A novel concept of two-component dielectric function for gold nanostars: theoretical modelling and experimental verification
Rational design of AuNST morphology requires adequate computational models. The bulk dielectric function is not applicable to sharp nanostar spikes. We suggest a two-component dielectric function in which the nanostar core is treated as a bulk material, whereas the size-corrected dielectric function...
Saved in:
Published in | Nanoscale Vol. 12; no. 38; pp. 19963 - 19981 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
14.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rational design of AuNST morphology requires adequate computational models. The bulk dielectric function is not applicable to sharp nanostar spikes. We suggest a two-component dielectric function in which the nanostar core is treated as a bulk material, whereas the size-corrected dielectric function of the spikes is treated by a modified Coronado-Schatz model. In addition to the strong broadening of plasmonic peaks, the simulated absorption and scattering spectra show unusual properties, which are not observed with bulk dielectric functions. The effect of NIR water absorption on nanostar spectra is small, and the absorption peak demonstrates the expected small decrease in the absorbing media. Surprisingly, however, water absorption increases the scattering peak by 30%. For the common surfactant-free Vo-Dinh AuNSTs, we report, for the first time, very intense SWIR plasmonic peaks around 1900 nm, in addition to the common strong peak in the UV-vis-NIR band (here, at 1100 nm). For bilayers of AuNSTs in air, we recorded two similarly intense peaks near 800 and 1500 nm. To simulate the experimental extinction spectra of colloids and bilayers on glass in air, we develop a statistical model that includes the major fraction of typical Vo-Dinh AuNSTs and two minor fractions of sea urchins and particles with protrusions. In contrast to the general belief, we show that the common UV-vis-NIR plasmonic peak of surfactant-free AuNSTs is related to short spikes on a spherical core, whereas long spikes produce an intense SWIR plasmonic mode. Such a structural assignment of vis-NIR and SWIR peaks does not seem to have been reported previously for surfactant-free nanostars. With our model, we demonstrate good agreement between simulated and measured spectra of colloids and bilayers on glass in air.
We have introduced a new two-component dielectric function for modelling of gold nanostars. |
---|---|
AbstractList | Rational design of AuNST morphology requires adequate computational models. The bulk dielectric function is not applicable to sharp nanostar spikes. We suggest a two-component dielectric function in which the nanostar core is treated as a bulk material, whereas the size-corrected dielectric function of the spikes is treated by a modified Coronado–Schatz model. In addition to the strong broadening of plasmonic peaks, the simulated absorption and scattering spectra show unusual properties, which are not observed with bulk dielectric functions. The effect of NIR water absorption on nanostar spectra is small, and the absorption peak demonstrates the expected small decrease in the absorbing media. Surprisingly, however, water absorption increases the scattering peak by 30%. For the common surfactant-free Vo-Dinh AuNSTs, we report, for the first time, very intense SWIR plasmonic peaks around 1900 nm, in addition to the common strong peak in the UV–vis–NIR band (here, at 1100 nm). For bilayers of AuNSTs in air, we recorded two similarly intense peaks near 800 and 1500 nm. To simulate the experimental extinction spectra of colloids and bilayers on glass in air, we develop a statistical model that includes the major fraction of typical Vo-Dinh AuNSTs and two minor fractions of sea urchins and particles with protrusions. In contrast to the general belief, we show that the common UV–vis–NIR plasmonic peak of surfactant-free AuNSTs is related to short spikes on a spherical core, whereas long spikes produce an intense SWIR plasmonic mode. Such a structural assignment of vis–NIR and SWIR peaks does not seem to have been reported previously for surfactant-free nanostars. With our model, we demonstrate good agreement between simulated and measured spectra of colloids and bilayers on glass in air. Rational design of AuNST morphology requires adequate computational models. The bulk dielectric function is not applicable to sharp nanostar spikes. We suggest a two-component dielectric function in which the nanostar core is treated as a bulk material, whereas the size-corrected dielectric function of the spikes is treated by a modified Coronado-Schatz model. In addition to the strong broadening of plasmonic peaks, the simulated absorption and scattering spectra show unusual properties, which are not observed with bulk dielectric functions. The effect of NIR water absorption on nanostar spectra is small, and the absorption peak demonstrates the expected small decrease in the absorbing media. Surprisingly, however, water absorption increases the scattering peak by 30%. For the common surfactant-free Vo-Dinh AuNSTs, we report, for the first time, very intense SWIR plasmonic peaks around 1900 nm, in addition to the common strong peak in the UV-vis-NIR band (here, at 1100 nm). For bilayers of AuNSTs in air, we recorded two similarly intense peaks near 800 and 1500 nm. To simulate the experimental extinction spectra of colloids and bilayers on glass in air, we develop a statistical model that includes the major fraction of typical Vo-Dinh AuNSTs and two minor fractions of sea urchins and particles with protrusions. In contrast to the general belief, we show that the common UV-vis-NIR plasmonic peak of surfactant-free AuNSTs is related to short spikes on a spherical core, whereas long spikes produce an intense SWIR plasmonic mode. Such a structural assignment of vis-NIR and SWIR peaks does not seem to have been reported previously for surfactant-free nanostars. With our model, we demonstrate good agreement between simulated and measured spectra of colloids and bilayers on glass in air. We have introduced a new two-component dielectric function for modelling of gold nanostars. |
Author | Khlebtsov, Nikolai G Avetisyan, Yuri A Khanadeev, Vitaly A Zarkov, Sergey V |
AuthorAffiliation | Institute of Biochemistry and Physiology of Plants and Microorganisms Russian Academy of Sciences Saratov State University Institute of Precision Mechanics and Control |
AuthorAffiliation_xml | – name: Institute of Biochemistry and Physiology of Plants and Microorganisms – name: Saratov State University – name: Institute of Precision Mechanics and Control – name: Russian Academy of Sciences |
Author_xml | – sequence: 1 givenname: Nikolai G surname: Khlebtsov fullname: Khlebtsov, Nikolai G – sequence: 2 givenname: Sergey V surname: Zarkov fullname: Zarkov, Sergey V – sequence: 3 givenname: Vitaly A surname: Khanadeev fullname: Khanadeev, Vitaly A – sequence: 4 givenname: Yuri A surname: Avetisyan fullname: Avetisyan, Yuri A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32996517$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtrGzEUhUVxaBy3m-4TFLILTKvnPLIzzqtgWijtepClq3TMWJpIch7QHx-5dpxdVvfC-Tj3cO4RGjnvAKEvlHylhDffDHGBMMmp_oDGjAhScF6x0X4vxSE6inFJSNnwkn9Eh5w1TSlpNUb_ptj5B-ix9k7DkLC3OD36QvvVkK-4hE0HPegUOo3t2unUeYetD_jO9wY75XxMKsQLnP6CD5A6rXq88gb6vnN3WDmD4WmA0K2yWZYe8moztPH5hA6s6iN83s0J-nN99Xt2W8x_3nyfTeeF5pykQjNWK1EpXilbKbFQ5YKa2oKglZWMEyukrCUjtWqqBS0Vq8BIoUFLqVXTWD5BZ1vfIfj7NcTULv06uHyyZUI0rBR1TTN1vqV08DEGsO2QU6vw3FLSbopuL8mPX_-LnmX4ZGe5XqzA7NHXZjNwugVC1Hv17VPtYDa5jt9j-Auue5I4 |
CitedBy_id | crossref_primary_10_1016_j_jqsrt_2022_108069 crossref_primary_10_3390_nano11102588 crossref_primary_10_57634_RCR5058 crossref_primary_10_1016_j_colsurfb_2022_112924 crossref_primary_10_3390_ma15041606 crossref_primary_10_1021_acs_jpcc_2c05843 crossref_primary_10_3390_polym14061121 crossref_primary_10_1021_acs_jpcc_0c08460 crossref_primary_10_1038_s41598_024_53126_9 crossref_primary_10_1016_j_jcis_2022_04_040 crossref_primary_10_3390_s21041248 crossref_primary_10_1021_acsanm_1c02734 crossref_primary_10_1039_D3CP04541B crossref_primary_10_1039_D1CP03057D crossref_primary_10_1080_09500340_2023_2219781 |
Cites_doi | 10.1038/physci241020a0 10.1021/cm0700100 10.1021/nl062969c 10.1039/b604856k 10.1021/acs.jpcc.6b01949 10.1021/acsnano.6b08010 10.1039/c0jm04519e 10.1021/nl050062t 10.1007/978-3-319-20768-1 10.1364/OE.15.013188 10.1063/1.1587686 10.1002/adma.201201690 10.1117/1.OE.59.6.061628 10.1039/c3cc42999g 10.1088/0957-4484/23/7/075102 10.1021/nl0351542 10.1039/C6NR09091E 10.1016/j.jqsrt.2019.106688 10.1103/PhysRevB.48.18178 10.1021/acs.jpcc.8b09263 10.1039/C9NR06533D 10.1103/PhysRevB.86.235147 10.1021/acs.chemmater.8b00655 10.1007/s11051-014-2623-8 10.1016/j.cplett.2007.08.027 10.1049/mnl.2016.0095 10.1016/j.cocis.2010.12.007 10.1021/acsphotonics.6b00786 10.1021/jp500325c 10.1021/jp056606x 10.1364/OSAC.2.003415 10.1021/jp2000078 10.1021/jp072707e 10.1021/acsomega.7b01700 10.1063/1.1845411 10.1021/acs.chemmater.8b00312 10.1002/jbio.201800141 10.1021/ja903093t 10.1039/b714759g 10.1021/nl073042v 10.1039/C8NR07615D 10.1103/PhysRevB.6.4370 10.1364/AO.31.005359 10.1088/0957-4484/19/01/015606 10.1016/0021-9797(79)90103-6 10.1021/acs.chemmater.8b04299 10.1016/j.jqsrt.2017.10.014 10.1103/PhysRevLett.88.077402 10.1126/sciadv.aav0704 10.1016/j.apsusc.2014.10.095 10.1016/0039-6028(85)90239-0 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | NPM AAYXX CITATION 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M |
DOI | 10.1039/d0nr02531c |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX |
DatabaseTitleList | CrossRef PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
EndPage | 19981 |
ExternalDocumentID | 10_1039_D0NR02531C 32996517 d0nr02531c |
Genre | Journal Article |
GroupedDBID | - 0-7 0R 29M 4.4 53G 705 7~J AAEMU AAGNR AAIWI AANOJ AAPBV ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFVBQ AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX DU5 EBS ECGLT EE0 EF- F5P HZ H~N J3I JG O-G O9- OK1 P2P RCNCU RIG RNS RPMJG RRC RSCEA --- -JG 0R~ AAJAE AARTK AAWGC AAXHV ABASK ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AGEGJ AGRSR AHGCF AKBGW ANUXI APEMP GGIMP H13 HZ~ NPM RAOCF RVUXY AAYXX CITATION 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M |
ID | FETCH-LOGICAL-c330t-c228a47a37af7a4ba6b1d8fe417f5230f45585208a97b16a27ed54cec55ca99f3 |
ISSN | 2040-3364 |
IngestDate | Thu Oct 10 16:18:20 EDT 2024 Fri Aug 23 00:27:57 EDT 2024 Tue Aug 27 13:48:00 EDT 2024 Wed Nov 11 00:36:16 EST 2020 Sat Jan 08 03:54:58 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c330t-c228a47a37af7a4ba6b1d8fe417f5230f45585208a97b16a27ed54cec55ca99f3 |
Notes | 10.1039/d0nr02531c Electronic supplementary information (ESI) available: Sections S1-S9. See DOI |
ORCID | 0000-0002-2678-3889 0000-0002-2055-7784 |
PMID | 32996517 |
PQID | 2449264881 |
PQPubID | 2047485 |
PageCount | 19 |
ParticipantIDs | pubmed_primary_32996517 proquest_journals_2449264881 crossref_primary_10_1039_D0NR02531C rsc_primary_d0nr02531c |
PublicationCentury | 2000 |
PublicationDate | 2020-10-14 |
PublicationDateYYYYMMDD | 2020-10-14 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Nanoscale |
PublicationTitleAlternate | Nanoscale |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | 33885126 - Nanoscale. 2021 Apr 22 Solís (D0NR02531C-(cit10)/*[position()=1]) 2017; 4 Khlebtsov (D0NR02531C-(cit46)/*[position()=1]) 1992; 31 Tsoulos (D0NR02531C-(cit48)/*[position()=1]) 2019 Zhu (D0NR02531C-(cit51)/*[position()=1]) 2014; 322 Chirico (D0NR02531C-(cit2)/*[position()=1]) 2015 Khlebtsov (D0NR02531C-(cit30)/*[position()=1]) 2011; 115 Bohren (D0NR02531C-(cit41)/*[position()=1]) 1979; 72 Mishchenko (D0NR02531C-(cit43)/*[position()=1]) 2020; 242 Trigari (D0NR02531C-(cit14)/*[position()=1]) 2011; 21 Sönnichsen (D0NR02531C-(cit26)/*[position()=1]) 2002; 88 Kim (D0NR02531C-(cit39)/*[position()=1]) 2009; 131 Hu (D0NR02531C-(cit18)/*[position()=1]) 2018; 30 Coronado (D0NR02531C-(cit22)/*[position()=1]) 2003; 119 Olmon (D0NR02531C-(cit23)/*[position()=1]) 2012; 86 Bryant (D0NR02531C-(cit36)/*[position()=1]) 2008; 8 Pallavicini (D0NR02531C-(cit5)/*[position()=1]) 2013; 49 Hao (D0NR02531C-(cit12)/*[position()=1]) 2007; 7 Johnson (D0NR02531C-(cit21)/*[position()=1]) 1972; 6 Tsoulos (D0NR02531C-(cit17)/*[position()=1]) 2017; 9 Tsoulos (D0NR02531C-(cit19)/*[position()=1]) 2018; 122 Bohren (D0NR02531C-(cit47)/*[position()=1]) 1983 Hu (D0NR02531C-(cit7)/*[position()=1]) 2018; 31 Hövel (D0NR02531C-(cit25)/*[position()=1]) 1993; 48 Atta (D0NR02531C-(cit6)/*[position()=1]) 2019; 11 Khlebtsov (D0NR02531C-(cit49)/*[position()=1]) 2014; 16 Yuan (D0NR02531C-(cit8)/*[position()=1]) 2012; 23 Foerster (D0NR02531C-(cit28)/*[position()=1]) 2017; 11 Payne (D0NR02531C-(cit38)/*[position()=1]) 2006; 110 De Silva Indrasekara (D0NR02531C-(cit3)/*[position()=1]) 2018; 3 Kreibig (D0NR02531C-(cit27)/*[position()=1]) 1985; 156 Hu (D0NR02531C-(cit33)/*[position()=1]) 2008; 18 Tsoulos (D0NR02531C-(cit20)/*[position()=1]) 2019; 11 Frens (D0NR02531C-(cit53)/*[position()=1]) 1973; 241 Vigderman (D0NR02531C-(cit4)/*[position()=1]) 2012; 24 Xie (D0NR02531C-(cit34)/*[position()=1]) 2007; 19 Zarkov (D0NR02531C-(cit52)/*[position()=1]) 2020; 59 Lee (D0NR02531C-(cit15)/*[position()=1]) 2014; 118 Guerrero-Martínez (D0NR02531C-(cit1)/*[position()=1]) 2011; 16 Hao (D0NR02531C-(cit24)/*[position()=1]) 2007; 446 Bi (D0NR02531C-(cit9)/*[position()=1]) 2018; 30 Mishchenko (D0NR02531C-(cit45)/*[position()=1]) 2019; 2 Foerster (D0NR02531C-(cit29)/*[position()=1]) 2019; 5 Khlebtsov (D0NR02531C-(cit35)/*[position()=1]) 2007; 111 Atta (D0NR02531C-(cit16)/*[position()=1]) 2016; 120 Berciaud (D0NR02531C-(cit31)/*[position()=1]) 2005; 5 Hao (D0NR02531C-(cit11)/*[position()=1]) 2004; 4 Novo (D0NR02531C-(cit32)/*[position()=1]) 2006; 8 Mishchenko (D0NR02531C-(cit42)/*[position()=1]) 2007; 15 Laurent (D0NR02531C-(cit37)/*[position()=1]) 2005; 122 Golovynskyi (D0NR02531C-(cit40)/*[position()=1]) 2018; 11 Mishchenko (D0NR02531C-(cit44)/*[position()=1]) 2018; 205 Kumar (D0NR02531C-(cit13)/*[position()=1]) 2008; 19 Raghavan (D0NR02531C-(cit50)/*[position()=1]) 2016; 11 |
References_xml | – issn: 1983 publication-title: Absorption and Scattering of Light by Small Particles doi: Bohren Haffman – issn: 2015 publication-title: Gold Nanostars. Synthesis, Properties and Biomedical Application doi: Chirico Borzenkov Pallavicini – issn: 2019 publication-title: A Pragmatic Approach to Nanostar Plasmonics. PhD dissertation, School of Graduate Studies Rutgers, The State University of New Jersey doi: Tsoulos – volume: 241 start-page: 20 year: 1973 ident: D0NR02531C-(cit53)/*[position()=1] publication-title: Nat. Phys. Sci. doi: 10.1038/physci241020a0 contributor: fullname: Frens – volume: 19 start-page: 2823 year: 2007 ident: D0NR02531C-(cit34)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm0700100 contributor: fullname: Xie – volume: 7 start-page: 729 year: 2007 ident: D0NR02531C-(cit12)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl062969c contributor: fullname: Hao – volume: 8 start-page: 3540 year: 2006 ident: D0NR02531C-(cit32)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b604856k contributor: fullname: Novo – volume: 120 start-page: 20749 year: 2016 ident: D0NR02531C-(cit16)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b01949 contributor: fullname: Atta – volume: 11 start-page: 2886 year: 2017 ident: D0NR02531C-(cit28)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.6b08010 contributor: fullname: Foerster – volume: 21 start-page: 6531 year: 2011 ident: D0NR02531C-(cit14)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c0jm04519e contributor: fullname: Trigari – volume: 5 start-page: 515 year: 2005 ident: D0NR02531C-(cit31)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl050062t contributor: fullname: Berciaud – volume-title: Gold Nanostars. Synthesis, Properties and Biomedical Application year: 2015 ident: D0NR02531C-(cit2)/*[position()=1] doi: 10.1007/978-3-319-20768-1 contributor: fullname: Chirico – volume: 15 start-page: 13188 year: 2007 ident: D0NR02531C-(cit42)/*[position()=1] publication-title: Opt. Express doi: 10.1364/OE.15.013188 contributor: fullname: Mishchenko – volume: 119 start-page: 3926 year: 2003 ident: D0NR02531C-(cit22)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1587686 contributor: fullname: Coronado – volume: 24 start-page: 4811 year: 2012 ident: D0NR02531C-(cit4)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201201690 contributor: fullname: Vigderman – volume: 59 start-page: 061628 year: 2020 ident: D0NR02531C-(cit52)/*[position()=1] publication-title: Opt. Eng. doi: 10.1117/1.OE.59.6.061628 contributor: fullname: Zarkov – volume: 49 start-page: 6265 year: 2013 ident: D0NR02531C-(cit5)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c3cc42999g contributor: fullname: Pallavicini – volume: 23 start-page: 075102 year: 2012 ident: D0NR02531C-(cit8)/*[position()=1] publication-title: Nanotechnology doi: 10.1088/0957-4484/23/7/075102 contributor: fullname: Yuan – volume-title: A Pragmatic Approach to Nanostar Plasmonics. PhD dissertation, School of Graduate Studies Rutgers, The State University of New Jersey year: 2019 ident: D0NR02531C-(cit48)/*[position()=1] contributor: fullname: Tsoulos – volume: 4 start-page: 327 year: 2004 ident: D0NR02531C-(cit11)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl0351542 contributor: fullname: Hao – volume: 9 start-page: 3766 year: 2017 ident: D0NR02531C-(cit17)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C6NR09091E contributor: fullname: Tsoulos – volume: 242 start-page: 106688 year: 2020 ident: D0NR02531C-(cit43)/*[position()=1] publication-title: J. Quant. Spectrosc. Radiat. Transfer doi: 10.1016/j.jqsrt.2019.106688 contributor: fullname: Mishchenko – volume: 48 start-page: 18178 year: 1993 ident: D0NR02531C-(cit25)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.48.18178 contributor: fullname: Hövel – volume: 122 start-page: 28949 year: 2018 ident: D0NR02531C-(cit19)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b09263 contributor: fullname: Tsoulos – volume: 11 start-page: 18662 year: 2019 ident: D0NR02531C-(cit20)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C9NR06533D contributor: fullname: Tsoulos – volume: 86 start-page: 235147 year: 2012 ident: D0NR02531C-(cit23)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.86.235147 contributor: fullname: Olmon – volume: 30 start-page: 3722 year: 2018 ident: D0NR02531C-(cit18)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b00655 contributor: fullname: Hu – volume: 16 start-page: 2623 year: 2014 ident: D0NR02531C-(cit49)/*[position()=1] publication-title: J. Nanopart. Res. doi: 10.1007/s11051-014-2623-8 contributor: fullname: Khlebtsov – volume: 446 start-page: 115 year: 2007 ident: D0NR02531C-(cit24)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2007.08.027 contributor: fullname: Hao – volume: 11 start-page: 769 year: 2016 ident: D0NR02531C-(cit50)/*[position()=1] publication-title: Micro Nano Lett. doi: 10.1049/mnl.2016.0095 contributor: fullname: Raghavan – volume: 16 start-page: 118 year: 2011 ident: D0NR02531C-(cit1)/*[position()=1] publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/j.cocis.2010.12.007 contributor: fullname: Guerrero-Martínez – volume: 4 start-page: 329 year: 2017 ident: D0NR02531C-(cit10)/*[position()=1] publication-title: ACS Photonics doi: 10.1021/acsphotonics.6b00786 contributor: fullname: Solís – volume: 118 start-page: 5881 year: 2014 ident: D0NR02531C-(cit15)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp500325c contributor: fullname: Lee – volume: 110 start-page: 2150 year: 2006 ident: D0NR02531C-(cit38)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp056606x contributor: fullname: Payne – volume: 2 start-page: 3415 year: 2019 ident: D0NR02531C-(cit45)/*[position()=1] publication-title: OSA Continuum doi: 10.1364/OSAC.2.003415 contributor: fullname: Mishchenko – volume: 115 start-page: 6317 year: 2011 ident: D0NR02531C-(cit30)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp2000078 contributor: fullname: Khlebtsov – volume: 111 start-page: 11516 year: 2007 ident: D0NR02531C-(cit35)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp072707e contributor: fullname: Khlebtsov – volume-title: Absorption and Scattering of Light by Small Particles year: 1983 ident: D0NR02531C-(cit47)/*[position()=1] contributor: fullname: Bohren – volume: 3 start-page: 2202 year: 2018 ident: D0NR02531C-(cit3)/*[position()=1] publication-title: ACS Omega doi: 10.1021/acsomega.7b01700 contributor: fullname: De Silva Indrasekara – volume: 122 start-page: 011102 year: 2005 ident: D0NR02531C-(cit37)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1845411 contributor: fullname: Laurent – volume: 30 start-page: 2709 year: 2018 ident: D0NR02531C-(cit9)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b00312 contributor: fullname: Bi – volume: 11 start-page: e201800141 year: 2018 ident: D0NR02531C-(cit40)/*[position()=1] publication-title: J. Biophotonics doi: 10.1002/jbio.201800141 contributor: fullname: Golovynskyi – volume: 131 start-page: 8380 year: 2009 ident: D0NR02531C-(cit39)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja903093t contributor: fullname: Kim – volume: 18 start-page: 1949 year: 2008 ident: D0NR02531C-(cit33)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/b714759g contributor: fullname: Hu – volume: 8 start-page: 631 year: 2008 ident: D0NR02531C-(cit36)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl073042v contributor: fullname: Bryant – volume: 11 start-page: 2946 year: 2019 ident: D0NR02531C-(cit6)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C8NR07615D contributor: fullname: Atta – volume: 6 start-page: 4370 year: 1972 ident: D0NR02531C-(cit21)/*[position()=1] publication-title: Phys. Rev. B: Solid State doi: 10.1103/PhysRevB.6.4370 contributor: fullname: Johnson – volume: 31 start-page: 5359 year: 1992 ident: D0NR02531C-(cit46)/*[position()=1] publication-title: Appl. Opt. doi: 10.1364/AO.31.005359 contributor: fullname: Khlebtsov – volume: 19 start-page: 015606 year: 2008 ident: D0NR02531C-(cit13)/*[position()=1] publication-title: Nanotechnology doi: 10.1088/0957-4484/19/01/015606 contributor: fullname: Kumar – volume: 72 start-page: 215 year: 1979 ident: D0NR02531C-(cit41)/*[position()=1] publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(79)90103-6 contributor: fullname: Bohren – volume: 31 start-page: 471 year: 2018 ident: D0NR02531C-(cit7)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b04299 contributor: fullname: Hu – volume: 205 start-page: 241 year: 2018 ident: D0NR02531C-(cit44)/*[position()=1] publication-title: J. Quant. Spectrosc. Radiat. Transfer doi: 10.1016/j.jqsrt.2017.10.014 contributor: fullname: Mishchenko – volume: 88 start-page: 077402 year: 2002 ident: D0NR02531C-(cit26)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.077402 contributor: fullname: Sönnichsen – volume: 5 start-page: eaav0704 year: 2019 ident: D0NR02531C-(cit29)/*[position()=1] publication-title: Sci. Adv. doi: 10.1126/sciadv.aav0704 contributor: fullname: Foerster – volume: 322 start-page: 136 year: 2014 ident: D0NR02531C-(cit51)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2014.10.095 contributor: fullname: Zhu – volume: 156 start-page: 678 year: 1985 ident: D0NR02531C-(cit27)/*[position()=1] publication-title: Surf. Sci. doi: 10.1016/0039-6028(85)90239-0 contributor: fullname: Kreibig |
SSID | ssj0069363 |
Score | 2.457093 |
Snippet | Rational design of AuNST morphology requires adequate computational models. The bulk dielectric function is not applicable to sharp nanostar spikes. We suggest... |
SourceID | proquest crossref pubmed rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 19963 |
SubjectTerms | Bilayers Colloids Dielectric properties Glass Morphology Plasmonics Scattering Sea urchins Simulation Spectra Spikes Statistical models Surfactants Water absorption |
Title | A novel concept of two-component dielectric function for gold nanostars: theoretical modelling and experimental verification |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32996517 https://www.proquest.com/docview/2449264881 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfK9gIPiK-xjoEswVuVkcTO197K2JjoKBK0UHiJHMdm1apkSj-mIv4m_kbOiROnokLAS1TZimv5fjnf2b-7Q-gFaDjpE4dZEaPSolR4Vugx2wocwQkHtRkmylF8N_TPx_TtxJt0Oj9brKXlIjni37fGlfyPVKEN5KqiZP9Bss2g0AC_Qb7wBAnD869k3O9l-UqoBB9l7GF533-TW4omnmfqkj-dVmVuprynNrCGV_gtn6W9jGU52IbFXHM7moDGsjrOrI5e3KgBAEukuEVGnNquHaqx4N0GJoPLmUgW83xVwe0KPOipqeP1lRVXVddHFf25NlTbwaVioQlRdn5SFU3W5ri1v4IZztfVme2XZTHVXfrUAlxURQIxp5bV2UhNTC2JJ7q8ndF_riI7ElIlOT8S7bZgU4G7LaBWuWK0OlYUa9La21VAobN147CJyrua2lkBRiBxuNkea0rA8H18Nr64iEenk9EttOuCYgONutsfvHrzud77fWhTnIZm6nVCXBK9NGNvmkC_-TVg5RR19ZnSyhndQ3e1e4L7Fdbuo47IHqA7raSVD9GPPi5RhzXqcC7xBuqwQR2uUYcBdVihDjeoO8YtzOEGcxgwh9uYw23MPULjs9PRybmla3hYnBB7YXHXDRkNGAmYDBhNmJ84aSgFdQKpLiQk9cBhde2QRUHi-MwNROpRLrjncQZ6hOyhnQwmv4-wl7o05FFEHVdQG7QIFVKwBCzwBFql7KLn9bLG11WqlrikWJAofm0PP5SLf9JFh_WKx_pTnsdg40aK6hk6XfS4kkIzBAF15ntO0EV7IJam2Yiziw62d8TXqTz48989QbfN13GIdhbFUjwFK3eRPNPQ-gVTHK9G |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+concept+of+two-component+dielectric+function+for+gold+nanostars%3A+theoretical+modelling+and+experimental+verification&rft.jtitle=Nanoscale&rft.au=Khlebtsov%2C+Nikolai+G&rft.au=Zarkov%2C+Sergey+V&rft.au=Khanadeev%2C+Vitaly+A&rft.au=Avetisyan%2C+Yuri+A&rft.date=2020-10-14&rft.pub=Royal+Society+of+Chemistry&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=12&rft.issue=38&rft.spage=19963&rft.epage=19981&rft_id=info:doi/10.1039%2Fd0nr02531c&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |