium pump and expander would suffer drastic changes in different condensing ambient conditions. Therefore, the main aim of this study is to investigate the cross-seasonal performance of the organic Rankine cycle under variable condensation conditions. Simultaneously, the single screw expander with quasi two-stage expansion was used to improve the performance of ORC in different condensing ambient conditions. A model was developed to depict the variations of operation parameters of ORC system. The results show that the performance of ORC was adversely correlated with the wet-bulb temperature throughout the year. The net power and net efficiency can be reached at 8.04 kW and 11.31 % when the wet-bulb temperature is 1.1 ℃, respectively. Additionally, the variation in cooling water flow rate has little effect on the volumetric expansion process of the new single screw expander, but has a significant influence on the velocity expansion process, which increases by nearly 56.4 %. Meanwhile, decreasing the pipeline impedance coefficients of cooling system can optimize ORC system performance effectively. It was also discovered that the isentropic efficiency of single screw expander decreases by only 8.68 percentage points during the expansion ratio increase from 3.31 to 11.54.
ArticleNumber 119939
Author Lei, Biao
Wu, Yu-Ting
Wang, Hai-Xiao
Author_xml – sequence: 1
  givenname: Hai-Xiao
  surname: Wang
  fullname: Wang, Hai-Xiao
– sequence: 2
  givenname: Biao
  surname: Lei
  fullname: Lei, Biao
  email: leibiao@bjut.edu.cn
– sequence: 3
  givenname: Yu-Ting
  surname: Wu
  fullname: Wu, Yu-Ting
BookMark eNqNkE1PAjEQhnvARED_Qw9eFzv7xW7iRYmoCYmJH-dmtjsLxaXFtoj8exfwoicu817mfTLzDFjPWEOMXYEYgYD8ejnC9boNC3IrbMnMR7GI4xFAWSZlj_UhycooTQDO2cD7pRAQF-O0z5averVpMWhrPLeGWzdHoxV_QfOhDXG1Uy3xrQ4L_rlBr3nY2sgHnBOn7zWamhzfHKZy1vvIE3prsOW4qjSZwJU1tT7gL9hZg62ny98csvfp_dvkMZo9PzxNbmeRShIRohoUKiiUajJQosgIAHOoK1XmOSTYQJUVDWCVCRJQUwFpklGeFuMi7jbTcTJkN0fu4SJHjVw7vUK3kyDk3pVcyr-u5N6VPLrq6nf_6kqHg6DgULenQqZHCHWPfmly0qtOh6JaO1JB1lafBvoB5gOZJw
CitedBy_id crossref_primary_10_1016_j_applthermaleng_2025_125896
crossref_primary_10_1016_j_energy_2024_133198
crossref_primary_10_1016_j_applthermaleng_2023_121226
crossref_primary_10_1016_j_heliyon_2024_e33067
crossref_primary_10_1016_j_applthermaleng_2024_122618
crossref_primary_10_32604_ee_2023_042798
Cites_doi 10.1016/j.rser.2015.03.089
10.1016/j.rser.2021.111207
10.1016/j.egypro.2014.11.920
10.1016/j.renene.2019.01.065
10.1016/j.energy.2020.118730
10.1016/j.energy.2017.06.001
10.1016/j.energy.2014.09.039
10.1016/j.applthermaleng.2012.10.013
10.1016/j.enconman.2019.04.036
10.1016/j.enconman.2021.114641
10.1016/j.applthermaleng.2020.115940
10.1016/j.apenergy.2015.02.022
10.1016/j.energy.2016.09.089
10.1002/er.1706
10.1016/j.energy.2021.120690
10.1016/j.rser.2013.03.040
10.1016/j.applthermaleng.2014.05.094
10.1016/j.energy.2021.122586
10.1016/j.applthermaleng.2020.115689
10.1016/j.apenergy.2016.03.014
10.1016/j.applthermaleng.2018.07.136
10.1016/j.enconman.2018.04.058
10.1016/j.renene.2019.12.034
10.1016/j.rser.2015.12.139
10.1016/j.applthermaleng.2021.117715
10.1016/j.energy.2018.09.013
10.1016/j.energy.2021.120007
10.1016/j.energy.2017.01.134
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.applthermaleng.2022.119939
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_applthermaleng_2022_119939
S1359431122018695
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FGOYB
HZ~
R2-
RIG
SSH
ID FETCH-LOGICAL-c330t-d1cac18ccf51c085e11a61dbc96613af1b58f1ab50e01de81435e64878211a473
IEDL.DBID .~1
ISSN 1359-4311
IngestDate Thu Apr 24 22:58:21 EDT 2025
Tue Jul 01 02:05:41 EDT 2025
Fri Feb 23 02:38:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Quasi two-stage expansion
Cross-seasonal performance
Organic Rankine cycle
Cooling system
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c330t-d1cac18ccf51c085e11a61dbc96613af1b58f1ab50e01de81435e64878211a473
ParticipantIDs crossref_primary_10_1016_j_applthermaleng_2022_119939
crossref_citationtrail_10_1016_j_applthermaleng_2022_119939
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2022_119939
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-05
PublicationDateYYYYMMDD 2023-03-05
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-05
  day: 05
PublicationDecade 2020
PublicationTitle Applied thermal engineering
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ziviani, Suman, Lecompte, De Paepe, van den Broek, Spina, Pinelli, Venturini, Beyene (b0075) 2014; 61
Miao, Xu, Zhang (b0110) 2017; 134
Pei, Liu, Wang, Wang (b0140) 2021; 229
Usman, Imran, Yang, Lee, Park (b0050) 2017; 123
Casari, Fadiga, Pinelli, Randi, Suman, Ziviani (b0080) 2020; 213
Collings, Yu, Wang (b0060) 2016; 171
Lei, Yan, Wu, Ma, Shen, Li (b0135) 2021; 245
Zhao, Lei, Wu, Zhi, Wang, Guo, Ma (b0045) 2018; 165
Li, Pei, Ji, Bai, Li, Xia (b0100) 2014; 77
Li, Xu, Tian, Shu (b0030) 2021; 147
Sohel, Sellier, Brackney, Krumdieck (b0105) 2011; 35
Kahraman (b0040) 2019; 192
Wang, Wang, Cheng, Sun, Zhao, Dai (b0020) 2020; 181
Lecompte, Huisseune, van den Broek, Vanslambrouck, De Paepe (b0065) 2015; 47
Emhardt, Tian, Song, Chew, Wei (b0085) 2022; 244
Bao, Zhao (b0090) 2013; 24
Altun, Kilic (b0055) 2020; 148
Dickes, Dumont, Lemort (b0015) 2020; 179
Astolfi, La Diega, Romano, Merlo, Filippini, Macchi (b0115) 2020; 147
Yun, Kim, Yoon, Kim (b0125) 2015; 145
Lei, Wang, Wu, Ma, Wang, Zhang, Li, Zhao, Zhi (b0130) 2016; 116
Pethurajan, Sivan, Joy (b0070) 2018; 166
Khider (b0025) 2021; 230
Mahmoudi, Fazli, Morad (b0005) 2018; 143
Song, Wei, Shi, Danish, Ma (b0095) 2015; 75
Imran, Usman, Park, Lee (b0145) 2016; 57
Ping, Yang, Zhang, Zhang, Zhang, Song (b0035) 2021; 222
Meng, Li, Gao, Liu, Li, Gao (b0010) 2022; 200
He, Wu, Peng, Zhang, Ma, Ma (b0120) 2013; 51
Casari (10.1016/j.applthermaleng.2022.119939_b0080) 2020; 213
Lei (10.1016/j.applthermaleng.2022.119939_b0130) 2016; 116
Kahraman (10.1016/j.applthermaleng.2022.119939_b0040) 2019; 192
Lecompte (10.1016/j.applthermaleng.2022.119939_b0065) 2015; 47
Pethurajan (10.1016/j.applthermaleng.2022.119939_b0070) 2018; 166
Li (10.1016/j.applthermaleng.2022.119939_b0100) 2014; 77
He (10.1016/j.applthermaleng.2022.119939_b0120) 2013; 51
Pei (10.1016/j.applthermaleng.2022.119939_b0140) 2021; 229
Mahmoudi (10.1016/j.applthermaleng.2022.119939_b0005) 2018; 143
Ping (10.1016/j.applthermaleng.2022.119939_b0035) 2021; 222
Zhao (10.1016/j.applthermaleng.2022.119939_b0045) 2018; 165
Usman (10.1016/j.applthermaleng.2022.119939_b0050) 2017; 123
Miao (10.1016/j.applthermaleng.2022.119939_b0110) 2017; 134
Song (10.1016/j.applthermaleng.2022.119939_b0095) 2015; 75
Khider (10.1016/j.applthermaleng.2022.119939_b0025) 2021; 230
Emhardt (10.1016/j.applthermaleng.2022.119939_b0085) 2022; 244
Bao (10.1016/j.applthermaleng.2022.119939_b0090) 2013; 24
Altun (10.1016/j.applthermaleng.2022.119939_b0055) 2020; 148
Dickes (10.1016/j.applthermaleng.2022.119939_b0015) 2020; 179
Astolfi (10.1016/j.applthermaleng.2022.119939_b0115) 2020; 147
Ziviani (10.1016/j.applthermaleng.2022.119939_b0075) 2014; 61
Meng (10.1016/j.applthermaleng.2022.119939_b0010) 2022; 200
Li (10.1016/j.applthermaleng.2022.119939_b0030) 2021; 147
Collings (10.1016/j.applthermaleng.2022.119939_b0060) 2016; 171
Imran (10.1016/j.applthermaleng.2022.119939_b0145) 2016; 57
Yun (10.1016/j.applthermaleng.2022.119939_b0125) 2015; 145
Sohel (10.1016/j.applthermaleng.2022.119939_b0105) 2011; 35
Wang (10.1016/j.applthermaleng.2022.119939_b0020) 2020; 181
Lei (10.1016/j.applthermaleng.2022.119939_b0135) 2021; 245
References_xml – volume: 147
  start-page: 111207
  year: 2021
  ident: b0030
  article-title: Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency
  publication-title: Renew. Sustain. Energy Rev.
– volume: 123
  start-page: 353
  year: 2017
  end-page: 366
  ident: b0050
  article-title: Thermo-economic comparison of air-cooled and cooling tower based Organic Rankine Cycle (ORC) with R245fa and R1233zde as candidate working fluids for different geographical climate conditions
  publication-title: Energy
– volume: 47
  start-page: 448
  year: 2015
  end-page: 461
  ident: b0065
  article-title: Review of organic Rankine cycle (ORC) architectures for waste heat recovery
  publication-title: Renew. Sustain. Energy Rev.
– volume: 213
  start-page: 118730
  year: 2020
  ident: b0080
  article-title: Investigation of flow characteristics in a single screw expander: A numerical approach
  publication-title: Energy
– volume: 75
  start-page: 54
  year: 2015
  end-page: 64
  ident: b0095
  article-title: Syed Noman Danish, Chaochen Ma, A review of scroll expanders for organic Rankine cycle systems
  publication-title: Appl. Therm. Eng.
– volume: 24
  start-page: 325
  year: 2013
  end-page: 342
  ident: b0090
  article-title: A review of working fluid and expander selections for organic Rankine cycle
  publication-title: Renew. Sustain. Energy Rev.
– volume: 222
  start-page: 120007
  year: 2021
  ident: b0035
  article-title: Introducing machine learning and hybrid algorithm for prediction and optimization of multistage centrifugal pump in an ORC system
  publication-title: Energy
– volume: 147
  start-page: 2810
  year: 2020
  end-page: 2821
  ident: b0115
  article-title: Macchi, Techno-economic optimization of a geothermal ORC with novel “Emeritus” heat rejection units in hot climates
  publication-title: Renew. Energy
– volume: 35
  start-page: 436
  year: 2011
  end-page: 448
  ident: b0105
  article-title: An iterative method for modelling the air-cooled organic Rankine cycle geothermal power plant[J]
  publication-title: Int. J. Energy Res.
– volume: 244
  start-page: 122586
  year: 2022
  ident: b0085
  article-title: CFD analysis of the influence of variable wall thickness on the aerodynamic performance of small scale ORC scroll expanders
  publication-title: Energy
– volume: 148
  start-page: 261
  year: 2020
  end-page: 274
  ident: b0055
  article-title: Thermodynamic performance evaluation of a geothermal ORC power plant
  publication-title: Renew. Energy
– volume: 51
  start-page: 662
  year: 2013
  end-page: 669
  ident: b0120
  article-title: Influence of intake pressure on the performance of single screw expander working with compressed air
  publication-title: Appl. Therm. Eng.
– volume: 166
  start-page: 474
  year: 2018
  end-page: 488
  ident: b0070
  article-title: Issues, comparisons, turbine selections and applications – An overview in organic Rankine cycle
  publication-title: Energ. Conver. Manage.
– volume: 116
  start-page: 43
  year: 2016
  end-page: 52
  ident: b0130
  article-title: Development and experimental study on a single screw expander integrated into an Organic Rankine Cycle
  publication-title: Energy
– volume: 165
  start-page: 769
  year: 2018
  end-page: 775
  ident: b0045
  article-title: Experimental study on the net efficiency of an Organic Rankine Cycle with single screw expander in different seasons
  publication-title: Energy
– volume: 229
  start-page: 120690
  year: 2021
  ident: b0140
  article-title: Energy efficiency prediction model and energy characteristics of subsea disc pump based on velocity slip and similarity theory
  publication-title: Energy
– volume: 77
  start-page: 579
  year: 2014
  end-page: 590
  ident: b0100
  article-title: Design of the ORC (organic Rankine cycle) condensation temperature with respect to the expander characteristics for domestic CHP (combined heat and power) applications
  publication-title: Energy
– volume: 145
  start-page: 246
  year: 2015
  end-page: 254
  ident: b0125
  article-title: Experimental investigation of an organic Rankine cycle with multiple expanders used in parallel
  publication-title: Appl. Energy
– volume: 134
  start-page: 35
  year: 2017
  end-page: 49
  ident: b0110
  article-title: Experimental and modeling investigation of an organic Rankine cycle system based on the scroll expander
  publication-title: Energy
– volume: 245
  start-page: 114641
  year: 2021
  ident: b0135
  article-title: A study on the single screw expander with exhaust kinetic energy utilization in organic Rankine cycle conditions
  publication-title: Energ. Conver. Manage.
– volume: 181
  start-page: 115940
  year: 2020
  ident: b0020
  article-title: Dynamic performance of an organic Rankine cycle system with a dynamic turbine model: A comparison study
  publication-title: Appl. Therm. Eng.
– volume: 57
  start-page: 1090
  year: 2016
  end-page: 1109
  ident: b0145
  article-title: Volumetric expanders for low grade heat and waste heat recovery applications
  publication-title: Renew. Sustain. Energy Rev.
– volume: 143
  start-page: 660
  year: 2018
  end-page: 675
  ident: b0005
  article-title: A recent review of waste heat recovery by Organic Rankine Cycle
  publication-title: Appl. Therm. Eng.
– volume: 171
  start-page: 581
  year: 2016
  end-page: 591
  ident: b0060
  article-title: A dynamic organic Rankine cycle using a zeotropic mixture as the working fluid with composition tuning to match changing ambient conditions
  publication-title: Appl. Energy
– volume: 61
  start-page: 117
  year: 2014
  end-page: 120
  ident: b0075
  article-title: S, et al, Comparison of a Single-screw and a Scroll Expander under Part-load Conditions for Low-grade Heat Recovery ORC Systems
  publication-title: Energy Procedia
– volume: 192
  year: 2019
  ident: b0040
  article-title: Ali Bahadır Olcay, Esra Sorgüven, Thermodynamic and thermoeconomic analysis of a 21 MW binary type air-cooled geothermal power plant and determination of the effect of ambient temperature variation on the plant performance
  publication-title: Energ. Conver. Manage.
– volume: 200
  start-page: 117715
  year: 2022
  ident: b0010
  article-title: Thermodynamic and techno-economic performance comparison of two-stage series organic Rankine cycle and organic Rankine flash cycle for geothermal power generation from hot dry rock
  publication-title: Appl. Therm. Eng.
– volume: 179
  start-page: 115689
  year: 2020
  ident: b0015
  article-title: Experimental assessment of the fluid charge distribution in an organic Rankine cycle (ORC) power system
  publication-title: Appl. Therm. Eng.
– volume: 230
  year: 2021
  ident: b0025
  article-title: Experimental study of two cascaded organic Rankine cycles with varying working fluids
  publication-title: Energ. Conver. Manage.
– volume: 230
  year: 2021
  ident: 10.1016/j.applthermaleng.2022.119939_b0025
  article-title: Experimental study of two cascaded organic Rankine cycles with varying working fluids
  publication-title: Energ. Conver. Manage.
– volume: 47
  start-page: 448
  year: 2015
  ident: 10.1016/j.applthermaleng.2022.119939_b0065
  article-title: Review of organic Rankine cycle (ORC) architectures for waste heat recovery
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.03.089
– volume: 147
  start-page: 111207
  year: 2021
  ident: 10.1016/j.applthermaleng.2022.119939_b0030
  article-title: Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2021.111207
– volume: 61
  start-page: 117
  year: 2014
  ident: 10.1016/j.applthermaleng.2022.119939_b0075
  article-title: S, et al, Comparison of a Single-screw and a Scroll Expander under Part-load Conditions for Low-grade Heat Recovery ORC Systems
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2014.11.920
– volume: 147
  start-page: 2810
  year: 2020
  ident: 10.1016/j.applthermaleng.2022.119939_b0115
  article-title: Macchi, Techno-economic optimization of a geothermal ORC with novel “Emeritus” heat rejection units in hot climates
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.01.065
– volume: 213
  start-page: 118730
  year: 2020
  ident: 10.1016/j.applthermaleng.2022.119939_b0080
  article-title: Investigation of flow characteristics in a single screw expander: A numerical approach
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118730
– volume: 134
  start-page: 35
  year: 2017
  ident: 10.1016/j.applthermaleng.2022.119939_b0110
  article-title: Experimental and modeling investigation of an organic Rankine cycle system based on the scroll expander
  publication-title: Energy
  doi: 10.1016/j.energy.2017.06.001
– volume: 77
  start-page: 579
  year: 2014
  ident: 10.1016/j.applthermaleng.2022.119939_b0100
  article-title: Design of the ORC (organic Rankine cycle) condensation temperature with respect to the expander characteristics for domestic CHP (combined heat and power) applications
  publication-title: Energy
  doi: 10.1016/j.energy.2014.09.039
– volume: 51
  start-page: 662
  issue: 1-2
  year: 2013
  ident: 10.1016/j.applthermaleng.2022.119939_b0120
  article-title: Influence of intake pressure on the performance of single screw expander working with compressed air
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2012.10.013
– volume: 192
  year: 2019
  ident: 10.1016/j.applthermaleng.2022.119939_b0040
  article-title: Ali Bahadır Olcay, Esra Sorgüven, Thermodynamic and thermoeconomic analysis of a 21 MW binary type air-cooled geothermal power plant and determination of the effect of ambient temperature variation on the plant performance
  publication-title: Energ. Conver. Manage.
  doi: 10.1016/j.enconman.2019.04.036
– volume: 245
  start-page: 114641
  year: 2021
  ident: 10.1016/j.applthermaleng.2022.119939_b0135
  article-title: A study on the single screw expander with exhaust kinetic energy utilization in organic Rankine cycle conditions
  publication-title: Energ. Conver. Manage.
  doi: 10.1016/j.enconman.2021.114641
– volume: 181
  start-page: 115940
  year: 2020
  ident: 10.1016/j.applthermaleng.2022.119939_b0020
  article-title: Dynamic performance of an organic Rankine cycle system with a dynamic turbine model: A comparison study
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2020.115940
– volume: 145
  start-page: 246
  year: 2015
  ident: 10.1016/j.applthermaleng.2022.119939_b0125
  article-title: Experimental investigation of an organic Rankine cycle with multiple expanders used in parallel
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.02.022
– volume: 116
  start-page: 43
  year: 2016
  ident: 10.1016/j.applthermaleng.2022.119939_b0130
  article-title: Development and experimental study on a single screw expander integrated into an Organic Rankine Cycle
  publication-title: Energy
  doi: 10.1016/j.energy.2016.09.089
– volume: 35
  start-page: 436
  issue: 5
  year: 2011
  ident: 10.1016/j.applthermaleng.2022.119939_b0105
  article-title: An iterative method for modelling the air-cooled organic Rankine cycle geothermal power plant[J]
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.1706
– volume: 229
  start-page: 120690
  year: 2021
  ident: 10.1016/j.applthermaleng.2022.119939_b0140
  article-title: Energy efficiency prediction model and energy characteristics of subsea disc pump based on velocity slip and similarity theory
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120690
– volume: 24
  start-page: 325
  year: 2013
  ident: 10.1016/j.applthermaleng.2022.119939_b0090
  article-title: A review of working fluid and expander selections for organic Rankine cycle
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2013.03.040
– volume: 75
  start-page: 54
  year: 2015
  ident: 10.1016/j.applthermaleng.2022.119939_b0095
  article-title: Syed Noman Danish, Chaochen Ma, A review of scroll expanders for organic Rankine cycle systems
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2014.05.094
– volume: 244
  start-page: 122586
  year: 2022
  ident: 10.1016/j.applthermaleng.2022.119939_b0085
  article-title: CFD analysis of the influence of variable wall thickness on the aerodynamic performance of small scale ORC scroll expanders
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122586
– volume: 179
  start-page: 115689
  year: 2020
  ident: 10.1016/j.applthermaleng.2022.119939_b0015
  article-title: Experimental assessment of the fluid charge distribution in an organic Rankine cycle (ORC) power system
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2020.115689
– volume: 171
  start-page: 581
  year: 2016
  ident: 10.1016/j.applthermaleng.2022.119939_b0060
  article-title: A dynamic organic Rankine cycle using a zeotropic mixture as the working fluid with composition tuning to match changing ambient conditions
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.03.014
– volume: 143
  start-page: 660
  year: 2018
  ident: 10.1016/j.applthermaleng.2022.119939_b0005
  article-title: A recent review of waste heat recovery by Organic Rankine Cycle
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.07.136
– volume: 166
  start-page: 474
  year: 2018
  ident: 10.1016/j.applthermaleng.2022.119939_b0070
  article-title: Issues, comparisons, turbine selections and applications – An overview in organic Rankine cycle
  publication-title: Energ. Conver. Manage.
  doi: 10.1016/j.enconman.2018.04.058
– volume: 148
  start-page: 261
  year: 2020
  ident: 10.1016/j.applthermaleng.2022.119939_b0055
  article-title: Thermodynamic performance evaluation of a geothermal ORC power plant
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.12.034
– volume: 57
  start-page: 1090
  year: 2016
  ident: 10.1016/j.applthermaleng.2022.119939_b0145
  article-title: Volumetric expanders for low grade heat and waste heat recovery applications
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.12.139
– volume: 200
  start-page: 117715
  year: 2022
  ident: 10.1016/j.applthermaleng.2022.119939_b0010
  article-title: Thermodynamic and techno-economic performance comparison of two-stage series organic Rankine cycle and organic Rankine flash cycle for geothermal power generation from hot dry rock
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2021.117715
– volume: 165
  start-page: 769
  year: 2018
  ident: 10.1016/j.applthermaleng.2022.119939_b0045
  article-title: Experimental study on the net efficiency of an Organic Rankine Cycle with single screw expander in different seasons
  publication-title: Energy
  doi: 10.1016/j.energy.2018.09.013
– volume: 222
  start-page: 120007
  year: 2021
  ident: 10.1016/j.applthermaleng.2022.119939_b0035
  article-title: Introducing machine learning and hybrid algorithm for prediction and optimization of multistage centrifugal pump in an ORC system
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120007
– volume: 123
  start-page: 353
  year: 2017
  ident: 10.1016/j.applthermaleng.2022.119939_b0050
  article-title: Thermo-economic comparison of air-cooled and cooling tower based Organic Rankine Cycle (ORC) with R245fa and R1233zde as candidate working fluids for different geographical climate conditions
  publication-title: Energy
  doi: 10.1016/j.energy.2017.01.134
SSID ssj0012874
Score 2.4209318
Snippet •A model of ORC in variable condensing ambient conditions was developed.•Using quasi two-stage expander to improve the cross-seasonal performance of ORC.•The...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 119939
SubjectTerms Cooling system
Cross-seasonal performance
Organic Rankine cycle
Quasi two-stage expansion
Title Simulations on organic Rankine cycle with quasi two-stage expander under cross-seasonal ambient conditions
URI https://dx.doi.org/10.1016/j.applthermaleng.2022.119939
Volume 222
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5FQfQgPvFNDr3GNpvNPvAgIkpV7EEt9LYk2VlZsQ-1Rb34253Z3dYKHgpe9rBsQpgNM9-XzMzHWB2US8MsVSLU1gkftBMGYjqGi4xxfmDDlG50b9tBq-Nfd3W3xs4ntTCUVln5_tKnF966etOorNkY5nnjXiodY_iTHsawKIip0Nz3Q9rlx1_TNA9J_dwL0qVjQV8vsfpPjhddEhPO6hmSLUG26HnoQzBkx3-HqZnQc7nGVivMyM_KZa2zGvQ32MpMJ8FN9nSf9yohrjc-6PNSrMnxO0PSCMDdJ47kdOjKX8bmLeej94FAYPgIHD6GRYULHxfPYj2Cjg4Jo3PTs1QxyZE2p2V21xbrXF48nLdEJaMgnFLNkUilM05GzmVaOkRYIKUJZGodMh2pTCatjjJprG5CU6YQEYKCAIlMhOTQ-KHaZgv9QR92GDdl51AFYBHJIHMxYJHweDpFoCcz2GUnE6slruoxTlIXz8kkmewp-W3zhGyelDbfZXo6elj22phz3OnkByW_9k6CYWGuGfb-PcM-WyYh-iI7TR-whdHrGA4RrozsUbEfj9ji2dVNq_0Ny__vrw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RkFo4IPpAQIH6sD26i5M4mwghhIDVUhYOBSRuqe1M0CL2Absr4NI_xR9kJg9YJA5IFZccEtmyPjsz32ePZwBq6Lu0kaW-bGjrZIDaSYMxb8NFxrggtI2UT3SPjsPWWfD7XJ9PwUN1F4bDKkvbX9j03FqXb-olmvVBp1M_Ub6Oyf0pj3xYFMZVZOUh3t-SbhtuHezRJP_0vOb-6W5LlqUFpCMBP5KpcsapyLlMK0esA5UyoUqtI_avfJMpq6NMGas3cEOlGDGrwJDIfUSCyQQNn_r9ADMBmQsum_Dr31NcieIE8rnK07Hk4X2E2nNQGZ9KM7HrGq6TQvLU88hoEUeIX_eLE76uuQDzJUkVOwUOn2EKe19gbiJ14Ve4POl0y8pfQ9HviaI6lBN_DNdiQOHuqaXgXV5xPTbDjhjd9iUx0QsUeDfIr9SIcf7MxyN5r5JFgTBdy1c0Ben0tAgn-wZn7wLuIkz3-j1cAmGKVKU-oiXqRFLJoCWF5emUmKXKcBk2K9QSVyY159oaV0kVvXaZvMQ8YcyTAvNl0E-tB0Vyjze2264mKHmxWBPyQ2_qYeW_e_gBn1qnR-2kfXB8-B1m6Yufh8bpVZge3YxxjbjSyK7na1PA3_f-GR4BbYAq3g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulations+on+organic+Rankine+cycle+with+quasi+two-stage+expander+under+cross-seasonal+ambient+conditions&rft.jtitle=Applied+thermal+engineering&rft.au=Wang%2C+Hai-Xiao&rft.au=Lei%2C+Biao&rft.au=Wu%2C+Yu-Ting&rft.date=2023-03-05&rft.issn=1359-4311&rft.volume=222&rft.spage=119939&rft_id=info:doi/10.1016%2Fj.applthermaleng.2022.119939&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_applthermaleng_2022_119939
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon