Deriving photosystem-level red chlorophyll fluorescence emission by combining leaf chlorophyll content and canopy far-red solar-induced fluorescence: Possibilities and challenges

Solar-induced chlorophyll fluorescence (SIF) emitted from photosystem I (PSI) and photosystem II (PSII) is characterized by two peaks centered in the red and far-red spectral regions. SIF provides a unique remotely sensible signal to track plant photosynthetic dynamics. Compared with far-red SIF, re...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing of environment Vol. 304; p. 114043
Main Authors Wu, Linsheng, Zhang, Yongguang, Zhang, Zhaoying, Zhang, Xiaokang, Wu, Yunfei, Chen, Jing M.
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Solar-induced chlorophyll fluorescence (SIF) emitted from photosystem I (PSI) and photosystem II (PSII) is characterized by two peaks centered in the red and far-red spectral regions. SIF provides a unique remotely sensible signal to track plant photosynthetic dynamics. Compared with far-red SIF, red SIF (RSIF) is more strongly linked to PSII and thus with plant photosynthetic activity, but is subject to stronger reabsorption within leaves and canopies. This hinders the understanding and use of canopy RSIF observations (RSIFobs), which is only a small fraction of the total RSIF emitted by the photosystems (RSIFtotal). Deriving RSIFtotal from RSIFobs is still challenging due to retrieval uncertainty, limited availability of RSIFobs and spectral overlap with chlorophyll absorption. To address the challenges associated with deriving RSIFtotal, we propose an exploratory method framework that combines canopy far-red SIF observations (FRSIFobs) and leaf chlorophyll content (LCC) to derive RSIFtotal. We first downscale FRSIFobs from canopy to leaf, and then leverage LCC information to estimate RSIF at the leaf level. Finally, we incorporate LCC information in the subsequent downscaling of RSIF from leaf to photosystem. To evaluate our approach, we use ground-based observation data in three crop types (rice, wheat, and maize) and SCOPE model simulations. Our results demonstrate that the seasonal patterns of RSIFtotal show a close agreement with the seasonal patterns of gross primary production (GPP) and absorbed photosynthetic active radiation (APAR). More importantly, RSIFtotal slightly outperforms FRSIFobs in estimating GPP for the three crop types. Our study has also revealed a strong linear relationship between the escape probability of RSIFtotal (fesc_R) and the RSIFobs/FRSIFobs ratio affected by LCC. The simplicity and robustness of our approach, along with its potential application in satellite remote sensing, will contribute to the improvement of large-scale GPP estimation and photosynthetic phenology detection. Moreover, our investigation of fesc_R will contribute to a better understanding the physiological and non-physiological dynamics of RSIFobs. •Deriving RSIFtotal by combining FRSIFobs and LCC.•Our approach improves GPP estimation by deriving RSIFtotal.•Phenological metrics of RSIFtotal show agreement with those of GPP.•The ratio of RSIFobs and FRSIFobs explains fesc_R.
AbstractList Solar-induced chlorophyll fluorescence (SIF) emitted from photosystem I (PSI) and photosystem II (PSII) is characterized by two peaks centered in the red and far-red spectral regions. SIF provides a unique remotely sensible signal to track plant photosynthetic dynamics. Compared with far-red SIF, red SIF (RSIF) is more strongly linked to PSII and thus with plant photosynthetic activity, but is subject to stronger reabsorption within leaves and canopies. This hinders the understanding and use of canopy RSIF observations (RSIFobs), which is only a small fraction of the total RSIF emitted by the photosystems (RSIFtotal). Deriving RSIFtotal from RSIFobs is still challenging due to retrieval uncertainty, limited availability of RSIFobs and spectral overlap with chlorophyll absorption. To address the challenges associated with deriving RSIFtotal, we propose an exploratory method framework that combines canopy far-red SIF observations (FRSIFobs) and leaf chlorophyll content (LCC) to derive RSIFtotal. We first downscale FRSIFobs from canopy to leaf, and then leverage LCC information to estimate RSIF at the leaf level. Finally, we incorporate LCC information in the subsequent downscaling of RSIF from leaf to photosystem. To evaluate our approach, we use ground-based observation data in three crop types (rice, wheat, and maize) and SCOPE model simulations. Our results demonstrate that the seasonal patterns of RSIFtotal show a close agreement with the seasonal patterns of gross primary production (GPP) and absorbed photosynthetic active radiation (APAR). More importantly, RSIFtotal slightly outperforms FRSIFobs in estimating GPP for the three crop types. Our study has also revealed a strong linear relationship between the escape probability of RSIFtotal (fesc_R) and the RSIFobs/FRSIFobs ratio affected by LCC. The simplicity and robustness of our approach, along with its potential application in satellite remote sensing, will contribute to the improvement of large-scale GPP estimation and photosynthetic phenology detection. Moreover, our investigation of fesc_R will contribute to a better understanding the physiological and non-physiological dynamics of RSIFobs. •Deriving RSIFtotal by combining FRSIFobs and LCC.•Our approach improves GPP estimation by deriving RSIFtotal.•Phenological metrics of RSIFtotal show agreement with those of GPP.•The ratio of RSIFobs and FRSIFobs explains fesc_R.
Solar-induced chlorophyll fluorescence (SIF) emitted from photosystem I (PSI) and photosystem II (PSII) is characterized by two peaks centered in the red and far-red spectral regions. SIF provides a unique remotely sensible signal to track plant photosynthetic dynamics. Compared with far-red SIF, red SIF (RSIF) is more strongly linked to PSII and thus with plant photosynthetic activity, but is subject to stronger reabsorption within leaves and canopies. This hinders the understanding and use of canopy RSIF observations (RSIFₒbₛ), which is only a small fraction of the total RSIF emitted by the photosystems (RSIFₜₒₜₐₗ). Deriving RSIFₜₒₜₐₗ from RSIFₒbₛ is still challenging due to retrieval uncertainty, limited availability of RSIFₒbₛ and spectral overlap with chlorophyll absorption. To address the challenges associated with deriving RSIFₜₒₜₐₗ, we propose an exploratory method framework that combines canopy far-red SIF observations (FRSIFₒbₛ) and leaf chlorophyll content (LCC) to derive RSIFₜₒₜₐₗ. We first downscale FRSIFₒbₛ from canopy to leaf, and then leverage LCC information to estimate RSIF at the leaf level. Finally, we incorporate LCC information in the subsequent downscaling of RSIF from leaf to photosystem. To evaluate our approach, we use ground-based observation data in three crop types (rice, wheat, and maize) and SCOPE model simulations. Our results demonstrate that the seasonal patterns of RSIFₜₒₜₐₗ show a close agreement with the seasonal patterns of gross primary production (GPP) and absorbed photosynthetic active radiation (APAR). More importantly, RSIFₜₒₜₐₗ slightly outperforms FRSIFₒbₛ in estimating GPP for the three crop types. Our study has also revealed a strong linear relationship between the escape probability of RSIFₜₒₜₐₗ (fₑₛc_R) and the RSIFₒbₛ/FRSIFₒbₛ ratio affected by LCC. The simplicity and robustness of our approach, along with its potential application in satellite remote sensing, will contribute to the improvement of large-scale GPP estimation and photosynthetic phenology detection. Moreover, our investigation of fₑₛc_R will contribute to a better understanding the physiological and non-physiological dynamics of RSIFₒbₛ.
ArticleNumber 114043
Author Zhang, Zhaoying
Wu, Yunfei
Chen, Jing M.
Zhang, Yongguang
Zhang, Xiaokang
Wu, Linsheng
Author_xml – sequence: 1
  givenname: Linsheng
  surname: Wu
  fullname: Wu, Linsheng
  organization: International Institute for Earth System Sciences, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing University, Nanjing, China
– sequence: 2
  givenname: Yongguang
  surname: Zhang
  fullname: Zhang, Yongguang
  email: yongguang_zhang@nju.edu.cn
  organization: International Institute for Earth System Sciences, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing University, Nanjing, China
– sequence: 3
  givenname: Zhaoying
  surname: Zhang
  fullname: Zhang, Zhaoying
  organization: International Institute for Earth System Sciences, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing University, Nanjing, China
– sequence: 4
  givenname: Xiaokang
  surname: Zhang
  fullname: Zhang, Xiaokang
  organization: International Institute for Earth System Sciences, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing University, Nanjing, China
– sequence: 5
  givenname: Yunfei
  surname: Wu
  fullname: Wu, Yunfei
  organization: International Institute for Earth System Sciences, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing University, Nanjing, China
– sequence: 6
  givenname: Jing M.
  surname: Chen
  fullname: Chen, Jing M.
  organization: International Institute for Earth System Sciences, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing University, Nanjing, China
BookMark eNp9kU2LFDEQhoOs4OzqD_CWo5ceK93pLz3J-rHCgh70HNLV1TsZMkmbZAb6b_kLTdMedA8LgSRQz0NVvdfsynlHjL0WsBcgmrfHfYi0L6GUeyEkyOoZ24mu7QtoQV6xHUAlC1nW7Qt2HeMRQNRdK3bs90cK5mLcA58PPvm4xESnwtKFLA80cjxYH_x8WKzlkz37QBHJIXE6mRiNd3xYOPrTYNwqsaSn_xj0LpFLXLvs0s7PC590KFZ19Da_jBvPmH__yt_x7z7LB2NNMhQ3-KCtJfdA8SV7Pmkb6dXf-4b9_Pzpx-1dcf_ty9fbD_cFVhWkAuVE_VChFl3XNFjWg-ynugaQHYyjxmYSZU9jD2UDWmLXD3khshzavhdlS011w95s3jn4X2eKSeWRkazVjvw5qkrU-XSiEbm03Uox5MYDTQpN0imvJwVtrBKg1pTUUeWU1JqS2lLKpHhEzsGcdFieZN5vDOXpL4aCimjWvY0mECY1evME_QfxIbG4
CitedBy_id crossref_primary_10_1016_j_scitotenv_2024_175203
crossref_primary_10_3390_rs16224189
crossref_primary_10_1016_j_ecoinf_2025_103035
crossref_primary_10_1016_j_jag_2024_104198
crossref_primary_10_1080_01431161_2025_2465916
crossref_primary_10_3390_rs17010152
crossref_primary_10_1080_22797254_2025_2449940
crossref_primary_10_1051_e3sconf_202454801034
crossref_primary_10_3390_rs16122133
crossref_primary_10_3390_rs16183523
crossref_primary_10_3390_rs16224209
crossref_primary_10_3390_land13030399
crossref_primary_10_1016_j_jag_2024_104281
crossref_primary_10_1016_j_rse_2025_114636
crossref_primary_10_1016_j_compag_2024_109566
crossref_primary_10_1016_j_rsase_2024_101325
crossref_primary_10_1016_j_ecolind_2024_112439
crossref_primary_10_3390_rs16193565
crossref_primary_10_34133_remotesensing_0369
Cites_doi 10.1016/j.rse.2015.06.002
10.1016/j.rse.2018.02.029
10.1111/gcb.16227
10.1016/j.rse.2021.112401
10.1016/j.rse.2019.111292
10.1016/j.rse.2018.06.037
10.1016/j.rse.2021.112672
10.1016/j.rse.2018.03.031
10.1029/2020JG006042
10.1029/2010JG001593
10.1016/j.rse.2017.10.035
10.1029/2022JG006865
10.1029/2018GL079031
10.1016/j.rse.2009.09.010
10.1016/j.rse.2021.112723
10.1016/j.rse.2022.113104
10.1073/pnas.1900278116
10.1016/j.agrformet.2019.107846
10.5194/essd-14-4077-2022
10.5194/bg-6-3109-2009
10.1038/s41477-021-00980-4
10.3390/rs15184361
10.1111/gcb.13599
10.1016/j.rse.2019.111511
10.3390/rs14205107
10.1016/j.rse.2018.07.008
10.1016/j.rse.2021.112362
10.1016/j.ecolind.2022.108673
10.1016/j.ecocom.2013.11.005
10.1016/j.rse.2006.03.016
10.1002/2017GL074799
10.3389/fpls.2018.00998
10.1016/j.rse.2020.111985
10.1016/j.rse.2018.02.016
10.34133/2022/9845432
10.1016/j.rse.2019.111479
10.1016/j.rse.2019.05.028
10.1109/TGRS.2002.802519
10.1080/01431160310001618455
10.1080/01431161.2022.2032457
10.1126/sciadv.1602244
10.1016/j.isprsjprs.2022.08.003
10.1016/j.agrformet.2007.08.011
10.1016/j.agrformet.2022.109027
10.1126/science.1184984
10.1109/TGRS.2022.3230378
10.1016/j.rse.2020.111678
10.1038/s43017-022-00298-5
10.1093/jxb/eraa408
10.1016/j.scib.2018.10.003
10.5194/amt-6-2803-2013
10.1016/j.rse.2022.113340
10.1016/j.rse.2022.113209
10.1016/j.rse.2019.01.016
10.1073/pnas.1320008111
10.1111/gcb.14427
10.1029/2019JG005040
10.3390/rs14061337
10.1029/2020JG006076
10.1016/j.scitotenv.2019.07.012
10.1109/JSTARS.2017.2685528
10.5194/bg-8-637-2011
10.1016/j.rse.2022.112986
10.1111/nph.19171
10.1016/j.rse.2021.112555
10.1002/2017JG004180
10.3390/rs8050412
10.1029/2011GL048738
10.5194/amt-9-3939-2016
10.1109/TGRS.2012.2193131
10.1016/j.rse.2020.111676
10.1016/j.rse.2017.08.029
10.1016/j.rse.2009.05.003
10.1016/j.rse.2020.112032
10.1093/jxb/erv272
10.1016/j.rse.2023.113457
10.1016/j.rse.2022.113118
10.1080/2150704X.2018.1547445
10.1016/j.agrformet.2022.109038
10.1029/2019JG005533
10.1016/S0176-1617(11)81633-0
10.1016/j.rse.2020.111733
10.1016/j.jqsrt.2010.06.014
10.1093/jxb/eru191
10.1078/0176-1617-00887
10.1016/j.jplph.2022.153669
10.1016/j.agrformet.2023.109720
10.1016/j.rse.2022.113075
10.1111/j.1365-2486.2005.001002.x
10.1007/s11120-022-00994-9
10.1016/j.rse.2019.04.030
10.1109/LGRS.2008.2001180
10.1016/S0034-4257(02)00135-9
10.1016/j.renene.2005.02.009
10.1007/s11120-020-00814-y
10.1088/2515-7620/ac5365
10.1029/2005GL022688
10.1029/2019JG005029
10.1029/2005GL023647
10.3390/s18072063
10.1016/j.rse.2018.05.035
10.1016/j.rse.2020.111860
10.1016/j.agrformet.2020.108145
10.1016/S0176-1617(98)80143-0
10.1007/s11120-006-9077-5
10.1016/j.isprsjprs.2012.01.003
10.1038/s41559-019-0931-1
10.5194/essd-13-5423-2021
10.1016/j.rse.2022.112893
10.1111/gcb.12664
10.1016/j.rse.2020.111686
10.3390/rs9090911
10.1111/nph.14437
10.1016/j.rse.2014.06.022
10.1016/j.agrformet.2022.109063
10.1002/2014GL062943
10.1016/j.agrformet.2020.108147
10.1016/j.rse.2019.111344
10.1016/j.rse.2022.113341
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.rse.2024.114043
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Environmental Sciences
EISSN 1879-0704
ExternalDocumentID 10_1016_j_rse_2024_114043
S0034425724000543
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABPPZ
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACPRK
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
TWZ
WH7
ZCA
ZMT
~02
~G-
~KM
29P
41~
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
ADXHL
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FA8
FEDTE
FGOYB
G-2
HMA
HMC
HVGLF
HZ~
H~9
LY3
LY9
OHT
R2-
SEN
SEP
SSH
VOH
WUQ
XOL
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c330t-c4fe9b3ca18866c25b49f5500480ddac6f129ed90260a4c89b87142b799127e63
IEDL.DBID .~1
ISSN 0034-4257
IngestDate Sun Aug 24 03:16:09 EDT 2025
Tue Jul 01 03:51:37 EDT 2025
Thu Apr 24 23:10:41 EDT 2025
Sat Mar 30 16:21:07 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Escape probability
Solar-induced chlorophyll fluorescence (SIF)
Gross primary production (GPP)
Leaf chlorophyll content (LCC)
Photosynthetic phenology
Total red SIF emitted by the photosystem (RSIFtotal)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c330t-c4fe9b3ca18866c25b49f5500480ddac6f129ed90260a4c89b87142b799127e63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 3153158161
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153158161
crossref_citationtrail_10_1016_j_rse_2024_114043
crossref_primary_10_1016_j_rse_2024_114043
elsevier_sciencedirect_doi_10_1016_j_rse_2024_114043
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
2024-04-00
20240401
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Remote sensing of environment
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Zeng, Wardlow, Xiang, Hu, Li (bb0555) 2020; 237
Zhang, Zhang, Zhang, Chen, Porcar-Castell, Guanter, Li (bb0595) 2020; 295
Gitelson (bb0150) 2005; 32
Qiu, Li, Han, Xiao, Ma, Gong (bb0370) 2022; 323
Qi, Liu, Du, Guan, Chen, Liu (bb0360) 2023; 15
Moffat, Papale, Reichstein, Hollinger, Richardson, Barr, Stauch (bb0335) 2007; 147
Zhang, Zhang, Zhang, Gobron, Frankenberg, Wang, Li (bb0600) 2020; 240
Hu, Elias, Nawrocki, Croce (bb0205) 2023
Sun, Frankenberg, Jung, Joiner, Guanter, Kohler, Magney (bb0420) 2018; 209
Zhao, Ma, Kohler, Ma, Sun, Verhoef, Ratul (bb0635) 2022; 60
Yang, Verhoef, van der Tol (bb0520) 2017; 201
Guo, Chen, Li, Cunha, Jayavelu, Cammarano, Fu (bb0195) 2022; 14
Daumard, Goulas, Champagne, Fournier, Ounis, Olioso, Moya (bb0100) 2012; 50
Gitelson, Buschmann, Lichtenthaler (bb0170) 1998; 152
Liu, Zhao, Liu, Yu, Wang, Peng, Lu (bb0285) 2022; 271
Zeng, Hao, Badgley, Damm, Rascher, Ryu, Chen (bb0565) 2021; 267
Tubuxin, Rahimzadeh-Bajgiran, Ginnan, Hosoi, Omasa (bb0435) 2015; 66
Ryu, Berry, Baldocchi (bb0405) 2019; 223
Yang, Liu, Liu, van der Tol, Liu (bb0545) 2023; 342
Alonso, Gomez-Chova, Vila-Frances, Amoros-Lopez, Guanter, Calpe, Moreno (bb0015) 2008; 5
Liu, Liu, Bacour, Guanter, Chen, Ma, Du (bb0290) 2023; 284
Gastellu-Etchegorry, Lauret, Yin, Landier, Kallel, Malenovsky, Mitraka (bb0145) 2017; 10
Wu, Jiang, Kimm, Wang, Bernacchi, Moore, Guan (bb0475) 2022; 279
Joiner, Guanter, Lindstrot, Voigt, Vasilkov, Middleton, Frankenberg (bb0220) 2013; 6
Gitelson, Arkebauer, Viña, Skakun, Inoue (bb0180) 2021; 258
Zhang, Zhang, Chen, Ju, Migliavacca, El-Madany (bb0610) 2021
Joiner, Yoshida, Guanter, Middleton (bb0230) 2016; 9
Meroni, Rossini, Guanter, Alonso, Rascher, Colombo, Moreno (bb0315) 2009; 113
Wu, Zhang, Zhang, Wu, Zhang (bb0490) 2022
Zhao, Li, Verhoef, Fan, Luan, Yin, Bao (bb0630) 2022; 277
Liu, Guanter, Liu, Damm, Malenovsky, Rascher, Gastellu-Etchegorry (bb0275) 2019; 231
Meroni, Colombo (bb0310) 2006; 103
Uddling, Gelang-Alfredsson, Piikki, Pleijel (bb0440) 2007; 91
Gitelson, Merzlyak (bb0160) 1994; 143
Reichstein, Falge, Baldocchi, Papale, Aubinet, Berbigier, Valentini (bb0375) 2005; 11
Wang, Zeng, Song, Sun, Wang, Wang (bb0470) 2022; 272
Ahammed, Xu, Liu, Chen (bb0005) 2018; 9
Dai, Ju, Zhang, He, Song, Li (bb0090) 2019; 690
Porcar-Castell, Tyystjarvi, Atherton, van der Tol, Flexas, Pfuendel, Berry (bb0350) 2014; 65
Guanter, Bacour, Schneider, Aben, van Kempen, Maignan, Zhang (bb0190) 2021; 13
Zeng, Badgley, Dechant, Ryu, Chen, Berry (bb0550) 2019; 232
Croft, Chen, Luo, Bartlett, Chen, Staebler (bb0080) 2017; 23
Beer, Reichstein, Tomelleri, Ciais, Jung, Carvalhais, Papale (bb0035) 2010; 329
Miao, Guan, Yang, Bernacchi, Berry, DeLucia, Masters (bb0325) 2018; 123
Yang, van der Tol (bb0515) 2018; 209
Knyazikhin, Schull, Xu, Myneni, Samanta (bb0250) 2011; 112
Magney, Frankenberg, Kohler, North, Davis, Dold, Porcar-Castell (bb0305) 2019; 124
Zhang, Guanter, Berry, Joiner, van der Tol, Huete, Kohler (bb0580) 2014; 20
Joiner, Yoshida, Vasilkov, Yoshida, Corp, Middleton (bb0215) 2011; 8
Jonsson, Eklundh (bb0235) 2002; 40
Chen, Wang, Liu, He, Croft, Luo, Dong (bb0070) 2022; 14
He, Chen, Liu, Zheng, Wang, Joiner, Rogers (bb0200) 2019; 232
Guanter, Zhang, Jung, Joiner, Voigt, Berry, Griffis (bb0185) 2014; 111
Dash, Curran (bb0095) 2004
Joiner, Yoshida, Vasilkov, Schaefer, Jung, Guanter, Marchesini (bb0225) 2014; 152
Li, Chen, Zhang, Yan, Zhu, Zheng, Cao (bb0265) 2020; 248
Wu, Wang, Shi, Yin (bb0480) 2022; 43
Zhang, Zhang, Liu, Zhang, Wang, Ju, Zhang (bb0605) 2021; 126
Chen, Meng, Mao, Ricciuto (bb0065) 2022; 323
Migliavacca, Perez-Priego, Rossini, El-Madany, Moreno, van der Tol, Reichstein (bb0330) 2017; 214
Kumar, Umanand (bb0260) 2005; 30
Belwalkar, Poblete, Longmire, Hornero, Hernandez-Clemente, Zarco-Tejada (bb0040) 2022; 273
Huemmrich, Campbell, Vargas, Sackett, Unger, May, Middleton (bb0210) 2022; 4
Xu, Liu, Chen, Shang, Liu, Qi, Lin (bb0510) 2022; 192
Chang, Guanter, Frankenberg, Köhler, Gu, Magney, Sun (bb0050) 2020; 125
Romero, Cordon, Lagorio (bb0380) 2018; 204
Du, Liu, Liu, Zhang, Zhang, Bi, Zhang (bb0120) 2018; 63
Rossini, Meroni, Celesti, Cogliati, Julitta, Panigada, Colombo (bb0395) 2016; 8
Yang, Xiao, Doughty, Zhao, Zhang, Kohler, Dong (bb0540) 2022; 280
Fu, Li, Chen, Wu, Su, Li, Xiao (bb0140) 2022; 28
Yang, van der Tol, Campbell, Middleton (bb0535) 2020; 240
Kohler, Frankenberg, Magney, Guanter, Joiner, Landgraf (bb0255) 2018; 45
Zhang, Friedl, Schaaf, Strahler, Hodges, Gao, Huete (bb0575) 2003; 84
Kim, Ryu, Dechant, Lee, Kim, Kornfeld, Berry (bb0245) 2021; 258
Yang, Ryu, Dechant, Berry, Hwang, Jiang, Yang (bb0525) 2018; 216
Meroni, Busetto, Colombo, Guanter, Moreno, Verhoef (bb0320) 2010; 114
Gitelson, Gritz, Merzlyak (bb0175) 2003; 160
Mohammed, Colombo, Middleton, Rascher, van der Tol, Nedbal, Zarco-Tejada (bb0340) 2019; 231
Dechant, Ryu, Badgley, Zeng, Berry, Zhang, Moya (bb0105) 2020; 241
Rossini, Celesti, Bramati, Migliavacca, Cogliati, Rascher, Colombo (bb0400) 2022; 14
Basilio, Bennett, Eldering, Lawson, Rosenberg (bb0030) 2019
Croft, Chen, Zhang (bb0075) 2014; 17
Zeng, Badgley, Chen, Li, Anderegg, Kornfeld, Berry (bb0560) 2020; 240
Gitelson, Solovchenko (bb0165) 2017; 44
Tateishi, Ebata (bb0425) 2004; 25
Morozumi, Kato, Kobayashi, Sakai, Nakashima, Buareal, Muraoka (bb0345) 2023; 284
Liu, Chen, He, Wang, Smith, Keenan, Leng (bb0295) 2023; 287
Verrelst, Rivera, van der Tol, Magnani, Mohammed, Moreno (bb0455) 2015; 166
Liu, Liu, Hu, Guo, Du (bb0280) 2020; 281
Porcar-Castell, Malenovsky, Magney, Van Wittenberghe, Fernandez-Marin, Maignan, Logan (bb0355) 2021; 7
Zhang, Zhang, Porcar-Castell, Chen, Ju, Wu, Zhang (bb0615) 2022; 279
Viña, Gitelson (bb0460) 2005; 32
Li, Zhang, Gu, Li, Li, Zhang, Song (bb0270) 2020
Rossini, Nedbal, Guanter, Ač, Alonso, Burkart, Rascher (bb0390) 2015; 42
Zhang, Guanter, Joiner, Song, Guan (bb0585) 2018; 210
Qian, Liu, Croft, Chen (bb0365) 2021; 126
Xu, Liu, Chen, Liu, Wolanin, Croft, Wang (bb0505) 2022; 1-1
Taylor, Eldering, Merrelli, Kiel, Somkuti, Cheng, Yu (bb0430) 2020; 251
van der Tol, Verhoef, Timmermans, Verhoef, Su (bb0445) 2009; 6
Delloye, Weiss, Defourny (bb0110) 2018; 216
Zeng, Hao, Huete, Dechant, Berry, Chen, Chen (bb0570) 2022; 3
Frankenberg, Fisher, Worden, Badgley, Saatchi, Lee, Yokota (bb0135) 2011; 38
Zhang, Zhang, Joiner, Migliavacca (bb0590) 2018; 24
Wu, Guan, Ainsworth, Martin, Kimm, Yang (bb0495) 2023
Wu, Zhang, Rossini, Wu, Zhang, Zhang (bb0485) 2022; 323
Badgley, Field, Berry (bb0025) 2017; 3
Fournier, Daumard, Champagne, Ounis, Goulas, Moya (bb0130) 2012; 68
Magney, Bowling, Logan, Grossmann, Stutz, Blanken, Frankenberg (bb0300) 2019; 116
Bacour, Maignan, MacBean, Porcar-Castell, Flexas, Frankenberg, Bastrikov (bb0020) 2019; 124
Bonan, Lawrence, Oleson, Levis, Jung, Reichstein, Swenson (bb0045) 2011; 116
Julitta, Burkart, Colombo, Rossini, Schickling, Migliavacca, Rascher (bb0240) 2017
Alonso, Gomez-Chova, Vila-Frances, Amoros-Lopez, Guanter, Calpe, Ieee (bb0010) 2007
Yang, Shi, Stovall, Guan, Miao, Zhang, Lee (bb0530) 2018; 18
Chang, Wen, Han, Kira, LeVonne, Melkonian, Sun (bb0060) 2021; 265
Croft, Chen, Wang, Mo, Luo, Luo, Bonal (bb0085) 2020; 236
Schreiber (bb0410) 2023
Schreiber, Klughammer (bb0415) 2021; 149
Zhang, Guanter, Porcar-Castell, Rossini, Pacheco-Labrador, Zhang (bb0620) 2023; 285
Zhao, Hou, Zhang, Wu, Zhang, Wu, Zhang (bb0625) 2022; 136
Wang, Ju, Penuelas, Cescatti, Zhou, Fu, Zhang (bb0465) 2019; 3
Romero, Cordon, Lagorio (bb0385) 2020; 246
Chang, Zhou, Kira, Marri, Skovira, Gu, Sun (bb0055) 2020; 294
Du, Liu, Chen, Liu (bb0125) 2022; 2022
Xu, Atherton, Riikonen, Zhang, Oivukkamaki, MacArthur, Porcar-Castell (bb0500) 2021; 263
van der Tol, Vilfan, Dauwe, Cendrero-Mateo, Yang (bb0450) 2019; 232
Du, Liu, Liu, Hu (bb0115) 2017; 9
Gitelson (bb0155) 2019; 10
Rossini (10.1016/j.rse.2024.114043_bb0390) 2015; 42
Alonso (10.1016/j.rse.2024.114043_bb0010) 2007
Mohammed (10.1016/j.rse.2024.114043_bb0340) 2019; 231
Viña (10.1016/j.rse.2024.114043_bb0460) 2005; 32
Zhang (10.1016/j.rse.2024.114043_bb0575) 2003; 84
Tateishi (10.1016/j.rse.2024.114043_bb0425) 2004; 25
Magney (10.1016/j.rse.2024.114043_bb0305) 2019; 124
Gitelson (10.1016/j.rse.2024.114043_bb0170) 1998; 152
Taylor (10.1016/j.rse.2024.114043_bb0430) 2020; 251
Porcar-Castell (10.1016/j.rse.2024.114043_bb0350) 2014; 65
Meroni (10.1016/j.rse.2024.114043_bb0315) 2009; 113
Zhang (10.1016/j.rse.2024.114043_bb0580) 2014; 20
Wu (10.1016/j.rse.2024.114043_bb0475) 2022; 279
Chang (10.1016/j.rse.2024.114043_bb0055) 2020; 294
Ahammed (10.1016/j.rse.2024.114043_bb0005) 2018; 9
Kim (10.1016/j.rse.2024.114043_bb0245) 2021; 258
Yang (10.1016/j.rse.2024.114043_bb0530) 2018; 18
Fu (10.1016/j.rse.2024.114043_bb0140) 2022; 28
Croft (10.1016/j.rse.2024.114043_bb0085) 2020; 236
Dechant (10.1016/j.rse.2024.114043_bb0105) 2020; 241
Li (10.1016/j.rse.2024.114043_bb0270) 2020
Zhang (10.1016/j.rse.2024.114043_bb0600) 2020; 240
Guanter (10.1016/j.rse.2024.114043_bb0185) 2014; 111
van der Tol (10.1016/j.rse.2024.114043_bb0450) 2019; 232
Liu (10.1016/j.rse.2024.114043_bb0290) 2023; 284
Wu (10.1016/j.rse.2024.114043_bb0485) 2022; 323
Yang (10.1016/j.rse.2024.114043_bb0545) 2023; 342
Liu (10.1016/j.rse.2024.114043_bb0275) 2019; 231
Beer (10.1016/j.rse.2024.114043_bb0035) 2010; 329
Verrelst (10.1016/j.rse.2024.114043_bb0455) 2015; 166
Chang (10.1016/j.rse.2024.114043_bb0060) 2021; 265
Romero (10.1016/j.rse.2024.114043_bb0380) 2018; 204
Frankenberg (10.1016/j.rse.2024.114043_bb0135) 2011; 38
Yang (10.1016/j.rse.2024.114043_bb0520) 2017; 201
Julitta (10.1016/j.rse.2024.114043_bb0240) 2017
Alonso (10.1016/j.rse.2024.114043_bb0015) 2008; 5
Zeng (10.1016/j.rse.2024.114043_bb0570) 2022; 3
Belwalkar (10.1016/j.rse.2024.114043_bb0040) 2022; 273
Dash (10.1016/j.rse.2024.114043_bb0095) 2004
Zeng (10.1016/j.rse.2024.114043_bb0550) 2019; 232
Zhao (10.1016/j.rse.2024.114043_bb0630) 2022; 277
Migliavacca (10.1016/j.rse.2024.114043_bb0330) 2017; 214
Romero (10.1016/j.rse.2024.114043_bb0385) 2020; 246
Du (10.1016/j.rse.2024.114043_bb0125) 2022; 2022
Gitelson (10.1016/j.rse.2024.114043_bb0180) 2021; 258
Rossini (10.1016/j.rse.2024.114043_bb0395) 2016; 8
Gastellu-Etchegorry (10.1016/j.rse.2024.114043_bb0145) 2017; 10
He (10.1016/j.rse.2024.114043_bb0200) 2019; 232
Croft (10.1016/j.rse.2024.114043_bb0075) 2014; 17
Fournier (10.1016/j.rse.2024.114043_bb0130) 2012; 68
Zhang (10.1016/j.rse.2024.114043_bb0595) 2020; 295
Gitelson (10.1016/j.rse.2024.114043_bb0150) 2005; 32
Gitelson (10.1016/j.rse.2024.114043_bb0165) 2017; 44
Morozumi (10.1016/j.rse.2024.114043_bb0345) 2023; 284
Miao (10.1016/j.rse.2024.114043_bb0325) 2018; 123
Sun (10.1016/j.rse.2024.114043_bb0420) 2018; 209
Bacour (10.1016/j.rse.2024.114043_bb0020) 2019; 124
Qian (10.1016/j.rse.2024.114043_bb0365) 2021; 126
Kohler (10.1016/j.rse.2024.114043_bb0255) 2018; 45
Guo (10.1016/j.rse.2024.114043_bb0195) 2022; 14
Magney (10.1016/j.rse.2024.114043_bb0300) 2019; 116
Meroni (10.1016/j.rse.2024.114043_bb0320) 2010; 114
Schreiber (10.1016/j.rse.2024.114043_bb0415) 2021; 149
Li (10.1016/j.rse.2024.114043_bb0265) 2020; 248
Joiner (10.1016/j.rse.2024.114043_bb0220) 2013; 6
van der Tol (10.1016/j.rse.2024.114043_bb0445) 2009; 6
Wang (10.1016/j.rse.2024.114043_bb0465) 2019; 3
Zeng (10.1016/j.rse.2024.114043_bb0565) 2021; 267
Zhang (10.1016/j.rse.2024.114043_bb0605) 2021; 126
Chen (10.1016/j.rse.2024.114043_bb0070) 2022; 14
Chen (10.1016/j.rse.2024.114043_bb0065) 2022; 323
Guanter (10.1016/j.rse.2024.114043_bb0190) 2021; 13
Ryu (10.1016/j.rse.2024.114043_bb0405) 2019; 223
Zhang (10.1016/j.rse.2024.114043_bb0590) 2018; 24
Moffat (10.1016/j.rse.2024.114043_bb0335) 2007; 147
Zhao (10.1016/j.rse.2024.114043_bb0625) 2022; 136
Yang (10.1016/j.rse.2024.114043_bb0540) 2022; 280
Croft (10.1016/j.rse.2024.114043_bb0080) 2017; 23
Liu (10.1016/j.rse.2024.114043_bb0285) 2022; 271
Uddling (10.1016/j.rse.2024.114043_bb0440) 2007; 91
Gitelson (10.1016/j.rse.2024.114043_bb0175) 2003; 160
Liu (10.1016/j.rse.2024.114043_bb0295) 2023; 287
Badgley (10.1016/j.rse.2024.114043_bb0025) 2017; 3
Wang (10.1016/j.rse.2024.114043_bb0470) 2022; 272
Joiner (10.1016/j.rse.2024.114043_bb0225) 2014; 152
Xu (10.1016/j.rse.2024.114043_bb0505) 2022; 1-1
Wu (10.1016/j.rse.2024.114043_bb0480) 2022; 43
Du (10.1016/j.rse.2024.114043_bb0115) 2017; 9
Reichstein (10.1016/j.rse.2024.114043_bb0375) 2005; 11
Zhang (10.1016/j.rse.2024.114043_bb0620) 2023; 285
Joiner (10.1016/j.rse.2024.114043_bb0230) 2016; 9
Qi (10.1016/j.rse.2024.114043_bb0360) 2023; 15
Wu (10.1016/j.rse.2024.114043_bb0495) 2023
Hu (10.1016/j.rse.2024.114043_bb0205) 2023
Liu (10.1016/j.rse.2024.114043_bb0280) 2020; 281
Delloye (10.1016/j.rse.2024.114043_bb0110) 2018; 216
Basilio (10.1016/j.rse.2024.114043_bb0030) 2019
Qiu (10.1016/j.rse.2024.114043_bb0370) 2022; 323
Bonan (10.1016/j.rse.2024.114043_bb0045) 2011; 116
Zhao (10.1016/j.rse.2024.114043_bb0635) 2022; 60
Knyazikhin (10.1016/j.rse.2024.114043_bb0250) 2011; 112
Dai (10.1016/j.rse.2024.114043_bb0090) 2019; 690
Jonsson (10.1016/j.rse.2024.114043_bb0235) 2002; 40
Huemmrich (10.1016/j.rse.2024.114043_bb0210) 2022; 4
Zhang (10.1016/j.rse.2024.114043_bb0615) 2022; 279
Xu (10.1016/j.rse.2024.114043_bb0500) 2021; 263
Daumard (10.1016/j.rse.2024.114043_bb0100) 2012; 50
Xu (10.1016/j.rse.2024.114043_bb0510) 2022; 192
Meroni (10.1016/j.rse.2024.114043_bb0310) 2006; 103
Joiner (10.1016/j.rse.2024.114043_bb0215) 2011; 8
Gitelson (10.1016/j.rse.2024.114043_bb0155) 2019; 10
Zeng (10.1016/j.rse.2024.114043_bb0555) 2020; 237
Zhang (10.1016/j.rse.2024.114043_bb0585) 2018; 210
Schreiber (10.1016/j.rse.2024.114043_bb0410) 2023
Yang (10.1016/j.rse.2024.114043_bb0525) 2018; 216
Kumar (10.1016/j.rse.2024.114043_bb0260) 2005; 30
Rossini (10.1016/j.rse.2024.114043_bb0400) 2022; 14
Porcar-Castell (10.1016/j.rse.2024.114043_bb0355) 2021; 7
Chang (10.1016/j.rse.2024.114043_bb0050) 2020; 125
Zeng (10.1016/j.rse.2024.114043_bb0560) 2020; 240
Yang (10.1016/j.rse.2024.114043_bb0515) 2018; 209
Gitelson (10.1016/j.rse.2024.114043_bb0160) 1994; 143
Zhang (10.1016/j.rse.2024.114043_bb0610) 2021
Tubuxin (10.1016/j.rse.2024.114043_bb0435) 2015; 66
Yang (10.1016/j.rse.2024.114043_bb0535) 2020; 240
Du (10.1016/j.rse.2024.114043_bb0120) 2018; 63
Wu (10.1016/j.rse.2024.114043_bb0490) 2022
References_xml – volume: 323
  year: 2022
  ident: bb0065
  article-title: Photosynthesis phenology, as defined by solar-induced chlorophyll fluorescence, is overestimated by vegetation indices in the extratropical Northern Hemisphere
  publication-title: Agric. For. Meteorol.
– volume: 14
  year: 2022
  ident: bb0195
  article-title: Machine learning-based approaches for predicting SPAD values of maize using multi-spectral images
  publication-title: Remote Sens.
– volume: 271
  year: 2022
  ident: bb0285
  article-title: Direct estimation of photosynthetic CO2 assimilation from solar-induced chlorophyll fluorescence (SIF)
  publication-title: Remote Sens. Environ.
– volume: 116
  start-page: 11640
  year: 2019
  end-page: 11645
  ident: bb0300
  article-title: Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 294
  year: 2020
  ident: bb0055
  article-title: An Unmanned Aerial System (UAS) for concurrent measurements of solar-induced chlorophyll fluorescence and hyperspectral reflectance toward improving crop monitoring
  publication-title: Agric. For. Meteorol.
– volume: 204
  start-page: 138
  year: 2018
  end-page: 146
  ident: bb0380
  article-title: Modeling re-absorption of fluorescence from the leaf to the canopy level
  publication-title: Remote Sens. Environ.
– volume: 287
  year: 2023
  ident: bb0295
  article-title: Global photosynthetic capacity of C3 biomes retrieved from solar-induced chlorophyll fluorescence and leaf chlorophyll content
  publication-title: Remote Sens. Environ.
– volume: 152
  start-page: 283
  year: 1998
  end-page: 296
  ident: bb0170
  article-title: Leaf chlorophyll fluorescence corrected for re-absorption by means of absorption and reflectance measurements
  publication-title: J. Plant Physiol.
– volume: 231
  year: 2019
  ident: bb0340
  article-title: Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress
  publication-title: Remote Sens. Environ.
– volume: 124
  start-page: 3281
  year: 2019
  end-page: 3306
  ident: bb0020
  article-title: Improving estimates of gross primary productivity by assimilating solar-induced fluorescence satellite retrievals in a terrestrial biosphere model using a process-based SIF model
  publication-title: J. Geophys. Res. Biogeosci.
– volume: 30
  start-page: 2221
  year: 2005
  end-page: 2233
  ident: bb0260
  article-title: Estimation of global radiation using clearness index model for sizing photovoltaic system
  publication-title: Renew. Energy
– volume: 240
  year: 2020
  ident: bb0560
  article-title: A radiative transfer model for solar induced fluorescence using spectral invariants theory
  publication-title: Remote Sens. Environ.
– volume: 44
  start-page: 9293
  year: 2017
  end-page: 9298
  ident: bb0165
  article-title: Generic algorithms for estimating foliar pigment content
  publication-title: Geophys. Res. Lett.
– volume: 13
  start-page: 5423
  year: 2021
  end-page: 5440
  ident: bb0190
  article-title: The TROPOSIF global sun-induced fluorescence dataset from the sentinel-5P TROPOMI mission
  publication-title: Earth Syst. Sci. Data
– volume: 136
  year: 2022
  ident: bb0625
  article-title: Temporal resolution of vegetation indices and solar-induced chlorophyll fluorescence data affects the accuracy of vegetation phenology estimation: a study using in-situ measurements
  publication-title: Ecol. Indic.
– volume: 149
  start-page: 213
  year: 2021
  end-page: 231
  ident: bb0415
  article-title: Evidence for variable chlorophyll fluorescence of photosystem I in vivo
  publication-title: Photosynth. Res.
– year: 2023
  ident: bb0495
  article-title: Solar-induced chlorophyll fluorescence captures the effects of elevated ozone on canopy structure and acceleration of senescence in soybean
  publication-title: J. Exp. Bot.
– volume: 166
  start-page: 8
  year: 2015
  end-page: 21
  ident: bb0455
  article-title: Global sensitivity analysis of the SCOPE model: what drives simulated canopy-leaving sun-induced fluorescence?
  publication-title: Remote Sens. Environ.
– volume: 152
  start-page: 375
  year: 2014
  end-page: 391
  ident: bb0225
  article-title: The seasonal cycle of satellite chlorophyll fluorescence observations and its relationship to vegetation phenology and ecosystem atmosphere carbon exchange
  publication-title: Remote Sens. Environ.
– volume: 45
  start-page: 10456
  year: 2018
  end-page: 10463
  ident: bb0255
  article-title: Global retrievals of solar-induced chlorophyll fluorescence with TROPOMI: first results and Intersensor comparison to OCO-2
  publication-title: Geophys. Res. Lett.
– volume: 248
  year: 2020
  ident: bb0265
  article-title: Improved estimation of leaf chlorophyll content of row crops from canopy reflectance spectra through minimizing canopy structural effects and optimizing off-noon observation time
  publication-title: Remote Sens. Environ.
– volume: 6
  start-page: 2803
  year: 2013
  end-page: 2823
  ident: bb0220
  article-title: Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2
  publication-title: Atmos. Meas. Tech.
– year: 2020
  ident: bb0270
  article-title: Seasonal variations in the relationships between sun-induced chlorophyll fluorescence and photosynthetic capacity from leaf to canopy in a rice paddy
  publication-title: J. Exp. Bot.
– volume: 240
  year: 2020
  ident: bb0535
  article-title: Fluorescence Correction Vegetation Index (FCVI): a physically based reflectance index to separate physiological and non-physiological information in far-red sun-induced chlorophyll fluorescence
  publication-title: Remote Sens. Environ.
– volume: 65
  start-page: 4065
  year: 2014
  end-page: 4095
  ident: bb0350
  article-title: Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges
  publication-title: J. Exp. Bot.
– volume: 279
  year: 2022
  ident: bb0615
  article-title: Sun-induced chlorophyll fluorescence is more strongly related to photosynthesis with hemispherical than nadir measurements: evidence from field observations and model simulations
  publication-title: Remote Sens. Environ.
– volume: 38
  year: 2011
  ident: bb0135
  article-title: New global observations of the terrestrial carbon cycle from GOSAT: patterns of plant fluorescence with gross primary productivity
  publication-title: Geophys. Res. Lett.
– volume: 232
  year: 2019
  ident: bb0200
  article-title: Diverse photosynthetic capacity of global ecosystems mapped by satellite chlorophyll fluorescence measurements
  publication-title: Remote Sens. Environ.
– volume: 32
  year: 2005
  ident: bb0150
  article-title: Remote estimation of canopy chlorophyll content in crops
  publication-title: Geophys. Res. Lett.
– volume: 8
  start-page: 637
  year: 2011
  end-page: 651
  ident: bb0215
  article-title: First observations of global and seasonal terrestrial chlorophyll fluorescence from space
  publication-title: Biogeosciences
– volume: 7
  start-page: 998
  year: 2021
  end-page: 1009
  ident: bb0355
  article-title: Chlorophyll a fluorescence illuminates a path connecting plant molecular biology to Earth-system science
  publication-title: Nat Plants
– volume: 6
  start-page: 3109
  year: 2009
  end-page: 3129
  ident: bb0445
  article-title: An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance
  publication-title: Biogeosciences
– start-page: 1
  year: 2021
  end-page: 18
  ident: bb0610
  article-title: Sensitivity of estimated total canopy SIF emission to remotely sensed LAI and BRDF products
  publication-title: J. Remote Sens.
– volume: 66
  start-page: 5595
  year: 2015
  end-page: 5603
  ident: bb0435
  article-title: Estimating chlorophyll content and photochemical yield of photosystem II (I broken vertical bar(PSII)) using solar-induced chlorophyll fluorescence measurements at different growing stages of attached leaves
  publication-title: J. Exp. Bot.
– volume: 240
  year: 2020
  ident: bb0600
  article-title: The potential of satellite FPAR product for GPP estimation: an indirect evaluation using solar-induced chlorophyll fluorescence
  publication-title: Remote Sens. Environ.
– volume: 3
  start-page: 477
  year: 2022
  end-page: 493
  ident: bb0570
  article-title: Optical vegetation indices for monitoring terrestrial ecosystems globally
  publication-title: Nat. Rev. Earth Environ.
– volume: 214
  start-page: 1078
  year: 2017
  end-page: 1091
  ident: bb0330
  article-title: Plant functional traits and canopy structure control the relationship between photosynthetic CO2 uptake and far-red sun-induced fluorescence in a Mediterranean grassland under different nutrient availability
  publication-title: New Phytol.
– volume: 17
  start-page: 119
  year: 2014
  end-page: 130
  ident: bb0075
  article-title: The applicability of empirical vegetation indices for determining leaf chlorophyll content over different leaf and canopy structures
  publication-title: Ecol. Complex.
– volume: 272
  year: 2022
  ident: bb0470
  article-title: Effects of reduced chlorophyll content on photosystem functions and photosynthetic electron transport rate in rice leaves
  publication-title: J. Plant Physiol.
– volume: 279
  year: 2022
  ident: bb0475
  article-title: Difference in seasonal peak timing of soybean far-red SIF and GPP explained by canopy structure and chlorophyll content
  publication-title: Remote Sens. Environ.
– volume: 23
  start-page: 3513
  year: 2017
  end-page: 3524
  ident: bb0080
  article-title: Leaf chlorophyll content as a proxy for leaf photosynthetic capacity
  publication-title: Glob. Chang. Biol.
– volume: 24
  start-page: 5017
  year: 2018
  end-page: 5020
  ident: bb0590
  article-title: Angle matters: bidirectional effects impact the slope of relationship between gross primary productivity and sun-induced chlorophyll fluorescence from Orbiting Carbon Observatory-2 across biomes
  publication-title: Glob. Chang. Biol.
– volume: 281
  year: 2020
  ident: bb0280
  article-title: Improving the potential of red SIF for estimating GPP by downscaling from the canopy level to the photosystem level
  publication-title: Agric. For. Meteorol.
– volume: 68
  start-page: 112
  year: 2012
  end-page: 120
  ident: bb0130
  article-title: Effect of canopy structure on sun-induced chlorophyll fluorescence
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 8
  year: 2016
  ident: bb0395
  article-title: Analysis of red and far-red sun-induced chlorophyll fluorescence and their ratio in different canopies based on observed and modeled data
  publication-title: Remote Sens.
– volume: 280
  year: 2022
  ident: bb0540
  article-title: TROPOMI SIF reveals large uncertainty in estimating the end of plant growing season from vegetation indices data in the Tibetan Plateau
  publication-title: Remote Sens. Environ.
– volume: 2022
  start-page: 1
  year: 2022
  end-page: 9
  ident: bb0125
  article-title: Prospects for solar-induced chlorophyll fluorescence remote sensing from the SIFIS payload onboard the TECIS-1 satellite
  publication-title: J. Remote Sens.
– volume: 251
  year: 2020
  ident: bb0430
  article-title: OCO-3 early mission operations and initial (vEarly) XCO2 and SIF retrievals
  publication-title: Remote Sens. Environ.
– volume: 241
  year: 2020
  ident: bb0105
  article-title: Canopy structure explains the relationship between photosynthesis and sun-induced chlorophyll fluorescence in crops
  publication-title: Remote Sens. Environ.
– volume: 323
  year: 2022
  ident: bb0485
  article-title: Physiological dynamics dominate the response of canopy far-red solar-induced fluorescence to herbicide treatment
  publication-title: Agric. For. Meteorol.
– volume: 329
  start-page: 834
  year: 2010
  end-page: 838
  ident: bb0035
  article-title: Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate
  publication-title: Science
– volume: 116
  year: 2011
  ident: bb0045
  article-title: Improving canopy processes in the community land model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data
  publication-title: J. Geophys. Res. Biogeosci.
– volume: 258
  year: 2021
  ident: bb0245
  article-title: Solar-induced chlorophyll fluorescence is non-linearly related to canopy photosynthesis in a temperate evergreen needleleaf forest during the fall transition
  publication-title: Remote Sens. Environ.
– volume: 201
  start-page: 1
  year: 2017
  end-page: 11
  ident: bb0520
  article-title: The mSCOPE model: a simple adaptation to the SCOPE model to describe reflectance, fluorescence and photosynthesis of vertically
  publication-title: Remote Sens. Environ.
– volume: 50
  start-page: 4292
  year: 2012
  end-page: 4300
  ident: bb0100
  article-title: Continuous monitoring of canopy level sun-induced chlorophyll fluorescence during the growth of a Sorghum Field
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2019
  ident: bb0030
  article-title: Orbiting carbon Observatory-3 (OCO-3) remote sensing from the international Space Station (ISS)
  publication-title: Sensors, Systems, and Nextgeneration Satellites Xxiii. Proceedings of SPIE
– year: 2023
  ident: bb0205
  article-title: Drought affects both photosystems in Arabidopsis thaliana
  publication-title: New Phytol.
– volume: 236
  year: 2020
  ident: bb0085
  article-title: The global distribution of leaf chlorophyll content
  publication-title: Remote Sens. Environ.
– volume: 295
  year: 2020
  ident: bb0595
  article-title: Assessing bi-directional effects on the diurnal cycle of measured solar-induced chlorophyll fluorescence in crop canopies
  publication-title: Agric. For. Meteorol.
– volume: 112
  start-page: 727
  year: 2011
  end-page: 735
  ident: bb0250
  article-title: Canopy spectral invariants. Part 1: a new concept in remote sensing of vegetation
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
– volume: 42
  start-page: 1632
  year: 2015
  end-page: 1639
  ident: bb0390
  article-title: Red and far red Sun-induced chlorophyll fluorescence as a measure of plant photosynthesis
  publication-title: Geophys. Res. Lett.
– volume: 342
  year: 2023
  ident: bb0545
  article-title: The roles of radiative, structural and physiological information of sun-induced chlorophyll fluorescence in predicting gross primary production of a corn crop at various temporal scales
  publication-title: Agric. For. Meteorol.
– year: 2017
  ident: bb0240
  article-title: Accurate measurements of fluorescence in the O2A and O2B band using the FloX spectroscopy system—Results and prospect
  publication-title: Proceedings of the Potsdam GHG Flux Workshop: From Photosystems to Ecosystems, Potsdam, Germany
– volume: 91
  start-page: 37
  year: 2007
  end-page: 46
  ident: bb0440
  article-title: Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings
  publication-title: Photosynth. Res.
– volume: 9
  year: 2017
  ident: bb0115
  article-title: Response of canopy solar-induced chlorophyll fluorescence to the absorbed photosynthetically active radiation absorbed by chlorophyll
  publication-title: Remote Sens.
– volume: 14
  start-page: 4077
  year: 2022
  end-page: 4093
  ident: bb0070
  article-title: Global datasets of leaf photosynthetic capacity for ecological and earth system research
  publication-title: Earth Syst. Sci. Data
– volume: 192
  start-page: 66
  year: 2022
  end-page: 82
  ident: bb0510
  article-title: Retrieving global leaf chlorophyll content from MERIS data using a neural network method
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 114
  start-page: 363
  year: 2010
  end-page: 374
  ident: bb0320
  article-title: Performance of spectral fitting methods for vegetation fluorescence quantification
  publication-title: Remote Sens. Environ.
– volume: 209
  start-page: 456
  year: 2018
  end-page: 467
  ident: bb0515
  article-title: Linking canopy scattering of far-red sun-induced chlorophyll fluorescence with reflectance
  publication-title: Remote Sens. Environ.
– volume: 9
  start-page: 998
  year: 2018
  ident: bb0005
  article-title: COMT1 silencing aggravates heat stress-induced reduction in photosynthesis by decreasing chlorophyll content, photosystem II activity, and electron transport efficiency in tomato
  publication-title: Front. Plant Sci.
– volume: 285
  year: 2023
  ident: bb0620
  article-title: Global modeling diurnal gross primary production from OCO-3 solar-induced chlorophyll fluorescence
  publication-title: Remote Sens. Environ.
– volume: 11
  start-page: 1424
  year: 2005
  end-page: 1439
  ident: bb0375
  article-title: On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm
  publication-title: Glob. Chang. Biol.
– volume: 216
  start-page: 245
  year: 2018
  end-page: 261
  ident: bb0110
  article-title: Retrieval of the canopy chlorophyll content from Sentinel-2 spectral bands to estimate nitrogen uptake in intensive winter wheat cropping systems
  publication-title: Remote Sens. Environ.
– volume: 124
  start-page: 1491
  year: 2019
  end-page: 1507
  ident: bb0305
  article-title: Disentangling changes in the spectral shape of chlorophyll fluorescence: implications for remote sensing of photosynthesis
  publication-title: J. Geophys. Res. Biogeosci.
– volume: 4
  year: 2022
  ident: bb0210
  article-title: Leaf-level chlorophyll fluorescence and reflectance spectra of high latitude plants
  publication-title: Environ. Res. Commun.
– volume: 10
  start-page: 2640
  year: 2017
  end-page: 2649
  ident: bb0145
  article-title: DART: recent advances in remote sensing data modeling with atmosphere, polarization, and chlorophyll fluorescence
  publication-title: Ieee J. Select. Top. Appl. Earth Observ. Remote Sens.
– volume: 40
  start-page: 1824
  year: 2002
  end-page: 1832
  ident: bb0235
  article-title: Seasonality extraction by function fitting to time-series of satellite sensor data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 232
  year: 2019
  ident: bb0550
  article-title: A practical approach for estimating the escape ratio of near-infrared solar-induced chlorophyll fluorescence
  publication-title: Remote Sens. Environ.
– volume: 3
  start-page: 1076
  year: 2019
  end-page: 1085
  ident: bb0465
  article-title: Urban-rural gradients reveal joint control of elevated CO2 and temperature on extended photosynthetic seasons
  publication-title: Nat. Ecol. Evol.
– volume: 10
  start-page: 283
  year: 2019
  end-page: 291
  ident: bb0155
  article-title: Remote estimation of fraction of radiation absorbed by photosynthetically active vegetation: generic algorithm for maize and soybean
  publication-title: Remote Sens. Lett.
– volume: 123
  start-page: 610
  year: 2018
  end-page: 623
  ident: bb0325
  article-title: Sun-induced chlorophyll fluorescence, photosynthesis, and light use efficiency of a soybean field from seasonally continuous measurements
  publication-title: J. Geophys. Res. Biogeosci.
– volume: 5
  start-page: 620
  year: 2008
  end-page: 624
  ident: bb0015
  article-title: Improved Fraunhofer line discrimination method for vegetation fluorescence quantification
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 284
  year: 2023
  ident: bb0290
  article-title: A simple approach to enhance the TROPOMI solar-induced chlorophyll fluorescence product by combining with canopy reflected radiation at near-infrared band
  publication-title: Remote Sens. Environ.
– volume: 263
  year: 2021
  ident: bb0500
  article-title: Structural and photosynthetic dynamics mediate the response of SIF to water stress in a potato crop
  publication-title: Remote Sens. Environ.
– volume: 32
  year: 2005
  ident: bb0460
  article-title: New developments in the remote estimation of the fraction of absorbed photosynthetically active radiation in crops
  publication-title: Geophys. Res. Lett.
– volume: 63
  start-page: 1502
  year: 2018
  end-page: 1512
  ident: bb0120
  article-title: Retrieval of global terrestrial solar-induced chlorophyll fluorescence from TanSat satellite
  publication-title: Sci. Bull.
– year: 2022
  ident: bb0490
  article-title: How do sky conditions affect the relationships between ground-based solar-induced chlorophyll fluorescence and gross primary productivity across different plant types?
  publication-title: J. Geophys. Res. Biogeosci.
– volume: 126
  year: 2021
  ident: bb0365
  article-title: Relationship between leaf maximum carboxylation rate and chlorophyll content preserved across 13 species
  publication-title: J. Geophys. Res. Biogeosci.
– volume: 273
  year: 2022
  ident: bb0040
  article-title: Evaluation of SIF retrievals from narrow-band and sub-nanometer airborne hyperspectral imagers flown in tandem: modelling and validation in the context of plant phenotyping
  publication-title: Remote Sens. Environ.
– volume: 103
  start-page: 438
  year: 2006
  end-page: 448
  ident: bb0310
  article-title: Leaf level detection of solar induced chlorophyll fluorescence by means of a subnanometer resolution spectroradiometer
  publication-title: Remote Sens. Environ.
– volume: 277
  year: 2022
  ident: bb0630
  article-title: Simulation of solar-induced chlorophyll fluorescence by modeling radiative coupling between vegetation and atmosphere with WPS
  publication-title: Remote Sens. Environ.
– volume: 9
  start-page: 3939
  year: 2016
  end-page: 3967
  ident: bb0230
  article-title: New methods for the retrieval of chlorophyll red fluorescence from hyperspectral satellite instruments: simulations and application to GOME-2 and SCIAMACHY
  publication-title: Atmos. Meas. Tech.
– volume: 113
  start-page: 2037
  year: 2009
  end-page: 2051
  ident: bb0315
  article-title: Remote sensing of solar-induced chlorophyll fluorescence: review of methods and applications
  publication-title: Remote Sens. Environ.
– volume: 84
  start-page: 471
  year: 2003
  end-page: 475
  ident: bb0575
  article-title: Monitoring vegetation phenology using MODIS
  publication-title: Remote Sens. Environ.
– volume: 18
  year: 2018
  ident: bb0530
  article-title: FluoSpec 2-an automated Field spectroscopy system to monitor canopy solar-induced fluorescence
  publication-title: Sensors
– volume: 232
  year: 2019
  ident: bb0450
  article-title: The scattering and re-absorption of red and near-infrared chlorophyll fluorescence in the models Fluspect and SCOPE
  publication-title: Remote Sens. Environ.
– volume: 237
  year: 2020
  ident: bb0555
  article-title: A review of vegetation phenological metrics extraction using time-series, multispectral satellite data
  publication-title: Remote Sens. Environ.
– volume: 125
  year: 2020
  ident: bb0050
  article-title: Systematic assessment of retrieval methods for canopy far-red solar-induced chlorophyll fluorescence using high-frequency automated Field spectroscopy
  publication-title: J. Geophys. Res. Biogeosci.
– volume: 43
  start-page: 1037
  year: 2022
  end-page: 1053
  ident: bb0480
  article-title: Detecting mangrove photosynthesis with solar-induced chlorophyll fluorescence
  publication-title: Int. J. Remote Sens.
– volume: 231
  year: 2019
  ident: bb0275
  article-title: Downscaling of solar-induced chlorophyll fluorescence from canopy level to photosystem level using a random forest model
  publication-title: Remote Sens. Environ.
– volume: 1-1
  year: 2022
  ident: bb0505
  article-title: A 21-year time-series of global leaf chlorophyll content maps from MODIS imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 160
  start-page: 271
  year: 2003
  end-page: 282
  ident: bb0175
  article-title: Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves
  publication-title: J. Plant Physiol.
– volume: 246
  year: 2020
  ident: bb0385
  article-title: Re-absorption and scattering of chlorophyll fluorescence in canopies: a revised approach
  publication-title: Remote Sens. Environ.
– volume: 284
  year: 2023
  ident: bb0345
  article-title: Contributions of the understory and midstory to total canopy solar-induced chlorophyll fluorescence in a ground-based study in conjunction with seasonal gross primary productivity in a cool-temperate deciduous broadleaf forest
  publication-title: Remote Sens. Environ.
– volume: 15
  year: 2023
  ident: bb0360
  article-title: Improving the estimation of canopy fluorescence escape probability in the near-infrared band by accounting for soil reflectance
  publication-title: Remote Sens.
– volume: 14
  year: 2022
  ident: bb0400
  article-title: Evaluation of the spatial representativeness of in situ SIF observations for the validation of medium-resolution satellite SIF products
  publication-title: Remote Sens.
– volume: 25
  start-page: 2287
  year: 2004
  end-page: 2300
  ident: bb0425
  article-title: Analysis of phenological change patterns using 1982–2000 Advanced Very High Resolution Radiometer (AVHRR) data
  publication-title: Int. J. Remote Sens.
– start-page: 3756
  year: 2007
  end-page: 3759
  ident: bb0010
  article-title: Sensitivity analysis of the Fraunhofer Line Discrimination method for the measurement of chlorophyll fluorescence using a field spectroradiometer
  publication-title: Igarss: 2007 Ieee International Geoscience and Remote Sensing Symposium, Vols 1–12: Sensing and Understanding Our Planet. IEEE International Symposium on Geoscience and Remote Sensing IGARSS
– volume: 111
  start-page: E1327
  year: 2014
  end-page: E1333
  ident: bb0185
  article-title: Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 126
  year: 2021
  ident: bb0605
  article-title: ChinaSpec: a network for long-term ground-based measurements of solar-induced fluorescence in China
  publication-title: J. Geophys. Res. Biogeosci.
– volume: 267
  year: 2021
  ident: bb0565
  article-title: Estimating near-infrared reflectance of vegetation from hyperspectral data
  publication-title: Remote Sens. Environ.
– volume: 209
  start-page: 808
  year: 2018
  end-page: 823
  ident: bb0420
  article-title: Overview of solar-induced chlorophyll Fluorescence (SIF) from the Orbiting Carbon Observatory-2: retrieval, cross-mission comparison, and global monitoring for GPP
  publication-title: Remote Sens. Environ.
– volume: 323
  year: 2022
  ident: bb0370
  article-title: Monitoring drought impacts on crop productivity of the U.S. Midwest with solar-induced fluorescence: GOSIF outperforms GOME-2 SIF and MODIS NDVI, EVI, and NIRv
  publication-title: Agric. For. Meteorol.
– volume: 147
  start-page: 209
  year: 2007
  end-page: 232
  ident: bb0335
  article-title: Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes
  publication-title: Agric. For. Meteorol.
– volume: 60
  start-page: 1
  year: 2022
  ident: bb0635
  article-title: Retrieval of red solar-induced chlorophyll fluorescence with TROPOMI on the Sentinel-5 precursor mission
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2004
  ident: bb0095
  article-title: The MERIS terrestrial chlorophyll index.
– volume: 223
  start-page: 95
  year: 2019
  end-page: 114
  ident: bb0405
  article-title: What is global photosynthesis? History, uncertainties and opportunities
  publication-title: Remote Sens. Environ.
– volume: 690
  start-page: 973
  year: 2019
  end-page: 990
  ident: bb0090
  article-title: Variations and drivers of methane fluxes from a rice-wheat rotation agroecosystem in eastern China at seasonal and diurnal scales
  publication-title: Sci. Total Environ.
– volume: 28
  start-page: 4935
  year: 2022
  end-page: 4946
  ident: bb0140
  article-title: Soil moisture regulates warming responses of autumn photosynthetic transition dates in subtropical forests
  publication-title: Glob. Chang. Biol.
– volume: 210
  start-page: 362
  year: 2018
  end-page: 374
  ident: bb0585
  article-title: Spatially-explicit monitoring of crop photosynthetic capacity through the use of space-based chlorophyll fluorescence data
  publication-title: Remote Sens. Environ.
– volume: 258
  year: 2021
  ident: bb0180
  article-title: Evaluating plant photosynthetic traits via absorption coefficient in the photosynthetically active radiation region
  publication-title: Remote Sens. Environ.
– volume: 20
  start-page: 3727
  year: 2014
  end-page: 3742
  ident: bb0580
  article-title: Estimation of vegetation photosynthetic capacity from space-based measurements of chlorophyll fluorescence for terrestrial biosphere models
  publication-title: Glob. Chang. Biol.
– volume: 3
  year: 2017
  ident: bb0025
  article-title: Canopy near-infrared reflectance and terrestrial photosynthesis
  publication-title: Sci. Adv.
– year: 2023
  ident: bb0410
  article-title: Light-induced changes of far-red excited chlorophyll fluorescence: further evidence for variable fluorescence of photosystem I in vivo
  publication-title: Photosynth. Res.
– volume: 265
  year: 2021
  ident: bb0060
  article-title: Unpacking the drivers of diurnal dynamics of sun-induced chlorophyll fluorescence (SIF): canopy structure, plant physiology, instrument configuration and retrieval methods
  publication-title: Remote Sens. Environ.
– volume: 143
  start-page: 286
  year: 1994
  end-page: 292
  ident: bb0160
  article-title: Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation
  publication-title: J. Plant Physiol.
– volume: 216
  start-page: 658
  year: 2018
  end-page: 673
  ident: bb0525
  article-title: Sun-induced chlorophyll fluorescence is more strongly related to absorbed light than to photosynthesis at half-hourly resolution in a rice paddy
  publication-title: Remote Sens. Environ.
– volume: 166
  start-page: 8
  year: 2015
  ident: 10.1016/j.rse.2024.114043_bb0455
  article-title: Global sensitivity analysis of the SCOPE model: what drives simulated canopy-leaving sun-induced fluorescence?
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.06.002
– volume: 209
  start-page: 456
  year: 2018
  ident: 10.1016/j.rse.2024.114043_bb0515
  article-title: Linking canopy scattering of far-red sun-induced chlorophyll fluorescence with reflectance
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.02.029
– volume: 1-1
  year: 2022
  ident: 10.1016/j.rse.2024.114043_bb0505
  article-title: A 21-year time-series of global leaf chlorophyll content maps from MODIS imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 28
  start-page: 4935
  issue: 16
  year: 2022
  ident: 10.1016/j.rse.2024.114043_bb0140
  article-title: Soil moisture regulates warming responses of autumn photosynthetic transition dates in subtropical forests
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.16227
– volume: 258
  year: 2021
  ident: 10.1016/j.rse.2024.114043_bb0180
  article-title: Evaluating plant photosynthetic traits via absorption coefficient in the photosynthetically active radiation region
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112401
– volume: 232
  year: 2019
  ident: 10.1016/j.rse.2024.114043_bb0450
  article-title: The scattering and re-absorption of red and near-infrared chlorophyll fluorescence in the models Fluspect and SCOPE
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111292
– volume: 216
  start-page: 245
  year: 2018
  ident: 10.1016/j.rse.2024.114043_bb0110
  article-title: Retrieval of the canopy chlorophyll content from Sentinel-2 spectral bands to estimate nitrogen uptake in intensive winter wheat cropping systems
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.06.037
– volume: 265
  year: 2021
  ident: 10.1016/j.rse.2024.114043_bb0060
  article-title: Unpacking the drivers of diurnal dynamics of sun-induced chlorophyll fluorescence (SIF): canopy structure, plant physiology, instrument configuration and retrieval methods
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112672
– volume: 210
  start-page: 362
  year: 2018
  ident: 10.1016/j.rse.2024.114043_bb0585
  article-title: Spatially-explicit monitoring of crop photosynthetic capacity through the use of space-based chlorophyll fluorescence data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.03.031
– volume: 126
  issue: 3
  year: 2021
  ident: 10.1016/j.rse.2024.114043_bb0605
  article-title: ChinaSpec: a network for long-term ground-based measurements of solar-induced fluorescence in China
  publication-title: J. Geophys. Res. Biogeosci.
  doi: 10.1029/2020JG006042
– volume: 116
  year: 2011
  ident: 10.1016/j.rse.2024.114043_bb0045
  article-title: Improving canopy processes in the community land model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data
  publication-title: J. Geophys. Res. Biogeosci.
  doi: 10.1029/2010JG001593
– volume: 204
  start-page: 138
  year: 2018
  ident: 10.1016/j.rse.2024.114043_bb0380
  article-title: Modeling re-absorption of fluorescence from the leaf to the canopy level
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.10.035
– year: 2022
  ident: 10.1016/j.rse.2024.114043_bb0490
  article-title: How do sky conditions affect the relationships between ground-based solar-induced chlorophyll fluorescence and gross primary productivity across different plant types?
  publication-title: J. Geophys. Res. Biogeosci.
  doi: 10.1029/2022JG006865
– volume: 45
  start-page: 10456
  issue: 19
  year: 2018
  ident: 10.1016/j.rse.2024.114043_bb0255
  article-title: Global retrievals of solar-induced chlorophyll fluorescence with TROPOMI: first results and Intersensor comparison to OCO-2
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2018GL079031
– volume: 114
  start-page: 363
  issue: 2
  year: 2010
  ident: 10.1016/j.rse.2024.114043_bb0320
  article-title: Performance of spectral fitting methods for vegetation fluorescence quantification
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.09.010
– volume: 267
  year: 2021
  ident: 10.1016/j.rse.2024.114043_bb0565
  article-title: Estimating near-infrared reflectance of vegetation from hyperspectral data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112723
– volume: 279
  year: 2022
  ident: 10.1016/j.rse.2024.114043_bb0475
  article-title: Difference in seasonal peak timing of soybean far-red SIF and GPP explained by canopy structure and chlorophyll content
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2022.113104
– volume: 116
  start-page: 11640
  issue: 24
  year: 2019
  ident: 10.1016/j.rse.2024.114043_bb0300
  article-title: Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1900278116
– volume: 281
  year: 2020
  ident: 10.1016/j.rse.2024.114043_bb0280
  article-title: Improving the potential of red SIF for estimating GPP by downscaling from the canopy level to the photosystem level
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2019.107846
– volume: 14
  start-page: 4077
  issue: 9
  year: 2022
  ident: 10.1016/j.rse.2024.114043_bb0070
  article-title: Global datasets of leaf photosynthetic capacity for ecological and earth system research
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-14-4077-2022
– volume: 6
  start-page: 3109
  issue: 12
  year: 2009
  ident: 10.1016/j.rse.2024.114043_bb0445
  article-title: An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance
  publication-title: Biogeosciences
  doi: 10.5194/bg-6-3109-2009
– volume: 7
  start-page: 998
  issue: 8
  year: 2021
  ident: 10.1016/j.rse.2024.114043_bb0355
  article-title: Chlorophyll a fluorescence illuminates a path connecting plant molecular biology to Earth-system science
  publication-title: Nat Plants
  doi: 10.1038/s41477-021-00980-4
– year: 2023
  ident: 10.1016/j.rse.2024.114043_bb0495
  article-title: Solar-induced chlorophyll fluorescence captures the effects of elevated ozone on canopy structure and acceleration of senescence in soybean
  publication-title: J. Exp. Bot.
– volume: 15
  issue: 18
  year: 2023
  ident: 10.1016/j.rse.2024.114043_bb0360
  article-title: Improving the estimation of canopy fluorescence escape probability in the near-infrared band by accounting for soil reflectance
  publication-title: Remote Sens.
  doi: 10.3390/rs15184361
– volume: 23
  start-page: 3513
  issue: 9
  year: 2017
  ident: 10.1016/j.rse.2024.114043_bb0080
  article-title: Leaf chlorophyll content as a proxy for leaf photosynthetic capacity
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.13599
– volume: 237
  year: 2020
  ident: 10.1016/j.rse.2024.114043_bb0555
  article-title: A review of vegetation phenological metrics extraction using time-series, multispectral satellite data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111511
– volume: 14
  issue: 20
  year: 2022
  ident: 10.1016/j.rse.2024.114043_bb0400
  article-title: Evaluation of the spatial representativeness of in situ SIF observations for the validation of medium-resolution satellite SIF products
  publication-title: Remote Sens.
  doi: 10.3390/rs14205107
– volume: 216
  start-page: 658
  year: 2018
  ident: 10.1016/j.rse.2024.114043_bb0525
  article-title: Sun-induced chlorophyll fluorescence is more strongly related to absorbed light than to photosynthesis at half-hourly resolution in a rice paddy
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.07.008
– volume: 258
  year: 2021
  ident: 10.1016/j.rse.2024.114043_bb0245
  article-title: Solar-induced chlorophyll fluorescence is non-linearly related to canopy photosynthesis in a temperate evergreen needleleaf forest during the fall transition
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112362
– volume: 136
  year: 2022
  ident: 10.1016/j.rse.2024.114043_bb0625
  article-title: Temporal resolution of vegetation indices and solar-induced chlorophyll fluorescence data affects the accuracy of vegetation phenology estimation: a study using in-situ measurements
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2022.108673
– volume: 17
  start-page: 119
  year: 2014
  ident: 10.1016/j.rse.2024.114043_bb0075
  article-title: The applicability of empirical vegetation indices for determining leaf chlorophyll content over different leaf and canopy structures
  publication-title: Ecol. Complex.
  doi: 10.1016/j.ecocom.2013.11.005
– volume: 103
  start-page: 438
  issue: 4
  year: 2006
  ident: 10.1016/j.rse.2024.114043_bb0310
  article-title: Leaf level detection of solar induced chlorophyll fluorescence by means of a subnanometer resolution spectroradiometer
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.03.016
– volume: 44
  start-page: 9293
  issue: 18
  year: 2017
  ident: 10.1016/j.rse.2024.114043_bb0165
  article-title: Generic algorithms for estimating foliar pigment content
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL074799
– volume: 9
  start-page: 998
  year: 2018
  ident: 10.1016/j.rse.2024.114043_bb0005
  article-title: COMT1 silencing aggravates heat stress-induced reduction in photosynthesis by decreasing chlorophyll content, photosystem II activity, and electron transport efficiency in tomato
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.00998
– volume: 248
  year: 2020
  ident: 10.1016/j.rse.2024.114043_bb0265
  article-title: Improved estimation of leaf chlorophyll content of row crops from canopy reflectance spectra through minimizing canopy structural effects and optimizing off-noon observation time
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111985
– volume: 209
  start-page: 808
  year: 2018
  ident: 10.1016/j.rse.2024.114043_bb0420
  article-title: Overview of solar-induced chlorophyll Fluorescence (SIF) from the Orbiting Carbon Observatory-2: retrieval, cross-mission comparison, and global monitoring for GPP
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.02.016
– volume: 2022
  start-page: 1
  year: 2022
  ident: 10.1016/j.rse.2024.114043_bb0125
  article-title: Prospects for solar-induced chlorophyll fluorescence remote sensing from the SIFIS payload onboard the TECIS-1 satellite
  publication-title: J. Remote Sens.
  doi: 10.34133/2022/9845432
– volume: 236
  year: 2020
  ident: 10.1016/j.rse.2024.114043_bb0085
  article-title: The global distribution of leaf chlorophyll content
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111479
– volume: 232
  year: 2019
  ident: 10.1016/j.rse.2024.114043_bb0550
  article-title: A practical approach for estimating the escape ratio of near-infrared solar-induced chlorophyll fluorescence
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.05.028
– volume: 40
  start-page: 1824
  issue: 8
  year: 2002
  ident: 10.1016/j.rse.2024.114043_bb0235
  article-title: Seasonality extraction by function fitting to time-series of satellite sensor data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2002.802519
– volume: 25
  start-page: 2287
  issue: 12
  year: 2004
  ident: 10.1016/j.rse.2024.114043_bb0425
  article-title: Analysis of phenological change patterns using 1982–2000 Advanced Very High Resolution Radiometer (AVHRR) data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160310001618455
– volume: 43
  start-page: 1037
  issue: 3
  year: 2022
  ident: 10.1016/j.rse.2024.114043_bb0480
  article-title: Detecting mangrove photosynthesis with solar-induced chlorophyll fluorescence
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2022.2032457
– volume: 3
  issue: 3
  year: 2017
  ident: 10.1016/j.rse.2024.114043_bb0025
  article-title: Canopy near-infrared reflectance and terrestrial photosynthesis
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1602244
– volume: 192
  start-page: 66
  year: 2022
  ident: 10.1016/j.rse.2024.114043_bb0510
  article-title: Retrieving global leaf chlorophyll content from MERIS data using a neural network method
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2022.08.003
– volume: 147
  start-page: 209
  issue: 3
  year: 2007
  ident: 10.1016/j.rse.2024.114043_bb0335
  article-title: Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2007.08.011
– volume: 323
  year: 2022
  ident: 10.1016/j.rse.2024.114043_bb0065
  article-title: Photosynthesis phenology, as defined by solar-induced chlorophyll fluorescence, is overestimated by vegetation indices in the extratropical Northern Hemisphere
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2022.109027
– volume: 329
  start-page: 834
  issue: 5993
  year: 2010
  ident: 10.1016/j.rse.2024.114043_bb0035
  article-title: Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate
  publication-title: Science
  doi: 10.1126/science.1184984
– volume: 60
  start-page: 1
  year: 2022
  ident: 10.1016/j.rse.2024.114043_bb0635
  article-title: Retrieval of red solar-induced chlorophyll fluorescence with TROPOMI on the Sentinel-5 precursor mission
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2022.3230378
– volume: 240
  year: 2020
  ident: 10.1016/j.rse.2024.114043_bb0560
  article-title: A radiative transfer model for solar induced fluorescence using spectral invariants theory
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111678
– volume: 3
  start-page: 477
  issue: 7
  year: 2022
  ident: 10.1016/j.rse.2024.114043_bb0570
  article-title: Optical vegetation indices for monitoring terrestrial ecosystems globally
  publication-title: Nat. Rev. Earth Environ.
  doi: 10.1038/s43017-022-00298-5
– year: 2020
  ident: 10.1016/j.rse.2024.114043_bb0270
  article-title: Seasonal variations in the relationships between sun-induced chlorophyll fluorescence and photosynthetic capacity from leaf to canopy in a rice paddy
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eraa408
– volume: 63
  start-page: 1502
  issue: 22
  year: 2018
  ident: 10.1016/j.rse.2024.114043_bb0120
  article-title: Retrieval of global terrestrial solar-induced chlorophyll fluorescence from TanSat satellite
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2018.10.003
– volume: 6
  start-page: 2803
  issue: 10
  year: 2013
  ident: 10.1016/j.rse.2024.114043_bb0220
  article-title: Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-6-2803-2013
– volume: 284
  year: 2023
  ident: 10.1016/j.rse.2024.114043_bb0345
  article-title: Contributions of the understory and midstory to total canopy solar-induced chlorophyll fluorescence in a ground-based study in conjunction with seasonal gross primary productivity in a cool-temperate deciduous broadleaf forest
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2022.113340
– volume: 280
  year: 2022
  ident: 10.1016/j.rse.2024.114043_bb0540
  article-title: TROPOMI SIF reveals large uncertainty in estimating the end of plant growing season from vegetation indices data in the Tibetan Plateau
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2022.113209
– volume: 223
  start-page: 95
  year: 2019
  ident: 10.1016/j.rse.2024.114043_bb0405
  article-title: What is global photosynthesis? History, uncertainties and opportunities
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.01.016
– year: 2017
  ident: 10.1016/j.rse.2024.114043_bb0240
  article-title: Accurate measurements of fluorescence in the O2A and O2B band using the FloX spectroscopy system—Results and prospect
– year: 2019
  ident: 10.1016/j.rse.2024.114043_bb0030
  article-title: Orbiting carbon Observatory-3 (OCO-3) remote sensing from the international Space Station (ISS)
– volume: 285
  year: 2023
  ident: 10.1016/j.rse.2024.114043_bb0620
  article-title: Global modeling diurnal gross primary production from OCO-3 solar-induced chlorophyll fluorescence
  publication-title: Remote Sens. Environ.
– volume: 111
  start-page: E1327
  issue: 14
  year: 2014
  ident: 10.1016/j.rse.2024.114043_bb0185
  article-title: Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1320008111
– volume: 24
  start-page: 5017
  issue: 11
  year: 2018
  ident: 10.1016/j.rse.2024.114043_bb0590
  article-title: Angle matters: bidirectional effects impact the slope of relationship between gross primary productivity and sun-induced chlorophyll fluorescence from Orbiting Carbon Observatory-2 across biomes
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.14427
– volume: 124
  start-page: 3281
  issue: 11
  year: 2019
  ident: 10.1016/j.rse.2024.114043_bb0020
  article-title: Improving estimates of gross primary productivity by assimilating solar-induced fluorescence satellite retrievals in a terrestrial biosphere model using a process-based SIF model
  publication-title: J. Geophys. Res. Biogeosci.
  doi: 10.1029/2019JG005040
– volume: 14
  issue: 6
  year: 2022
  ident: 10.1016/j.rse.2024.114043_bb0195
  article-title: Machine learning-based approaches for predicting SPAD values of maize using multi-spectral images
  publication-title: Remote Sens.
  doi: 10.3390/rs14061337
– volume: 126
  issue: 2
  year: 2021
  ident: 10.1016/j.rse.2024.114043_bb0365
  article-title: Relationship between leaf maximum carboxylation rate and chlorophyll content preserved across 13 species
  publication-title: J. Geophys. Res. Biogeosci.
  doi: 10.1029/2020JG006076
– volume: 690
  start-page: 973
  year: 2019
  ident: 10.1016/j.rse.2024.114043_bb0090
  article-title: Variations and drivers of methane fluxes from a rice-wheat rotation agroecosystem in eastern China at seasonal and diurnal scales
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.07.012
– volume: 10
  start-page: 2640
  issue: 6
  year: 2017
  ident: 10.1016/j.rse.2024.114043_bb0145
  article-title: DART: recent advances in remote sensing data modeling with atmosphere, polarization, and chlorophyll fluorescence
  publication-title: Ieee J. Select. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2017.2685528
– volume: 8
  start-page: 637
  issue: 3
  year: 2011
  ident: 10.1016/j.rse.2024.114043_bb0215
  article-title: First observations of global and seasonal terrestrial chlorophyll fluorescence from space
  publication-title: Biogeosciences
  doi: 10.5194/bg-8-637-2011
– volume: 273
  year: 2022
  ident: 10.1016/j.rse.2024.114043_bb0040
  article-title: Evaluation of SIF retrievals from narrow-band and sub-nanometer airborne hyperspectral imagers flown in tandem: modelling and validation in the context of plant phenotyping
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2022.112986
– year: 2023
  ident: 10.1016/j.rse.2024.114043_bb0205
  article-title: Drought affects both photosystems in Arabidopsis thaliana
  publication-title: New Phytol.
  doi: 10.1111/nph.19171
– volume: 263
  year: 2021
  ident: 10.1016/j.rse.2024.114043_bb0500
  article-title: Structural and photosynthetic dynamics mediate the response of SIF to water stress in a potato crop
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112555
– volume: 123
  start-page: 610
  issue: 2
  year: 2018
  ident: 10.1016/j.rse.2024.114043_bb0325
  article-title: Sun-induced chlorophyll fluorescence, photosynthesis, and light use efficiency of a soybean field from seasonally continuous measurements
  publication-title: J. Geophys. Res. Biogeosci.
  doi: 10.1002/2017JG004180
– volume: 8
  issue: 5
  year: 2016
  ident: 10.1016/j.rse.2024.114043_bb0395
  article-title: Analysis of red and far-red sun-induced chlorophyll fluorescence and their ratio in different canopies based on observed and modeled data
  publication-title: Remote Sens.
  doi: 10.3390/rs8050412
– volume: 38
  issue: 17
  year: 2011
  ident: 10.1016/j.rse.2024.114043_bb0135
  article-title: New global observations of the terrestrial carbon cycle from GOSAT: patterns of plant fluorescence with gross primary productivity
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2011GL048738
– volume: 9
  start-page: 3939
  issue: 8
  year: 2016
  ident: 10.1016/j.rse.2024.114043_bb0230
  article-title: New methods for the retrieval of chlorophyll red fluorescence from hyperspectral satellite instruments: simulations and application to GOME-2 and SCIAMACHY
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-9-3939-2016
– volume: 50
  start-page: 4292
  issue: 11
  year: 2012
  ident: 10.1016/j.rse.2024.114043_bb0100
  article-title: Continuous monitoring of canopy level sun-induced chlorophyll fluorescence during the growth of a Sorghum Field
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2012.2193131
– volume: 240
  year: 2020
  ident: 10.1016/j.rse.2024.114043_bb0535
  article-title: Fluorescence Correction Vegetation Index (FCVI): a physically based reflectance index to separate physiological and non-physiological information in far-red sun-induced chlorophyll fluorescence
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111676
– volume: 201
  start-page: 1
  year: 2017
  ident: 10.1016/j.rse.2024.114043_bb0520
  article-title: The mSCOPE model: a simple adaptation to the SCOPE model to describe reflectance, fluorescence and photosynthesis of vertically
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.08.029
– volume: 113
  start-page: 2037
  issue: 10
  year: 2009
  ident: 10.1016/j.rse.2024.114043_bb0315
  article-title: Remote sensing of solar-induced chlorophyll fluorescence: review of methods and applications
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.05.003
– volume: 251
  year: 2020
  ident: 10.1016/j.rse.2024.114043_bb0430
  article-title: OCO-3 early mission operations and initial (vEarly) XCO2 and SIF retrievals
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112032
– volume: 66
  start-page: 5595
  issue: 18
  year: 2015
  ident: 10.1016/j.rse.2024.114043_bb0435
  article-title: Estimating chlorophyll content and photochemical yield of photosystem II (I broken vertical bar(PSII)) using solar-induced chlorophyll fluorescence measurements at different growing stages of attached leaves
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erv272
– volume: 287
  year: 2023
  ident: 10.1016/j.rse.2024.114043_bb0295
  article-title: Global photosynthetic capacity of C3 biomes retrieved from solar-induced chlorophyll fluorescence and leaf chlorophyll content
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2023.113457
– volume: 279
  year: 2022
  ident: 10.1016/j.rse.2024.114043_bb0615
  article-title: Sun-induced chlorophyll fluorescence is more strongly related to photosynthesis with hemispherical than nadir measurements: evidence from field observations and model simulations
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2022.113118
– volume: 10
  start-page: 283
  issue: 3
  year: 2019
  ident: 10.1016/j.rse.2024.114043_bb0155
  article-title: Remote estimation of fraction of radiation absorbed by photosynthetically active vegetation: generic algorithm for maize and soybean
  publication-title: Remote Sens. Lett.
  doi: 10.1080/2150704X.2018.1547445
– volume: 323
  year: 2022
  ident: 10.1016/j.rse.2024.114043_bb0370
  article-title: Monitoring drought impacts on crop productivity of the U.S. Midwest with solar-induced fluorescence: GOSIF outperforms GOME-2 SIF and MODIS NDVI, EVI, and NIRv
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2022.109038
– volume: 125
  issue: 7
  year: 2020
  ident: 10.1016/j.rse.2024.114043_bb0050
  article-title: Systematic assessment of retrieval methods for canopy far-red solar-induced chlorophyll fluorescence using high-frequency automated Field spectroscopy
  publication-title: J. Geophys. Res. Biogeosci.
  doi: 10.1029/2019JG005533
– volume: 143
  start-page: 286
  issue: 3
  year: 1994
  ident: 10.1016/j.rse.2024.114043_bb0160
  article-title: Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation
  publication-title: J. Plant Physiol.
  doi: 10.1016/S0176-1617(11)81633-0
– volume: 241
  year: 2020
  ident: 10.1016/j.rse.2024.114043_bb0105
  article-title: Canopy structure explains the relationship between photosynthesis and sun-induced chlorophyll fluorescence in crops
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111733
– volume: 112
  start-page: 727
  issue: 4
  year: 2011
  ident: 10.1016/j.rse.2024.114043_bb0250
  article-title: Canopy spectral invariants. Part 1: a new concept in remote sensing of vegetation
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
  doi: 10.1016/j.jqsrt.2010.06.014
– volume: 65
  start-page: 4065
  issue: 15
  year: 2014
  ident: 10.1016/j.rse.2024.114043_bb0350
  article-title: Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eru191
– volume: 160
  start-page: 271
  issue: 3
  year: 2003
  ident: 10.1016/j.rse.2024.114043_bb0175
  article-title: Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves
  publication-title: J. Plant Physiol.
  doi: 10.1078/0176-1617-00887
– volume: 272
  year: 2022
  ident: 10.1016/j.rse.2024.114043_bb0470
  article-title: Effects of reduced chlorophyll content on photosystem functions and photosynthetic electron transport rate in rice leaves
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2022.153669
– volume: 342
  year: 2023
  ident: 10.1016/j.rse.2024.114043_bb0545
  article-title: The roles of radiative, structural and physiological information of sun-induced chlorophyll fluorescence in predicting gross primary production of a corn crop at various temporal scales
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2023.109720
– volume: 277
  year: 2022
  ident: 10.1016/j.rse.2024.114043_bb0630
  article-title: Simulation of solar-induced chlorophyll fluorescence by modeling radiative coupling between vegetation and atmosphere with WPS
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2022.113075
– volume: 11
  start-page: 1424
  issue: 9
  year: 2005
  ident: 10.1016/j.rse.2024.114043_bb0375
  article-title: On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2005.001002.x
– year: 2023
  ident: 10.1016/j.rse.2024.114043_bb0410
  article-title: Light-induced changes of far-red excited chlorophyll fluorescence: further evidence for variable fluorescence of photosystem I in vivo
  publication-title: Photosynth. Res.
  doi: 10.1007/s11120-022-00994-9
– volume: 231
  year: 2019
  ident: 10.1016/j.rse.2024.114043_bb0340
  article-title: Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.04.030
– volume: 5
  start-page: 620
  issue: 4
  year: 2008
  ident: 10.1016/j.rse.2024.114043_bb0015
  article-title: Improved Fraunhofer line discrimination method for vegetation fluorescence quantification
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2008.2001180
– volume: 84
  start-page: 471
  issue: 3
  year: 2003
  ident: 10.1016/j.rse.2024.114043_bb0575
  article-title: Monitoring vegetation phenology using MODIS
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00135-9
– volume: 30
  start-page: 2221
  issue: 15
  year: 2005
  ident: 10.1016/j.rse.2024.114043_bb0260
  article-title: Estimation of global radiation using clearness index model for sizing photovoltaic system
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2005.02.009
– volume: 149
  start-page: 213
  issue: 1–2
  year: 2021
  ident: 10.1016/j.rse.2024.114043_bb0415
  article-title: Evidence for variable chlorophyll fluorescence of photosystem I in vivo
  publication-title: Photosynth. Res.
  doi: 10.1007/s11120-020-00814-y
– volume: 4
  issue: 3
  year: 2022
  ident: 10.1016/j.rse.2024.114043_bb0210
  article-title: Leaf-level chlorophyll fluorescence and reflectance spectra of high latitude plants
  publication-title: Environ. Res. Commun.
  doi: 10.1088/2515-7620/ac5365
– volume: 32
  issue: 8
  year: 2005
  ident: 10.1016/j.rse.2024.114043_bb0150
  article-title: Remote estimation of canopy chlorophyll content in crops
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2005GL022688
– volume: 124
  start-page: 1491
  issue: 6
  year: 2019
  ident: 10.1016/j.rse.2024.114043_bb0305
  article-title: Disentangling changes in the spectral shape of chlorophyll fluorescence: implications for remote sensing of photosynthesis
  publication-title: J. Geophys. Res. Biogeosci.
  doi: 10.1029/2019JG005029
– year: 2004
  ident: 10.1016/j.rse.2024.114043_bb0095
– volume: 32
  issue: 17
  year: 2005
  ident: 10.1016/j.rse.2024.114043_bb0460
  article-title: New developments in the remote estimation of the fraction of absorbed photosynthetically active radiation in crops
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2005GL023647
– volume: 18
  issue: 7
  year: 2018
  ident: 10.1016/j.rse.2024.114043_bb0530
  article-title: FluoSpec 2-an automated Field spectroscopy system to monitor canopy solar-induced fluorescence
  publication-title: Sensors
  doi: 10.3390/s18072063
– volume: 231
  year: 2019
  ident: 10.1016/j.rse.2024.114043_bb0275
  article-title: Downscaling of solar-induced chlorophyll fluorescence from canopy level to photosystem level using a random forest model
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.05.035
– volume: 246
  year: 2020
  ident: 10.1016/j.rse.2024.114043_bb0385
  article-title: Re-absorption and scattering of chlorophyll fluorescence in canopies: a revised approach
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111860
– volume: 294
  year: 2020
  ident: 10.1016/j.rse.2024.114043_bb0055
  article-title: An Unmanned Aerial System (UAS) for concurrent measurements of solar-induced chlorophyll fluorescence and hyperspectral reflectance toward improving crop monitoring
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2020.108145
– volume: 152
  start-page: 283
  issue: 2–3
  year: 1998
  ident: 10.1016/j.rse.2024.114043_bb0170
  article-title: Leaf chlorophyll fluorescence corrected for re-absorption by means of absorption and reflectance measurements
  publication-title: J. Plant Physiol.
  doi: 10.1016/S0176-1617(98)80143-0
– volume: 91
  start-page: 37
  issue: 1
  year: 2007
  ident: 10.1016/j.rse.2024.114043_bb0440
  article-title: Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings
  publication-title: Photosynth. Res.
  doi: 10.1007/s11120-006-9077-5
– volume: 68
  start-page: 112
  year: 2012
  ident: 10.1016/j.rse.2024.114043_bb0130
  article-title: Effect of canopy structure on sun-induced chlorophyll fluorescence
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2012.01.003
– volume: 3
  start-page: 1076
  issue: 7
  year: 2019
  ident: 10.1016/j.rse.2024.114043_bb0465
  article-title: Urban-rural gradients reveal joint control of elevated CO2 and temperature on extended photosynthetic seasons
  publication-title: Nat. Ecol. Evol.
  doi: 10.1038/s41559-019-0931-1
– volume: 13
  start-page: 5423
  issue: 11
  year: 2021
  ident: 10.1016/j.rse.2024.114043_bb0190
  article-title: The TROPOSIF global sun-induced fluorescence dataset from the sentinel-5P TROPOMI mission
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-13-5423-2021
– volume: 271
  year: 2022
  ident: 10.1016/j.rse.2024.114043_bb0285
  article-title: Direct estimation of photosynthetic CO2 assimilation from solar-induced chlorophyll fluorescence (SIF)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2022.112893
– volume: 20
  start-page: 3727
  issue: 12
  year: 2014
  ident: 10.1016/j.rse.2024.114043_bb0580
  article-title: Estimation of vegetation photosynthetic capacity from space-based measurements of chlorophyll fluorescence for terrestrial biosphere models
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.12664
– volume: 240
  year: 2020
  ident: 10.1016/j.rse.2024.114043_bb0600
  article-title: The potential of satellite FPAR product for GPP estimation: an indirect evaluation using solar-induced chlorophyll fluorescence
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111686
– volume: 9
  issue: 9
  year: 2017
  ident: 10.1016/j.rse.2024.114043_bb0115
  article-title: Response of canopy solar-induced chlorophyll fluorescence to the absorbed photosynthetically active radiation absorbed by chlorophyll
  publication-title: Remote Sens.
  doi: 10.3390/rs9090911
– volume: 214
  start-page: 1078
  issue: 3
  year: 2017
  ident: 10.1016/j.rse.2024.114043_bb0330
  article-title: Plant functional traits and canopy structure control the relationship between photosynthetic CO2 uptake and far-red sun-induced fluorescence in a Mediterranean grassland under different nutrient availability
  publication-title: New Phytol.
  doi: 10.1111/nph.14437
– start-page: 1
  year: 2021
  ident: 10.1016/j.rse.2024.114043_bb0610
  article-title: Sensitivity of estimated total canopy SIF emission to remotely sensed LAI and BRDF products
  publication-title: J. Remote Sens.
– volume: 152
  start-page: 375
  year: 2014
  ident: 10.1016/j.rse.2024.114043_bb0225
  article-title: The seasonal cycle of satellite chlorophyll fluorescence observations and its relationship to vegetation phenology and ecosystem atmosphere carbon exchange
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.06.022
– volume: 323
  year: 2022
  ident: 10.1016/j.rse.2024.114043_bb0485
  article-title: Physiological dynamics dominate the response of canopy far-red solar-induced fluorescence to herbicide treatment
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2022.109063
– start-page: 3756
  year: 2007
  ident: 10.1016/j.rse.2024.114043_bb0010
  article-title: Sensitivity analysis of the Fraunhofer Line Discrimination method for the measurement of chlorophyll fluorescence using a field spectroradiometer
– volume: 42
  start-page: 1632
  issue: 6
  year: 2015
  ident: 10.1016/j.rse.2024.114043_bb0390
  article-title: Red and far red Sun-induced chlorophyll fluorescence as a measure of plant photosynthesis
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2014GL062943
– volume: 295
  year: 2020
  ident: 10.1016/j.rse.2024.114043_bb0595
  article-title: Assessing bi-directional effects on the diurnal cycle of measured solar-induced chlorophyll fluorescence in crop canopies
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2020.108147
– volume: 232
  year: 2019
  ident: 10.1016/j.rse.2024.114043_bb0200
  article-title: Diverse photosynthetic capacity of global ecosystems mapped by satellite chlorophyll fluorescence measurements
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111344
– volume: 284
  year: 2023
  ident: 10.1016/j.rse.2024.114043_bb0290
  article-title: A simple approach to enhance the TROPOMI solar-induced chlorophyll fluorescence product by combining with canopy reflected radiation at near-infrared band
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2022.113341
SSID ssj0015871
Score 2.5588646
Snippet Solar-induced chlorophyll fluorescence (SIF) emitted from photosystem I (PSI) and photosystem II (PSII) is characterized by two peaks centered in the red and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114043
SubjectTerms absorption
canopy
chlorophyll
corn
environment
Escape probability
fluorescence
Gross primary production (GPP)
gross primary productivity
leaf chlorophyll content
Leaf chlorophyll content (LCC)
leaves
phenology
Photosynthetic phenology
photosynthetically active radiation
photosystem II
resorption
rice
satellites
Solar-induced chlorophyll fluorescence (SIF)
Total red SIF emitted by the photosystem (RSIFtotal)
uncertainty
wheat
Title Deriving photosystem-level red chlorophyll fluorescence emission by combining leaf chlorophyll content and canopy far-red solar-induced fluorescence: Possibilities and challenges
URI https://dx.doi.org/10.1016/j.rse.2024.114043
https://www.proquest.com/docview/3153158161
Volume 304
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0hECoXBNsiPgoyUk-VDEvsfPW2WqDbVkU9gMTNsh1HC4qSVbJ72As_qr-wM4lDtUhw4JiNx4oys543zvM8gC_ORHqY2ZyLJMACxQnHjXYJR6grwqxF7LQP-fsmmtzJn_fh_RqM-7MwRKv0a3-3prertf_l3L_N89nDA53xFZIijliQCDyo46eUMUX52dMzzeMiTOJONU9ITqP7L5stx6tuqFNmIKlj7lCK13LTi1W6TT3XO7DtMSMbdY-1C2uuHMDe1f8janjT_0ebAXzwuubT5QA2v7fCvcuP8PcSQ402D9hsWs2rroEzL4gyxGqXMTvFwr1Co6JgebGo6rbNk3WM9OBoR42ZJcOXZFpBCVY4na_YEOUdn4TpEufSZTVbslzXnKZuqHrmWPtjFGUrk39jf6rG83OxYu-Me3WX5hPcXV_djifc6zVwK8Rwzq3MXWqE1RdJEkU2CI1Mc6yA6Nh6lmkb5QguXJZSGzMtbZIa9I0MTIwYNYhdJPZgvaxKtw9MxDg-pFQqDUKMNEGYF5KcqCBMY7MDGPaeUtY3MydNjUL1rLVHhc5V5FzVOfcAvj6bzLpOHm8Nlr371Uo4Ksw0b5md9qGi0Dv07UWXrlo0SmBmwVhEfH34vqmPYIuuOtLQZ1if1wt3jHhobk7agD-BjdGPX5Obf-RiDQI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9swED5BEWIv09aBBmzMSDxNsiixkyZ7QwwoA6o9gMSbZTuOWhQlVdI-9G_xC7lLHKZOggdeY59l-S6-7-zzfQBHzkR6kNqMizjAAMUJx412MUeoK8K0Qex0Dnk7jkb38s9D-LAGZ91bGEqr9Ht_u6c3u7X_cuxX83g2ndIbXyHJ4igLEoGHWIcNqk4V9mDj9Op6NH65TAjjYUucJyQnge5ys0nzqmoqlhlIKpo7kOI19_TfRt14n4tP8NHDRnbazuwzrLmiDzvn_16pYaP_Tes-bHlq88myD5uXDXfv8gs8_UZro_MDNpuU87Kt4cxzyhpilUuZnWDsXqJQnrMsX5RVU-nJOkaUcHSoxsyS4TqZhlOC5U5nKzKU9Y4zYbrAsXRRzpYs0xWnoWsKoDmG_2hI6crgv9jfsvYpuhi0t8IdwUu9DfcX53dnI-4pG7gVYjDnVmYuMcLqkziOIhuERiYZBkH0cj1NtY0yxBcuTaiSmZY2TgzqRgZmiDA1GLpI7ECvKAv3FZgYYv-QvKk0iDKSGJFeSIyigmCNTXdh0GlKWV_PnGg1ctUlrj0qVK4i5apWubvw80Vk1hbzeKuz7NSvVixSobN5S-ywMxWF2qHrF124clErgc4FbREh9t77hv4BW6O72xt1czW-3ocP1NLmEH2D3rxauO8Ij-bmwJv_MwoID7M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deriving+photosystem-level+red+chlorophyll+fluorescence+emission+by+combining+leaf+chlorophyll+content+and+canopy+far-red+solar-induced+fluorescence%3A+Possibilities+and+challenges&rft.jtitle=Remote+sensing+of+environment&rft.au=Wu%2C+Linsheng&rft.au=Zhang%2C+Yongguang&rft.au=Zhang%2C+Zhaoying&rft.au=Zhang%2C+Xiaokang&rft.date=2024-04-01&rft.pub=Elsevier+Inc&rft.issn=0034-4257&rft.eissn=1879-0704&rft.volume=304&rft_id=info:doi/10.1016%2Fj.rse.2024.114043&rft.externalDocID=S0034425724000543
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon