Development of a continuous reheating furnace state-space model based on the finite volume method
This study developed a modeling approach of a continuous steel slab reheating furnace process as a particular case of spatially distributed parameter systems involving radiative heat transfer. The aim of the resulting mathematical model, which is both detailed and computationally tractable, is to se...
Saved in:
Published in | Applied thermal engineering Vol. 246; p. 122888 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study developed a modeling approach of a continuous steel slab reheating furnace process as a particular case of spatially distributed parameter systems involving radiative heat transfer. The aim of the resulting mathematical model, which is both detailed and computationally tractable, is to serve in prospective advanced process control (APC) and model-based optimization. The two-dimensional state-space model is introduced to accurately simulate the temperature distribution and dynamics, using the finite volume method (FVM) to incorporate essential heat transfer phenomena, including radiation, conduction, convection, advection, and simple combustion. The study presents a novel furnace measurement model that interprets temperature sensor readings (useful for state estimation), a benefit of the FVM treatment of radiative heat transfer. Strategies for linearization and model order reduction, such as balanced truncation, are proposed to facilitate real-time control. The simulation case study demonstrates the targeted capabilities of the model. The accuracy of the model is verified through comparisons with more complex computational fluid dynamics (CFD) software models. The study prioritizes theoretical modeling over empirical validation of a specific furnace unit, omitting experimental validation at this stage.
•Introduced a detailed but fast state-space furnace model.•Modeling strategy tailored for future process control and optimization design.•Finite volume method deliberately applied for heat transfer, notably radiation.•Proposed innovative interpretation of the temperature sensor measurement. |
---|---|
AbstractList | This study developed a modeling approach of a continuous steel slab reheating furnace process as a particular case of spatially distributed parameter systems involving radiative heat transfer. The aim of the resulting mathematical model, which is both detailed and computationally tractable, is to serve in prospective advanced process control (APC) and model-based optimization. The two-dimensional state-space model is introduced to accurately simulate the temperature distribution and dynamics, using the finite volume method (FVM) to incorporate essential heat transfer phenomena, including radiation, conduction, convection, advection, and simple combustion. The study presents a novel furnace measurement model that interprets temperature sensor readings (useful for state estimation), a benefit of the FVM treatment of radiative heat transfer. Strategies for linearization and model order reduction, such as balanced truncation, are proposed to facilitate real-time control. The simulation case study demonstrates the targeted capabilities of the model. The accuracy of the model is verified through comparisons with more complex computational fluid dynamics (CFD) software models. The study prioritizes theoretical modeling over empirical validation of a specific furnace unit, omitting experimental validation at this stage.
•Introduced a detailed but fast state-space furnace model.•Modeling strategy tailored for future process control and optimization design.•Finite volume method deliberately applied for heat transfer, notably radiation.•Proposed innovative interpretation of the temperature sensor measurement. |
ArticleNumber | 122888 |
Author | Knobloch, Jan Skopec, Pavel Vyhlídal, Tomáš |
Author_xml | – sequence: 1 givenname: Pavel orcidid: 0000-0001-8812-4953 surname: Skopec fullname: Skopec, Pavel email: pavel.skopec@fs.cvut.cz organization: Department of Instrumentation and Control Engineering, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, Prague, 160 00, Czech Republic – sequence: 2 givenname: Tomáš surname: Vyhlídal fullname: Vyhlídal, Tomáš email: tomas.vyhlidal@fs.cvut.cz organization: Department of Instrumentation and Control Engineering, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, Prague, 160 00, Czech Republic – sequence: 3 givenname: Jan surname: Knobloch fullname: Knobloch, Jan email: jknobloch@ptsw.cz organization: PT SOLUTIONS WORLDWIDE spol. s r.o., Na Stahlavce 9, Prague, 160 00, Czech Republic |
BookMark | eNqNkDFPwzAQhT0UibbwHzywpthxkroSCxQKSJVYYLYu9qV1ldiR7VTi35OqLDB1ujvp3rt734xMnHdIyB1nC854dX9YQN-3aY-hgxbdbpGzvFjwPJdSTsiUi3KVFYLzazKL8cAYz-WymBJ4xiO2vu_QJeobClR7l6wb_BBpwD3COOxoMwQHGmlMkDCL_anvvMGW1hDRUO_oeJo21tmE9OjboRsXMO29uSFXDbQRb3_rnHxtXj7Xb9n24_V9_bjNtBAsZVoyXmtRVmW5WkojgHPJCig4bxpTyTyvSyglCCgF40tZy7o2uW5kURlZgDZiTp7Ovjr4GAM2StvxWzvGCWBbxZk6gVIH9ReUOoFSZ1CjycM_kz7YDsL3pfLNWY5j0KPFoKK26DQaG1AnZby9zOgH3OqVAA |
CitedBy_id | crossref_primary_10_1016_j_applthermaleng_2025_125565 crossref_primary_10_3390_math12152370 crossref_primary_10_1016_j_applthermaleng_2024_125320 crossref_primary_10_1016_j_applthermaleng_2024_124934 |
Cites_doi | 10.1016/j.applthermaleng.2015.04.029 10.1016/j.ijthermalsci.2023.108640 10.1016/j.ijheatmasstransfer.2010.05.002 10.1016/j.applthermaleng.2018.02.022 10.1016/j.ijheatmasstransfer.2010.07.029 10.1109/ACCESS.2021.3091149 10.1016/j.psep.2021.01.045 10.1007/BF02831634 10.1016/j.applthermaleng.2012.03.012 10.1016/j.conengprac.2023.105611 10.1016/j.ijheatmasstransfer.2007.02.023 10.3390/app10051731 10.1016/j.csite.2020.100608 10.1016/j.applthermaleng.2015.04.020 10.1016/j.applthermaleng.2018.01.017 10.1080/10407799308914901 10.1080/00207178408933239 10.1016/j.applthermaleng.2017.01.028 10.1016/j.jprocont.2023.01.013 10.1080/10407799408914927 10.23919/ECC.2009.7074565 10.1016/0967-0661(96)83721-X 10.1080/13873950902927683 10.1016/j.ifacol.2018.04.015 10.1016/j.ifacol.2019.11.804 10.1016/j.conengprac.2012.11.012 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.applthermaleng.2024.122888 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_applthermaleng_2024_122888 S1359431124005568 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABJNI ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJOXV AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W JARJE JJJVA KOM MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSG SSR SST SSZ T5K TN5 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FGOYB HZ~ M41 R2- SSH |
ID | FETCH-LOGICAL-c330t-c801bc35655978d3a11804a411ffd6822b5a58a3a530178b8bbd2cf846d84acd3 |
IEDL.DBID | .~1 |
ISSN | 1359-4311 |
IngestDate | Tue Jul 01 02:05:58 EDT 2025 Thu Apr 24 22:55:49 EDT 2025 Sat May 04 15:43:15 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | CFD Control Reduction Model FVM Furnace Radiative heat transfer |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c330t-c801bc35655978d3a11804a411ffd6822b5a58a3a530178b8bbd2cf846d84acd3 |
ORCID | 0000-0001-8812-4953 |
ParticipantIDs | crossref_citationtrail_10_1016_j_applthermaleng_2024_122888 crossref_primary_10_1016_j_applthermaleng_2024_122888 elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2024_122888 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 2024-06-00 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Applied thermal engineering |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Antoulas (b14) 2005 Zhao, Ma, Zayed, Elsheikh, Li, Yan, Wang (b19) 2021; 147 Trinks, Mawhinney, Shannon, Garvey, Reed (b40) 2004 Modest (b32) 2013 J. Roubal, D. Pachner, V. Havlena, T. Haniš, Analysis of the Rotary Kiln Model Rotary Kiln Model Rotary Kiln Model, in: Proceedings of the European Control Conference 2009, Budapest, Hungary, 2009, pp. 790–797. Bao, Zhang, Guo, Li, Zhang (b27) 2023; 123 (b38) 2020 Pyta, Deutschmann, Rötzer, Abel, Kugi (b18) 2019; 52 Li, Li, Wei, Ji, Yi (b33) 2024; 195 Ahmed, T’Jollyn, Lecompte, Demeester, Beyne, Schoonjans, De Raad, De Paepe (b10) 2023; 40 Chai, Lee, Patankar (b30) 1994; 26 Wild, Meurer, Kugi (b11) 2009; 15 Skopec, Vyhlidal, Knobloch (b35) 2019 Tang, Wu, Bai, Wang, Bodnar, Zhou (b6) 2018; 132 P. Skopec, J. Knobloch, T. Vyhlídal, G. Simeunovic, M. Svantner, M. Honner, Comprehensive control of a reheating furnace, in: AISTech - Iron and Steel Technology Conference Proceedings, 2012, pp. 2053–2063. Minkowycz, Sparrow, Murthy, Abraham (b37) 2006 Casal, Porteiro, Míguez, Vázquez (b8) 2015; 86 Chapman, Ramadhyani, Viskanta (b25) 1990; 8 Steinboeck, Wild, Kiefer, Kugi (b12) 2010; 53 Jang, Huang (b3) 2015; 85 Cengel (b31) 2014 Švantner, Študent, Veselý (b5) 2020; 18 Han, Chang, Kim (b7) 2010; 53 Rawlings, Mayne, Diehl (b2) 2017 D. Wild, T. Meurer, A. Kugi, O. Fichet, K. Eberwein, Nonlinear observer design for pusher-type reheating furnaces, in: Proceedings of the 3rd International Steel Conference on New Developments in Metallurgical Process Technologies, DÜSseldorf, Germany, 2007, pp. 790–797. (b39) 2020 Mayr, Prieler, Demuth, Moderer, Hochenauer (b9) 2017; 115 Roetzer, Aschauer, Steinboeck, Kugi (b17) 2018; 51 Martín, Meis, Mourenza, Rivas, Varas (b23) 2012; 47 Zhou, Doyle, Glover (b1) 1996; 4 Patankar (b36) 1980 Hu, Tan, Broughton, Roach, Varga (b22) 2018; 135 Kavak, Yalçın (b26) 2023; 139 Salcedo-Hernández, Rivas-Perez, Sotomayor-Moriano (b28) 2020; 10 Chui, Raithby (b29) 1993; 23 Steinboeck, Wild, Kugi (b21) 2013; 21 Yang, Liu, Luo (b4) 2021; 9 Kim (b13) 2007; 50 Glover (b15) 1984; 39 Ko, Kim, Yoon, Lim, Yang, Jun (b24) 2000; vol. 4 Cengel (10.1016/j.applthermaleng.2024.122888_b31) 2014 Chapman (10.1016/j.applthermaleng.2024.122888_b25) 1990; 8 Han (10.1016/j.applthermaleng.2024.122888_b7) 2010; 53 Salcedo-Hernández (10.1016/j.applthermaleng.2024.122888_b28) 2020; 10 Chai (10.1016/j.applthermaleng.2024.122888_b30) 1994; 26 10.1016/j.applthermaleng.2024.122888_b34 Patankar (10.1016/j.applthermaleng.2024.122888_b36) 1980 Skopec (10.1016/j.applthermaleng.2024.122888_b35) 2019 Kim (10.1016/j.applthermaleng.2024.122888_b13) 2007; 50 (10.1016/j.applthermaleng.2024.122888_b38) 2020 Zhou (10.1016/j.applthermaleng.2024.122888_b1) 1996; 4 Casal (10.1016/j.applthermaleng.2024.122888_b8) 2015; 86 Antoulas (10.1016/j.applthermaleng.2024.122888_b14) 2005 Trinks (10.1016/j.applthermaleng.2024.122888_b40) 2004 Yang (10.1016/j.applthermaleng.2024.122888_b4) 2021; 9 Li (10.1016/j.applthermaleng.2024.122888_b33) 2024; 195 Jang (10.1016/j.applthermaleng.2024.122888_b3) 2015; 85 Hu (10.1016/j.applthermaleng.2024.122888_b22) 2018; 135 Tang (10.1016/j.applthermaleng.2024.122888_b6) 2018; 132 Pyta (10.1016/j.applthermaleng.2024.122888_b18) 2019; 52 Roetzer (10.1016/j.applthermaleng.2024.122888_b17) 2018; 51 Rawlings (10.1016/j.applthermaleng.2024.122888_b2) 2017 Martín (10.1016/j.applthermaleng.2024.122888_b23) 2012; 47 Wild (10.1016/j.applthermaleng.2024.122888_b11) 2009; 15 Mayr (10.1016/j.applthermaleng.2024.122888_b9) 2017; 115 Ahmed (10.1016/j.applthermaleng.2024.122888_b10) 2023; 40 (10.1016/j.applthermaleng.2024.122888_b39) 2020 Steinboeck (10.1016/j.applthermaleng.2024.122888_b12) 2010; 53 Zhao (10.1016/j.applthermaleng.2024.122888_b19) 2021; 147 Glover (10.1016/j.applthermaleng.2024.122888_b15) 1984; 39 Chui (10.1016/j.applthermaleng.2024.122888_b29) 1993; 23 10.1016/j.applthermaleng.2024.122888_b20 Minkowycz (10.1016/j.applthermaleng.2024.122888_b37) 2006 Kavak (10.1016/j.applthermaleng.2024.122888_b26) 2023; 139 Modest (10.1016/j.applthermaleng.2024.122888_b32) 2013 Švantner (10.1016/j.applthermaleng.2024.122888_b5) 2020; 18 10.1016/j.applthermaleng.2024.122888_b16 Steinboeck (10.1016/j.applthermaleng.2024.122888_b21) 2013; 21 Ko (10.1016/j.applthermaleng.2024.122888_b24) 2000; vol. 4 Bao (10.1016/j.applthermaleng.2024.122888_b27) 2023; 123 |
References_xml | – year: 2020 ident: b38 article-title: Fluent User’s Guide, Fluent 2020 R1 – reference: J. Roubal, D. Pachner, V. Havlena, T. Haniš, Analysis of the Rotary Kiln Model Rotary Kiln Model Rotary Kiln Model, in: Proceedings of the European Control Conference 2009, Budapest, Hungary, 2009, pp. 790–797. – volume: 53 start-page: 3855 year: 2010 end-page: 3861 ident: b7 article-title: A numerical analysis of slab heating characteristics in a walking beam type reheating furnace publication-title: Int. J. Heat Mass Transfer – volume: 147 start-page: 1209 year: 2021 end-page: 1228 ident: b19 article-title: Industrial reheating furnaces: A review of energy efficiency assessments, waste heat recovery potentials, heating process characteristics and perspectives for steel industry publication-title: Process Saf. Environ. Prot. – year: 2017 ident: b2 publication-title: Model Predictive Control: Theory, Computation, and Design – volume: 18 year: 2020 ident: b5 article-title: Continuous walking-beam furnace 3D zonal model and direct thermal-box barrier based temperature measurement publication-title: Case Stud. Therm. Eng. – year: 2014 ident: b31 article-title: Heat and Mass Transfer: Fundamentals and Applications – year: 2004 ident: b40 article-title: Industrial Furnaces – volume: 195 year: 2024 ident: b33 article-title: Reduced integration coupled with Monte Carlo ratios method for zone modeling of radiative heat transfer in reheating furnaces publication-title: Int. J. Therm. Sci. – year: 1980 ident: b36 article-title: Numerical Heat Transfer and Fluid Flow – volume: 115 start-page: 986 year: 2017 end-page: 994 ident: b9 article-title: CFD analysis of a pusher type reheating furnace and the billet heating characteristic publication-title: Appl. Therm. Eng. – volume: 123 start-page: 108 year: 2023 end-page: 122 ident: b27 article-title: Multivariate linear-regression variable parameter spatio-temporal zoning model for temperature prediction in steel rolling reheating furnace publication-title: J. Process Control – volume: 51 start-page: 819 year: 2018 end-page: 824 ident: b17 article-title: A computationally efficient 3D mathematical model of a molybdenum batch-reheating furnace publication-title: IFAC-PapersOnLine – volume: 47 start-page: 41 year: 2012 end-page: 53 ident: b23 article-title: Fast solution of direct and inverse design problems concerning furnace operation conditions in steel industry publication-title: Appl. Therm. Eng. – start-page: 55 year: 2019 end-page: 61 ident: b35 article-title: Reheating furnace modeling and temperature estimation based on model order reduction publication-title: 2019 22nd International Conference on Process Control – volume: 4 start-page: 1189 year: 1996 end-page: 1190 ident: b1 article-title: Robust and optimal control publication-title: Control Eng. Pract. – volume: 40 year: 2023 ident: b10 article-title: Computationally efficient alternative to a full-scale transient simulation of a reheating furnace publication-title: Therm. Sci. Eng. Prog. – volume: 52 start-page: 346 year: 2019 end-page: 351 ident: b18 article-title: Reduced-order modeling of a radiative heating process with movable radiators publication-title: IFAC-PapersOnLine – volume: 86 start-page: 69 year: 2015 end-page: 80 ident: b8 article-title: New methodology for CFD three-dimensional simulation of a walking beam type reheating furnace in steady state publication-title: Appl. Therm. Eng. – year: 2020 ident: b39 article-title: Fluent Theory Guide, Fluent 2020 R1 – volume: 50 start-page: 3740 year: 2007 end-page: 3748 ident: b13 article-title: A heat transfer model for the analysis of transient heating of the slab in a direct-fired walking beam type reheating furnace publication-title: Int. J. Heat Mass Transfer – volume: 53 start-page: 5933 year: 2010 end-page: 5946 ident: b12 article-title: A mathematical model of a slab reheating furnace with radiative heat transfer and non-participating gaseous media publication-title: Int. J. Heat Mass Transfer – volume: 21 start-page: 495 year: 2013 end-page: 508 ident: b21 article-title: Nonlinear model predictive control of a continuous slab reheating furnace publication-title: Control Eng. Pract. – reference: D. Wild, T. Meurer, A. Kugi, O. Fichet, K. Eberwein, Nonlinear observer design for pusher-type reheating furnaces, in: Proceedings of the 3rd International Steel Conference on New Developments in Metallurgical Process Technologies, DÜSseldorf, Germany, 2007, pp. 790–797. – volume: 23 start-page: 269 year: 1993 end-page: 288 ident: b29 article-title: Computation of radiant heat transfer on a nonorthogonal mesh using the finite-volume method publication-title: Numer. Heat Transfer – year: 2013 ident: b32 article-title: Radiative Heat Transfer – volume: 10 year: 2020 ident: b28 article-title: Design of a robust H2 state feedback temperature controller for a steel slab reheating furnace publication-title: Appl. Sci. – year: 2006 ident: b37 article-title: Handbook of Numerical Heat Transfer – volume: 39 start-page: 1115 year: 1984 end-page: 1193 ident: b15 article-title: All optimal Hankel-norm approximations of linear multivariable systems and their publication-title: Int. J. Control – volume: 9 start-page: 90283 year: 2021 end-page: 90294 ident: b4 article-title: First-optimize-then-discretize strategy for the parabolic PDE constrained optimization problem with application to the reheating furnace publication-title: IEEE Access – volume: 139 year: 2023 ident: b26 article-title: The modeling and identification of walking beam type slab reheating furnace based on immersion and invariance disturbance estimation publication-title: Control Eng. Pract. – volume: 85 start-page: 313 year: 2015 end-page: 321 ident: b3 article-title: Optimization of a slab heating pattern for minimum energy consumption in a walking-beam type reheating furnace publication-title: Appl. Therm. Eng. – reference: P. Skopec, J. Knobloch, T. Vyhlídal, G. Simeunovic, M. Svantner, M. Honner, Comprehensive control of a reheating furnace, in: AISTech - Iron and Steel Technology Conference Proceedings, 2012, pp. 2053–2063. – volume: 15 start-page: 209 year: 2009 end-page: 232 ident: b11 article-title: Modelling and experimental model validation for a pusher-type reheating furnace publication-title: Math. Comput. Model. Dyn. Syst. – volume: vol. 4 start-page: 2725 year: 2000 end-page: 2729 vol.4 ident: b24 article-title: Modeling and predictive control of a reheating furnace publication-title: Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334) – volume: 26 start-page: 225 year: 1994 end-page: 235 ident: b30 article-title: Treatment of irregular geometries using a cartesian coordinates finite-volume radiation heat transfer procedure publication-title: Num. Heat Transf. – volume: 135 start-page: 41 year: 2018 end-page: 53 ident: b22 article-title: Nonlinear dynamic simulation and control of large-scale reheating furnace operations using a zone method based model publication-title: Appl. Therm. Eng. – year: 2005 ident: b14 publication-title: Approximation of Large-Scale Dynamical Systems – volume: 8 start-page: 137 year: 1990 end-page: 146 ident: b25 article-title: Modeling and parametric studies of heat transfer in a direct-fired batch reheating furnace publication-title: J. Heat Treat. – volume: 132 start-page: 779 year: 2018 end-page: 789 ident: b6 article-title: CFD modeling and validation of a dynamic slab heating process in an industrial walking beam reheating furnace publication-title: Appl. Therm. Eng. – volume: 85 start-page: 313 year: 2015 ident: 10.1016/j.applthermaleng.2024.122888_b3 article-title: Optimization of a slab heating pattern for minimum energy consumption in a walking-beam type reheating furnace publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.04.029 – volume: 195 year: 2024 ident: 10.1016/j.applthermaleng.2024.122888_b33 article-title: Reduced integration coupled with Monte Carlo ratios method for zone modeling of radiative heat transfer in reheating furnaces publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2023.108640 – volume: 53 start-page: 3855 issue: 19 year: 2010 ident: 10.1016/j.applthermaleng.2024.122888_b7 article-title: A numerical analysis of slab heating characteristics in a walking beam type reheating furnace publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2010.05.002 – year: 2006 ident: 10.1016/j.applthermaleng.2024.122888_b37 – year: 2013 ident: 10.1016/j.applthermaleng.2024.122888_b32 – volume: 135 start-page: 41 year: 2018 ident: 10.1016/j.applthermaleng.2024.122888_b22 article-title: Nonlinear dynamic simulation and control of large-scale reheating furnace operations using a zone method based model publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.02.022 – year: 2005 ident: 10.1016/j.applthermaleng.2024.122888_b14 – ident: 10.1016/j.applthermaleng.2024.122888_b20 – volume: 40 year: 2023 ident: 10.1016/j.applthermaleng.2024.122888_b10 article-title: Computationally efficient alternative to a full-scale transient simulation of a reheating furnace publication-title: Therm. Sci. Eng. Prog. – volume: 53 start-page: 5933 year: 2010 ident: 10.1016/j.applthermaleng.2024.122888_b12 article-title: A mathematical model of a slab reheating furnace with radiative heat transfer and non-participating gaseous media publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2010.07.029 – volume: 9 start-page: 90283 year: 2021 ident: 10.1016/j.applthermaleng.2024.122888_b4 article-title: First-optimize-then-discretize strategy for the parabolic PDE constrained optimization problem with application to the reheating furnace publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3091149 – volume: 147 start-page: 1209 year: 2021 ident: 10.1016/j.applthermaleng.2024.122888_b19 article-title: Industrial reheating furnaces: A review of energy efficiency assessments, waste heat recovery potentials, heating process characteristics and perspectives for steel industry publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2021.01.045 – year: 2020 ident: 10.1016/j.applthermaleng.2024.122888_b38 – volume: 8 start-page: 137 issue: 2 year: 1990 ident: 10.1016/j.applthermaleng.2024.122888_b25 article-title: Modeling and parametric studies of heat transfer in a direct-fired batch reheating furnace publication-title: J. Heat Treat. doi: 10.1007/BF02831634 – volume: 47 start-page: 41 year: 2012 ident: 10.1016/j.applthermaleng.2024.122888_b23 article-title: Fast solution of direct and inverse design problems concerning furnace operation conditions in steel industry publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2012.03.012 – volume: 139 year: 2023 ident: 10.1016/j.applthermaleng.2024.122888_b26 article-title: The modeling and identification of walking beam type slab reheating furnace based on immersion and invariance disturbance estimation publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2023.105611 – volume: 50 start-page: 3740 issue: 19 year: 2007 ident: 10.1016/j.applthermaleng.2024.122888_b13 article-title: A heat transfer model for the analysis of transient heating of the slab in a direct-fired walking beam type reheating furnace publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2007.02.023 – volume: 10 issue: 5 year: 2020 ident: 10.1016/j.applthermaleng.2024.122888_b28 article-title: Design of a robust H2 state feedback temperature controller for a steel slab reheating furnace publication-title: Appl. Sci. doi: 10.3390/app10051731 – volume: 18 year: 2020 ident: 10.1016/j.applthermaleng.2024.122888_b5 article-title: Continuous walking-beam furnace 3D zonal model and direct thermal-box barrier based temperature measurement publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2020.100608 – year: 2014 ident: 10.1016/j.applthermaleng.2024.122888_b31 – volume: 86 start-page: 69 year: 2015 ident: 10.1016/j.applthermaleng.2024.122888_b8 article-title: New methodology for CFD three-dimensional simulation of a walking beam type reheating furnace in steady state publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.04.020 – volume: 132 start-page: 779 year: 2018 ident: 10.1016/j.applthermaleng.2024.122888_b6 article-title: CFD modeling and validation of a dynamic slab heating process in an industrial walking beam reheating furnace publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.01.017 – volume: 23 start-page: 269 issue: 3 year: 1993 ident: 10.1016/j.applthermaleng.2024.122888_b29 article-title: Computation of radiant heat transfer on a nonorthogonal mesh using the finite-volume method publication-title: Numer. Heat Transfer doi: 10.1080/10407799308914901 – year: 2004 ident: 10.1016/j.applthermaleng.2024.122888_b40 – volume: 39 start-page: 1115 issue: 6 year: 1984 ident: 10.1016/j.applthermaleng.2024.122888_b15 article-title: All optimal Hankel-norm approximations of linear multivariable systems and their L,∞-error bounds publication-title: Int. J. Control doi: 10.1080/00207178408933239 – year: 1980 ident: 10.1016/j.applthermaleng.2024.122888_b36 – volume: 115 start-page: 986 year: 2017 ident: 10.1016/j.applthermaleng.2024.122888_b9 article-title: CFD analysis of a pusher type reheating furnace and the billet heating characteristic publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.01.028 – volume: 123 start-page: 108 year: 2023 ident: 10.1016/j.applthermaleng.2024.122888_b27 article-title: Multivariate linear-regression variable parameter spatio-temporal zoning model for temperature prediction in steel rolling reheating furnace publication-title: J. Process Control doi: 10.1016/j.jprocont.2023.01.013 – volume: 26 start-page: 225 year: 1994 ident: 10.1016/j.applthermaleng.2024.122888_b30 article-title: Treatment of irregular geometries using a cartesian coordinates finite-volume radiation heat transfer procedure publication-title: Num. Heat Transf. doi: 10.1080/10407799408914927 – ident: 10.1016/j.applthermaleng.2024.122888_b16 doi: 10.23919/ECC.2009.7074565 – volume: vol. 4 start-page: 2725 year: 2000 ident: 10.1016/j.applthermaleng.2024.122888_b24 article-title: Modeling and predictive control of a reheating furnace – year: 2020 ident: 10.1016/j.applthermaleng.2024.122888_b39 – volume: 4 start-page: 1189 issue: 8 year: 1996 ident: 10.1016/j.applthermaleng.2024.122888_b1 article-title: Robust and optimal control publication-title: Control Eng. Pract. doi: 10.1016/0967-0661(96)83721-X – volume: 15 start-page: 209 issue: 3 year: 2009 ident: 10.1016/j.applthermaleng.2024.122888_b11 article-title: Modelling and experimental model validation for a pusher-type reheating furnace publication-title: Math. Comput. Model. Dyn. Syst. doi: 10.1080/13873950902927683 – year: 2017 ident: 10.1016/j.applthermaleng.2024.122888_b2 – volume: 51 start-page: 819 issue: 2 year: 2018 ident: 10.1016/j.applthermaleng.2024.122888_b17 article-title: A computationally efficient 3D mathematical model of a molybdenum batch-reheating furnace publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2018.04.015 – volume: 52 start-page: 346 issue: 16 year: 2019 ident: 10.1016/j.applthermaleng.2024.122888_b18 article-title: Reduced-order modeling of a radiative heating process with movable radiators publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2019.11.804 – volume: 21 start-page: 495 issue: 4 year: 2013 ident: 10.1016/j.applthermaleng.2024.122888_b21 article-title: Nonlinear model predictive control of a continuous slab reheating furnace publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2012.11.012 – start-page: 55 year: 2019 ident: 10.1016/j.applthermaleng.2024.122888_b35 article-title: Reheating furnace modeling and temperature estimation based on model order reduction – ident: 10.1016/j.applthermaleng.2024.122888_b34 |
SSID | ssj0012874 |
Score | 2.4669476 |
Snippet | This study developed a modeling approach of a continuous steel slab reheating furnace process as a particular case of spatially distributed parameter systems... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 122888 |
SubjectTerms | CFD Control Furnace FVM Radiative heat transfer Reduction |
Title | Development of a continuous reheating furnace state-space model based on the finite volume method |
URI | https://dx.doi.org/10.1016/j.applthermaleng.2024.122888 |
Volume | 246 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8JAEB7EQmkPpU9qH7IHr9FskjUbeigiFduCl1bwFvaRQEobRfTa396ZPKxCD0JvSdhdlslm5hvyzTcAndC6wkqq27ICE5QolY4KXO14vO9KG0bcJgVBdtIfT4OXmZg1YFjXwhCtsvL9pU8vvHX1pFdZs7fIst4b90WE4Y8TC5J0tKiCPQjplHe_NzQPTnruRdIlIodGH0Lnl-NFP4kJZ30paluC2aIXdLnnyaIPyx9haiv0jE7hpMKMbFBu6wwaSX4Ox1tKghegtsg_bJ4yxYiDnuVrTOzZMiGPi-NYSiuZhBVlRA46E7wueuEwimaWzXOGG2VpRkiUlZ6LlU2mL2E6enofjp2qe4JjfN9dOQZjjzY-AjbMGaT1FYm9BSrgPE1tH3GBFkpI5SuB33gotdTaeiZFPGJloIz1r6CZz_PkGhip-HE3sp7U6FiN1MKmhnTdMdsiPNKCh9pYsamkxanDxWdcc8g-4l1Tx2TquDR1C8Rm9qKU2Nhz3mP9XuKdIxNjNNhrhZt_r3ALR3RXcsfuoLlarpN7RCkr3S6OYRsOBs-v48kPRNDptg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8JAEB6sQh-H0ie1zz14Tc1rdUMPRaSi1XqpgrewjwRS2iii_78zeViFHgq9hSS7LJPNzDfsN98ANNrG5kZQ3ZbhmKAEsbCkbyvLdVq2MO3AMVFGkB23-lP_dcZnFeiWtTBEqyx8f-7TM29d3GkW1mwukqT57ng8wPDnEAuSdLT2oEbqVLwKtc5g2B9vDhNI0j3Lu3hg0YB9aPzQvOicmKDWl6TOJZgwuv6j47oia8XyS6Taij69EzguYCPr5Cs7hUqUnsHRlpjgOcgt_g-bx0wyoqEn6Rpze7aMyOnieyymmXTEskoiC_0JXmftcBgFNMPmKcOFsjghMMpy58XyPtMXMO29TLp9q2igYGnPs1eWxvCjtIeYDdMGYTxJem--9B0njk0LoYHikgvpSY6_eVsooZRxdYyQxAhfauNdQjWdp9EVMBLyc-zAuEKhb9VCcRNrknbHhIsgSR2eSmOFulAXpyYXn2FJI_sId00dkqnD3NR14JvRi1xl44_jnsvvEu7smhADwp9muP73DA9w0J-8jcLRYDy8gUN6klPJbqG6Wq6jOwQtK3VfbMpvQ9vsZw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+continuous+reheating+furnace+state-space+model+based+on+the+finite+volume+method&rft.jtitle=Applied+thermal+engineering&rft.au=Skopec%2C+Pavel&rft.au=Vyhl%C3%ADdal%2C+Tom%C3%A1%C5%A1&rft.au=Knobloch%2C+Jan&rft.date=2024-06-01&rft.pub=Elsevier+Ltd&rft.issn=1359-4311&rft.volume=246&rft_id=info:doi/10.1016%2Fj.applthermaleng.2024.122888&rft.externalDocID=S1359431124005568 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon |