New explicit group iterative methods in the solution of three dimensional hyperbolic telegraph equations

In this paper, new group iterative numerical schemes based on the centred and rotated (skewed) seven-point finite difference discretisations are proposed for the solution of a three dimensional second order hyperbolic telegraph equation, subject to specific initial and Dirichlet boundary conditions....

Full description

Saved in:
Bibliographic Details
Published inJournal of computational physics Vol. 294; pp. 382 - 404
Main Authors Kew, Lee Ming, Ali, Norhashidah Hj. Mohd
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.08.2015
Subjects
Online AccessGet full text
ISSN0021-9991
1090-2716
DOI10.1016/j.jcp.2015.03.052

Cover

Loading…
Abstract In this paper, new group iterative numerical schemes based on the centred and rotated (skewed) seven-point finite difference discretisations are proposed for the solution of a three dimensional second order hyperbolic telegraph equation, subject to specific initial and Dirichlet boundary conditions. Both schemes are shown to be of second order accuracies and unconditionally stable. The scheme derived from the rotated grid stencil results in a reduced linear system with lower computational complexity compared to the scheme derived from the centred approximation formula. A comparative study with other common point iterative methods based on the seven-point centred difference approximation together with their computational complexity analyses is also presented.
AbstractList In this paper, new group iterative numerical schemes based on the centred and rotated (skewed) seven-point finite difference discretisations are proposed for the solution of a three dimensional second order hyperbolic telegraph equation, subject to specific initial and Dirichlet boundary conditions. Both schemes are shown to be of second order accuracies and unconditionally stable. The scheme derived from the rotated grid stencil results in a reduced linear system with lower computational complexity compared to the scheme derived from the centred approximation formula. A comparative study with other common point iterative methods based on the seven-point centred difference approximation together with their computational complexity analyses is also presented.
Author Ali, Norhashidah Hj. Mohd
Kew, Lee Ming
Author_xml – sequence: 1
  givenname: Lee Ming
  surname: Kew
  fullname: Kew, Lee Ming
  email: leeming_kew@hotmail.com
– sequence: 2
  givenname: Norhashidah Hj. Mohd
  orcidid: 0000-0002-2060-611X
  surname: Ali
  fullname: Ali, Norhashidah Hj. Mohd
  email: shidah_ali@usm.my
BookMark eNp9kE9P3DAQxa2KSl0oH4Cbj1wSxvlnWz0hRAEJ0Us5W44zJl5l42A7UL493i4nDpxGM3q_p3nvmBzNfkZCzhiUDFh3sS23ZikrYG0JdQlt9Y1sGEgoKs66I7IBqFghpWQ_yHGMWwAQbSM2ZHzAV4r_lskZl-hT8OtCXcKgk3tBusM0-iFSN9M0Io1-WpPzM_U27wGRDm6Hc8wnPdHxbcHQ--xEE074FPQyUnxe9R6JP8l3q6eIpx_zhDz-vv57dVvc_7m5u7q8L0xdQypM38q-MjlAz63kokfObCe6vmZGoGWDNI1FI3VTDcgFH3rL2lbIQdedrVDUJ-T84LsE_7xiTGrnosFp0jP6NSrGmZAcoGmylB-kJvgYA1qVO_j_bQraTYqB2nertip3q_bdKqhVfi2T7BO5BLfT4e1L5teBwZz-xWFQ0TicDQ4uoElq8O4L-h18_Zb9
CitedBy_id crossref_primary_10_1080_23311835_2017_1412241
crossref_primary_10_1016_j_aej_2021_01_008
crossref_primary_10_3934_math_2022868
crossref_primary_10_1016_j_camwa_2016_08_003
crossref_primary_10_3934_math_2023416
crossref_primary_10_1186_s13662_019_2238_6
crossref_primary_10_1186_s13662_020_02717_7
crossref_primary_10_1186_s13662_020_03061_6
crossref_primary_10_3934_math_2022134
crossref_primary_10_3934_math_2023697
crossref_primary_10_1016_j_camwa_2018_02_018
crossref_primary_10_1007_s40995_024_01659_z
crossref_primary_10_1016_j_amc_2017_06_015
crossref_primary_10_1002_num_22744
crossref_primary_10_1515_ijnsns_2020_0166
crossref_primary_10_1007_s12190_024_02321_y
crossref_primary_10_3390_sym13112078
Cites_doi 10.1002/num.20442
10.1002/num.1034
10.1080/00207160801965271
10.1002/num.20341
10.1002/num.20306
10.1080/0020716031000112312
10.1002/num.20357
10.1016/j.amc.2006.09.057
10.1016/j.jcp.2012.06.025
10.1016/j.amc.2003.12.135
10.1016/j.matcom.2005.10.001
10.1080/00207160211918
10.1002/num.20382
10.1016/j.enganabound.2009.10.010
10.1016/S0096-3003(03)00595-2
10.1002/num.20295
10.1155/S1048953398000021
10.1016/S0893-9659(04)90019-5
10.1063/1.369258
ContentType Journal Article
Copyright 2015 Elsevier Inc.
Copyright_xml – notice: 2015 Elsevier Inc.
DBID AAYXX
CITATION
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.jcp.2015.03.052
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1090-2716
EndPage 404
ExternalDocumentID 10_1016_j_jcp_2015_03_052
S0021999115002077
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFRF
ABJNI
ABMAC
ABNEU
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
IHE
J1W
K-O
KOM
LG5
LX9
LZ4
M37
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSQ
SSV
SSZ
T5K
TN5
UPT
YQT
ZMT
ZU3
~02
~G-
29K
6TJ
8WZ
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CAG
CITATION
COF
D-I
FGOYB
G-2
HME
HMV
HZ~
NDZJH
R2-
SBC
SEW
SHN
SPG
SSH
T9H
UQL
WUQ
ZY4
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c330t-cb59b2c052b7f978be71f686b31c8ef1d9c4fec9a42de787dbf15589da36f2e83
IEDL.DBID .~1
ISSN 0021-9991
IngestDate Thu Jul 10 18:08:49 EDT 2025
Tue Jul 01 01:54:26 EDT 2025
Thu Apr 24 23:12:48 EDT 2025
Fri Feb 23 02:18:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Explicit group methods
Finite difference
Rotated grids
Three dimensional telegraph equations
Unconditionally stable
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c330t-cb59b2c052b7f978be71f686b31c8ef1d9c4fec9a42de787dbf15589da36f2e83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2060-611X
PQID 1718970044
PQPubID 23500
PageCount 23
ParticipantIDs proquest_miscellaneous_1718970044
crossref_citationtrail_10_1016_j_jcp_2015_03_052
crossref_primary_10_1016_j_jcp_2015_03_052
elsevier_sciencedirect_doi_10_1016_j_jcp_2015_03_052
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-08-01
2015-08-00
20150801
PublicationDateYYYYMMDD 2015-08-01
PublicationDate_xml – month: 08
  year: 2015
  text: 2015-08-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of computational physics
PublicationYear 2015
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Dehghan, Mohebbi (br0050) 2008; 24
Boyce, DiPrima (br0010) 1977
Jain (br0260) 1987
Dehghan, Shokri (br0090) 2008; 24
Evans, Bulut (br0140) 2003; 80
Jordan, Puri (br0020) 1999; 85
Evans (br0110) 1995; 56
Evans (br0120) 1997
Mohanty (br0160) 2005; 162
Gao, Chi (br0130) 2007; 187
Mohanty (br0150) 2004; 152
Dehghan, Mohebbi (br0070) 2009; 25
Mohanty, Jain (br0200) 2001; 17
Banasiak, Mika (br0030) 1998; 11
Dehghan, Ghesmati (br0100) 2010; 34
Ali, Kew (br0220) 2012; 231
Strikwerda (br0250) 2004
Mohanty (br0190) 2004; 17
Kew, Ali (br0230) 2010
Mohanty (br0170) 2009; 86
Smith (br0240) 1978
Dehghan, Lakestani (br0060) 2009; 25
Saadatmandi, Dehghan (br0180) 2010; 26
Dehghan (br0040) 2006; 71
Mohanty, Jain, Arora (br0210) 2002; 79
Dehghan, Shokri (br0080) 2008; 25
Mohanty (10.1016/j.jcp.2015.03.052_br0210) 2002; 79
Smith (10.1016/j.jcp.2015.03.052_br0240) 1978
Jain (10.1016/j.jcp.2015.03.052_br0260) 1987
Jordan (10.1016/j.jcp.2015.03.052_br0020) 1999; 85
Banasiak (10.1016/j.jcp.2015.03.052_br0030) 1998; 11
Evans (10.1016/j.jcp.2015.03.052_br0110) 1995; 56
Boyce (10.1016/j.jcp.2015.03.052_br0010) 1977
Saadatmandi (10.1016/j.jcp.2015.03.052_br0180) 2010; 26
Ali (10.1016/j.jcp.2015.03.052_br0220) 2012; 231
Mohanty (10.1016/j.jcp.2015.03.052_br0170) 2009; 86
Dehghan (10.1016/j.jcp.2015.03.052_br0050) 2008; 24
Dehghan (10.1016/j.jcp.2015.03.052_br0090) 2008; 24
Strikwerda (10.1016/j.jcp.2015.03.052_br0250) 2004
Dehghan (10.1016/j.jcp.2015.03.052_br0070) 2009; 25
Dehghan (10.1016/j.jcp.2015.03.052_br0100) 2010; 34
Dehghan (10.1016/j.jcp.2015.03.052_br0080) 2008; 25
Mohanty (10.1016/j.jcp.2015.03.052_br0150) 2004; 152
Mohanty (10.1016/j.jcp.2015.03.052_br0190) 2004; 17
Evans (10.1016/j.jcp.2015.03.052_br0120) 1997
Mohanty (10.1016/j.jcp.2015.03.052_br0200) 2001; 17
Gao (10.1016/j.jcp.2015.03.052_br0130) 2007; 187
Mohanty (10.1016/j.jcp.2015.03.052_br0160) 2005; 162
Kew (10.1016/j.jcp.2015.03.052_br0230) 2010
Dehghan (10.1016/j.jcp.2015.03.052_br0060) 2009; 25
Evans (10.1016/j.jcp.2015.03.052_br0140) 2003; 80
Dehghan (10.1016/j.jcp.2015.03.052_br0040) 2006; 71
References_xml – volume: 25
  start-page: 232
  year: 2009
  end-page: 243
  ident: br0070
  article-title: High order implicit collocation method for the solution of two dimensional linear hyperbolic equation
  publication-title: Numer. Methods Partial Differ. Equ.
– volume: 34
  start-page: 324
  year: 2010
  end-page: 336
  ident: br0100
  article-title: Combination of meshless local weak and strong (MLWS) forms to solve the two dimensional hyperbolic telegraph equation
  publication-title: Eng. Anal. Bound. Elem.
– volume: 11
  start-page: 9
  year: 1998
  end-page: 28
  ident: br0030
  article-title: Singularly perturbed telegraph equations with applications in the random walk theory
  publication-title: J. Appl. Math. Stoch. Anal.
– year: 2004
  ident: br0250
  article-title: Finite Difference Schemes and Partial Differential Equations
– volume: 24
  start-page: 1080
  year: 2008
  end-page: 1093
  ident: br0090
  article-title: A numerical method for solving the hyperbolic telegraph equation
  publication-title: Numer. Methods Partial Differ. Equ.
– year: 1977
  ident: br0010
  article-title: Differential Equations Elementary and Boundary Value Problems
– volume: 71
  start-page: 16
  year: 2006
  end-page: 30
  ident: br0040
  article-title: Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices
  publication-title: Math. Comput. Simul.
– volume: 25
  start-page: 494
  year: 2008
  end-page: 506
  ident: br0080
  article-title: A meshless method for numerical solution of a linear hyperbolic equation with variable coefficients in two space dimensions
  publication-title: Numer. Methods Partial Differ. Equ.
– volume: 79
  start-page: 133
  year: 2002
  end-page: 142
  ident: br0210
  article-title: An unconditionally stable ADI method for the linear hyperbolic equation in three space dimensions
  publication-title: Int. J. Comput. Math.
– year: 1978
  ident: br0240
  article-title: Numerical Solution of Partial Differential Equations: Finite Difference Methods
– volume: 85
  start-page: 1273
  year: 1999
  end-page: 1282
  ident: br0020
  article-title: Digital signal propagation in dispersive media
  publication-title: J. Appl. Phys.
– volume: 80
  start-page: 1289
  year: 2003
  end-page: 1297
  ident: br0140
  article-title: The numerical solution of the telegraph equation by the alternating group explicit (AGE) method
  publication-title: Int. J. Comput. Math.
– year: 1997
  ident: br0120
  article-title: Group Explicit Methods for the Numerical Solution of Partial Differential Equations
– volume: 162
  start-page: 549
  year: 2005
  end-page: 557
  ident: br0160
  article-title: An operator splitting technique for an unconditionally stable difference method for a linear three space dimensional hyperbolic equation with variable coefficients
  publication-title: Appl. Math. Comput.
– volume: 86
  start-page: 2061
  year: 2009
  end-page: 2071
  ident: br0170
  article-title: New unconditionally stable difference scheme for the solution of multi-dimensional telegraphic equations
  publication-title: Int. J. Comput. Math.
– volume: 56
  start-page: 245
  year: 1995
  end-page: 252
  ident: br0110
  article-title: Group explicit methods for the numerical solution of first-order hyperbolic problems in one dependent variable
  publication-title: Int. J. Comput. Math.
– volume: 152
  start-page: 799
  year: 2004
  end-page: 806
  ident: br0150
  article-title: An operator splitting method for an unconditionally stable difference scheme for a linear hyperbolic equation with variable coefficients in two space dimensions
  publication-title: Appl. Math. Comput.
– volume: 26
  start-page: 239
  year: 2010
  end-page: 252
  ident: br0180
  article-title: Numerical solution of hyperbolic telegraph equation using the Chebyshev tau method
  publication-title: Numer. Methods Partial Differ. Equ.
– year: 1987
  ident: br0260
  article-title: Numerical Solution of Differential Equations
– volume: 17
  start-page: 684
  year: 2001
  end-page: 688
  ident: br0200
  article-title: An unconditionally stable alternating direction implicit scheme for the two space dimensional linear hyperbolic equation
  publication-title: Numer. Methods Partial Differ. Equ.
– volume: 231
  start-page: 6953
  year: 2012
  end-page: 6968
  ident: br0220
  article-title: New explicit group iterative methods in the solution of two dimensional hyperbolic equations
  publication-title: J. Comput. Phys.
– volume: 25
  start-page: 931
  year: 2009
  end-page: 938
  ident: br0060
  article-title: The use of Chebyshev cardinal functions for solution of the second-order one-dimensional telegraph equation
  publication-title: Numer. Methods Partial Differ. Equ.
– volume: 17
  start-page: 101
  year: 2004
  end-page: 105
  ident: br0190
  article-title: An unconditionally stable difference scheme for the one-space-dimensional linear hyperbolic equation
  publication-title: Appl. Math. Lett.
– volume: 187
  start-page: 1272
  year: 2007
  end-page: 1276
  ident: br0130
  article-title: Unconditionally stable difference schemes for a one-space-dimensional linear hyperbolic equation
  publication-title: Appl. Math. Comput.
– start-page: 1770
  year: 2010
  end-page: 1775
  ident: br0230
  article-title: Explicit group iterative methods for the solution of telegraph equations
  publication-title: The 2010 International Conference of Applied and Engineering Mathematics World Congress on Engineering 2010
– volume: 24
  start-page: 897
  year: 2008
  end-page: 910
  ident: br0050
  article-title: The combination of collocation finite difference and multigrid methods for solution of the two-dimensional wave equation
  publication-title: Numer. Methods Partial Differ. Equ.
– year: 1987
  ident: 10.1016/j.jcp.2015.03.052_br0260
– volume: 26
  start-page: 239
  year: 2010
  ident: 10.1016/j.jcp.2015.03.052_br0180
  article-title: Numerical solution of hyperbolic telegraph equation using the Chebyshev tau method
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/num.20442
– volume: 17
  start-page: 684
  issue: 6
  year: 2001
  ident: 10.1016/j.jcp.2015.03.052_br0200
  article-title: An unconditionally stable alternating direction implicit scheme for the two space dimensional linear hyperbolic equation
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/num.1034
– volume: 86
  start-page: 2061
  issue: 12
  year: 2009
  ident: 10.1016/j.jcp.2015.03.052_br0170
  article-title: New unconditionally stable difference scheme for the solution of multi-dimensional telegraphic equations
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207160801965271
– volume: 25
  start-page: 232
  issue: 1
  year: 2009
  ident: 10.1016/j.jcp.2015.03.052_br0070
  article-title: High order implicit collocation method for the solution of two dimensional linear hyperbolic equation
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/num.20341
– volume: 24
  start-page: 1080
  year: 2008
  ident: 10.1016/j.jcp.2015.03.052_br0090
  article-title: A numerical method for solving the hyperbolic telegraph equation
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/num.20306
– volume: 80
  start-page: 1289
  issue: 10
  year: 2003
  ident: 10.1016/j.jcp.2015.03.052_br0140
  article-title: The numerical solution of the telegraph equation by the alternating group explicit (AGE) method
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/0020716031000112312
– volume: 25
  start-page: 494
  year: 2008
  ident: 10.1016/j.jcp.2015.03.052_br0080
  article-title: A meshless method for numerical solution of a linear hyperbolic equation with variable coefficients in two space dimensions
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/num.20357
– year: 1978
  ident: 10.1016/j.jcp.2015.03.052_br0240
– year: 2004
  ident: 10.1016/j.jcp.2015.03.052_br0250
– volume: 187
  start-page: 1272
  year: 2007
  ident: 10.1016/j.jcp.2015.03.052_br0130
  article-title: Unconditionally stable difference schemes for a one-space-dimensional linear hyperbolic equation
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2006.09.057
– volume: 231
  start-page: 6953
  year: 2012
  ident: 10.1016/j.jcp.2015.03.052_br0220
  article-title: New explicit group iterative methods in the solution of two dimensional hyperbolic equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2012.06.025
– year: 1977
  ident: 10.1016/j.jcp.2015.03.052_br0010
– volume: 162
  start-page: 549
  year: 2005
  ident: 10.1016/j.jcp.2015.03.052_br0160
  article-title: An operator splitting technique for an unconditionally stable difference method for a linear three space dimensional hyperbolic equation with variable coefficients
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2003.12.135
– volume: 71
  start-page: 16
  year: 2006
  ident: 10.1016/j.jcp.2015.03.052_br0040
  article-title: Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2005.10.001
– volume: 79
  start-page: 133
  year: 2002
  ident: 10.1016/j.jcp.2015.03.052_br0210
  article-title: An unconditionally stable ADI method for the linear hyperbolic equation in three space dimensions
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207160211918
– start-page: 1770
  year: 2010
  ident: 10.1016/j.jcp.2015.03.052_br0230
  article-title: Explicit group iterative methods for the solution of telegraph equations
– volume: 25
  start-page: 931
  year: 2009
  ident: 10.1016/j.jcp.2015.03.052_br0060
  article-title: The use of Chebyshev cardinal functions for solution of the second-order one-dimensional telegraph equation
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/num.20382
– volume: 34
  start-page: 324
  issue: 4
  year: 2010
  ident: 10.1016/j.jcp.2015.03.052_br0100
  article-title: Combination of meshless local weak and strong (MLWS) forms to solve the two dimensional hyperbolic telegraph equation
  publication-title: Eng. Anal. Bound. Elem.
  doi: 10.1016/j.enganabound.2009.10.010
– volume: 152
  start-page: 799
  year: 2004
  ident: 10.1016/j.jcp.2015.03.052_br0150
  article-title: An operator splitting method for an unconditionally stable difference scheme for a linear hyperbolic equation with variable coefficients in two space dimensions
  publication-title: Appl. Math. Comput.
  doi: 10.1016/S0096-3003(03)00595-2
– volume: 24
  start-page: 897
  year: 2008
  ident: 10.1016/j.jcp.2015.03.052_br0050
  article-title: The combination of collocation finite difference and multigrid methods for solution of the two-dimensional wave equation
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/num.20295
– year: 1997
  ident: 10.1016/j.jcp.2015.03.052_br0120
– volume: 56
  start-page: 245
  issue: 3
  year: 1995
  ident: 10.1016/j.jcp.2015.03.052_br0110
  article-title: Group explicit methods for the numerical solution of first-order hyperbolic problems in one dependent variable
  publication-title: Int. J. Comput. Math.
– volume: 11
  start-page: 9
  issue: 1
  year: 1998
  ident: 10.1016/j.jcp.2015.03.052_br0030
  article-title: Singularly perturbed telegraph equations with applications in the random walk theory
  publication-title: J. Appl. Math. Stoch. Anal.
  doi: 10.1155/S1048953398000021
– volume: 17
  start-page: 101
  issue: 1
  year: 2004
  ident: 10.1016/j.jcp.2015.03.052_br0190
  article-title: An unconditionally stable difference scheme for the one-space-dimensional linear hyperbolic equation
  publication-title: Appl. Math. Lett.
  doi: 10.1016/S0893-9659(04)90019-5
– volume: 85
  start-page: 1273
  issue: 3
  year: 1999
  ident: 10.1016/j.jcp.2015.03.052_br0020
  article-title: Digital signal propagation in dispersive media
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.369258
SSID ssj0008548
Score 2.2659173
Snippet In this paper, new group iterative numerical schemes based on the centred and rotated (skewed) seven-point finite difference discretisations are proposed for...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 382
SubjectTerms Approximation
Complexity
Computation
Dirichlet problem
Explicit group methods
Finite difference
Iterative methods
Mathematical analysis
Mathematical models
Rotated grids
Three dimensional
Three dimensional telegraph equations
Unconditionally stable
Title New explicit group iterative methods in the solution of three dimensional hyperbolic telegraph equations
URI https://dx.doi.org/10.1016/j.jcp.2015.03.052
https://www.proquest.com/docview/1718970044
Volume 294
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZHWcGTEJtkN83mWIqlKvZkobcl-whtkbS2KXjytzuTTRQFe_CYsBs2s7Mz37Az3xByAx4HHKnhnjBMe5ynvicE454F1ySYjVlmsHb4edQdjvnjJJo0SL-uhcG0ysr2O5teWuvqTaeSZmc5m2GNb4g19AhpAPPEWFHOeYxafvfxneYhIu6sMaYiwOj6ZrPM8ZprpKwMopLnNAr_8k2_rHTpegYHZK_CjLTnlnVIGjY_IvsVfqTV6VwfkylYLGrf8UZ6VtCyXoM61mQwadT1il7TWU4B9NFa5-gig-eVtdQg0b8j6aBTCE9XCjmDaVF3pqD2zfGCr0_IeHD_0h96VScFTzPmF55WUaJCDb-o4gziRmXjIOuKrmKBFjYLTKJ5ZnWS8tBYOMJGZYAzRGJS1s1CK9gpaeaL3J4RGiQQ06iIm1gZgGImSVmsuG8CA6FaGMYt4tcylLqiGcduF6-yziebSxC7RLFLn0lYU4vcfk1ZOo6NbYN5vTHyh6JI8AHbpl3XmyjhAOGtSJrbxWYtA_DOCZL88_P_ffqC7OKTywq8JM1itbFXgFQK1S5VsU12eg9Pw9EnPhzpDQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50PejFt7g-I3gSim2TbtPjIsqujz0peAvNo-wu0l23XfDnO2lSQUEPHvtISSfJN9-QmS8Al-hx0JFqFnBNVcBYHgacUxYYdE2cmpQW2tYOP416gxd2_5q8rsBNWwtj0yo99jtMb9Da37n21ryeTya2xje2NfSW0iDnSdNVWLPqVEkH1vrDh8HoC5B5whwg22wEbNBubjZpXlNlVSujpJE6TeLf3NMPoG68z902bHraSPquZzuwYspd2PIUkvgFWu3BGEGLmA-7KT2pSVOyQZxwMqIaccdFV2RSEuR9pJ12ZFbg9cIYoq3Wv9PpIGOMUBfSygaTuj2cgph3Jw1e7cPL3e3zzSDwhykEitKwDpRMMhkr_EWZFhg6SpNGRY_3JI0UN0WkM8UKo7KcxdrgKtayQKrBM53TXhEbTg-gU85KcwgkyjCskQnTqdTIxnSW01SyUEcao7U4TrsQtjYUyiuN2wMv3kSbUjYVaHZhzS5CKrBPXbj6ajJ3Mht_vczagRHf5opAN_BXs4t2EAWuIbsxkpdmtqxEhA46szr_7Oh_nz6H9cHz06N4HI4ejmHDPnFJgifQqRdLc4rEpZZnfmJ-AjwV674
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+explicit+group+iterative+methods+in+the+solution+of+three+dimensional+hyperbolic+telegraph+equations&rft.jtitle=Journal+of+computational+physics&rft.au=Kew%2C+Lee+Ming&rft.au=Ali%2C+Norhashidah+Hj.+Mohd&rft.date=2015-08-01&rft.pub=Elsevier+Inc&rft.issn=0021-9991&rft.eissn=1090-2716&rft.volume=294&rft.spage=382&rft.epage=404&rft_id=info:doi/10.1016%2Fj.jcp.2015.03.052&rft.externalDocID=S0021999115002077
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon