Development of a continuous reheating furnace state-space model based on the finite volume method

This study developed a modeling approach of a continuous steel slab reheating furnace process as a particular case of spatially distributed parameter systems involving radiative heat transfer. The aim of the resulting mathematical model, which is both detailed and computationally tractable, is to se...

Full description

Saved in:
Bibliographic Details
Published inApplied thermal engineering Vol. 246; p. 122888
Main Authors Skopec, Pavel, Vyhlídal, Tomáš, Knobloch, Jan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study developed a modeling approach of a continuous steel slab reheating furnace process as a particular case of spatially distributed parameter systems involving radiative heat transfer. The aim of the resulting mathematical model, which is both detailed and computationally tractable, is to serve in prospective advanced process control (APC) and model-based optimization. The two-dimensional state-space model is introduced to accurately simulate the temperature distribution and dynamics, using the finite volume method (FVM) to incorporate essential heat transfer phenomena, including radiation, conduction, convection, advection, and simple combustion. The study presents a novel furnace measurement model that interprets temperature sensor readings (useful for state estimation), a benefit of the FVM treatment of radiative heat transfer. Strategies for linearization and model order reduction, such as balanced truncation, are proposed to facilitate real-time control. The simulation case study demonstrates the targeted capabilities of the model. The accuracy of the model is verified through comparisons with more complex computational fluid dynamics (CFD) software models. The study prioritizes theoretical modeling over empirical validation of a specific furnace unit, omitting experimental validation at this stage. •Introduced a detailed but fast state-space furnace model.•Modeling strategy tailored for future process control and optimization design.•Finite volume method deliberately applied for heat transfer, notably radiation.•Proposed innovative interpretation of the temperature sensor measurement.
AbstractList This study developed a modeling approach of a continuous steel slab reheating furnace process as a particular case of spatially distributed parameter systems involving radiative heat transfer. The aim of the resulting mathematical model, which is both detailed and computationally tractable, is to serve in prospective advanced process control (APC) and model-based optimization. The two-dimensional state-space model is introduced to accurately simulate the temperature distribution and dynamics, using the finite volume method (FVM) to incorporate essential heat transfer phenomena, including radiation, conduction, convection, advection, and simple combustion. The study presents a novel furnace measurement model that interprets temperature sensor readings (useful for state estimation), a benefit of the FVM treatment of radiative heat transfer. Strategies for linearization and model order reduction, such as balanced truncation, are proposed to facilitate real-time control. The simulation case study demonstrates the targeted capabilities of the model. The accuracy of the model is verified through comparisons with more complex computational fluid dynamics (CFD) software models. The study prioritizes theoretical modeling over empirical validation of a specific furnace unit, omitting experimental validation at this stage. •Introduced a detailed but fast state-space furnace model.•Modeling strategy tailored for future process control and optimization design.•Finite volume method deliberately applied for heat transfer, notably radiation.•Proposed innovative interpretation of the temperature sensor measurement.
ArticleNumber 122888
Author Knobloch, Jan
Skopec, Pavel
Vyhlídal, Tomáš
Author_xml – sequence: 1
  givenname: Pavel
  orcidid: 0000-0001-8812-4953
  surname: Skopec
  fullname: Skopec, Pavel
  email: pavel.skopec@fs.cvut.cz
  organization: Department of Instrumentation and Control Engineering, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, Prague, 160 00, Czech Republic
– sequence: 2
  givenname: Tomáš
  surname: Vyhlídal
  fullname: Vyhlídal, Tomáš
  email: tomas.vyhlidal@fs.cvut.cz
  organization: Department of Instrumentation and Control Engineering, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, Prague, 160 00, Czech Republic
– sequence: 3
  givenname: Jan
  surname: Knobloch
  fullname: Knobloch, Jan
  email: jknobloch@ptsw.cz
  organization: PT SOLUTIONS WORLDWIDE spol. s r.o., Na Stahlavce 9, Prague, 160 00, Czech Republic
BookMark eNqNkDFPwzAQhT0UibbwHzywpthxkroSCxQKSJVYYLYu9qV1ldiR7VTi35OqLDB1ujvp3rt734xMnHdIyB1nC854dX9YQN-3aY-hgxbdbpGzvFjwPJdSTsiUi3KVFYLzazKL8cAYz-WymBJ4xiO2vu_QJeobClR7l6wb_BBpwD3COOxoMwQHGmlMkDCL_anvvMGW1hDRUO_oeJo21tmE9OjboRsXMO29uSFXDbQRb3_rnHxtXj7Xb9n24_V9_bjNtBAsZVoyXmtRVmW5WkojgHPJCig4bxpTyTyvSyglCCgF40tZy7o2uW5kURlZgDZiTp7Ovjr4GAM2StvxWzvGCWBbxZk6gVIH9ReUOoFSZ1CjycM_kz7YDsL3pfLNWY5j0KPFoKK26DQaG1AnZby9zOgH3OqVAA
CitedBy_id crossref_primary_10_1016_j_applthermaleng_2025_125565
crossref_primary_10_3390_math12152370
crossref_primary_10_1016_j_applthermaleng_2024_125320
crossref_primary_10_1016_j_applthermaleng_2024_124934
Cites_doi 10.1016/j.applthermaleng.2015.04.029
10.1016/j.ijthermalsci.2023.108640
10.1016/j.ijheatmasstransfer.2010.05.002
10.1016/j.applthermaleng.2018.02.022
10.1016/j.ijheatmasstransfer.2010.07.029
10.1109/ACCESS.2021.3091149
10.1016/j.psep.2021.01.045
10.1007/BF02831634
10.1016/j.applthermaleng.2012.03.012
10.1016/j.conengprac.2023.105611
10.1016/j.ijheatmasstransfer.2007.02.023
10.3390/app10051731
10.1016/j.csite.2020.100608
10.1016/j.applthermaleng.2015.04.020
10.1016/j.applthermaleng.2018.01.017
10.1080/10407799308914901
10.1080/00207178408933239
10.1016/j.applthermaleng.2017.01.028
10.1016/j.jprocont.2023.01.013
10.1080/10407799408914927
10.23919/ECC.2009.7074565
10.1016/0967-0661(96)83721-X
10.1080/13873950902927683
10.1016/j.ifacol.2018.04.015
10.1016/j.ifacol.2019.11.804
10.1016/j.conengprac.2012.11.012
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.applthermaleng.2024.122888
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_applthermaleng_2024_122888
S1359431124005568
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
JARJE
JJJVA
KOM
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FGOYB
HZ~
M41
R2-
SSH
ID FETCH-LOGICAL-c330t-c801bc35655978d3a11804a411ffd6822b5a58a3a530178b8bbd2cf846d84acd3
IEDL.DBID .~1
ISSN 1359-4311
IngestDate Tue Jul 01 02:05:58 EDT 2025
Thu Apr 24 22:55:49 EDT 2025
Sat May 04 15:43:15 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords CFD
Control
Reduction
Model
FVM
Furnace
Radiative heat transfer
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c330t-c801bc35655978d3a11804a411ffd6822b5a58a3a530178b8bbd2cf846d84acd3
ORCID 0000-0001-8812-4953
ParticipantIDs crossref_citationtrail_10_1016_j_applthermaleng_2024_122888
crossref_primary_10_1016_j_applthermaleng_2024_122888
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2024_122888
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
2024-06-00
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied thermal engineering
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Antoulas (b14) 2005
Zhao, Ma, Zayed, Elsheikh, Li, Yan, Wang (b19) 2021; 147
Trinks, Mawhinney, Shannon, Garvey, Reed (b40) 2004
Modest (b32) 2013
J. Roubal, D. Pachner, V. Havlena, T. Haniš, Analysis of the Rotary Kiln Model Rotary Kiln Model Rotary Kiln Model, in: Proceedings of the European Control Conference 2009, Budapest, Hungary, 2009, pp. 790–797.
Bao, Zhang, Guo, Li, Zhang (b27) 2023; 123
(b38) 2020
Pyta, Deutschmann, Rötzer, Abel, Kugi (b18) 2019; 52
Li, Li, Wei, Ji, Yi (b33) 2024; 195
Ahmed, T’Jollyn, Lecompte, Demeester, Beyne, Schoonjans, De Raad, De Paepe (b10) 2023; 40
Chai, Lee, Patankar (b30) 1994; 26
Wild, Meurer, Kugi (b11) 2009; 15
Skopec, Vyhlidal, Knobloch (b35) 2019
Tang, Wu, Bai, Wang, Bodnar, Zhou (b6) 2018; 132
P. Skopec, J. Knobloch, T. Vyhlídal, G. Simeunovic, M. Svantner, M. Honner, Comprehensive control of a reheating furnace, in: AISTech - Iron and Steel Technology Conference Proceedings, 2012, pp. 2053–2063.
Minkowycz, Sparrow, Murthy, Abraham (b37) 2006
Casal, Porteiro, Míguez, Vázquez (b8) 2015; 86
Chapman, Ramadhyani, Viskanta (b25) 1990; 8
Steinboeck, Wild, Kiefer, Kugi (b12) 2010; 53
Jang, Huang (b3) 2015; 85
Cengel (b31) 2014
Švantner, Študent, Veselý (b5) 2020; 18
Han, Chang, Kim (b7) 2010; 53
Rawlings, Mayne, Diehl (b2) 2017
D. Wild, T. Meurer, A. Kugi, O. Fichet, K. Eberwein, Nonlinear observer design for pusher-type reheating furnaces, in: Proceedings of the 3rd International Steel Conference on New Developments in Metallurgical Process Technologies, DÜSseldorf, Germany, 2007, pp. 790–797.
(b39) 2020
Mayr, Prieler, Demuth, Moderer, Hochenauer (b9) 2017; 115
Roetzer, Aschauer, Steinboeck, Kugi (b17) 2018; 51
Martín, Meis, Mourenza, Rivas, Varas (b23) 2012; 47
Zhou, Doyle, Glover (b1) 1996; 4
Patankar (b36) 1980
Hu, Tan, Broughton, Roach, Varga (b22) 2018; 135
Kavak, Yalçın (b26) 2023; 139
Salcedo-Hernández, Rivas-Perez, Sotomayor-Moriano (b28) 2020; 10
Chui, Raithby (b29) 1993; 23
Steinboeck, Wild, Kugi (b21) 2013; 21
Yang, Liu, Luo (b4) 2021; 9
Kim (b13) 2007; 50
Glover (b15) 1984; 39
Ko, Kim, Yoon, Lim, Yang, Jun (b24) 2000; vol. 4
Cengel (10.1016/j.applthermaleng.2024.122888_b31) 2014
Chapman (10.1016/j.applthermaleng.2024.122888_b25) 1990; 8
Han (10.1016/j.applthermaleng.2024.122888_b7) 2010; 53
Salcedo-Hernández (10.1016/j.applthermaleng.2024.122888_b28) 2020; 10
Chai (10.1016/j.applthermaleng.2024.122888_b30) 1994; 26
10.1016/j.applthermaleng.2024.122888_b34
Patankar (10.1016/j.applthermaleng.2024.122888_b36) 1980
Skopec (10.1016/j.applthermaleng.2024.122888_b35) 2019
Kim (10.1016/j.applthermaleng.2024.122888_b13) 2007; 50
(10.1016/j.applthermaleng.2024.122888_b38) 2020
Zhou (10.1016/j.applthermaleng.2024.122888_b1) 1996; 4
Casal (10.1016/j.applthermaleng.2024.122888_b8) 2015; 86
Antoulas (10.1016/j.applthermaleng.2024.122888_b14) 2005
Trinks (10.1016/j.applthermaleng.2024.122888_b40) 2004
Yang (10.1016/j.applthermaleng.2024.122888_b4) 2021; 9
Li (10.1016/j.applthermaleng.2024.122888_b33) 2024; 195
Jang (10.1016/j.applthermaleng.2024.122888_b3) 2015; 85
Hu (10.1016/j.applthermaleng.2024.122888_b22) 2018; 135
Tang (10.1016/j.applthermaleng.2024.122888_b6) 2018; 132
Pyta (10.1016/j.applthermaleng.2024.122888_b18) 2019; 52
Roetzer (10.1016/j.applthermaleng.2024.122888_b17) 2018; 51
Rawlings (10.1016/j.applthermaleng.2024.122888_b2) 2017
Martín (10.1016/j.applthermaleng.2024.122888_b23) 2012; 47
Wild (10.1016/j.applthermaleng.2024.122888_b11) 2009; 15
Mayr (10.1016/j.applthermaleng.2024.122888_b9) 2017; 115
Ahmed (10.1016/j.applthermaleng.2024.122888_b10) 2023; 40
(10.1016/j.applthermaleng.2024.122888_b39) 2020
Steinboeck (10.1016/j.applthermaleng.2024.122888_b12) 2010; 53
Zhao (10.1016/j.applthermaleng.2024.122888_b19) 2021; 147
Glover (10.1016/j.applthermaleng.2024.122888_b15) 1984; 39
Chui (10.1016/j.applthermaleng.2024.122888_b29) 1993; 23
10.1016/j.applthermaleng.2024.122888_b20
Minkowycz (10.1016/j.applthermaleng.2024.122888_b37) 2006
Kavak (10.1016/j.applthermaleng.2024.122888_b26) 2023; 139
Modest (10.1016/j.applthermaleng.2024.122888_b32) 2013
Švantner (10.1016/j.applthermaleng.2024.122888_b5) 2020; 18
10.1016/j.applthermaleng.2024.122888_b16
Steinboeck (10.1016/j.applthermaleng.2024.122888_b21) 2013; 21
Ko (10.1016/j.applthermaleng.2024.122888_b24) 2000; vol. 4
Bao (10.1016/j.applthermaleng.2024.122888_b27) 2023; 123
References_xml – year: 2020
  ident: b38
  article-title: Fluent User’s Guide, Fluent 2020 R1
– reference: J. Roubal, D. Pachner, V. Havlena, T. Haniš, Analysis of the Rotary Kiln Model Rotary Kiln Model Rotary Kiln Model, in: Proceedings of the European Control Conference 2009, Budapest, Hungary, 2009, pp. 790–797.
– volume: 53
  start-page: 3855
  year: 2010
  end-page: 3861
  ident: b7
  article-title: A numerical analysis of slab heating characteristics in a walking beam type reheating furnace
  publication-title: Int. J. Heat Mass Transfer
– volume: 147
  start-page: 1209
  year: 2021
  end-page: 1228
  ident: b19
  article-title: Industrial reheating furnaces: A review of energy efficiency assessments, waste heat recovery potentials, heating process characteristics and perspectives for steel industry
  publication-title: Process Saf. Environ. Prot.
– year: 2017
  ident: b2
  publication-title: Model Predictive Control: Theory, Computation, and Design
– volume: 18
  year: 2020
  ident: b5
  article-title: Continuous walking-beam furnace 3D zonal model and direct thermal-box barrier based temperature measurement
  publication-title: Case Stud. Therm. Eng.
– year: 2014
  ident: b31
  article-title: Heat and Mass Transfer: Fundamentals and Applications
– year: 2004
  ident: b40
  article-title: Industrial Furnaces
– volume: 195
  year: 2024
  ident: b33
  article-title: Reduced integration coupled with Monte Carlo ratios method for zone modeling of radiative heat transfer in reheating furnaces
  publication-title: Int. J. Therm. Sci.
– year: 1980
  ident: b36
  article-title: Numerical Heat Transfer and Fluid Flow
– volume: 115
  start-page: 986
  year: 2017
  end-page: 994
  ident: b9
  article-title: CFD analysis of a pusher type reheating furnace and the billet heating characteristic
  publication-title: Appl. Therm. Eng.
– volume: 123
  start-page: 108
  year: 2023
  end-page: 122
  ident: b27
  article-title: Multivariate linear-regression variable parameter spatio-temporal zoning model for temperature prediction in steel rolling reheating furnace
  publication-title: J. Process Control
– volume: 51
  start-page: 819
  year: 2018
  end-page: 824
  ident: b17
  article-title: A computationally efficient 3D mathematical model of a molybdenum batch-reheating furnace
  publication-title: IFAC-PapersOnLine
– volume: 47
  start-page: 41
  year: 2012
  end-page: 53
  ident: b23
  article-title: Fast solution of direct and inverse design problems concerning furnace operation conditions in steel industry
  publication-title: Appl. Therm. Eng.
– start-page: 55
  year: 2019
  end-page: 61
  ident: b35
  article-title: Reheating furnace modeling and temperature estimation based on model order reduction
  publication-title: 2019 22nd International Conference on Process Control
– volume: 4
  start-page: 1189
  year: 1996
  end-page: 1190
  ident: b1
  article-title: Robust and optimal control
  publication-title: Control Eng. Pract.
– volume: 40
  year: 2023
  ident: b10
  article-title: Computationally efficient alternative to a full-scale transient simulation of a reheating furnace
  publication-title: Therm. Sci. Eng. Prog.
– volume: 52
  start-page: 346
  year: 2019
  end-page: 351
  ident: b18
  article-title: Reduced-order modeling of a radiative heating process with movable radiators
  publication-title: IFAC-PapersOnLine
– volume: 86
  start-page: 69
  year: 2015
  end-page: 80
  ident: b8
  article-title: New methodology for CFD three-dimensional simulation of a walking beam type reheating furnace in steady state
  publication-title: Appl. Therm. Eng.
– year: 2020
  ident: b39
  article-title: Fluent Theory Guide, Fluent 2020 R1
– volume: 50
  start-page: 3740
  year: 2007
  end-page: 3748
  ident: b13
  article-title: A heat transfer model for the analysis of transient heating of the slab in a direct-fired walking beam type reheating furnace
  publication-title: Int. J. Heat Mass Transfer
– volume: 53
  start-page: 5933
  year: 2010
  end-page: 5946
  ident: b12
  article-title: A mathematical model of a slab reheating furnace with radiative heat transfer and non-participating gaseous media
  publication-title: Int. J. Heat Mass Transfer
– volume: 21
  start-page: 495
  year: 2013
  end-page: 508
  ident: b21
  article-title: Nonlinear model predictive control of a continuous slab reheating furnace
  publication-title: Control Eng. Pract.
– reference: D. Wild, T. Meurer, A. Kugi, O. Fichet, K. Eberwein, Nonlinear observer design for pusher-type reheating furnaces, in: Proceedings of the 3rd International Steel Conference on New Developments in Metallurgical Process Technologies, DÜSseldorf, Germany, 2007, pp. 790–797.
– volume: 23
  start-page: 269
  year: 1993
  end-page: 288
  ident: b29
  article-title: Computation of radiant heat transfer on a nonorthogonal mesh using the finite-volume method
  publication-title: Numer. Heat Transfer
– year: 2013
  ident: b32
  article-title: Radiative Heat Transfer
– volume: 10
  year: 2020
  ident: b28
  article-title: Design of a robust H2 state feedback temperature controller for a steel slab reheating furnace
  publication-title: Appl. Sci.
– year: 2006
  ident: b37
  article-title: Handbook of Numerical Heat Transfer
– volume: 39
  start-page: 1115
  year: 1984
  end-page: 1193
  ident: b15
  article-title: All optimal Hankel-norm approximations of linear multivariable systems and their
  publication-title: Int. J. Control
– volume: 9
  start-page: 90283
  year: 2021
  end-page: 90294
  ident: b4
  article-title: First-optimize-then-discretize strategy for the parabolic PDE constrained optimization problem with application to the reheating furnace
  publication-title: IEEE Access
– volume: 139
  year: 2023
  ident: b26
  article-title: The modeling and identification of walking beam type slab reheating furnace based on immersion and invariance disturbance estimation
  publication-title: Control Eng. Pract.
– volume: 85
  start-page: 313
  year: 2015
  end-page: 321
  ident: b3
  article-title: Optimization of a slab heating pattern for minimum energy consumption in a walking-beam type reheating furnace
  publication-title: Appl. Therm. Eng.
– reference: P. Skopec, J. Knobloch, T. Vyhlídal, G. Simeunovic, M. Svantner, M. Honner, Comprehensive control of a reheating furnace, in: AISTech - Iron and Steel Technology Conference Proceedings, 2012, pp. 2053–2063.
– volume: 15
  start-page: 209
  year: 2009
  end-page: 232
  ident: b11
  article-title: Modelling and experimental model validation for a pusher-type reheating furnace
  publication-title: Math. Comput. Model. Dyn. Syst.
– volume: vol. 4
  start-page: 2725
  year: 2000
  end-page: 2729 vol.4
  ident: b24
  article-title: Modeling and predictive control of a reheating furnace
  publication-title: Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334)
– volume: 26
  start-page: 225
  year: 1994
  end-page: 235
  ident: b30
  article-title: Treatment of irregular geometries using a cartesian coordinates finite-volume radiation heat transfer procedure
  publication-title: Num. Heat Transf.
– volume: 135
  start-page: 41
  year: 2018
  end-page: 53
  ident: b22
  article-title: Nonlinear dynamic simulation and control of large-scale reheating furnace operations using a zone method based model
  publication-title: Appl. Therm. Eng.
– year: 2005
  ident: b14
  publication-title: Approximation of Large-Scale Dynamical Systems
– volume: 8
  start-page: 137
  year: 1990
  end-page: 146
  ident: b25
  article-title: Modeling and parametric studies of heat transfer in a direct-fired batch reheating furnace
  publication-title: J. Heat Treat.
– volume: 132
  start-page: 779
  year: 2018
  end-page: 789
  ident: b6
  article-title: CFD modeling and validation of a dynamic slab heating process in an industrial walking beam reheating furnace
  publication-title: Appl. Therm. Eng.
– volume: 85
  start-page: 313
  year: 2015
  ident: 10.1016/j.applthermaleng.2024.122888_b3
  article-title: Optimization of a slab heating pattern for minimum energy consumption in a walking-beam type reheating furnace
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.04.029
– volume: 195
  year: 2024
  ident: 10.1016/j.applthermaleng.2024.122888_b33
  article-title: Reduced integration coupled with Monte Carlo ratios method for zone modeling of radiative heat transfer in reheating furnaces
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2023.108640
– volume: 53
  start-page: 3855
  issue: 19
  year: 2010
  ident: 10.1016/j.applthermaleng.2024.122888_b7
  article-title: A numerical analysis of slab heating characteristics in a walking beam type reheating furnace
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2010.05.002
– year: 2006
  ident: 10.1016/j.applthermaleng.2024.122888_b37
– year: 2013
  ident: 10.1016/j.applthermaleng.2024.122888_b32
– volume: 135
  start-page: 41
  year: 2018
  ident: 10.1016/j.applthermaleng.2024.122888_b22
  article-title: Nonlinear dynamic simulation and control of large-scale reheating furnace operations using a zone method based model
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.02.022
– year: 2005
  ident: 10.1016/j.applthermaleng.2024.122888_b14
– ident: 10.1016/j.applthermaleng.2024.122888_b20
– volume: 40
  year: 2023
  ident: 10.1016/j.applthermaleng.2024.122888_b10
  article-title: Computationally efficient alternative to a full-scale transient simulation of a reheating furnace
  publication-title: Therm. Sci. Eng. Prog.
– volume: 53
  start-page: 5933
  year: 2010
  ident: 10.1016/j.applthermaleng.2024.122888_b12
  article-title: A mathematical model of a slab reheating furnace with radiative heat transfer and non-participating gaseous media
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2010.07.029
– volume: 9
  start-page: 90283
  year: 2021
  ident: 10.1016/j.applthermaleng.2024.122888_b4
  article-title: First-optimize-then-discretize strategy for the parabolic PDE constrained optimization problem with application to the reheating furnace
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3091149
– volume: 147
  start-page: 1209
  year: 2021
  ident: 10.1016/j.applthermaleng.2024.122888_b19
  article-title: Industrial reheating furnaces: A review of energy efficiency assessments, waste heat recovery potentials, heating process characteristics and perspectives for steel industry
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2021.01.045
– year: 2020
  ident: 10.1016/j.applthermaleng.2024.122888_b38
– volume: 8
  start-page: 137
  issue: 2
  year: 1990
  ident: 10.1016/j.applthermaleng.2024.122888_b25
  article-title: Modeling and parametric studies of heat transfer in a direct-fired batch reheating furnace
  publication-title: J. Heat Treat.
  doi: 10.1007/BF02831634
– volume: 47
  start-page: 41
  year: 2012
  ident: 10.1016/j.applthermaleng.2024.122888_b23
  article-title: Fast solution of direct and inverse design problems concerning furnace operation conditions in steel industry
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2012.03.012
– volume: 139
  year: 2023
  ident: 10.1016/j.applthermaleng.2024.122888_b26
  article-title: The modeling and identification of walking beam type slab reheating furnace based on immersion and invariance disturbance estimation
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2023.105611
– volume: 50
  start-page: 3740
  issue: 19
  year: 2007
  ident: 10.1016/j.applthermaleng.2024.122888_b13
  article-title: A heat transfer model for the analysis of transient heating of the slab in a direct-fired walking beam type reheating furnace
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2007.02.023
– volume: 10
  issue: 5
  year: 2020
  ident: 10.1016/j.applthermaleng.2024.122888_b28
  article-title: Design of a robust H2 state feedback temperature controller for a steel slab reheating furnace
  publication-title: Appl. Sci.
  doi: 10.3390/app10051731
– volume: 18
  year: 2020
  ident: 10.1016/j.applthermaleng.2024.122888_b5
  article-title: Continuous walking-beam furnace 3D zonal model and direct thermal-box barrier based temperature measurement
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2020.100608
– year: 2014
  ident: 10.1016/j.applthermaleng.2024.122888_b31
– volume: 86
  start-page: 69
  year: 2015
  ident: 10.1016/j.applthermaleng.2024.122888_b8
  article-title: New methodology for CFD three-dimensional simulation of a walking beam type reheating furnace in steady state
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.04.020
– volume: 132
  start-page: 779
  year: 2018
  ident: 10.1016/j.applthermaleng.2024.122888_b6
  article-title: CFD modeling and validation of a dynamic slab heating process in an industrial walking beam reheating furnace
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.01.017
– volume: 23
  start-page: 269
  issue: 3
  year: 1993
  ident: 10.1016/j.applthermaleng.2024.122888_b29
  article-title: Computation of radiant heat transfer on a nonorthogonal mesh using the finite-volume method
  publication-title: Numer. Heat Transfer
  doi: 10.1080/10407799308914901
– year: 2004
  ident: 10.1016/j.applthermaleng.2024.122888_b40
– volume: 39
  start-page: 1115
  issue: 6
  year: 1984
  ident: 10.1016/j.applthermaleng.2024.122888_b15
  article-title: All optimal Hankel-norm approximations of linear multivariable systems and their L,∞-error bounds
  publication-title: Int. J. Control
  doi: 10.1080/00207178408933239
– year: 1980
  ident: 10.1016/j.applthermaleng.2024.122888_b36
– volume: 115
  start-page: 986
  year: 2017
  ident: 10.1016/j.applthermaleng.2024.122888_b9
  article-title: CFD analysis of a pusher type reheating furnace and the billet heating characteristic
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.01.028
– volume: 123
  start-page: 108
  year: 2023
  ident: 10.1016/j.applthermaleng.2024.122888_b27
  article-title: Multivariate linear-regression variable parameter spatio-temporal zoning model for temperature prediction in steel rolling reheating furnace
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2023.01.013
– volume: 26
  start-page: 225
  year: 1994
  ident: 10.1016/j.applthermaleng.2024.122888_b30
  article-title: Treatment of irregular geometries using a cartesian coordinates finite-volume radiation heat transfer procedure
  publication-title: Num. Heat Transf.
  doi: 10.1080/10407799408914927
– ident: 10.1016/j.applthermaleng.2024.122888_b16
  doi: 10.23919/ECC.2009.7074565
– volume: vol. 4
  start-page: 2725
  year: 2000
  ident: 10.1016/j.applthermaleng.2024.122888_b24
  article-title: Modeling and predictive control of a reheating furnace
– year: 2020
  ident: 10.1016/j.applthermaleng.2024.122888_b39
– volume: 4
  start-page: 1189
  issue: 8
  year: 1996
  ident: 10.1016/j.applthermaleng.2024.122888_b1
  article-title: Robust and optimal control
  publication-title: Control Eng. Pract.
  doi: 10.1016/0967-0661(96)83721-X
– volume: 15
  start-page: 209
  issue: 3
  year: 2009
  ident: 10.1016/j.applthermaleng.2024.122888_b11
  article-title: Modelling and experimental model validation for a pusher-type reheating furnace
  publication-title: Math. Comput. Model. Dyn. Syst.
  doi: 10.1080/13873950902927683
– year: 2017
  ident: 10.1016/j.applthermaleng.2024.122888_b2
– volume: 51
  start-page: 819
  issue: 2
  year: 2018
  ident: 10.1016/j.applthermaleng.2024.122888_b17
  article-title: A computationally efficient 3D mathematical model of a molybdenum batch-reheating furnace
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2018.04.015
– volume: 52
  start-page: 346
  issue: 16
  year: 2019
  ident: 10.1016/j.applthermaleng.2024.122888_b18
  article-title: Reduced-order modeling of a radiative heating process with movable radiators
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2019.11.804
– volume: 21
  start-page: 495
  issue: 4
  year: 2013
  ident: 10.1016/j.applthermaleng.2024.122888_b21
  article-title: Nonlinear model predictive control of a continuous slab reheating furnace
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2012.11.012
– start-page: 55
  year: 2019
  ident: 10.1016/j.applthermaleng.2024.122888_b35
  article-title: Reheating furnace modeling and temperature estimation based on model order reduction
– ident: 10.1016/j.applthermaleng.2024.122888_b34
SSID ssj0012874
Score 2.4669476
Snippet This study developed a modeling approach of a continuous steel slab reheating furnace process as a particular case of spatially distributed parameter systems...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 122888
SubjectTerms CFD
Control
Furnace
FVM
Radiative heat transfer
Reduction
Title Development of a continuous reheating furnace state-space model based on the finite volume method
URI https://dx.doi.org/10.1016/j.applthermaleng.2024.122888
Volume 246
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8JAEB7EQmkPpU9qH7IHr9FskjUbeigiFduCl1bwFvaRQEobRfTa396ZPKxCD0JvSdhdlslm5hvyzTcAndC6wkqq27ICE5QolY4KXO14vO9KG0bcJgVBdtIfT4OXmZg1YFjXwhCtsvL9pU8vvHX1pFdZs7fIst4b90WE4Y8TC5J0tKiCPQjplHe_NzQPTnruRdIlIodGH0Lnl-NFP4kJZ30paluC2aIXdLnnyaIPyx9haiv0jE7hpMKMbFBu6wwaSX4Ox1tKghegtsg_bJ4yxYiDnuVrTOzZMiGPi-NYSiuZhBVlRA46E7wueuEwimaWzXOGG2VpRkiUlZ6LlU2mL2E6enofjp2qe4JjfN9dOQZjjzY-AjbMGaT1FYm9BSrgPE1tH3GBFkpI5SuB33gotdTaeiZFPGJloIz1r6CZz_PkGhip-HE3sp7U6FiN1MKmhnTdMdsiPNKCh9pYsamkxanDxWdcc8g-4l1Tx2TquDR1C8Rm9qKU2Nhz3mP9XuKdIxNjNNhrhZt_r3ALR3RXcsfuoLlarpN7RCkr3S6OYRsOBs-v48kPRNDptg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8JAEB6sQh-H0ie1zz14Tc1rdUMPRaSi1XqpgrewjwRS2iii_78zeViFHgq9hSS7LJPNzDfsN98ANNrG5kZQ3ZbhmKAEsbCkbyvLdVq2MO3AMVFGkB23-lP_dcZnFeiWtTBEqyx8f-7TM29d3GkW1mwukqT57ng8wPDnEAuSdLT2oEbqVLwKtc5g2B9vDhNI0j3Lu3hg0YB9aPzQvOicmKDWl6TOJZgwuv6j47oia8XyS6Taij69EzguYCPr5Cs7hUqUnsHRlpjgOcgt_g-bx0wyoqEn6Rpze7aMyOnieyymmXTEskoiC_0JXmftcBgFNMPmKcOFsjghMMpy58XyPtMXMO29TLp9q2igYGnPs1eWxvCjtIeYDdMGYTxJem--9B0njk0LoYHikgvpSY6_eVsooZRxdYyQxAhfauNdQjWdp9EVMBLyc-zAuEKhb9VCcRNrknbHhIsgSR2eSmOFulAXpyYXn2FJI_sId00dkqnD3NR14JvRi1xl44_jnsvvEu7smhADwp9muP73DA9w0J-8jcLRYDy8gUN6klPJbqG6Wq6jOwQtK3VfbMpvQ9vsZw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+continuous+reheating+furnace+state-space+model+based+on+the+finite+volume+method&rft.jtitle=Applied+thermal+engineering&rft.au=Skopec%2C+Pavel&rft.au=Vyhl%C3%ADdal%2C+Tom%C3%A1%C5%A1&rft.au=Knobloch%2C+Jan&rft.date=2024-06-01&rft.pub=Elsevier+Ltd&rft.issn=1359-4311&rft.volume=246&rft_id=info:doi/10.1016%2Fj.applthermaleng.2024.122888&rft.externalDocID=S1359431124005568
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon