A novel concept of two-component dielectric function for gold nanostars: theoretical modelling and experimental verification

Rational design of AuNST morphology requires adequate computational models. The bulk dielectric function is not applicable to sharp nanostar spikes. We suggest a two-component dielectric function in which the nanostar core is treated as a bulk material, whereas the size-corrected dielectric function...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 12; no. 38; pp. 19963 - 19981
Main Authors Khlebtsov, Nikolai G, Zarkov, Sergey V, Khanadeev, Vitaly A, Avetisyan, Yuri A
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 14.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rational design of AuNST morphology requires adequate computational models. The bulk dielectric function is not applicable to sharp nanostar spikes. We suggest a two-component dielectric function in which the nanostar core is treated as a bulk material, whereas the size-corrected dielectric function of the spikes is treated by a modified Coronado-Schatz model. In addition to the strong broadening of plasmonic peaks, the simulated absorption and scattering spectra show unusual properties, which are not observed with bulk dielectric functions. The effect of NIR water absorption on nanostar spectra is small, and the absorption peak demonstrates the expected small decrease in the absorbing media. Surprisingly, however, water absorption increases the scattering peak by 30%. For the common surfactant-free Vo-Dinh AuNSTs, we report, for the first time, very intense SWIR plasmonic peaks around 1900 nm, in addition to the common strong peak in the UV-vis-NIR band (here, at 1100 nm). For bilayers of AuNSTs in air, we recorded two similarly intense peaks near 800 and 1500 nm. To simulate the experimental extinction spectra of colloids and bilayers on glass in air, we develop a statistical model that includes the major fraction of typical Vo-Dinh AuNSTs and two minor fractions of sea urchins and particles with protrusions. In contrast to the general belief, we show that the common UV-vis-NIR plasmonic peak of surfactant-free AuNSTs is related to short spikes on a spherical core, whereas long spikes produce an intense SWIR plasmonic mode. Such a structural assignment of vis-NIR and SWIR peaks does not seem to have been reported previously for surfactant-free nanostars. With our model, we demonstrate good agreement between simulated and measured spectra of colloids and bilayers on glass in air. We have introduced a new two-component dielectric function for modelling of gold nanostars.
AbstractList Rational design of AuNST morphology requires adequate computational models. The bulk dielectric function is not applicable to sharp nanostar spikes. We suggest a two-component dielectric function in which the nanostar core is treated as a bulk material, whereas the size-corrected dielectric function of the spikes is treated by a modified Coronado–Schatz model. In addition to the strong broadening of plasmonic peaks, the simulated absorption and scattering spectra show unusual properties, which are not observed with bulk dielectric functions. The effect of NIR water absorption on nanostar spectra is small, and the absorption peak demonstrates the expected small decrease in the absorbing media. Surprisingly, however, water absorption increases the scattering peak by 30%. For the common surfactant-free Vo-Dinh AuNSTs, we report, for the first time, very intense SWIR plasmonic peaks around 1900 nm, in addition to the common strong peak in the UV–vis–NIR band (here, at 1100 nm). For bilayers of AuNSTs in air, we recorded two similarly intense peaks near 800 and 1500 nm. To simulate the experimental extinction spectra of colloids and bilayers on glass in air, we develop a statistical model that includes the major fraction of typical Vo-Dinh AuNSTs and two minor fractions of sea urchins and particles with protrusions. In contrast to the general belief, we show that the common UV–vis–NIR plasmonic peak of surfactant-free AuNSTs is related to short spikes on a spherical core, whereas long spikes produce an intense SWIR plasmonic mode. Such a structural assignment of vis–NIR and SWIR peaks does not seem to have been reported previously for surfactant-free nanostars. With our model, we demonstrate good agreement between simulated and measured spectra of colloids and bilayers on glass in air.
Rational design of AuNST morphology requires adequate computational models. The bulk dielectric function is not applicable to sharp nanostar spikes. We suggest a two-component dielectric function in which the nanostar core is treated as a bulk material, whereas the size-corrected dielectric function of the spikes is treated by a modified Coronado-Schatz model. In addition to the strong broadening of plasmonic peaks, the simulated absorption and scattering spectra show unusual properties, which are not observed with bulk dielectric functions. The effect of NIR water absorption on nanostar spectra is small, and the absorption peak demonstrates the expected small decrease in the absorbing media. Surprisingly, however, water absorption increases the scattering peak by 30%. For the common surfactant-free Vo-Dinh AuNSTs, we report, for the first time, very intense SWIR plasmonic peaks around 1900 nm, in addition to the common strong peak in the UV-vis-NIR band (here, at 1100 nm). For bilayers of AuNSTs in air, we recorded two similarly intense peaks near 800 and 1500 nm. To simulate the experimental extinction spectra of colloids and bilayers on glass in air, we develop a statistical model that includes the major fraction of typical Vo-Dinh AuNSTs and two minor fractions of sea urchins and particles with protrusions. In contrast to the general belief, we show that the common UV-vis-NIR plasmonic peak of surfactant-free AuNSTs is related to short spikes on a spherical core, whereas long spikes produce an intense SWIR plasmonic mode. Such a structural assignment of vis-NIR and SWIR peaks does not seem to have been reported previously for surfactant-free nanostars. With our model, we demonstrate good agreement between simulated and measured spectra of colloids and bilayers on glass in air. We have introduced a new two-component dielectric function for modelling of gold nanostars.
Author Khlebtsov, Nikolai G
Avetisyan, Yuri A
Khanadeev, Vitaly A
Zarkov, Sergey V
AuthorAffiliation Institute of Biochemistry and Physiology of Plants and Microorganisms
Russian Academy of Sciences
Saratov State University
Institute of Precision Mechanics and Control
AuthorAffiliation_xml – name: Institute of Biochemistry and Physiology of Plants and Microorganisms
– name: Saratov State University
– name: Institute of Precision Mechanics and Control
– name: Russian Academy of Sciences
Author_xml – sequence: 1
  givenname: Nikolai G
  surname: Khlebtsov
  fullname: Khlebtsov, Nikolai G
– sequence: 2
  givenname: Sergey V
  surname: Zarkov
  fullname: Zarkov, Sergey V
– sequence: 3
  givenname: Vitaly A
  surname: Khanadeev
  fullname: Khanadeev, Vitaly A
– sequence: 4
  givenname: Yuri A
  surname: Avetisyan
  fullname: Avetisyan, Yuri A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32996517$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtrGzEUhUVxaBy3m-4TFLILTKvnPLIzzqtgWijtepClq3TMWJpIch7QHx-5dpxdVvfC-Tj3cO4RGjnvAKEvlHylhDffDHGBMMmp_oDGjAhScF6x0X4vxSE6inFJSNnwkn9Eh5w1TSlpNUb_ptj5B-ix9k7DkLC3OD36QvvVkK-4hE0HPegUOo3t2unUeYetD_jO9wY75XxMKsQLnP6CD5A6rXq88gb6vnN3WDmD4WmA0K2yWZYe8moztPH5hA6s6iN83s0J-nN99Xt2W8x_3nyfTeeF5pykQjNWK1EpXilbKbFQ5YKa2oKglZWMEyukrCUjtWqqBS0Vq8BIoUFLqVXTWD5BZ1vfIfj7NcTULv06uHyyZUI0rBR1TTN1vqV08DEGsO2QU6vw3FLSbopuL8mPX_-LnmX4ZGe5XqzA7NHXZjNwugVC1Hv17VPtYDa5jt9j-Auue5I4
CitedBy_id crossref_primary_10_1016_j_jqsrt_2022_108069
crossref_primary_10_3390_nano11102588
crossref_primary_10_57634_RCR5058
crossref_primary_10_1016_j_colsurfb_2022_112924
crossref_primary_10_3390_ma15041606
crossref_primary_10_1021_acs_jpcc_2c05843
crossref_primary_10_3390_polym14061121
crossref_primary_10_1021_acs_jpcc_0c08460
crossref_primary_10_1038_s41598_024_53126_9
crossref_primary_10_1016_j_jcis_2022_04_040
crossref_primary_10_3390_s21041248
crossref_primary_10_1021_acsanm_1c02734
crossref_primary_10_1039_D3CP04541B
crossref_primary_10_1039_D1CP03057D
crossref_primary_10_1080_09500340_2023_2219781
Cites_doi 10.1038/physci241020a0
10.1021/cm0700100
10.1021/nl062969c
10.1039/b604856k
10.1021/acs.jpcc.6b01949
10.1021/acsnano.6b08010
10.1039/c0jm04519e
10.1021/nl050062t
10.1007/978-3-319-20768-1
10.1364/OE.15.013188
10.1063/1.1587686
10.1002/adma.201201690
10.1117/1.OE.59.6.061628
10.1039/c3cc42999g
10.1088/0957-4484/23/7/075102
10.1021/nl0351542
10.1039/C6NR09091E
10.1016/j.jqsrt.2019.106688
10.1103/PhysRevB.48.18178
10.1021/acs.jpcc.8b09263
10.1039/C9NR06533D
10.1103/PhysRevB.86.235147
10.1021/acs.chemmater.8b00655
10.1007/s11051-014-2623-8
10.1016/j.cplett.2007.08.027
10.1049/mnl.2016.0095
10.1016/j.cocis.2010.12.007
10.1021/acsphotonics.6b00786
10.1021/jp500325c
10.1021/jp056606x
10.1364/OSAC.2.003415
10.1021/jp2000078
10.1021/jp072707e
10.1021/acsomega.7b01700
10.1063/1.1845411
10.1021/acs.chemmater.8b00312
10.1002/jbio.201800141
10.1021/ja903093t
10.1039/b714759g
10.1021/nl073042v
10.1039/C8NR07615D
10.1103/PhysRevB.6.4370
10.1364/AO.31.005359
10.1088/0957-4484/19/01/015606
10.1016/0021-9797(79)90103-6
10.1021/acs.chemmater.8b04299
10.1016/j.jqsrt.2017.10.014
10.1103/PhysRevLett.88.077402
10.1126/sciadv.aav0704
10.1016/j.apsusc.2014.10.095
10.1016/0039-6028(85)90239-0
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID NPM
AAYXX
CITATION
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
DOI 10.1039/d0nr02531c
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
DatabaseTitleList CrossRef
PubMed
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 19981
ExternalDocumentID 10_1039_D0NR02531C
32996517
d0nr02531c
Genre Journal Article
GroupedDBID -
0-7
0R
29M
4.4
53G
705
7~J
AAEMU
AAGNR
AAIWI
AANOJ
AAPBV
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFVBQ
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
DU5
EBS
ECGLT
EE0
EF-
F5P
HZ
H~N
J3I
JG
O-G
O9-
OK1
P2P
RCNCU
RIG
RNS
RPMJG
RRC
RSCEA
---
-JG
0R~
AAJAE
AARTK
AAWGC
AAXHV
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AGEGJ
AGRSR
AHGCF
AKBGW
ANUXI
APEMP
GGIMP
H13
HZ~
NPM
RAOCF
RVUXY
AAYXX
CITATION
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
ID FETCH-LOGICAL-c330t-c228a47a37af7a4ba6b1d8fe417f5230f45585208a97b16a27ed54cec55ca99f3
ISSN 2040-3364
IngestDate Thu Oct 10 16:18:20 EDT 2024
Fri Aug 23 00:27:57 EDT 2024
Tue Aug 27 13:48:00 EDT 2024
Wed Nov 11 00:36:16 EST 2020
Sat Jan 08 03:54:58 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 38
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c330t-c228a47a37af7a4ba6b1d8fe417f5230f45585208a97b16a27ed54cec55ca99f3
Notes 10.1039/d0nr02531c
Electronic supplementary information (ESI) available: Sections S1-S9. See DOI
ORCID 0000-0002-2678-3889
0000-0002-2055-7784
PMID 32996517
PQID 2449264881
PQPubID 2047485
PageCount 19
ParticipantIDs pubmed_primary_32996517
proquest_journals_2449264881
crossref_primary_10_1039_D0NR02531C
rsc_primary_d0nr02531c
PublicationCentury 2000
PublicationDate 2020-10-14
PublicationDateYYYYMMDD 2020-10-14
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-14
  day: 14
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Nanoscale
PublicationTitleAlternate Nanoscale
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References 33885126 - Nanoscale. 2021 Apr 22
Solís (D0NR02531C-(cit10)/*[position()=1]) 2017; 4
Khlebtsov (D0NR02531C-(cit46)/*[position()=1]) 1992; 31
Tsoulos (D0NR02531C-(cit48)/*[position()=1]) 2019
Zhu (D0NR02531C-(cit51)/*[position()=1]) 2014; 322
Chirico (D0NR02531C-(cit2)/*[position()=1]) 2015
Khlebtsov (D0NR02531C-(cit30)/*[position()=1]) 2011; 115
Bohren (D0NR02531C-(cit41)/*[position()=1]) 1979; 72
Mishchenko (D0NR02531C-(cit43)/*[position()=1]) 2020; 242
Trigari (D0NR02531C-(cit14)/*[position()=1]) 2011; 21
Sönnichsen (D0NR02531C-(cit26)/*[position()=1]) 2002; 88
Kim (D0NR02531C-(cit39)/*[position()=1]) 2009; 131
Hu (D0NR02531C-(cit18)/*[position()=1]) 2018; 30
Coronado (D0NR02531C-(cit22)/*[position()=1]) 2003; 119
Olmon (D0NR02531C-(cit23)/*[position()=1]) 2012; 86
Bryant (D0NR02531C-(cit36)/*[position()=1]) 2008; 8
Pallavicini (D0NR02531C-(cit5)/*[position()=1]) 2013; 49
Hao (D0NR02531C-(cit12)/*[position()=1]) 2007; 7
Johnson (D0NR02531C-(cit21)/*[position()=1]) 1972; 6
Tsoulos (D0NR02531C-(cit17)/*[position()=1]) 2017; 9
Tsoulos (D0NR02531C-(cit19)/*[position()=1]) 2018; 122
Bohren (D0NR02531C-(cit47)/*[position()=1]) 1983
Hu (D0NR02531C-(cit7)/*[position()=1]) 2018; 31
Hövel (D0NR02531C-(cit25)/*[position()=1]) 1993; 48
Atta (D0NR02531C-(cit6)/*[position()=1]) 2019; 11
Khlebtsov (D0NR02531C-(cit49)/*[position()=1]) 2014; 16
Yuan (D0NR02531C-(cit8)/*[position()=1]) 2012; 23
Foerster (D0NR02531C-(cit28)/*[position()=1]) 2017; 11
Payne (D0NR02531C-(cit38)/*[position()=1]) 2006; 110
De Silva Indrasekara (D0NR02531C-(cit3)/*[position()=1]) 2018; 3
Kreibig (D0NR02531C-(cit27)/*[position()=1]) 1985; 156
Hu (D0NR02531C-(cit33)/*[position()=1]) 2008; 18
Tsoulos (D0NR02531C-(cit20)/*[position()=1]) 2019; 11
Frens (D0NR02531C-(cit53)/*[position()=1]) 1973; 241
Vigderman (D0NR02531C-(cit4)/*[position()=1]) 2012; 24
Xie (D0NR02531C-(cit34)/*[position()=1]) 2007; 19
Zarkov (D0NR02531C-(cit52)/*[position()=1]) 2020; 59
Lee (D0NR02531C-(cit15)/*[position()=1]) 2014; 118
Guerrero-Martínez (D0NR02531C-(cit1)/*[position()=1]) 2011; 16
Hao (D0NR02531C-(cit24)/*[position()=1]) 2007; 446
Bi (D0NR02531C-(cit9)/*[position()=1]) 2018; 30
Mishchenko (D0NR02531C-(cit45)/*[position()=1]) 2019; 2
Foerster (D0NR02531C-(cit29)/*[position()=1]) 2019; 5
Khlebtsov (D0NR02531C-(cit35)/*[position()=1]) 2007; 111
Atta (D0NR02531C-(cit16)/*[position()=1]) 2016; 120
Berciaud (D0NR02531C-(cit31)/*[position()=1]) 2005; 5
Hao (D0NR02531C-(cit11)/*[position()=1]) 2004; 4
Novo (D0NR02531C-(cit32)/*[position()=1]) 2006; 8
Mishchenko (D0NR02531C-(cit42)/*[position()=1]) 2007; 15
Laurent (D0NR02531C-(cit37)/*[position()=1]) 2005; 122
Golovynskyi (D0NR02531C-(cit40)/*[position()=1]) 2018; 11
Mishchenko (D0NR02531C-(cit44)/*[position()=1]) 2018; 205
Kumar (D0NR02531C-(cit13)/*[position()=1]) 2008; 19
Raghavan (D0NR02531C-(cit50)/*[position()=1]) 2016; 11
References_xml – issn: 1983
  publication-title: Absorption and Scattering of Light by Small Particles
  doi: Bohren Haffman
– issn: 2015
  publication-title: Gold Nanostars. Synthesis, Properties and Biomedical Application
  doi: Chirico Borzenkov Pallavicini
– issn: 2019
  publication-title: A Pragmatic Approach to Nanostar Plasmonics. PhD dissertation, School of Graduate Studies Rutgers, The State University of New Jersey
  doi: Tsoulos
– volume: 241
  start-page: 20
  year: 1973
  ident: D0NR02531C-(cit53)/*[position()=1]
  publication-title: Nat. Phys. Sci.
  doi: 10.1038/physci241020a0
  contributor:
    fullname: Frens
– volume: 19
  start-page: 2823
  year: 2007
  ident: D0NR02531C-(cit34)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm0700100
  contributor:
    fullname: Xie
– volume: 7
  start-page: 729
  year: 2007
  ident: D0NR02531C-(cit12)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl062969c
  contributor:
    fullname: Hao
– volume: 8
  start-page: 3540
  year: 2006
  ident: D0NR02531C-(cit32)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b604856k
  contributor:
    fullname: Novo
– volume: 120
  start-page: 20749
  year: 2016
  ident: D0NR02531C-(cit16)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b01949
  contributor:
    fullname: Atta
– volume: 11
  start-page: 2886
  year: 2017
  ident: D0NR02531C-(cit28)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b08010
  contributor:
    fullname: Foerster
– volume: 21
  start-page: 6531
  year: 2011
  ident: D0NR02531C-(cit14)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm04519e
  contributor:
    fullname: Trigari
– volume: 5
  start-page: 515
  year: 2005
  ident: D0NR02531C-(cit31)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl050062t
  contributor:
    fullname: Berciaud
– volume-title: Gold Nanostars. Synthesis, Properties and Biomedical Application
  year: 2015
  ident: D0NR02531C-(cit2)/*[position()=1]
  doi: 10.1007/978-3-319-20768-1
  contributor:
    fullname: Chirico
– volume: 15
  start-page: 13188
  year: 2007
  ident: D0NR02531C-(cit42)/*[position()=1]
  publication-title: Opt. Express
  doi: 10.1364/OE.15.013188
  contributor:
    fullname: Mishchenko
– volume: 119
  start-page: 3926
  year: 2003
  ident: D0NR02531C-(cit22)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1587686
  contributor:
    fullname: Coronado
– volume: 24
  start-page: 4811
  year: 2012
  ident: D0NR02531C-(cit4)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201201690
  contributor:
    fullname: Vigderman
– volume: 59
  start-page: 061628
  year: 2020
  ident: D0NR02531C-(cit52)/*[position()=1]
  publication-title: Opt. Eng.
  doi: 10.1117/1.OE.59.6.061628
  contributor:
    fullname: Zarkov
– volume: 49
  start-page: 6265
  year: 2013
  ident: D0NR02531C-(cit5)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc42999g
  contributor:
    fullname: Pallavicini
– volume: 23
  start-page: 075102
  year: 2012
  ident: D0NR02531C-(cit8)/*[position()=1]
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/23/7/075102
  contributor:
    fullname: Yuan
– volume-title: A Pragmatic Approach to Nanostar Plasmonics. PhD dissertation, School of Graduate Studies Rutgers, The State University of New Jersey
  year: 2019
  ident: D0NR02531C-(cit48)/*[position()=1]
  contributor:
    fullname: Tsoulos
– volume: 4
  start-page: 327
  year: 2004
  ident: D0NR02531C-(cit11)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl0351542
  contributor:
    fullname: Hao
– volume: 9
  start-page: 3766
  year: 2017
  ident: D0NR02531C-(cit17)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C6NR09091E
  contributor:
    fullname: Tsoulos
– volume: 242
  start-page: 106688
  year: 2020
  ident: D0NR02531C-(cit43)/*[position()=1]
  publication-title: J. Quant. Spectrosc. Radiat. Transfer
  doi: 10.1016/j.jqsrt.2019.106688
  contributor:
    fullname: Mishchenko
– volume: 48
  start-page: 18178
  year: 1993
  ident: D0NR02531C-(cit25)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.48.18178
  contributor:
    fullname: Hövel
– volume: 122
  start-page: 28949
  year: 2018
  ident: D0NR02531C-(cit19)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b09263
  contributor:
    fullname: Tsoulos
– volume: 11
  start-page: 18662
  year: 2019
  ident: D0NR02531C-(cit20)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C9NR06533D
  contributor:
    fullname: Tsoulos
– volume: 86
  start-page: 235147
  year: 2012
  ident: D0NR02531C-(cit23)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.86.235147
  contributor:
    fullname: Olmon
– volume: 30
  start-page: 3722
  year: 2018
  ident: D0NR02531C-(cit18)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b00655
  contributor:
    fullname: Hu
– volume: 16
  start-page: 2623
  year: 2014
  ident: D0NR02531C-(cit49)/*[position()=1]
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-014-2623-8
  contributor:
    fullname: Khlebtsov
– volume: 446
  start-page: 115
  year: 2007
  ident: D0NR02531C-(cit24)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2007.08.027
  contributor:
    fullname: Hao
– volume: 11
  start-page: 769
  year: 2016
  ident: D0NR02531C-(cit50)/*[position()=1]
  publication-title: Micro Nano Lett.
  doi: 10.1049/mnl.2016.0095
  contributor:
    fullname: Raghavan
– volume: 16
  start-page: 118
  year: 2011
  ident: D0NR02531C-(cit1)/*[position()=1]
  publication-title: Curr. Opin. Colloid Interface Sci.
  doi: 10.1016/j.cocis.2010.12.007
  contributor:
    fullname: Guerrero-Martínez
– volume: 4
  start-page: 329
  year: 2017
  ident: D0NR02531C-(cit10)/*[position()=1]
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.6b00786
  contributor:
    fullname: Solís
– volume: 118
  start-page: 5881
  year: 2014
  ident: D0NR02531C-(cit15)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp500325c
  contributor:
    fullname: Lee
– volume: 110
  start-page: 2150
  year: 2006
  ident: D0NR02531C-(cit38)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp056606x
  contributor:
    fullname: Payne
– volume: 2
  start-page: 3415
  year: 2019
  ident: D0NR02531C-(cit45)/*[position()=1]
  publication-title: OSA Continuum
  doi: 10.1364/OSAC.2.003415
  contributor:
    fullname: Mishchenko
– volume: 115
  start-page: 6317
  year: 2011
  ident: D0NR02531C-(cit30)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp2000078
  contributor:
    fullname: Khlebtsov
– volume: 111
  start-page: 11516
  year: 2007
  ident: D0NR02531C-(cit35)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp072707e
  contributor:
    fullname: Khlebtsov
– volume-title: Absorption and Scattering of Light by Small Particles
  year: 1983
  ident: D0NR02531C-(cit47)/*[position()=1]
  contributor:
    fullname: Bohren
– volume: 3
  start-page: 2202
  year: 2018
  ident: D0NR02531C-(cit3)/*[position()=1]
  publication-title: ACS Omega
  doi: 10.1021/acsomega.7b01700
  contributor:
    fullname: De Silva Indrasekara
– volume: 122
  start-page: 011102
  year: 2005
  ident: D0NR02531C-(cit37)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1845411
  contributor:
    fullname: Laurent
– volume: 30
  start-page: 2709
  year: 2018
  ident: D0NR02531C-(cit9)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b00312
  contributor:
    fullname: Bi
– volume: 11
  start-page: e201800141
  year: 2018
  ident: D0NR02531C-(cit40)/*[position()=1]
  publication-title: J. Biophotonics
  doi: 10.1002/jbio.201800141
  contributor:
    fullname: Golovynskyi
– volume: 131
  start-page: 8380
  year: 2009
  ident: D0NR02531C-(cit39)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja903093t
  contributor:
    fullname: Kim
– volume: 18
  start-page: 1949
  year: 2008
  ident: D0NR02531C-(cit33)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/b714759g
  contributor:
    fullname: Hu
– volume: 8
  start-page: 631
  year: 2008
  ident: D0NR02531C-(cit36)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl073042v
  contributor:
    fullname: Bryant
– volume: 11
  start-page: 2946
  year: 2019
  ident: D0NR02531C-(cit6)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C8NR07615D
  contributor:
    fullname: Atta
– volume: 6
  start-page: 4370
  year: 1972
  ident: D0NR02531C-(cit21)/*[position()=1]
  publication-title: Phys. Rev. B: Solid State
  doi: 10.1103/PhysRevB.6.4370
  contributor:
    fullname: Johnson
– volume: 31
  start-page: 5359
  year: 1992
  ident: D0NR02531C-(cit46)/*[position()=1]
  publication-title: Appl. Opt.
  doi: 10.1364/AO.31.005359
  contributor:
    fullname: Khlebtsov
– volume: 19
  start-page: 015606
  year: 2008
  ident: D0NR02531C-(cit13)/*[position()=1]
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/19/01/015606
  contributor:
    fullname: Kumar
– volume: 72
  start-page: 215
  year: 1979
  ident: D0NR02531C-(cit41)/*[position()=1]
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(79)90103-6
  contributor:
    fullname: Bohren
– volume: 31
  start-page: 471
  year: 2018
  ident: D0NR02531C-(cit7)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b04299
  contributor:
    fullname: Hu
– volume: 205
  start-page: 241
  year: 2018
  ident: D0NR02531C-(cit44)/*[position()=1]
  publication-title: J. Quant. Spectrosc. Radiat. Transfer
  doi: 10.1016/j.jqsrt.2017.10.014
  contributor:
    fullname: Mishchenko
– volume: 88
  start-page: 077402
  year: 2002
  ident: D0NR02531C-(cit26)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.077402
  contributor:
    fullname: Sönnichsen
– volume: 5
  start-page: eaav0704
  year: 2019
  ident: D0NR02531C-(cit29)/*[position()=1]
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav0704
  contributor:
    fullname: Foerster
– volume: 322
  start-page: 136
  year: 2014
  ident: D0NR02531C-(cit51)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2014.10.095
  contributor:
    fullname: Zhu
– volume: 156
  start-page: 678
  year: 1985
  ident: D0NR02531C-(cit27)/*[position()=1]
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(85)90239-0
  contributor:
    fullname: Kreibig
SSID ssj0069363
Score 2.457093
Snippet Rational design of AuNST morphology requires adequate computational models. The bulk dielectric function is not applicable to sharp nanostar spikes. We suggest...
SourceID proquest
crossref
pubmed
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 19963
SubjectTerms Bilayers
Colloids
Dielectric properties
Glass
Morphology
Plasmonics
Scattering
Sea urchins
Simulation
Spectra
Spikes
Statistical models
Surfactants
Water absorption
Title A novel concept of two-component dielectric function for gold nanostars: theoretical modelling and experimental verification
URI https://www.ncbi.nlm.nih.gov/pubmed/32996517
https://www.proquest.com/docview/2449264881
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfK9gIPiK-xjoEswVuVkcTO197K2JjoKBK0UHiJHMdm1apkSj-mIv4m_kbOiROnokLAS1TZimv5fjnf2b-7Q-gFaDjpE4dZEaPSolR4Vugx2wocwQkHtRkmylF8N_TPx_TtxJt0Oj9brKXlIjni37fGlfyPVKEN5KqiZP9Bss2g0AC_Qb7wBAnD869k3O9l-UqoBB9l7GF533-TW4omnmfqkj-dVmVuprynNrCGV_gtn6W9jGU52IbFXHM7moDGsjrOrI5e3KgBAEukuEVGnNquHaqx4N0GJoPLmUgW83xVwe0KPOipqeP1lRVXVddHFf25NlTbwaVioQlRdn5SFU3W5ri1v4IZztfVme2XZTHVXfrUAlxURQIxp5bV2UhNTC2JJ7q8ndF_riI7ElIlOT8S7bZgU4G7LaBWuWK0OlYUa9La21VAobN147CJyrua2lkBRiBxuNkea0rA8H18Nr64iEenk9EttOuCYgONutsfvHrzud77fWhTnIZm6nVCXBK9NGNvmkC_-TVg5RR19ZnSyhndQ3e1e4L7Fdbuo47IHqA7raSVD9GPPi5RhzXqcC7xBuqwQR2uUYcBdVihDjeoO8YtzOEGcxgwh9uYw23MPULjs9PRybmla3hYnBB7YXHXDRkNGAmYDBhNmJ84aSgFdQKpLiQk9cBhde2QRUHi-MwNROpRLrjncQZ6hOyhnQwmv4-wl7o05FFEHVdQG7QIFVKwBCzwBFql7KLn9bLG11WqlrikWJAofm0PP5SLf9JFh_WKx_pTnsdg40aK6hk6XfS4kkIzBAF15ntO0EV7IJam2Yiziw62d8TXqTz48989QbfN13GIdhbFUjwFK3eRPNPQ-gVTHK9G
link.rule.ids 315,783,787,27936,27937
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+concept+of+two-component+dielectric+function+for+gold+nanostars%3A+theoretical+modelling+and+experimental+verification&rft.jtitle=Nanoscale&rft.au=Khlebtsov%2C+Nikolai+G&rft.au=Zarkov%2C+Sergey+V&rft.au=Khanadeev%2C+Vitaly+A&rft.au=Avetisyan%2C+Yuri+A&rft.date=2020-10-14&rft.pub=Royal+Society+of+Chemistry&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=12&rft.issue=38&rft.spage=19963&rft.epage=19981&rft_id=info:doi/10.1039%2Fd0nr02531c&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon