Deriving photosystem-level red chlorophyll fluorescence emission by combining leaf chlorophyll content and canopy far-red solar-induced fluorescence: Possibilities and challenges
Solar-induced chlorophyll fluorescence (SIF) emitted from photosystem I (PSI) and photosystem II (PSII) is characterized by two peaks centered in the red and far-red spectral regions. SIF provides a unique remotely sensible signal to track plant photosynthetic dynamics. Compared with far-red SIF, re...
Saved in:
Published in | Remote sensing of environment Vol. 304; p. 114043 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Solar-induced chlorophyll fluorescence (SIF) emitted from photosystem I (PSI) and photosystem II (PSII) is characterized by two peaks centered in the red and far-red spectral regions. SIF provides a unique remotely sensible signal to track plant photosynthetic dynamics. Compared with far-red SIF, red SIF (RSIF) is more strongly linked to PSII and thus with plant photosynthetic activity, but is subject to stronger reabsorption within leaves and canopies. This hinders the understanding and use of canopy RSIF observations (RSIFobs), which is only a small fraction of the total RSIF emitted by the photosystems (RSIFtotal). Deriving RSIFtotal from RSIFobs is still challenging due to retrieval uncertainty, limited availability of RSIFobs and spectral overlap with chlorophyll absorption. To address the challenges associated with deriving RSIFtotal, we propose an exploratory method framework that combines canopy far-red SIF observations (FRSIFobs) and leaf chlorophyll content (LCC) to derive RSIFtotal. We first downscale FRSIFobs from canopy to leaf, and then leverage LCC information to estimate RSIF at the leaf level. Finally, we incorporate LCC information in the subsequent downscaling of RSIF from leaf to photosystem. To evaluate our approach, we use ground-based observation data in three crop types (rice, wheat, and maize) and SCOPE model simulations. Our results demonstrate that the seasonal patterns of RSIFtotal show a close agreement with the seasonal patterns of gross primary production (GPP) and absorbed photosynthetic active radiation (APAR). More importantly, RSIFtotal slightly outperforms FRSIFobs in estimating GPP for the three crop types. Our study has also revealed a strong linear relationship between the escape probability of RSIFtotal (fesc_R) and the RSIFobs/FRSIFobs ratio affected by LCC. The simplicity and robustness of our approach, along with its potential application in satellite remote sensing, will contribute to the improvement of large-scale GPP estimation and photosynthetic phenology detection. Moreover, our investigation of fesc_R will contribute to a better understanding the physiological and non-physiological dynamics of RSIFobs.
•Deriving RSIFtotal by combining FRSIFobs and LCC.•Our approach improves GPP estimation by deriving RSIFtotal.•Phenological metrics of RSIFtotal show agreement with those of GPP.•The ratio of RSIFobs and FRSIFobs explains fesc_R. |
---|---|
AbstractList | Solar-induced chlorophyll fluorescence (SIF) emitted from photosystem I (PSI) and photosystem II (PSII) is characterized by two peaks centered in the red and far-red spectral regions. SIF provides a unique remotely sensible signal to track plant photosynthetic dynamics. Compared with far-red SIF, red SIF (RSIF) is more strongly linked to PSII and thus with plant photosynthetic activity, but is subject to stronger reabsorption within leaves and canopies. This hinders the understanding and use of canopy RSIF observations (RSIFobs), which is only a small fraction of the total RSIF emitted by the photosystems (RSIFtotal). Deriving RSIFtotal from RSIFobs is still challenging due to retrieval uncertainty, limited availability of RSIFobs and spectral overlap with chlorophyll absorption. To address the challenges associated with deriving RSIFtotal, we propose an exploratory method framework that combines canopy far-red SIF observations (FRSIFobs) and leaf chlorophyll content (LCC) to derive RSIFtotal. We first downscale FRSIFobs from canopy to leaf, and then leverage LCC information to estimate RSIF at the leaf level. Finally, we incorporate LCC information in the subsequent downscaling of RSIF from leaf to photosystem. To evaluate our approach, we use ground-based observation data in three crop types (rice, wheat, and maize) and SCOPE model simulations. Our results demonstrate that the seasonal patterns of RSIFtotal show a close agreement with the seasonal patterns of gross primary production (GPP) and absorbed photosynthetic active radiation (APAR). More importantly, RSIFtotal slightly outperforms FRSIFobs in estimating GPP for the three crop types. Our study has also revealed a strong linear relationship between the escape probability of RSIFtotal (fesc_R) and the RSIFobs/FRSIFobs ratio affected by LCC. The simplicity and robustness of our approach, along with its potential application in satellite remote sensing, will contribute to the improvement of large-scale GPP estimation and photosynthetic phenology detection. Moreover, our investigation of fesc_R will contribute to a better understanding the physiological and non-physiological dynamics of RSIFobs.
•Deriving RSIFtotal by combining FRSIFobs and LCC.•Our approach improves GPP estimation by deriving RSIFtotal.•Phenological metrics of RSIFtotal show agreement with those of GPP.•The ratio of RSIFobs and FRSIFobs explains fesc_R. Solar-induced chlorophyll fluorescence (SIF) emitted from photosystem I (PSI) and photosystem II (PSII) is characterized by two peaks centered in the red and far-red spectral regions. SIF provides a unique remotely sensible signal to track plant photosynthetic dynamics. Compared with far-red SIF, red SIF (RSIF) is more strongly linked to PSII and thus with plant photosynthetic activity, but is subject to stronger reabsorption within leaves and canopies. This hinders the understanding and use of canopy RSIF observations (RSIFₒbₛ), which is only a small fraction of the total RSIF emitted by the photosystems (RSIFₜₒₜₐₗ). Deriving RSIFₜₒₜₐₗ from RSIFₒbₛ is still challenging due to retrieval uncertainty, limited availability of RSIFₒbₛ and spectral overlap with chlorophyll absorption. To address the challenges associated with deriving RSIFₜₒₜₐₗ, we propose an exploratory method framework that combines canopy far-red SIF observations (FRSIFₒbₛ) and leaf chlorophyll content (LCC) to derive RSIFₜₒₜₐₗ. We first downscale FRSIFₒbₛ from canopy to leaf, and then leverage LCC information to estimate RSIF at the leaf level. Finally, we incorporate LCC information in the subsequent downscaling of RSIF from leaf to photosystem. To evaluate our approach, we use ground-based observation data in three crop types (rice, wheat, and maize) and SCOPE model simulations. Our results demonstrate that the seasonal patterns of RSIFₜₒₜₐₗ show a close agreement with the seasonal patterns of gross primary production (GPP) and absorbed photosynthetic active radiation (APAR). More importantly, RSIFₜₒₜₐₗ slightly outperforms FRSIFₒbₛ in estimating GPP for the three crop types. Our study has also revealed a strong linear relationship between the escape probability of RSIFₜₒₜₐₗ (fₑₛc_R) and the RSIFₒbₛ/FRSIFₒbₛ ratio affected by LCC. The simplicity and robustness of our approach, along with its potential application in satellite remote sensing, will contribute to the improvement of large-scale GPP estimation and photosynthetic phenology detection. Moreover, our investigation of fₑₛc_R will contribute to a better understanding the physiological and non-physiological dynamics of RSIFₒbₛ. |
ArticleNumber | 114043 |
Author | Zhang, Zhaoying Wu, Yunfei Chen, Jing M. Zhang, Yongguang Zhang, Xiaokang Wu, Linsheng |
Author_xml | – sequence: 1 givenname: Linsheng surname: Wu fullname: Wu, Linsheng organization: International Institute for Earth System Sciences, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing University, Nanjing, China – sequence: 2 givenname: Yongguang surname: Zhang fullname: Zhang, Yongguang email: yongguang_zhang@nju.edu.cn organization: International Institute for Earth System Sciences, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing University, Nanjing, China – sequence: 3 givenname: Zhaoying surname: Zhang fullname: Zhang, Zhaoying organization: International Institute for Earth System Sciences, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing University, Nanjing, China – sequence: 4 givenname: Xiaokang surname: Zhang fullname: Zhang, Xiaokang organization: International Institute for Earth System Sciences, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing University, Nanjing, China – sequence: 5 givenname: Yunfei surname: Wu fullname: Wu, Yunfei organization: International Institute for Earth System Sciences, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing University, Nanjing, China – sequence: 6 givenname: Jing M. surname: Chen fullname: Chen, Jing M. organization: International Institute for Earth System Sciences, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing University, Nanjing, China |
BookMark | eNp9kU2LFDEQhoOs4OzqD_CWo5ceK93pLz3J-rHCgh70HNLV1TsZMkmbZAb6b_kLTdMedA8LgSRQz0NVvdfsynlHjL0WsBcgmrfHfYi0L6GUeyEkyOoZ24mu7QtoQV6xHUAlC1nW7Qt2HeMRQNRdK3bs90cK5mLcA58PPvm4xESnwtKFLA80cjxYH_x8WKzlkz37QBHJIXE6mRiNd3xYOPrTYNwqsaSn_xj0LpFLXLvs0s7PC590KFZ19Da_jBvPmH__yt_x7z7LB2NNMhQ3-KCtJfdA8SV7Pmkb6dXf-4b9_Pzpx-1dcf_ty9fbD_cFVhWkAuVE_VChFl3XNFjWg-ynugaQHYyjxmYSZU9jD2UDWmLXD3khshzavhdlS011w95s3jn4X2eKSeWRkazVjvw5qkrU-XSiEbm03Uox5MYDTQpN0imvJwVtrBKg1pTUUeWU1JqS2lLKpHhEzsGcdFieZN5vDOXpL4aCimjWvY0mECY1evME_QfxIbG4 |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2024_175203 crossref_primary_10_3390_rs16224189 crossref_primary_10_1016_j_ecoinf_2025_103035 crossref_primary_10_1016_j_jag_2024_104198 crossref_primary_10_1080_01431161_2025_2465916 crossref_primary_10_3390_rs17010152 crossref_primary_10_1080_22797254_2025_2449940 crossref_primary_10_1051_e3sconf_202454801034 crossref_primary_10_3390_rs16122133 crossref_primary_10_3390_rs16183523 crossref_primary_10_3390_rs16224209 crossref_primary_10_3390_land13030399 crossref_primary_10_1016_j_jag_2024_104281 crossref_primary_10_1016_j_rse_2025_114636 crossref_primary_10_1016_j_compag_2024_109566 crossref_primary_10_1016_j_rsase_2024_101325 crossref_primary_10_1016_j_ecolind_2024_112439 crossref_primary_10_3390_rs16193565 crossref_primary_10_34133_remotesensing_0369 |
Cites_doi | 10.1016/j.rse.2015.06.002 10.1016/j.rse.2018.02.029 10.1111/gcb.16227 10.1016/j.rse.2021.112401 10.1016/j.rse.2019.111292 10.1016/j.rse.2018.06.037 10.1016/j.rse.2021.112672 10.1016/j.rse.2018.03.031 10.1029/2020JG006042 10.1029/2010JG001593 10.1016/j.rse.2017.10.035 10.1029/2022JG006865 10.1029/2018GL079031 10.1016/j.rse.2009.09.010 10.1016/j.rse.2021.112723 10.1016/j.rse.2022.113104 10.1073/pnas.1900278116 10.1016/j.agrformet.2019.107846 10.5194/essd-14-4077-2022 10.5194/bg-6-3109-2009 10.1038/s41477-021-00980-4 10.3390/rs15184361 10.1111/gcb.13599 10.1016/j.rse.2019.111511 10.3390/rs14205107 10.1016/j.rse.2018.07.008 10.1016/j.rse.2021.112362 10.1016/j.ecolind.2022.108673 10.1016/j.ecocom.2013.11.005 10.1016/j.rse.2006.03.016 10.1002/2017GL074799 10.3389/fpls.2018.00998 10.1016/j.rse.2020.111985 10.1016/j.rse.2018.02.016 10.34133/2022/9845432 10.1016/j.rse.2019.111479 10.1016/j.rse.2019.05.028 10.1109/TGRS.2002.802519 10.1080/01431160310001618455 10.1080/01431161.2022.2032457 10.1126/sciadv.1602244 10.1016/j.isprsjprs.2022.08.003 10.1016/j.agrformet.2007.08.011 10.1016/j.agrformet.2022.109027 10.1126/science.1184984 10.1109/TGRS.2022.3230378 10.1016/j.rse.2020.111678 10.1038/s43017-022-00298-5 10.1093/jxb/eraa408 10.1016/j.scib.2018.10.003 10.5194/amt-6-2803-2013 10.1016/j.rse.2022.113340 10.1016/j.rse.2022.113209 10.1016/j.rse.2019.01.016 10.1073/pnas.1320008111 10.1111/gcb.14427 10.1029/2019JG005040 10.3390/rs14061337 10.1029/2020JG006076 10.1016/j.scitotenv.2019.07.012 10.1109/JSTARS.2017.2685528 10.5194/bg-8-637-2011 10.1016/j.rse.2022.112986 10.1111/nph.19171 10.1016/j.rse.2021.112555 10.1002/2017JG004180 10.3390/rs8050412 10.1029/2011GL048738 10.5194/amt-9-3939-2016 10.1109/TGRS.2012.2193131 10.1016/j.rse.2020.111676 10.1016/j.rse.2017.08.029 10.1016/j.rse.2009.05.003 10.1016/j.rse.2020.112032 10.1093/jxb/erv272 10.1016/j.rse.2023.113457 10.1016/j.rse.2022.113118 10.1080/2150704X.2018.1547445 10.1016/j.agrformet.2022.109038 10.1029/2019JG005533 10.1016/S0176-1617(11)81633-0 10.1016/j.rse.2020.111733 10.1016/j.jqsrt.2010.06.014 10.1093/jxb/eru191 10.1078/0176-1617-00887 10.1016/j.jplph.2022.153669 10.1016/j.agrformet.2023.109720 10.1016/j.rse.2022.113075 10.1111/j.1365-2486.2005.001002.x 10.1007/s11120-022-00994-9 10.1016/j.rse.2019.04.030 10.1109/LGRS.2008.2001180 10.1016/S0034-4257(02)00135-9 10.1016/j.renene.2005.02.009 10.1007/s11120-020-00814-y 10.1088/2515-7620/ac5365 10.1029/2005GL022688 10.1029/2019JG005029 10.1029/2005GL023647 10.3390/s18072063 10.1016/j.rse.2018.05.035 10.1016/j.rse.2020.111860 10.1016/j.agrformet.2020.108145 10.1016/S0176-1617(98)80143-0 10.1007/s11120-006-9077-5 10.1016/j.isprsjprs.2012.01.003 10.1038/s41559-019-0931-1 10.5194/essd-13-5423-2021 10.1016/j.rse.2022.112893 10.1111/gcb.12664 10.1016/j.rse.2020.111686 10.3390/rs9090911 10.1111/nph.14437 10.1016/j.rse.2014.06.022 10.1016/j.agrformet.2022.109063 10.1002/2014GL062943 10.1016/j.agrformet.2020.108147 10.1016/j.rse.2019.111344 10.1016/j.rse.2022.113341 |
ContentType | Journal Article |
Copyright | 2023 |
Copyright_xml | – notice: 2023 |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.rse.2024.114043 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Geology Environmental Sciences |
EISSN | 1879-0704 |
ExternalDocumentID | 10_1016_j_rse_2024_114043 S0034425724000543 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABPPZ ABQEM ABQYD ABYKQ ACDAQ ACGFS ACIWK ACLVX ACPRK ACRLP ACSBN ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSE SSJ SSZ T5K TN5 TWZ WH7 ZCA ZMT ~02 ~G- ~KM 29P 41~ 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FA8 FEDTE FGOYB G-2 HMA HMC HVGLF HZ~ H~9 LY3 LY9 OHT R2- SEN SEP SSH VOH WUQ XOL 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c330t-c4fe9b3ca18866c25b49f5500480ddac6f129ed90260a4c89b87142b799127e63 |
IEDL.DBID | .~1 |
ISSN | 0034-4257 |
IngestDate | Sun Aug 24 03:16:09 EDT 2025 Tue Jul 01 03:51:37 EDT 2025 Thu Apr 24 23:10:41 EDT 2025 Sat Mar 30 16:21:07 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Escape probability Solar-induced chlorophyll fluorescence (SIF) Gross primary production (GPP) Leaf chlorophyll content (LCC) Photosynthetic phenology Total red SIF emitted by the photosystem (RSIFtotal) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c330t-c4fe9b3ca18866c25b49f5500480ddac6f129ed90260a4c89b87142b799127e63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 3153158161 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3153158161 crossref_citationtrail_10_1016_j_rse_2024_114043 crossref_primary_10_1016_j_rse_2024_114043 elsevier_sciencedirect_doi_10_1016_j_rse_2024_114043 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 2024-04-00 20240401 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Remote sensing of environment |
PublicationYear | 2024 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Zeng, Wardlow, Xiang, Hu, Li (bb0555) 2020; 237 Zhang, Zhang, Zhang, Chen, Porcar-Castell, Guanter, Li (bb0595) 2020; 295 Gitelson (bb0150) 2005; 32 Qiu, Li, Han, Xiao, Ma, Gong (bb0370) 2022; 323 Qi, Liu, Du, Guan, Chen, Liu (bb0360) 2023; 15 Moffat, Papale, Reichstein, Hollinger, Richardson, Barr, Stauch (bb0335) 2007; 147 Zhang, Zhang, Zhang, Gobron, Frankenberg, Wang, Li (bb0600) 2020; 240 Hu, Elias, Nawrocki, Croce (bb0205) 2023 Sun, Frankenberg, Jung, Joiner, Guanter, Kohler, Magney (bb0420) 2018; 209 Zhao, Ma, Kohler, Ma, Sun, Verhoef, Ratul (bb0635) 2022; 60 Yang, Verhoef, van der Tol (bb0520) 2017; 201 Guo, Chen, Li, Cunha, Jayavelu, Cammarano, Fu (bb0195) 2022; 14 Daumard, Goulas, Champagne, Fournier, Ounis, Olioso, Moya (bb0100) 2012; 50 Gitelson, Buschmann, Lichtenthaler (bb0170) 1998; 152 Liu, Zhao, Liu, Yu, Wang, Peng, Lu (bb0285) 2022; 271 Zeng, Hao, Badgley, Damm, Rascher, Ryu, Chen (bb0565) 2021; 267 Tubuxin, Rahimzadeh-Bajgiran, Ginnan, Hosoi, Omasa (bb0435) 2015; 66 Ryu, Berry, Baldocchi (bb0405) 2019; 223 Yang, Liu, Liu, van der Tol, Liu (bb0545) 2023; 342 Alonso, Gomez-Chova, Vila-Frances, Amoros-Lopez, Guanter, Calpe, Moreno (bb0015) 2008; 5 Liu, Liu, Bacour, Guanter, Chen, Ma, Du (bb0290) 2023; 284 Gastellu-Etchegorry, Lauret, Yin, Landier, Kallel, Malenovsky, Mitraka (bb0145) 2017; 10 Wu, Jiang, Kimm, Wang, Bernacchi, Moore, Guan (bb0475) 2022; 279 Joiner, Guanter, Lindstrot, Voigt, Vasilkov, Middleton, Frankenberg (bb0220) 2013; 6 Gitelson, Arkebauer, Viña, Skakun, Inoue (bb0180) 2021; 258 Zhang, Zhang, Chen, Ju, Migliavacca, El-Madany (bb0610) 2021 Joiner, Yoshida, Guanter, Middleton (bb0230) 2016; 9 Meroni, Rossini, Guanter, Alonso, Rascher, Colombo, Moreno (bb0315) 2009; 113 Wu, Zhang, Zhang, Wu, Zhang (bb0490) 2022 Zhao, Li, Verhoef, Fan, Luan, Yin, Bao (bb0630) 2022; 277 Liu, Guanter, Liu, Damm, Malenovsky, Rascher, Gastellu-Etchegorry (bb0275) 2019; 231 Meroni, Colombo (bb0310) 2006; 103 Uddling, Gelang-Alfredsson, Piikki, Pleijel (bb0440) 2007; 91 Gitelson, Merzlyak (bb0160) 1994; 143 Reichstein, Falge, Baldocchi, Papale, Aubinet, Berbigier, Valentini (bb0375) 2005; 11 Wang, Zeng, Song, Sun, Wang, Wang (bb0470) 2022; 272 Ahammed, Xu, Liu, Chen (bb0005) 2018; 9 Dai, Ju, Zhang, He, Song, Li (bb0090) 2019; 690 Porcar-Castell, Tyystjarvi, Atherton, van der Tol, Flexas, Pfuendel, Berry (bb0350) 2014; 65 Guanter, Bacour, Schneider, Aben, van Kempen, Maignan, Zhang (bb0190) 2021; 13 Zeng, Badgley, Dechant, Ryu, Chen, Berry (bb0550) 2019; 232 Croft, Chen, Luo, Bartlett, Chen, Staebler (bb0080) 2017; 23 Beer, Reichstein, Tomelleri, Ciais, Jung, Carvalhais, Papale (bb0035) 2010; 329 Miao, Guan, Yang, Bernacchi, Berry, DeLucia, Masters (bb0325) 2018; 123 Yang, van der Tol (bb0515) 2018; 209 Knyazikhin, Schull, Xu, Myneni, Samanta (bb0250) 2011; 112 Magney, Frankenberg, Kohler, North, Davis, Dold, Porcar-Castell (bb0305) 2019; 124 Zhang, Guanter, Berry, Joiner, van der Tol, Huete, Kohler (bb0580) 2014; 20 Joiner, Yoshida, Vasilkov, Yoshida, Corp, Middleton (bb0215) 2011; 8 Jonsson, Eklundh (bb0235) 2002; 40 Chen, Wang, Liu, He, Croft, Luo, Dong (bb0070) 2022; 14 He, Chen, Liu, Zheng, Wang, Joiner, Rogers (bb0200) 2019; 232 Guanter, Zhang, Jung, Joiner, Voigt, Berry, Griffis (bb0185) 2014; 111 Dash, Curran (bb0095) 2004 Joiner, Yoshida, Vasilkov, Schaefer, Jung, Guanter, Marchesini (bb0225) 2014; 152 Li, Chen, Zhang, Yan, Zhu, Zheng, Cao (bb0265) 2020; 248 Wu, Wang, Shi, Yin (bb0480) 2022; 43 Zhang, Zhang, Liu, Zhang, Wang, Ju, Zhang (bb0605) 2021; 126 Chen, Meng, Mao, Ricciuto (bb0065) 2022; 323 Migliavacca, Perez-Priego, Rossini, El-Madany, Moreno, van der Tol, Reichstein (bb0330) 2017; 214 Kumar, Umanand (bb0260) 2005; 30 Belwalkar, Poblete, Longmire, Hornero, Hernandez-Clemente, Zarco-Tejada (bb0040) 2022; 273 Huemmrich, Campbell, Vargas, Sackett, Unger, May, Middleton (bb0210) 2022; 4 Xu, Liu, Chen, Shang, Liu, Qi, Lin (bb0510) 2022; 192 Chang, Guanter, Frankenberg, Köhler, Gu, Magney, Sun (bb0050) 2020; 125 Romero, Cordon, Lagorio (bb0380) 2018; 204 Du, Liu, Liu, Zhang, Zhang, Bi, Zhang (bb0120) 2018; 63 Rossini, Meroni, Celesti, Cogliati, Julitta, Panigada, Colombo (bb0395) 2016; 8 Yang, Xiao, Doughty, Zhao, Zhang, Kohler, Dong (bb0540) 2022; 280 Fu, Li, Chen, Wu, Su, Li, Xiao (bb0140) 2022; 28 Yang, van der Tol, Campbell, Middleton (bb0535) 2020; 240 Kohler, Frankenberg, Magney, Guanter, Joiner, Landgraf (bb0255) 2018; 45 Zhang, Friedl, Schaaf, Strahler, Hodges, Gao, Huete (bb0575) 2003; 84 Kim, Ryu, Dechant, Lee, Kim, Kornfeld, Berry (bb0245) 2021; 258 Yang, Ryu, Dechant, Berry, Hwang, Jiang, Yang (bb0525) 2018; 216 Meroni, Busetto, Colombo, Guanter, Moreno, Verhoef (bb0320) 2010; 114 Gitelson, Gritz, Merzlyak (bb0175) 2003; 160 Mohammed, Colombo, Middleton, Rascher, van der Tol, Nedbal, Zarco-Tejada (bb0340) 2019; 231 Dechant, Ryu, Badgley, Zeng, Berry, Zhang, Moya (bb0105) 2020; 241 Rossini, Celesti, Bramati, Migliavacca, Cogliati, Rascher, Colombo (bb0400) 2022; 14 Basilio, Bennett, Eldering, Lawson, Rosenberg (bb0030) 2019 Croft, Chen, Zhang (bb0075) 2014; 17 Zeng, Badgley, Chen, Li, Anderegg, Kornfeld, Berry (bb0560) 2020; 240 Gitelson, Solovchenko (bb0165) 2017; 44 Tateishi, Ebata (bb0425) 2004; 25 Morozumi, Kato, Kobayashi, Sakai, Nakashima, Buareal, Muraoka (bb0345) 2023; 284 Liu, Chen, He, Wang, Smith, Keenan, Leng (bb0295) 2023; 287 Verrelst, Rivera, van der Tol, Magnani, Mohammed, Moreno (bb0455) 2015; 166 Liu, Liu, Hu, Guo, Du (bb0280) 2020; 281 Porcar-Castell, Malenovsky, Magney, Van Wittenberghe, Fernandez-Marin, Maignan, Logan (bb0355) 2021; 7 Zhang, Zhang, Porcar-Castell, Chen, Ju, Wu, Zhang (bb0615) 2022; 279 Viña, Gitelson (bb0460) 2005; 32 Li, Zhang, Gu, Li, Li, Zhang, Song (bb0270) 2020 Rossini, Nedbal, Guanter, Ač, Alonso, Burkart, Rascher (bb0390) 2015; 42 Zhang, Guanter, Joiner, Song, Guan (bb0585) 2018; 210 Qian, Liu, Croft, Chen (bb0365) 2021; 126 Xu, Liu, Chen, Liu, Wolanin, Croft, Wang (bb0505) 2022; 1-1 Taylor, Eldering, Merrelli, Kiel, Somkuti, Cheng, Yu (bb0430) 2020; 251 van der Tol, Verhoef, Timmermans, Verhoef, Su (bb0445) 2009; 6 Delloye, Weiss, Defourny (bb0110) 2018; 216 Zeng, Hao, Huete, Dechant, Berry, Chen, Chen (bb0570) 2022; 3 Frankenberg, Fisher, Worden, Badgley, Saatchi, Lee, Yokota (bb0135) 2011; 38 Zhang, Zhang, Joiner, Migliavacca (bb0590) 2018; 24 Wu, Guan, Ainsworth, Martin, Kimm, Yang (bb0495) 2023 Wu, Zhang, Rossini, Wu, Zhang, Zhang (bb0485) 2022; 323 Badgley, Field, Berry (bb0025) 2017; 3 Fournier, Daumard, Champagne, Ounis, Goulas, Moya (bb0130) 2012; 68 Magney, Bowling, Logan, Grossmann, Stutz, Blanken, Frankenberg (bb0300) 2019; 116 Bacour, Maignan, MacBean, Porcar-Castell, Flexas, Frankenberg, Bastrikov (bb0020) 2019; 124 Bonan, Lawrence, Oleson, Levis, Jung, Reichstein, Swenson (bb0045) 2011; 116 Julitta, Burkart, Colombo, Rossini, Schickling, Migliavacca, Rascher (bb0240) 2017 Alonso, Gomez-Chova, Vila-Frances, Amoros-Lopez, Guanter, Calpe, Ieee (bb0010) 2007 Yang, Shi, Stovall, Guan, Miao, Zhang, Lee (bb0530) 2018; 18 Chang, Wen, Han, Kira, LeVonne, Melkonian, Sun (bb0060) 2021; 265 Croft, Chen, Wang, Mo, Luo, Luo, Bonal (bb0085) 2020; 236 Schreiber (bb0410) 2023 Schreiber, Klughammer (bb0415) 2021; 149 Zhang, Guanter, Porcar-Castell, Rossini, Pacheco-Labrador, Zhang (bb0620) 2023; 285 Zhao, Hou, Zhang, Wu, Zhang, Wu, Zhang (bb0625) 2022; 136 Wang, Ju, Penuelas, Cescatti, Zhou, Fu, Zhang (bb0465) 2019; 3 Romero, Cordon, Lagorio (bb0385) 2020; 246 Chang, Zhou, Kira, Marri, Skovira, Gu, Sun (bb0055) 2020; 294 Du, Liu, Chen, Liu (bb0125) 2022; 2022 Xu, Atherton, Riikonen, Zhang, Oivukkamaki, MacArthur, Porcar-Castell (bb0500) 2021; 263 van der Tol, Vilfan, Dauwe, Cendrero-Mateo, Yang (bb0450) 2019; 232 Du, Liu, Liu, Hu (bb0115) 2017; 9 Gitelson (bb0155) 2019; 10 Rossini (10.1016/j.rse.2024.114043_bb0390) 2015; 42 Alonso (10.1016/j.rse.2024.114043_bb0010) 2007 Mohammed (10.1016/j.rse.2024.114043_bb0340) 2019; 231 Viña (10.1016/j.rse.2024.114043_bb0460) 2005; 32 Zhang (10.1016/j.rse.2024.114043_bb0575) 2003; 84 Tateishi (10.1016/j.rse.2024.114043_bb0425) 2004; 25 Magney (10.1016/j.rse.2024.114043_bb0305) 2019; 124 Gitelson (10.1016/j.rse.2024.114043_bb0170) 1998; 152 Taylor (10.1016/j.rse.2024.114043_bb0430) 2020; 251 Porcar-Castell (10.1016/j.rse.2024.114043_bb0350) 2014; 65 Meroni (10.1016/j.rse.2024.114043_bb0315) 2009; 113 Zhang (10.1016/j.rse.2024.114043_bb0580) 2014; 20 Wu (10.1016/j.rse.2024.114043_bb0475) 2022; 279 Chang (10.1016/j.rse.2024.114043_bb0055) 2020; 294 Ahammed (10.1016/j.rse.2024.114043_bb0005) 2018; 9 Kim (10.1016/j.rse.2024.114043_bb0245) 2021; 258 Yang (10.1016/j.rse.2024.114043_bb0530) 2018; 18 Fu (10.1016/j.rse.2024.114043_bb0140) 2022; 28 Croft (10.1016/j.rse.2024.114043_bb0085) 2020; 236 Dechant (10.1016/j.rse.2024.114043_bb0105) 2020; 241 Li (10.1016/j.rse.2024.114043_bb0270) 2020 Zhang (10.1016/j.rse.2024.114043_bb0600) 2020; 240 Guanter (10.1016/j.rse.2024.114043_bb0185) 2014; 111 van der Tol (10.1016/j.rse.2024.114043_bb0450) 2019; 232 Liu (10.1016/j.rse.2024.114043_bb0290) 2023; 284 Wu (10.1016/j.rse.2024.114043_bb0485) 2022; 323 Yang (10.1016/j.rse.2024.114043_bb0545) 2023; 342 Liu (10.1016/j.rse.2024.114043_bb0275) 2019; 231 Beer (10.1016/j.rse.2024.114043_bb0035) 2010; 329 Verrelst (10.1016/j.rse.2024.114043_bb0455) 2015; 166 Chang (10.1016/j.rse.2024.114043_bb0060) 2021; 265 Romero (10.1016/j.rse.2024.114043_bb0380) 2018; 204 Frankenberg (10.1016/j.rse.2024.114043_bb0135) 2011; 38 Yang (10.1016/j.rse.2024.114043_bb0520) 2017; 201 Julitta (10.1016/j.rse.2024.114043_bb0240) 2017 Alonso (10.1016/j.rse.2024.114043_bb0015) 2008; 5 Zeng (10.1016/j.rse.2024.114043_bb0570) 2022; 3 Belwalkar (10.1016/j.rse.2024.114043_bb0040) 2022; 273 Dash (10.1016/j.rse.2024.114043_bb0095) 2004 Zeng (10.1016/j.rse.2024.114043_bb0550) 2019; 232 Zhao (10.1016/j.rse.2024.114043_bb0630) 2022; 277 Migliavacca (10.1016/j.rse.2024.114043_bb0330) 2017; 214 Romero (10.1016/j.rse.2024.114043_bb0385) 2020; 246 Du (10.1016/j.rse.2024.114043_bb0125) 2022; 2022 Gitelson (10.1016/j.rse.2024.114043_bb0180) 2021; 258 Rossini (10.1016/j.rse.2024.114043_bb0395) 2016; 8 Gastellu-Etchegorry (10.1016/j.rse.2024.114043_bb0145) 2017; 10 He (10.1016/j.rse.2024.114043_bb0200) 2019; 232 Croft (10.1016/j.rse.2024.114043_bb0075) 2014; 17 Fournier (10.1016/j.rse.2024.114043_bb0130) 2012; 68 Zhang (10.1016/j.rse.2024.114043_bb0595) 2020; 295 Gitelson (10.1016/j.rse.2024.114043_bb0150) 2005; 32 Gitelson (10.1016/j.rse.2024.114043_bb0165) 2017; 44 Morozumi (10.1016/j.rse.2024.114043_bb0345) 2023; 284 Miao (10.1016/j.rse.2024.114043_bb0325) 2018; 123 Sun (10.1016/j.rse.2024.114043_bb0420) 2018; 209 Bacour (10.1016/j.rse.2024.114043_bb0020) 2019; 124 Qian (10.1016/j.rse.2024.114043_bb0365) 2021; 126 Kohler (10.1016/j.rse.2024.114043_bb0255) 2018; 45 Guo (10.1016/j.rse.2024.114043_bb0195) 2022; 14 Magney (10.1016/j.rse.2024.114043_bb0300) 2019; 116 Meroni (10.1016/j.rse.2024.114043_bb0320) 2010; 114 Schreiber (10.1016/j.rse.2024.114043_bb0415) 2021; 149 Li (10.1016/j.rse.2024.114043_bb0265) 2020; 248 Joiner (10.1016/j.rse.2024.114043_bb0220) 2013; 6 van der Tol (10.1016/j.rse.2024.114043_bb0445) 2009; 6 Wang (10.1016/j.rse.2024.114043_bb0465) 2019; 3 Zeng (10.1016/j.rse.2024.114043_bb0565) 2021; 267 Zhang (10.1016/j.rse.2024.114043_bb0605) 2021; 126 Chen (10.1016/j.rse.2024.114043_bb0070) 2022; 14 Chen (10.1016/j.rse.2024.114043_bb0065) 2022; 323 Guanter (10.1016/j.rse.2024.114043_bb0190) 2021; 13 Ryu (10.1016/j.rse.2024.114043_bb0405) 2019; 223 Zhang (10.1016/j.rse.2024.114043_bb0590) 2018; 24 Moffat (10.1016/j.rse.2024.114043_bb0335) 2007; 147 Zhao (10.1016/j.rse.2024.114043_bb0625) 2022; 136 Yang (10.1016/j.rse.2024.114043_bb0540) 2022; 280 Croft (10.1016/j.rse.2024.114043_bb0080) 2017; 23 Liu (10.1016/j.rse.2024.114043_bb0285) 2022; 271 Uddling (10.1016/j.rse.2024.114043_bb0440) 2007; 91 Gitelson (10.1016/j.rse.2024.114043_bb0175) 2003; 160 Liu (10.1016/j.rse.2024.114043_bb0295) 2023; 287 Badgley (10.1016/j.rse.2024.114043_bb0025) 2017; 3 Wang (10.1016/j.rse.2024.114043_bb0470) 2022; 272 Joiner (10.1016/j.rse.2024.114043_bb0225) 2014; 152 Xu (10.1016/j.rse.2024.114043_bb0505) 2022; 1-1 Wu (10.1016/j.rse.2024.114043_bb0480) 2022; 43 Du (10.1016/j.rse.2024.114043_bb0115) 2017; 9 Reichstein (10.1016/j.rse.2024.114043_bb0375) 2005; 11 Zhang (10.1016/j.rse.2024.114043_bb0620) 2023; 285 Joiner (10.1016/j.rse.2024.114043_bb0230) 2016; 9 Qi (10.1016/j.rse.2024.114043_bb0360) 2023; 15 Wu (10.1016/j.rse.2024.114043_bb0495) 2023 Hu (10.1016/j.rse.2024.114043_bb0205) 2023 Liu (10.1016/j.rse.2024.114043_bb0280) 2020; 281 Delloye (10.1016/j.rse.2024.114043_bb0110) 2018; 216 Basilio (10.1016/j.rse.2024.114043_bb0030) 2019 Qiu (10.1016/j.rse.2024.114043_bb0370) 2022; 323 Bonan (10.1016/j.rse.2024.114043_bb0045) 2011; 116 Zhao (10.1016/j.rse.2024.114043_bb0635) 2022; 60 Knyazikhin (10.1016/j.rse.2024.114043_bb0250) 2011; 112 Dai (10.1016/j.rse.2024.114043_bb0090) 2019; 690 Jonsson (10.1016/j.rse.2024.114043_bb0235) 2002; 40 Huemmrich (10.1016/j.rse.2024.114043_bb0210) 2022; 4 Zhang (10.1016/j.rse.2024.114043_bb0615) 2022; 279 Xu (10.1016/j.rse.2024.114043_bb0500) 2021; 263 Daumard (10.1016/j.rse.2024.114043_bb0100) 2012; 50 Xu (10.1016/j.rse.2024.114043_bb0510) 2022; 192 Meroni (10.1016/j.rse.2024.114043_bb0310) 2006; 103 Joiner (10.1016/j.rse.2024.114043_bb0215) 2011; 8 Gitelson (10.1016/j.rse.2024.114043_bb0155) 2019; 10 Zeng (10.1016/j.rse.2024.114043_bb0555) 2020; 237 Zhang (10.1016/j.rse.2024.114043_bb0585) 2018; 210 Schreiber (10.1016/j.rse.2024.114043_bb0410) 2023 Yang (10.1016/j.rse.2024.114043_bb0525) 2018; 216 Kumar (10.1016/j.rse.2024.114043_bb0260) 2005; 30 Rossini (10.1016/j.rse.2024.114043_bb0400) 2022; 14 Porcar-Castell (10.1016/j.rse.2024.114043_bb0355) 2021; 7 Chang (10.1016/j.rse.2024.114043_bb0050) 2020; 125 Zeng (10.1016/j.rse.2024.114043_bb0560) 2020; 240 Yang (10.1016/j.rse.2024.114043_bb0515) 2018; 209 Gitelson (10.1016/j.rse.2024.114043_bb0160) 1994; 143 Zhang (10.1016/j.rse.2024.114043_bb0610) 2021 Tubuxin (10.1016/j.rse.2024.114043_bb0435) 2015; 66 Yang (10.1016/j.rse.2024.114043_bb0535) 2020; 240 Du (10.1016/j.rse.2024.114043_bb0120) 2018; 63 Wu (10.1016/j.rse.2024.114043_bb0490) 2022 |
References_xml | – volume: 323 year: 2022 ident: bb0065 article-title: Photosynthesis phenology, as defined by solar-induced chlorophyll fluorescence, is overestimated by vegetation indices in the extratropical Northern Hemisphere publication-title: Agric. For. Meteorol. – volume: 14 year: 2022 ident: bb0195 article-title: Machine learning-based approaches for predicting SPAD values of maize using multi-spectral images publication-title: Remote Sens. – volume: 271 year: 2022 ident: bb0285 article-title: Direct estimation of photosynthetic CO2 assimilation from solar-induced chlorophyll fluorescence (SIF) publication-title: Remote Sens. Environ. – volume: 116 start-page: 11640 year: 2019 end-page: 11645 ident: bb0300 article-title: Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 294 year: 2020 ident: bb0055 article-title: An Unmanned Aerial System (UAS) for concurrent measurements of solar-induced chlorophyll fluorescence and hyperspectral reflectance toward improving crop monitoring publication-title: Agric. For. Meteorol. – volume: 204 start-page: 138 year: 2018 end-page: 146 ident: bb0380 article-title: Modeling re-absorption of fluorescence from the leaf to the canopy level publication-title: Remote Sens. Environ. – volume: 287 year: 2023 ident: bb0295 article-title: Global photosynthetic capacity of C3 biomes retrieved from solar-induced chlorophyll fluorescence and leaf chlorophyll content publication-title: Remote Sens. Environ. – volume: 152 start-page: 283 year: 1998 end-page: 296 ident: bb0170 article-title: Leaf chlorophyll fluorescence corrected for re-absorption by means of absorption and reflectance measurements publication-title: J. Plant Physiol. – volume: 231 year: 2019 ident: bb0340 article-title: Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress publication-title: Remote Sens. Environ. – volume: 124 start-page: 3281 year: 2019 end-page: 3306 ident: bb0020 article-title: Improving estimates of gross primary productivity by assimilating solar-induced fluorescence satellite retrievals in a terrestrial biosphere model using a process-based SIF model publication-title: J. Geophys. Res. Biogeosci. – volume: 30 start-page: 2221 year: 2005 end-page: 2233 ident: bb0260 article-title: Estimation of global radiation using clearness index model for sizing photovoltaic system publication-title: Renew. Energy – volume: 240 year: 2020 ident: bb0560 article-title: A radiative transfer model for solar induced fluorescence using spectral invariants theory publication-title: Remote Sens. Environ. – volume: 44 start-page: 9293 year: 2017 end-page: 9298 ident: bb0165 article-title: Generic algorithms for estimating foliar pigment content publication-title: Geophys. Res. Lett. – volume: 13 start-page: 5423 year: 2021 end-page: 5440 ident: bb0190 article-title: The TROPOSIF global sun-induced fluorescence dataset from the sentinel-5P TROPOMI mission publication-title: Earth Syst. Sci. Data – volume: 136 year: 2022 ident: bb0625 article-title: Temporal resolution of vegetation indices and solar-induced chlorophyll fluorescence data affects the accuracy of vegetation phenology estimation: a study using in-situ measurements publication-title: Ecol. Indic. – volume: 149 start-page: 213 year: 2021 end-page: 231 ident: bb0415 article-title: Evidence for variable chlorophyll fluorescence of photosystem I in vivo publication-title: Photosynth. Res. – year: 2023 ident: bb0495 article-title: Solar-induced chlorophyll fluorescence captures the effects of elevated ozone on canopy structure and acceleration of senescence in soybean publication-title: J. Exp. Bot. – volume: 166 start-page: 8 year: 2015 end-page: 21 ident: bb0455 article-title: Global sensitivity analysis of the SCOPE model: what drives simulated canopy-leaving sun-induced fluorescence? publication-title: Remote Sens. Environ. – volume: 152 start-page: 375 year: 2014 end-page: 391 ident: bb0225 article-title: The seasonal cycle of satellite chlorophyll fluorescence observations and its relationship to vegetation phenology and ecosystem atmosphere carbon exchange publication-title: Remote Sens. Environ. – volume: 45 start-page: 10456 year: 2018 end-page: 10463 ident: bb0255 article-title: Global retrievals of solar-induced chlorophyll fluorescence with TROPOMI: first results and Intersensor comparison to OCO-2 publication-title: Geophys. Res. Lett. – volume: 248 year: 2020 ident: bb0265 article-title: Improved estimation of leaf chlorophyll content of row crops from canopy reflectance spectra through minimizing canopy structural effects and optimizing off-noon observation time publication-title: Remote Sens. Environ. – volume: 6 start-page: 2803 year: 2013 end-page: 2823 ident: bb0220 article-title: Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2 publication-title: Atmos. Meas. Tech. – year: 2020 ident: bb0270 article-title: Seasonal variations in the relationships between sun-induced chlorophyll fluorescence and photosynthetic capacity from leaf to canopy in a rice paddy publication-title: J. Exp. Bot. – volume: 240 year: 2020 ident: bb0535 article-title: Fluorescence Correction Vegetation Index (FCVI): a physically based reflectance index to separate physiological and non-physiological information in far-red sun-induced chlorophyll fluorescence publication-title: Remote Sens. Environ. – volume: 65 start-page: 4065 year: 2014 end-page: 4095 ident: bb0350 article-title: Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges publication-title: J. Exp. Bot. – volume: 279 year: 2022 ident: bb0615 article-title: Sun-induced chlorophyll fluorescence is more strongly related to photosynthesis with hemispherical than nadir measurements: evidence from field observations and model simulations publication-title: Remote Sens. Environ. – volume: 38 year: 2011 ident: bb0135 article-title: New global observations of the terrestrial carbon cycle from GOSAT: patterns of plant fluorescence with gross primary productivity publication-title: Geophys. Res. Lett. – volume: 232 year: 2019 ident: bb0200 article-title: Diverse photosynthetic capacity of global ecosystems mapped by satellite chlorophyll fluorescence measurements publication-title: Remote Sens. Environ. – volume: 32 year: 2005 ident: bb0150 article-title: Remote estimation of canopy chlorophyll content in crops publication-title: Geophys. Res. Lett. – volume: 8 start-page: 637 year: 2011 end-page: 651 ident: bb0215 article-title: First observations of global and seasonal terrestrial chlorophyll fluorescence from space publication-title: Biogeosciences – volume: 7 start-page: 998 year: 2021 end-page: 1009 ident: bb0355 article-title: Chlorophyll a fluorescence illuminates a path connecting plant molecular biology to Earth-system science publication-title: Nat Plants – volume: 6 start-page: 3109 year: 2009 end-page: 3129 ident: bb0445 article-title: An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance publication-title: Biogeosciences – start-page: 1 year: 2021 end-page: 18 ident: bb0610 article-title: Sensitivity of estimated total canopy SIF emission to remotely sensed LAI and BRDF products publication-title: J. Remote Sens. – volume: 66 start-page: 5595 year: 2015 end-page: 5603 ident: bb0435 article-title: Estimating chlorophyll content and photochemical yield of photosystem II (I broken vertical bar(PSII)) using solar-induced chlorophyll fluorescence measurements at different growing stages of attached leaves publication-title: J. Exp. Bot. – volume: 240 year: 2020 ident: bb0600 article-title: The potential of satellite FPAR product for GPP estimation: an indirect evaluation using solar-induced chlorophyll fluorescence publication-title: Remote Sens. Environ. – volume: 3 start-page: 477 year: 2022 end-page: 493 ident: bb0570 article-title: Optical vegetation indices for monitoring terrestrial ecosystems globally publication-title: Nat. Rev. Earth Environ. – volume: 214 start-page: 1078 year: 2017 end-page: 1091 ident: bb0330 article-title: Plant functional traits and canopy structure control the relationship between photosynthetic CO2 uptake and far-red sun-induced fluorescence in a Mediterranean grassland under different nutrient availability publication-title: New Phytol. – volume: 17 start-page: 119 year: 2014 end-page: 130 ident: bb0075 article-title: The applicability of empirical vegetation indices for determining leaf chlorophyll content over different leaf and canopy structures publication-title: Ecol. Complex. – volume: 272 year: 2022 ident: bb0470 article-title: Effects of reduced chlorophyll content on photosystem functions and photosynthetic electron transport rate in rice leaves publication-title: J. Plant Physiol. – volume: 279 year: 2022 ident: bb0475 article-title: Difference in seasonal peak timing of soybean far-red SIF and GPP explained by canopy structure and chlorophyll content publication-title: Remote Sens. Environ. – volume: 23 start-page: 3513 year: 2017 end-page: 3524 ident: bb0080 article-title: Leaf chlorophyll content as a proxy for leaf photosynthetic capacity publication-title: Glob. Chang. Biol. – volume: 24 start-page: 5017 year: 2018 end-page: 5020 ident: bb0590 article-title: Angle matters: bidirectional effects impact the slope of relationship between gross primary productivity and sun-induced chlorophyll fluorescence from Orbiting Carbon Observatory-2 across biomes publication-title: Glob. Chang. Biol. – volume: 281 year: 2020 ident: bb0280 article-title: Improving the potential of red SIF for estimating GPP by downscaling from the canopy level to the photosystem level publication-title: Agric. For. Meteorol. – volume: 68 start-page: 112 year: 2012 end-page: 120 ident: bb0130 article-title: Effect of canopy structure on sun-induced chlorophyll fluorescence publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 8 year: 2016 ident: bb0395 article-title: Analysis of red and far-red sun-induced chlorophyll fluorescence and their ratio in different canopies based on observed and modeled data publication-title: Remote Sens. – volume: 280 year: 2022 ident: bb0540 article-title: TROPOMI SIF reveals large uncertainty in estimating the end of plant growing season from vegetation indices data in the Tibetan Plateau publication-title: Remote Sens. Environ. – volume: 2022 start-page: 1 year: 2022 end-page: 9 ident: bb0125 article-title: Prospects for solar-induced chlorophyll fluorescence remote sensing from the SIFIS payload onboard the TECIS-1 satellite publication-title: J. Remote Sens. – volume: 251 year: 2020 ident: bb0430 article-title: OCO-3 early mission operations and initial (vEarly) XCO2 and SIF retrievals publication-title: Remote Sens. Environ. – volume: 241 year: 2020 ident: bb0105 article-title: Canopy structure explains the relationship between photosynthesis and sun-induced chlorophyll fluorescence in crops publication-title: Remote Sens. Environ. – volume: 323 year: 2022 ident: bb0485 article-title: Physiological dynamics dominate the response of canopy far-red solar-induced fluorescence to herbicide treatment publication-title: Agric. For. Meteorol. – volume: 329 start-page: 834 year: 2010 end-page: 838 ident: bb0035 article-title: Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate publication-title: Science – volume: 116 year: 2011 ident: bb0045 article-title: Improving canopy processes in the community land model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data publication-title: J. Geophys. Res. Biogeosci. – volume: 258 year: 2021 ident: bb0245 article-title: Solar-induced chlorophyll fluorescence is non-linearly related to canopy photosynthesis in a temperate evergreen needleleaf forest during the fall transition publication-title: Remote Sens. Environ. – volume: 201 start-page: 1 year: 2017 end-page: 11 ident: bb0520 article-title: The mSCOPE model: a simple adaptation to the SCOPE model to describe reflectance, fluorescence and photosynthesis of vertically publication-title: Remote Sens. Environ. – volume: 50 start-page: 4292 year: 2012 end-page: 4300 ident: bb0100 article-title: Continuous monitoring of canopy level sun-induced chlorophyll fluorescence during the growth of a Sorghum Field publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2019 ident: bb0030 article-title: Orbiting carbon Observatory-3 (OCO-3) remote sensing from the international Space Station (ISS) publication-title: Sensors, Systems, and Nextgeneration Satellites Xxiii. Proceedings of SPIE – year: 2023 ident: bb0205 article-title: Drought affects both photosystems in Arabidopsis thaliana publication-title: New Phytol. – volume: 236 year: 2020 ident: bb0085 article-title: The global distribution of leaf chlorophyll content publication-title: Remote Sens. Environ. – volume: 295 year: 2020 ident: bb0595 article-title: Assessing bi-directional effects on the diurnal cycle of measured solar-induced chlorophyll fluorescence in crop canopies publication-title: Agric. For. Meteorol. – volume: 112 start-page: 727 year: 2011 end-page: 735 ident: bb0250 article-title: Canopy spectral invariants. Part 1: a new concept in remote sensing of vegetation publication-title: J. Quant. Spectrosc. Radiat. Transf. – volume: 42 start-page: 1632 year: 2015 end-page: 1639 ident: bb0390 article-title: Red and far red Sun-induced chlorophyll fluorescence as a measure of plant photosynthesis publication-title: Geophys. Res. Lett. – volume: 342 year: 2023 ident: bb0545 article-title: The roles of radiative, structural and physiological information of sun-induced chlorophyll fluorescence in predicting gross primary production of a corn crop at various temporal scales publication-title: Agric. For. Meteorol. – year: 2017 ident: bb0240 article-title: Accurate measurements of fluorescence in the O2A and O2B band using the FloX spectroscopy system—Results and prospect publication-title: Proceedings of the Potsdam GHG Flux Workshop: From Photosystems to Ecosystems, Potsdam, Germany – volume: 91 start-page: 37 year: 2007 end-page: 46 ident: bb0440 article-title: Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings publication-title: Photosynth. Res. – volume: 9 year: 2017 ident: bb0115 article-title: Response of canopy solar-induced chlorophyll fluorescence to the absorbed photosynthetically active radiation absorbed by chlorophyll publication-title: Remote Sens. – volume: 14 start-page: 4077 year: 2022 end-page: 4093 ident: bb0070 article-title: Global datasets of leaf photosynthetic capacity for ecological and earth system research publication-title: Earth Syst. Sci. Data – volume: 192 start-page: 66 year: 2022 end-page: 82 ident: bb0510 article-title: Retrieving global leaf chlorophyll content from MERIS data using a neural network method publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 114 start-page: 363 year: 2010 end-page: 374 ident: bb0320 article-title: Performance of spectral fitting methods for vegetation fluorescence quantification publication-title: Remote Sens. Environ. – volume: 209 start-page: 456 year: 2018 end-page: 467 ident: bb0515 article-title: Linking canopy scattering of far-red sun-induced chlorophyll fluorescence with reflectance publication-title: Remote Sens. Environ. – volume: 9 start-page: 998 year: 2018 ident: bb0005 article-title: COMT1 silencing aggravates heat stress-induced reduction in photosynthesis by decreasing chlorophyll content, photosystem II activity, and electron transport efficiency in tomato publication-title: Front. Plant Sci. – volume: 285 year: 2023 ident: bb0620 article-title: Global modeling diurnal gross primary production from OCO-3 solar-induced chlorophyll fluorescence publication-title: Remote Sens. Environ. – volume: 11 start-page: 1424 year: 2005 end-page: 1439 ident: bb0375 article-title: On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm publication-title: Glob. Chang. Biol. – volume: 216 start-page: 245 year: 2018 end-page: 261 ident: bb0110 article-title: Retrieval of the canopy chlorophyll content from Sentinel-2 spectral bands to estimate nitrogen uptake in intensive winter wheat cropping systems publication-title: Remote Sens. Environ. – volume: 124 start-page: 1491 year: 2019 end-page: 1507 ident: bb0305 article-title: Disentangling changes in the spectral shape of chlorophyll fluorescence: implications for remote sensing of photosynthesis publication-title: J. Geophys. Res. Biogeosci. – volume: 4 year: 2022 ident: bb0210 article-title: Leaf-level chlorophyll fluorescence and reflectance spectra of high latitude plants publication-title: Environ. Res. Commun. – volume: 10 start-page: 2640 year: 2017 end-page: 2649 ident: bb0145 article-title: DART: recent advances in remote sensing data modeling with atmosphere, polarization, and chlorophyll fluorescence publication-title: Ieee J. Select. Top. Appl. Earth Observ. Remote Sens. – volume: 40 start-page: 1824 year: 2002 end-page: 1832 ident: bb0235 article-title: Seasonality extraction by function fitting to time-series of satellite sensor data publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 232 year: 2019 ident: bb0550 article-title: A practical approach for estimating the escape ratio of near-infrared solar-induced chlorophyll fluorescence publication-title: Remote Sens. Environ. – volume: 3 start-page: 1076 year: 2019 end-page: 1085 ident: bb0465 article-title: Urban-rural gradients reveal joint control of elevated CO2 and temperature on extended photosynthetic seasons publication-title: Nat. Ecol. Evol. – volume: 10 start-page: 283 year: 2019 end-page: 291 ident: bb0155 article-title: Remote estimation of fraction of radiation absorbed by photosynthetically active vegetation: generic algorithm for maize and soybean publication-title: Remote Sens. Lett. – volume: 123 start-page: 610 year: 2018 end-page: 623 ident: bb0325 article-title: Sun-induced chlorophyll fluorescence, photosynthesis, and light use efficiency of a soybean field from seasonally continuous measurements publication-title: J. Geophys. Res. Biogeosci. – volume: 5 start-page: 620 year: 2008 end-page: 624 ident: bb0015 article-title: Improved Fraunhofer line discrimination method for vegetation fluorescence quantification publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 284 year: 2023 ident: bb0290 article-title: A simple approach to enhance the TROPOMI solar-induced chlorophyll fluorescence product by combining with canopy reflected radiation at near-infrared band publication-title: Remote Sens. Environ. – volume: 263 year: 2021 ident: bb0500 article-title: Structural and photosynthetic dynamics mediate the response of SIF to water stress in a potato crop publication-title: Remote Sens. Environ. – volume: 32 year: 2005 ident: bb0460 article-title: New developments in the remote estimation of the fraction of absorbed photosynthetically active radiation in crops publication-title: Geophys. Res. Lett. – volume: 63 start-page: 1502 year: 2018 end-page: 1512 ident: bb0120 article-title: Retrieval of global terrestrial solar-induced chlorophyll fluorescence from TanSat satellite publication-title: Sci. Bull. – year: 2022 ident: bb0490 article-title: How do sky conditions affect the relationships between ground-based solar-induced chlorophyll fluorescence and gross primary productivity across different plant types? publication-title: J. Geophys. Res. Biogeosci. – volume: 126 year: 2021 ident: bb0365 article-title: Relationship between leaf maximum carboxylation rate and chlorophyll content preserved across 13 species publication-title: J. Geophys. Res. Biogeosci. – volume: 273 year: 2022 ident: bb0040 article-title: Evaluation of SIF retrievals from narrow-band and sub-nanometer airborne hyperspectral imagers flown in tandem: modelling and validation in the context of plant phenotyping publication-title: Remote Sens. Environ. – volume: 103 start-page: 438 year: 2006 end-page: 448 ident: bb0310 article-title: Leaf level detection of solar induced chlorophyll fluorescence by means of a subnanometer resolution spectroradiometer publication-title: Remote Sens. Environ. – volume: 277 year: 2022 ident: bb0630 article-title: Simulation of solar-induced chlorophyll fluorescence by modeling radiative coupling between vegetation and atmosphere with WPS publication-title: Remote Sens. Environ. – volume: 9 start-page: 3939 year: 2016 end-page: 3967 ident: bb0230 article-title: New methods for the retrieval of chlorophyll red fluorescence from hyperspectral satellite instruments: simulations and application to GOME-2 and SCIAMACHY publication-title: Atmos. Meas. Tech. – volume: 113 start-page: 2037 year: 2009 end-page: 2051 ident: bb0315 article-title: Remote sensing of solar-induced chlorophyll fluorescence: review of methods and applications publication-title: Remote Sens. Environ. – volume: 84 start-page: 471 year: 2003 end-page: 475 ident: bb0575 article-title: Monitoring vegetation phenology using MODIS publication-title: Remote Sens. Environ. – volume: 18 year: 2018 ident: bb0530 article-title: FluoSpec 2-an automated Field spectroscopy system to monitor canopy solar-induced fluorescence publication-title: Sensors – volume: 232 year: 2019 ident: bb0450 article-title: The scattering and re-absorption of red and near-infrared chlorophyll fluorescence in the models Fluspect and SCOPE publication-title: Remote Sens. Environ. – volume: 237 year: 2020 ident: bb0555 article-title: A review of vegetation phenological metrics extraction using time-series, multispectral satellite data publication-title: Remote Sens. Environ. – volume: 125 year: 2020 ident: bb0050 article-title: Systematic assessment of retrieval methods for canopy far-red solar-induced chlorophyll fluorescence using high-frequency automated Field spectroscopy publication-title: J. Geophys. Res. Biogeosci. – volume: 43 start-page: 1037 year: 2022 end-page: 1053 ident: bb0480 article-title: Detecting mangrove photosynthesis with solar-induced chlorophyll fluorescence publication-title: Int. J. Remote Sens. – volume: 231 year: 2019 ident: bb0275 article-title: Downscaling of solar-induced chlorophyll fluorescence from canopy level to photosystem level using a random forest model publication-title: Remote Sens. Environ. – volume: 1-1 year: 2022 ident: bb0505 article-title: A 21-year time-series of global leaf chlorophyll content maps from MODIS imagery publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 160 start-page: 271 year: 2003 end-page: 282 ident: bb0175 article-title: Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves publication-title: J. Plant Physiol. – volume: 246 year: 2020 ident: bb0385 article-title: Re-absorption and scattering of chlorophyll fluorescence in canopies: a revised approach publication-title: Remote Sens. Environ. – volume: 284 year: 2023 ident: bb0345 article-title: Contributions of the understory and midstory to total canopy solar-induced chlorophyll fluorescence in a ground-based study in conjunction with seasonal gross primary productivity in a cool-temperate deciduous broadleaf forest publication-title: Remote Sens. Environ. – volume: 15 year: 2023 ident: bb0360 article-title: Improving the estimation of canopy fluorescence escape probability in the near-infrared band by accounting for soil reflectance publication-title: Remote Sens. – volume: 14 year: 2022 ident: bb0400 article-title: Evaluation of the spatial representativeness of in situ SIF observations for the validation of medium-resolution satellite SIF products publication-title: Remote Sens. – volume: 25 start-page: 2287 year: 2004 end-page: 2300 ident: bb0425 article-title: Analysis of phenological change patterns using 1982–2000 Advanced Very High Resolution Radiometer (AVHRR) data publication-title: Int. J. Remote Sens. – start-page: 3756 year: 2007 end-page: 3759 ident: bb0010 article-title: Sensitivity analysis of the Fraunhofer Line Discrimination method for the measurement of chlorophyll fluorescence using a field spectroradiometer publication-title: Igarss: 2007 Ieee International Geoscience and Remote Sensing Symposium, Vols 1–12: Sensing and Understanding Our Planet. IEEE International Symposium on Geoscience and Remote Sensing IGARSS – volume: 111 start-page: E1327 year: 2014 end-page: E1333 ident: bb0185 article-title: Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 126 year: 2021 ident: bb0605 article-title: ChinaSpec: a network for long-term ground-based measurements of solar-induced fluorescence in China publication-title: J. Geophys. Res. Biogeosci. – volume: 267 year: 2021 ident: bb0565 article-title: Estimating near-infrared reflectance of vegetation from hyperspectral data publication-title: Remote Sens. Environ. – volume: 209 start-page: 808 year: 2018 end-page: 823 ident: bb0420 article-title: Overview of solar-induced chlorophyll Fluorescence (SIF) from the Orbiting Carbon Observatory-2: retrieval, cross-mission comparison, and global monitoring for GPP publication-title: Remote Sens. Environ. – volume: 323 year: 2022 ident: bb0370 article-title: Monitoring drought impacts on crop productivity of the U.S. Midwest with solar-induced fluorescence: GOSIF outperforms GOME-2 SIF and MODIS NDVI, EVI, and NIRv publication-title: Agric. For. Meteorol. – volume: 147 start-page: 209 year: 2007 end-page: 232 ident: bb0335 article-title: Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes publication-title: Agric. For. Meteorol. – volume: 60 start-page: 1 year: 2022 ident: bb0635 article-title: Retrieval of red solar-induced chlorophyll fluorescence with TROPOMI on the Sentinel-5 precursor mission publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2004 ident: bb0095 article-title: The MERIS terrestrial chlorophyll index. – volume: 223 start-page: 95 year: 2019 end-page: 114 ident: bb0405 article-title: What is global photosynthesis? History, uncertainties and opportunities publication-title: Remote Sens. Environ. – volume: 690 start-page: 973 year: 2019 end-page: 990 ident: bb0090 article-title: Variations and drivers of methane fluxes from a rice-wheat rotation agroecosystem in eastern China at seasonal and diurnal scales publication-title: Sci. Total Environ. – volume: 28 start-page: 4935 year: 2022 end-page: 4946 ident: bb0140 article-title: Soil moisture regulates warming responses of autumn photosynthetic transition dates in subtropical forests publication-title: Glob. Chang. Biol. – volume: 210 start-page: 362 year: 2018 end-page: 374 ident: bb0585 article-title: Spatially-explicit monitoring of crop photosynthetic capacity through the use of space-based chlorophyll fluorescence data publication-title: Remote Sens. Environ. – volume: 258 year: 2021 ident: bb0180 article-title: Evaluating plant photosynthetic traits via absorption coefficient in the photosynthetically active radiation region publication-title: Remote Sens. Environ. – volume: 20 start-page: 3727 year: 2014 end-page: 3742 ident: bb0580 article-title: Estimation of vegetation photosynthetic capacity from space-based measurements of chlorophyll fluorescence for terrestrial biosphere models publication-title: Glob. Chang. Biol. – volume: 3 year: 2017 ident: bb0025 article-title: Canopy near-infrared reflectance and terrestrial photosynthesis publication-title: Sci. Adv. – year: 2023 ident: bb0410 article-title: Light-induced changes of far-red excited chlorophyll fluorescence: further evidence for variable fluorescence of photosystem I in vivo publication-title: Photosynth. Res. – volume: 265 year: 2021 ident: bb0060 article-title: Unpacking the drivers of diurnal dynamics of sun-induced chlorophyll fluorescence (SIF): canopy structure, plant physiology, instrument configuration and retrieval methods publication-title: Remote Sens. Environ. – volume: 143 start-page: 286 year: 1994 end-page: 292 ident: bb0160 article-title: Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation publication-title: J. Plant Physiol. – volume: 216 start-page: 658 year: 2018 end-page: 673 ident: bb0525 article-title: Sun-induced chlorophyll fluorescence is more strongly related to absorbed light than to photosynthesis at half-hourly resolution in a rice paddy publication-title: Remote Sens. Environ. – volume: 166 start-page: 8 year: 2015 ident: 10.1016/j.rse.2024.114043_bb0455 article-title: Global sensitivity analysis of the SCOPE model: what drives simulated canopy-leaving sun-induced fluorescence? publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.06.002 – volume: 209 start-page: 456 year: 2018 ident: 10.1016/j.rse.2024.114043_bb0515 article-title: Linking canopy scattering of far-red sun-induced chlorophyll fluorescence with reflectance publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.02.029 – volume: 1-1 year: 2022 ident: 10.1016/j.rse.2024.114043_bb0505 article-title: A 21-year time-series of global leaf chlorophyll content maps from MODIS imagery publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 28 start-page: 4935 issue: 16 year: 2022 ident: 10.1016/j.rse.2024.114043_bb0140 article-title: Soil moisture regulates warming responses of autumn photosynthetic transition dates in subtropical forests publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.16227 – volume: 258 year: 2021 ident: 10.1016/j.rse.2024.114043_bb0180 article-title: Evaluating plant photosynthetic traits via absorption coefficient in the photosynthetically active radiation region publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112401 – volume: 232 year: 2019 ident: 10.1016/j.rse.2024.114043_bb0450 article-title: The scattering and re-absorption of red and near-infrared chlorophyll fluorescence in the models Fluspect and SCOPE publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111292 – volume: 216 start-page: 245 year: 2018 ident: 10.1016/j.rse.2024.114043_bb0110 article-title: Retrieval of the canopy chlorophyll content from Sentinel-2 spectral bands to estimate nitrogen uptake in intensive winter wheat cropping systems publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.06.037 – volume: 265 year: 2021 ident: 10.1016/j.rse.2024.114043_bb0060 article-title: Unpacking the drivers of diurnal dynamics of sun-induced chlorophyll fluorescence (SIF): canopy structure, plant physiology, instrument configuration and retrieval methods publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112672 – volume: 210 start-page: 362 year: 2018 ident: 10.1016/j.rse.2024.114043_bb0585 article-title: Spatially-explicit monitoring of crop photosynthetic capacity through the use of space-based chlorophyll fluorescence data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.03.031 – volume: 126 issue: 3 year: 2021 ident: 10.1016/j.rse.2024.114043_bb0605 article-title: ChinaSpec: a network for long-term ground-based measurements of solar-induced fluorescence in China publication-title: J. Geophys. Res. Biogeosci. doi: 10.1029/2020JG006042 – volume: 116 year: 2011 ident: 10.1016/j.rse.2024.114043_bb0045 article-title: Improving canopy processes in the community land model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data publication-title: J. Geophys. Res. Biogeosci. doi: 10.1029/2010JG001593 – volume: 204 start-page: 138 year: 2018 ident: 10.1016/j.rse.2024.114043_bb0380 article-title: Modeling re-absorption of fluorescence from the leaf to the canopy level publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.10.035 – year: 2022 ident: 10.1016/j.rse.2024.114043_bb0490 article-title: How do sky conditions affect the relationships between ground-based solar-induced chlorophyll fluorescence and gross primary productivity across different plant types? publication-title: J. Geophys. Res. Biogeosci. doi: 10.1029/2022JG006865 – volume: 45 start-page: 10456 issue: 19 year: 2018 ident: 10.1016/j.rse.2024.114043_bb0255 article-title: Global retrievals of solar-induced chlorophyll fluorescence with TROPOMI: first results and Intersensor comparison to OCO-2 publication-title: Geophys. Res. Lett. doi: 10.1029/2018GL079031 – volume: 114 start-page: 363 issue: 2 year: 2010 ident: 10.1016/j.rse.2024.114043_bb0320 article-title: Performance of spectral fitting methods for vegetation fluorescence quantification publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.09.010 – volume: 267 year: 2021 ident: 10.1016/j.rse.2024.114043_bb0565 article-title: Estimating near-infrared reflectance of vegetation from hyperspectral data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112723 – volume: 279 year: 2022 ident: 10.1016/j.rse.2024.114043_bb0475 article-title: Difference in seasonal peak timing of soybean far-red SIF and GPP explained by canopy structure and chlorophyll content publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2022.113104 – volume: 116 start-page: 11640 issue: 24 year: 2019 ident: 10.1016/j.rse.2024.114043_bb0300 article-title: Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1900278116 – volume: 281 year: 2020 ident: 10.1016/j.rse.2024.114043_bb0280 article-title: Improving the potential of red SIF for estimating GPP by downscaling from the canopy level to the photosystem level publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2019.107846 – volume: 14 start-page: 4077 issue: 9 year: 2022 ident: 10.1016/j.rse.2024.114043_bb0070 article-title: Global datasets of leaf photosynthetic capacity for ecological and earth system research publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-14-4077-2022 – volume: 6 start-page: 3109 issue: 12 year: 2009 ident: 10.1016/j.rse.2024.114043_bb0445 article-title: An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance publication-title: Biogeosciences doi: 10.5194/bg-6-3109-2009 – volume: 7 start-page: 998 issue: 8 year: 2021 ident: 10.1016/j.rse.2024.114043_bb0355 article-title: Chlorophyll a fluorescence illuminates a path connecting plant molecular biology to Earth-system science publication-title: Nat Plants doi: 10.1038/s41477-021-00980-4 – year: 2023 ident: 10.1016/j.rse.2024.114043_bb0495 article-title: Solar-induced chlorophyll fluorescence captures the effects of elevated ozone on canopy structure and acceleration of senescence in soybean publication-title: J. Exp. Bot. – volume: 15 issue: 18 year: 2023 ident: 10.1016/j.rse.2024.114043_bb0360 article-title: Improving the estimation of canopy fluorescence escape probability in the near-infrared band by accounting for soil reflectance publication-title: Remote Sens. doi: 10.3390/rs15184361 – volume: 23 start-page: 3513 issue: 9 year: 2017 ident: 10.1016/j.rse.2024.114043_bb0080 article-title: Leaf chlorophyll content as a proxy for leaf photosynthetic capacity publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.13599 – volume: 237 year: 2020 ident: 10.1016/j.rse.2024.114043_bb0555 article-title: A review of vegetation phenological metrics extraction using time-series, multispectral satellite data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111511 – volume: 14 issue: 20 year: 2022 ident: 10.1016/j.rse.2024.114043_bb0400 article-title: Evaluation of the spatial representativeness of in situ SIF observations for the validation of medium-resolution satellite SIF products publication-title: Remote Sens. doi: 10.3390/rs14205107 – volume: 216 start-page: 658 year: 2018 ident: 10.1016/j.rse.2024.114043_bb0525 article-title: Sun-induced chlorophyll fluorescence is more strongly related to absorbed light than to photosynthesis at half-hourly resolution in a rice paddy publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.07.008 – volume: 258 year: 2021 ident: 10.1016/j.rse.2024.114043_bb0245 article-title: Solar-induced chlorophyll fluorescence is non-linearly related to canopy photosynthesis in a temperate evergreen needleleaf forest during the fall transition publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112362 – volume: 136 year: 2022 ident: 10.1016/j.rse.2024.114043_bb0625 article-title: Temporal resolution of vegetation indices and solar-induced chlorophyll fluorescence data affects the accuracy of vegetation phenology estimation: a study using in-situ measurements publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2022.108673 – volume: 17 start-page: 119 year: 2014 ident: 10.1016/j.rse.2024.114043_bb0075 article-title: The applicability of empirical vegetation indices for determining leaf chlorophyll content over different leaf and canopy structures publication-title: Ecol. Complex. doi: 10.1016/j.ecocom.2013.11.005 – volume: 103 start-page: 438 issue: 4 year: 2006 ident: 10.1016/j.rse.2024.114043_bb0310 article-title: Leaf level detection of solar induced chlorophyll fluorescence by means of a subnanometer resolution spectroradiometer publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.03.016 – volume: 44 start-page: 9293 issue: 18 year: 2017 ident: 10.1016/j.rse.2024.114043_bb0165 article-title: Generic algorithms for estimating foliar pigment content publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL074799 – volume: 9 start-page: 998 year: 2018 ident: 10.1016/j.rse.2024.114043_bb0005 article-title: COMT1 silencing aggravates heat stress-induced reduction in photosynthesis by decreasing chlorophyll content, photosystem II activity, and electron transport efficiency in tomato publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.00998 – volume: 248 year: 2020 ident: 10.1016/j.rse.2024.114043_bb0265 article-title: Improved estimation of leaf chlorophyll content of row crops from canopy reflectance spectra through minimizing canopy structural effects and optimizing off-noon observation time publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111985 – volume: 209 start-page: 808 year: 2018 ident: 10.1016/j.rse.2024.114043_bb0420 article-title: Overview of solar-induced chlorophyll Fluorescence (SIF) from the Orbiting Carbon Observatory-2: retrieval, cross-mission comparison, and global monitoring for GPP publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.02.016 – volume: 2022 start-page: 1 year: 2022 ident: 10.1016/j.rse.2024.114043_bb0125 article-title: Prospects for solar-induced chlorophyll fluorescence remote sensing from the SIFIS payload onboard the TECIS-1 satellite publication-title: J. Remote Sens. doi: 10.34133/2022/9845432 – volume: 236 year: 2020 ident: 10.1016/j.rse.2024.114043_bb0085 article-title: The global distribution of leaf chlorophyll content publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111479 – volume: 232 year: 2019 ident: 10.1016/j.rse.2024.114043_bb0550 article-title: A practical approach for estimating the escape ratio of near-infrared solar-induced chlorophyll fluorescence publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.05.028 – volume: 40 start-page: 1824 issue: 8 year: 2002 ident: 10.1016/j.rse.2024.114043_bb0235 article-title: Seasonality extraction by function fitting to time-series of satellite sensor data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2002.802519 – volume: 25 start-page: 2287 issue: 12 year: 2004 ident: 10.1016/j.rse.2024.114043_bb0425 article-title: Analysis of phenological change patterns using 1982–2000 Advanced Very High Resolution Radiometer (AVHRR) data publication-title: Int. J. Remote Sens. doi: 10.1080/01431160310001618455 – volume: 43 start-page: 1037 issue: 3 year: 2022 ident: 10.1016/j.rse.2024.114043_bb0480 article-title: Detecting mangrove photosynthesis with solar-induced chlorophyll fluorescence publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2022.2032457 – volume: 3 issue: 3 year: 2017 ident: 10.1016/j.rse.2024.114043_bb0025 article-title: Canopy near-infrared reflectance and terrestrial photosynthesis publication-title: Sci. Adv. doi: 10.1126/sciadv.1602244 – volume: 192 start-page: 66 year: 2022 ident: 10.1016/j.rse.2024.114043_bb0510 article-title: Retrieving global leaf chlorophyll content from MERIS data using a neural network method publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2022.08.003 – volume: 147 start-page: 209 issue: 3 year: 2007 ident: 10.1016/j.rse.2024.114043_bb0335 article-title: Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2007.08.011 – volume: 323 year: 2022 ident: 10.1016/j.rse.2024.114043_bb0065 article-title: Photosynthesis phenology, as defined by solar-induced chlorophyll fluorescence, is overestimated by vegetation indices in the extratropical Northern Hemisphere publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2022.109027 – volume: 329 start-page: 834 issue: 5993 year: 2010 ident: 10.1016/j.rse.2024.114043_bb0035 article-title: Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate publication-title: Science doi: 10.1126/science.1184984 – volume: 60 start-page: 1 year: 2022 ident: 10.1016/j.rse.2024.114043_bb0635 article-title: Retrieval of red solar-induced chlorophyll fluorescence with TROPOMI on the Sentinel-5 precursor mission publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2022.3230378 – volume: 240 year: 2020 ident: 10.1016/j.rse.2024.114043_bb0560 article-title: A radiative transfer model for solar induced fluorescence using spectral invariants theory publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111678 – volume: 3 start-page: 477 issue: 7 year: 2022 ident: 10.1016/j.rse.2024.114043_bb0570 article-title: Optical vegetation indices for monitoring terrestrial ecosystems globally publication-title: Nat. Rev. Earth Environ. doi: 10.1038/s43017-022-00298-5 – year: 2020 ident: 10.1016/j.rse.2024.114043_bb0270 article-title: Seasonal variations in the relationships between sun-induced chlorophyll fluorescence and photosynthetic capacity from leaf to canopy in a rice paddy publication-title: J. Exp. Bot. doi: 10.1093/jxb/eraa408 – volume: 63 start-page: 1502 issue: 22 year: 2018 ident: 10.1016/j.rse.2024.114043_bb0120 article-title: Retrieval of global terrestrial solar-induced chlorophyll fluorescence from TanSat satellite publication-title: Sci. Bull. doi: 10.1016/j.scib.2018.10.003 – volume: 6 start-page: 2803 issue: 10 year: 2013 ident: 10.1016/j.rse.2024.114043_bb0220 article-title: Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2 publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-6-2803-2013 – volume: 284 year: 2023 ident: 10.1016/j.rse.2024.114043_bb0345 article-title: Contributions of the understory and midstory to total canopy solar-induced chlorophyll fluorescence in a ground-based study in conjunction with seasonal gross primary productivity in a cool-temperate deciduous broadleaf forest publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2022.113340 – volume: 280 year: 2022 ident: 10.1016/j.rse.2024.114043_bb0540 article-title: TROPOMI SIF reveals large uncertainty in estimating the end of plant growing season from vegetation indices data in the Tibetan Plateau publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2022.113209 – volume: 223 start-page: 95 year: 2019 ident: 10.1016/j.rse.2024.114043_bb0405 article-title: What is global photosynthesis? History, uncertainties and opportunities publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.01.016 – year: 2017 ident: 10.1016/j.rse.2024.114043_bb0240 article-title: Accurate measurements of fluorescence in the O2A and O2B band using the FloX spectroscopy system—Results and prospect – year: 2019 ident: 10.1016/j.rse.2024.114043_bb0030 article-title: Orbiting carbon Observatory-3 (OCO-3) remote sensing from the international Space Station (ISS) – volume: 285 year: 2023 ident: 10.1016/j.rse.2024.114043_bb0620 article-title: Global modeling diurnal gross primary production from OCO-3 solar-induced chlorophyll fluorescence publication-title: Remote Sens. Environ. – volume: 111 start-page: E1327 issue: 14 year: 2014 ident: 10.1016/j.rse.2024.114043_bb0185 article-title: Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1320008111 – volume: 24 start-page: 5017 issue: 11 year: 2018 ident: 10.1016/j.rse.2024.114043_bb0590 article-title: Angle matters: bidirectional effects impact the slope of relationship between gross primary productivity and sun-induced chlorophyll fluorescence from Orbiting Carbon Observatory-2 across biomes publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.14427 – volume: 124 start-page: 3281 issue: 11 year: 2019 ident: 10.1016/j.rse.2024.114043_bb0020 article-title: Improving estimates of gross primary productivity by assimilating solar-induced fluorescence satellite retrievals in a terrestrial biosphere model using a process-based SIF model publication-title: J. Geophys. Res. Biogeosci. doi: 10.1029/2019JG005040 – volume: 14 issue: 6 year: 2022 ident: 10.1016/j.rse.2024.114043_bb0195 article-title: Machine learning-based approaches for predicting SPAD values of maize using multi-spectral images publication-title: Remote Sens. doi: 10.3390/rs14061337 – volume: 126 issue: 2 year: 2021 ident: 10.1016/j.rse.2024.114043_bb0365 article-title: Relationship between leaf maximum carboxylation rate and chlorophyll content preserved across 13 species publication-title: J. Geophys. Res. Biogeosci. doi: 10.1029/2020JG006076 – volume: 690 start-page: 973 year: 2019 ident: 10.1016/j.rse.2024.114043_bb0090 article-title: Variations and drivers of methane fluxes from a rice-wheat rotation agroecosystem in eastern China at seasonal and diurnal scales publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.07.012 – volume: 10 start-page: 2640 issue: 6 year: 2017 ident: 10.1016/j.rse.2024.114043_bb0145 article-title: DART: recent advances in remote sensing data modeling with atmosphere, polarization, and chlorophyll fluorescence publication-title: Ieee J. Select. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2017.2685528 – volume: 8 start-page: 637 issue: 3 year: 2011 ident: 10.1016/j.rse.2024.114043_bb0215 article-title: First observations of global and seasonal terrestrial chlorophyll fluorescence from space publication-title: Biogeosciences doi: 10.5194/bg-8-637-2011 – volume: 273 year: 2022 ident: 10.1016/j.rse.2024.114043_bb0040 article-title: Evaluation of SIF retrievals from narrow-band and sub-nanometer airborne hyperspectral imagers flown in tandem: modelling and validation in the context of plant phenotyping publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2022.112986 – year: 2023 ident: 10.1016/j.rse.2024.114043_bb0205 article-title: Drought affects both photosystems in Arabidopsis thaliana publication-title: New Phytol. doi: 10.1111/nph.19171 – volume: 263 year: 2021 ident: 10.1016/j.rse.2024.114043_bb0500 article-title: Structural and photosynthetic dynamics mediate the response of SIF to water stress in a potato crop publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112555 – volume: 123 start-page: 610 issue: 2 year: 2018 ident: 10.1016/j.rse.2024.114043_bb0325 article-title: Sun-induced chlorophyll fluorescence, photosynthesis, and light use efficiency of a soybean field from seasonally continuous measurements publication-title: J. Geophys. Res. Biogeosci. doi: 10.1002/2017JG004180 – volume: 8 issue: 5 year: 2016 ident: 10.1016/j.rse.2024.114043_bb0395 article-title: Analysis of red and far-red sun-induced chlorophyll fluorescence and their ratio in different canopies based on observed and modeled data publication-title: Remote Sens. doi: 10.3390/rs8050412 – volume: 38 issue: 17 year: 2011 ident: 10.1016/j.rse.2024.114043_bb0135 article-title: New global observations of the terrestrial carbon cycle from GOSAT: patterns of plant fluorescence with gross primary productivity publication-title: Geophys. Res. Lett. doi: 10.1029/2011GL048738 – volume: 9 start-page: 3939 issue: 8 year: 2016 ident: 10.1016/j.rse.2024.114043_bb0230 article-title: New methods for the retrieval of chlorophyll red fluorescence from hyperspectral satellite instruments: simulations and application to GOME-2 and SCIAMACHY publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-9-3939-2016 – volume: 50 start-page: 4292 issue: 11 year: 2012 ident: 10.1016/j.rse.2024.114043_bb0100 article-title: Continuous monitoring of canopy level sun-induced chlorophyll fluorescence during the growth of a Sorghum Field publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2012.2193131 – volume: 240 year: 2020 ident: 10.1016/j.rse.2024.114043_bb0535 article-title: Fluorescence Correction Vegetation Index (FCVI): a physically based reflectance index to separate physiological and non-physiological information in far-red sun-induced chlorophyll fluorescence publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111676 – volume: 201 start-page: 1 year: 2017 ident: 10.1016/j.rse.2024.114043_bb0520 article-title: The mSCOPE model: a simple adaptation to the SCOPE model to describe reflectance, fluorescence and photosynthesis of vertically publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.08.029 – volume: 113 start-page: 2037 issue: 10 year: 2009 ident: 10.1016/j.rse.2024.114043_bb0315 article-title: Remote sensing of solar-induced chlorophyll fluorescence: review of methods and applications publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.05.003 – volume: 251 year: 2020 ident: 10.1016/j.rse.2024.114043_bb0430 article-title: OCO-3 early mission operations and initial (vEarly) XCO2 and SIF retrievals publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.112032 – volume: 66 start-page: 5595 issue: 18 year: 2015 ident: 10.1016/j.rse.2024.114043_bb0435 article-title: Estimating chlorophyll content and photochemical yield of photosystem II (I broken vertical bar(PSII)) using solar-induced chlorophyll fluorescence measurements at different growing stages of attached leaves publication-title: J. Exp. Bot. doi: 10.1093/jxb/erv272 – volume: 287 year: 2023 ident: 10.1016/j.rse.2024.114043_bb0295 article-title: Global photosynthetic capacity of C3 biomes retrieved from solar-induced chlorophyll fluorescence and leaf chlorophyll content publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2023.113457 – volume: 279 year: 2022 ident: 10.1016/j.rse.2024.114043_bb0615 article-title: Sun-induced chlorophyll fluorescence is more strongly related to photosynthesis with hemispherical than nadir measurements: evidence from field observations and model simulations publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2022.113118 – volume: 10 start-page: 283 issue: 3 year: 2019 ident: 10.1016/j.rse.2024.114043_bb0155 article-title: Remote estimation of fraction of radiation absorbed by photosynthetically active vegetation: generic algorithm for maize and soybean publication-title: Remote Sens. Lett. doi: 10.1080/2150704X.2018.1547445 – volume: 323 year: 2022 ident: 10.1016/j.rse.2024.114043_bb0370 article-title: Monitoring drought impacts on crop productivity of the U.S. Midwest with solar-induced fluorescence: GOSIF outperforms GOME-2 SIF and MODIS NDVI, EVI, and NIRv publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2022.109038 – volume: 125 issue: 7 year: 2020 ident: 10.1016/j.rse.2024.114043_bb0050 article-title: Systematic assessment of retrieval methods for canopy far-red solar-induced chlorophyll fluorescence using high-frequency automated Field spectroscopy publication-title: J. Geophys. Res. Biogeosci. doi: 10.1029/2019JG005533 – volume: 143 start-page: 286 issue: 3 year: 1994 ident: 10.1016/j.rse.2024.114043_bb0160 article-title: Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation publication-title: J. Plant Physiol. doi: 10.1016/S0176-1617(11)81633-0 – volume: 241 year: 2020 ident: 10.1016/j.rse.2024.114043_bb0105 article-title: Canopy structure explains the relationship between photosynthesis and sun-induced chlorophyll fluorescence in crops publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111733 – volume: 112 start-page: 727 issue: 4 year: 2011 ident: 10.1016/j.rse.2024.114043_bb0250 article-title: Canopy spectral invariants. Part 1: a new concept in remote sensing of vegetation publication-title: J. Quant. Spectrosc. Radiat. Transf. doi: 10.1016/j.jqsrt.2010.06.014 – volume: 65 start-page: 4065 issue: 15 year: 2014 ident: 10.1016/j.rse.2024.114043_bb0350 article-title: Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges publication-title: J. Exp. Bot. doi: 10.1093/jxb/eru191 – volume: 160 start-page: 271 issue: 3 year: 2003 ident: 10.1016/j.rse.2024.114043_bb0175 article-title: Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves publication-title: J. Plant Physiol. doi: 10.1078/0176-1617-00887 – volume: 272 year: 2022 ident: 10.1016/j.rse.2024.114043_bb0470 article-title: Effects of reduced chlorophyll content on photosystem functions and photosynthetic electron transport rate in rice leaves publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2022.153669 – volume: 342 year: 2023 ident: 10.1016/j.rse.2024.114043_bb0545 article-title: The roles of radiative, structural and physiological information of sun-induced chlorophyll fluorescence in predicting gross primary production of a corn crop at various temporal scales publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2023.109720 – volume: 277 year: 2022 ident: 10.1016/j.rse.2024.114043_bb0630 article-title: Simulation of solar-induced chlorophyll fluorescence by modeling radiative coupling between vegetation and atmosphere with WPS publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2022.113075 – volume: 11 start-page: 1424 issue: 9 year: 2005 ident: 10.1016/j.rse.2024.114043_bb0375 article-title: On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2005.001002.x – year: 2023 ident: 10.1016/j.rse.2024.114043_bb0410 article-title: Light-induced changes of far-red excited chlorophyll fluorescence: further evidence for variable fluorescence of photosystem I in vivo publication-title: Photosynth. Res. doi: 10.1007/s11120-022-00994-9 – volume: 231 year: 2019 ident: 10.1016/j.rse.2024.114043_bb0340 article-title: Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.04.030 – volume: 5 start-page: 620 issue: 4 year: 2008 ident: 10.1016/j.rse.2024.114043_bb0015 article-title: Improved Fraunhofer line discrimination method for vegetation fluorescence quantification publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2008.2001180 – volume: 84 start-page: 471 issue: 3 year: 2003 ident: 10.1016/j.rse.2024.114043_bb0575 article-title: Monitoring vegetation phenology using MODIS publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00135-9 – volume: 30 start-page: 2221 issue: 15 year: 2005 ident: 10.1016/j.rse.2024.114043_bb0260 article-title: Estimation of global radiation using clearness index model for sizing photovoltaic system publication-title: Renew. Energy doi: 10.1016/j.renene.2005.02.009 – volume: 149 start-page: 213 issue: 1–2 year: 2021 ident: 10.1016/j.rse.2024.114043_bb0415 article-title: Evidence for variable chlorophyll fluorescence of photosystem I in vivo publication-title: Photosynth. Res. doi: 10.1007/s11120-020-00814-y – volume: 4 issue: 3 year: 2022 ident: 10.1016/j.rse.2024.114043_bb0210 article-title: Leaf-level chlorophyll fluorescence and reflectance spectra of high latitude plants publication-title: Environ. Res. Commun. doi: 10.1088/2515-7620/ac5365 – volume: 32 issue: 8 year: 2005 ident: 10.1016/j.rse.2024.114043_bb0150 article-title: Remote estimation of canopy chlorophyll content in crops publication-title: Geophys. Res. Lett. doi: 10.1029/2005GL022688 – volume: 124 start-page: 1491 issue: 6 year: 2019 ident: 10.1016/j.rse.2024.114043_bb0305 article-title: Disentangling changes in the spectral shape of chlorophyll fluorescence: implications for remote sensing of photosynthesis publication-title: J. Geophys. Res. Biogeosci. doi: 10.1029/2019JG005029 – year: 2004 ident: 10.1016/j.rse.2024.114043_bb0095 – volume: 32 issue: 17 year: 2005 ident: 10.1016/j.rse.2024.114043_bb0460 article-title: New developments in the remote estimation of the fraction of absorbed photosynthetically active radiation in crops publication-title: Geophys. Res. Lett. doi: 10.1029/2005GL023647 – volume: 18 issue: 7 year: 2018 ident: 10.1016/j.rse.2024.114043_bb0530 article-title: FluoSpec 2-an automated Field spectroscopy system to monitor canopy solar-induced fluorescence publication-title: Sensors doi: 10.3390/s18072063 – volume: 231 year: 2019 ident: 10.1016/j.rse.2024.114043_bb0275 article-title: Downscaling of solar-induced chlorophyll fluorescence from canopy level to photosystem level using a random forest model publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.05.035 – volume: 246 year: 2020 ident: 10.1016/j.rse.2024.114043_bb0385 article-title: Re-absorption and scattering of chlorophyll fluorescence in canopies: a revised approach publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111860 – volume: 294 year: 2020 ident: 10.1016/j.rse.2024.114043_bb0055 article-title: An Unmanned Aerial System (UAS) for concurrent measurements of solar-induced chlorophyll fluorescence and hyperspectral reflectance toward improving crop monitoring publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2020.108145 – volume: 152 start-page: 283 issue: 2–3 year: 1998 ident: 10.1016/j.rse.2024.114043_bb0170 article-title: Leaf chlorophyll fluorescence corrected for re-absorption by means of absorption and reflectance measurements publication-title: J. Plant Physiol. doi: 10.1016/S0176-1617(98)80143-0 – volume: 91 start-page: 37 issue: 1 year: 2007 ident: 10.1016/j.rse.2024.114043_bb0440 article-title: Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings publication-title: Photosynth. Res. doi: 10.1007/s11120-006-9077-5 – volume: 68 start-page: 112 year: 2012 ident: 10.1016/j.rse.2024.114043_bb0130 article-title: Effect of canopy structure on sun-induced chlorophyll fluorescence publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2012.01.003 – volume: 3 start-page: 1076 issue: 7 year: 2019 ident: 10.1016/j.rse.2024.114043_bb0465 article-title: Urban-rural gradients reveal joint control of elevated CO2 and temperature on extended photosynthetic seasons publication-title: Nat. Ecol. Evol. doi: 10.1038/s41559-019-0931-1 – volume: 13 start-page: 5423 issue: 11 year: 2021 ident: 10.1016/j.rse.2024.114043_bb0190 article-title: The TROPOSIF global sun-induced fluorescence dataset from the sentinel-5P TROPOMI mission publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-13-5423-2021 – volume: 271 year: 2022 ident: 10.1016/j.rse.2024.114043_bb0285 article-title: Direct estimation of photosynthetic CO2 assimilation from solar-induced chlorophyll fluorescence (SIF) publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2022.112893 – volume: 20 start-page: 3727 issue: 12 year: 2014 ident: 10.1016/j.rse.2024.114043_bb0580 article-title: Estimation of vegetation photosynthetic capacity from space-based measurements of chlorophyll fluorescence for terrestrial biosphere models publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.12664 – volume: 240 year: 2020 ident: 10.1016/j.rse.2024.114043_bb0600 article-title: The potential of satellite FPAR product for GPP estimation: an indirect evaluation using solar-induced chlorophyll fluorescence publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111686 – volume: 9 issue: 9 year: 2017 ident: 10.1016/j.rse.2024.114043_bb0115 article-title: Response of canopy solar-induced chlorophyll fluorescence to the absorbed photosynthetically active radiation absorbed by chlorophyll publication-title: Remote Sens. doi: 10.3390/rs9090911 – volume: 214 start-page: 1078 issue: 3 year: 2017 ident: 10.1016/j.rse.2024.114043_bb0330 article-title: Plant functional traits and canopy structure control the relationship between photosynthetic CO2 uptake and far-red sun-induced fluorescence in a Mediterranean grassland under different nutrient availability publication-title: New Phytol. doi: 10.1111/nph.14437 – start-page: 1 year: 2021 ident: 10.1016/j.rse.2024.114043_bb0610 article-title: Sensitivity of estimated total canopy SIF emission to remotely sensed LAI and BRDF products publication-title: J. Remote Sens. – volume: 152 start-page: 375 year: 2014 ident: 10.1016/j.rse.2024.114043_bb0225 article-title: The seasonal cycle of satellite chlorophyll fluorescence observations and its relationship to vegetation phenology and ecosystem atmosphere carbon exchange publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.06.022 – volume: 323 year: 2022 ident: 10.1016/j.rse.2024.114043_bb0485 article-title: Physiological dynamics dominate the response of canopy far-red solar-induced fluorescence to herbicide treatment publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2022.109063 – start-page: 3756 year: 2007 ident: 10.1016/j.rse.2024.114043_bb0010 article-title: Sensitivity analysis of the Fraunhofer Line Discrimination method for the measurement of chlorophyll fluorescence using a field spectroradiometer – volume: 42 start-page: 1632 issue: 6 year: 2015 ident: 10.1016/j.rse.2024.114043_bb0390 article-title: Red and far red Sun-induced chlorophyll fluorescence as a measure of plant photosynthesis publication-title: Geophys. Res. Lett. doi: 10.1002/2014GL062943 – volume: 295 year: 2020 ident: 10.1016/j.rse.2024.114043_bb0595 article-title: Assessing bi-directional effects on the diurnal cycle of measured solar-induced chlorophyll fluorescence in crop canopies publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2020.108147 – volume: 232 year: 2019 ident: 10.1016/j.rse.2024.114043_bb0200 article-title: Diverse photosynthetic capacity of global ecosystems mapped by satellite chlorophyll fluorescence measurements publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111344 – volume: 284 year: 2023 ident: 10.1016/j.rse.2024.114043_bb0290 article-title: A simple approach to enhance the TROPOMI solar-induced chlorophyll fluorescence product by combining with canopy reflected radiation at near-infrared band publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2022.113341 |
SSID | ssj0015871 |
Score | 2.5588646 |
Snippet | Solar-induced chlorophyll fluorescence (SIF) emitted from photosystem I (PSI) and photosystem II (PSII) is characterized by two peaks centered in the red and... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 114043 |
SubjectTerms | absorption canopy chlorophyll corn environment Escape probability fluorescence Gross primary production (GPP) gross primary productivity leaf chlorophyll content Leaf chlorophyll content (LCC) leaves phenology Photosynthetic phenology photosynthetically active radiation photosystem II resorption rice satellites Solar-induced chlorophyll fluorescence (SIF) Total red SIF emitted by the photosystem (RSIFtotal) uncertainty wheat |
Title | Deriving photosystem-level red chlorophyll fluorescence emission by combining leaf chlorophyll content and canopy far-red solar-induced fluorescence: Possibilities and challenges |
URI | https://dx.doi.org/10.1016/j.rse.2024.114043 https://www.proquest.com/docview/3153158161 |
Volume | 304 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0hECoXBNsiPgoyUk-VDEvsfPW2WqDbVkU9gMTNsh1HC4qSVbJ72As_qr-wM4lDtUhw4JiNx4oys543zvM8gC_ORHqY2ZyLJMACxQnHjXYJR6grwqxF7LQP-fsmmtzJn_fh_RqM-7MwRKv0a3-3prertf_l3L_N89nDA53xFZIijliQCDyo46eUMUX52dMzzeMiTOJONU9ITqP7L5stx6tuqFNmIKlj7lCK13LTi1W6TT3XO7DtMSMbdY-1C2uuHMDe1f8janjT_0ebAXzwuubT5QA2v7fCvcuP8PcSQ402D9hsWs2rroEzL4gyxGqXMTvFwr1Co6JgebGo6rbNk3WM9OBoR42ZJcOXZFpBCVY4na_YEOUdn4TpEufSZTVbslzXnKZuqHrmWPtjFGUrk39jf6rG83OxYu-Me3WX5hPcXV_djifc6zVwK8Rwzq3MXWqE1RdJEkU2CI1Mc6yA6Nh6lmkb5QguXJZSGzMtbZIa9I0MTIwYNYhdJPZgvaxKtw9MxDg-pFQqDUKMNEGYF5KcqCBMY7MDGPaeUtY3MydNjUL1rLVHhc5V5FzVOfcAvj6bzLpOHm8Nlr371Uo4Ksw0b5md9qGi0Dv07UWXrlo0SmBmwVhEfH34vqmPYIuuOtLQZ1if1wt3jHhobk7agD-BjdGPX5Obf-RiDQI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9swED5BEWIv09aBBmzMSDxNsiixkyZ7QwwoA6o9gMSbZTuOWhQlVdI-9G_xC7lLHKZOggdeY59l-S6-7-zzfQBHzkR6kNqMizjAAMUJx412MUeoK8K0Qex0Dnk7jkb38s9D-LAGZ91bGEqr9Ht_u6c3u7X_cuxX83g2ndIbXyHJ4igLEoGHWIcNqk4V9mDj9Op6NH65TAjjYUucJyQnge5ys0nzqmoqlhlIKpo7kOI19_TfRt14n4tP8NHDRnbazuwzrLmiDzvn_16pYaP_Tes-bHlq88myD5uXDXfv8gs8_UZro_MDNpuU87Kt4cxzyhpilUuZnWDsXqJQnrMsX5RVU-nJOkaUcHSoxsyS4TqZhlOC5U5nKzKU9Y4zYbrAsXRRzpYs0xWnoWsKoDmG_2hI6crgv9jfsvYpuhi0t8IdwUu9DfcX53dnI-4pG7gVYjDnVmYuMcLqkziOIhuERiYZBkH0cj1NtY0yxBcuTaiSmZY2TgzqRgZmiDA1GLpI7ECvKAv3FZgYYv-QvKk0iDKSGJFeSIyigmCNTXdh0GlKWV_PnGg1ctUlrj0qVK4i5apWubvw80Vk1hbzeKuz7NSvVixSobN5S-ywMxWF2qHrF124clErgc4FbREh9t77hv4BW6O72xt1czW-3ocP1NLmEH2D3rxauO8Ij-bmwJv_MwoID7M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deriving+photosystem-level+red+chlorophyll+fluorescence+emission+by+combining+leaf+chlorophyll+content+and+canopy+far-red+solar-induced+fluorescence%3A+Possibilities+and+challenges&rft.jtitle=Remote+sensing+of+environment&rft.au=Wu%2C+Linsheng&rft.au=Zhang%2C+Yongguang&rft.au=Zhang%2C+Zhaoying&rft.au=Zhang%2C+Xiaokang&rft.date=2024-04-01&rft.pub=Elsevier+Inc&rft.issn=0034-4257&rft.eissn=1879-0704&rft.volume=304&rft_id=info:doi/10.1016%2Fj.rse.2024.114043&rft.externalDocID=S0034425724000543 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon |