Thermal management of fuel heat sink in aircraft via flow path optimization
•The FHSCR is evaluated and applied to the fuel heat sink optimization.•A new architecture of the AFTMS is designed to enhance the heat dissipation.•The FHSCR is reduced by 14.16% compared to the original architecture.•A dynamic optimal controller based on the MVD-PSO algorithm is established.•Therm...
Saved in:
Published in | Applied thermal engineering Vol. 246; p. 122880 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The FHSCR is evaluated and applied to the fuel heat sink optimization.•A new architecture of the AFTMS is designed to enhance the heat dissipation.•The FHSCR is reduced by 14.16% compared to the original architecture.•A dynamic optimal controller based on the MVD-PSO algorithm is established.•Thermal endurance can be extended up to 37.42% and a mission test is conducted.
With the rapid increase of aircraft thermal loads, efficiently utilizing the fuel heat sink has received widespread attention in recent years. To improve the performance of the aircraft fuel thermal management system (AFTMS), a concept of the fuel heat sink consumption rate (FHSCR) is proposed to assess the system heat dissipation, and an optimization criterion of fuel heat sink is established based on the FHSCR. Besides, a new architecture of the AFTMS with a middle fuel return branch (MFRB) and a recirculation fuel supply branch (RFSB) is designed to enhance the heat dissipation capacity, and unlike previous studies, only the flow path of the fuel supply and return subsystem (FSRS) has been changed here without additional fuel tanks. Moreover, a dynamic optimal controller based on the particle swarm optimization (PSO) algorithm with the minimum variation distance (MVD-PSO) is developed for obtaining the optimal control parameters and eliminating the parameter oscillation, which is applied in the comparison calculations under both a single condition and a complete mission profile. The calculation results show that compared to the original architecture, the new architecture can reduce the FHSCR by 14.16% under the standard condition, and the thermal endurance of the standard and extreme conditions is extended by 37.42% and 19.54%, respectively. In addition, the new architecture exhibits a better thermal management performance during the whole mission as well. To sum up, comprehensively dealing with the waste heat by both the combustion fuel and ram air is crucial for system cooling, and the new architecture improves the heat dissipation capacity of the AFTMS significantly. This paper provides a novel flow path optimization guide for the AFTMS. |
---|---|
AbstractList | •The FHSCR is evaluated and applied to the fuel heat sink optimization.•A new architecture of the AFTMS is designed to enhance the heat dissipation.•The FHSCR is reduced by 14.16% compared to the original architecture.•A dynamic optimal controller based on the MVD-PSO algorithm is established.•Thermal endurance can be extended up to 37.42% and a mission test is conducted.
With the rapid increase of aircraft thermal loads, efficiently utilizing the fuel heat sink has received widespread attention in recent years. To improve the performance of the aircraft fuel thermal management system (AFTMS), a concept of the fuel heat sink consumption rate (FHSCR) is proposed to assess the system heat dissipation, and an optimization criterion of fuel heat sink is established based on the FHSCR. Besides, a new architecture of the AFTMS with a middle fuel return branch (MFRB) and a recirculation fuel supply branch (RFSB) is designed to enhance the heat dissipation capacity, and unlike previous studies, only the flow path of the fuel supply and return subsystem (FSRS) has been changed here without additional fuel tanks. Moreover, a dynamic optimal controller based on the particle swarm optimization (PSO) algorithm with the minimum variation distance (MVD-PSO) is developed for obtaining the optimal control parameters and eliminating the parameter oscillation, which is applied in the comparison calculations under both a single condition and a complete mission profile. The calculation results show that compared to the original architecture, the new architecture can reduce the FHSCR by 14.16% under the standard condition, and the thermal endurance of the standard and extreme conditions is extended by 37.42% and 19.54%, respectively. In addition, the new architecture exhibits a better thermal management performance during the whole mission as well. To sum up, comprehensively dealing with the waste heat by both the combustion fuel and ram air is crucial for system cooling, and the new architecture improves the heat dissipation capacity of the AFTMS significantly. This paper provides a novel flow path optimization guide for the AFTMS. |
ArticleNumber | 122880 |
Author | Lin, Yuanfang Liang, Xingang Yu, Haiyu Xu, Xianghua Yang, Shiyu |
Author_xml | – sequence: 1 givenname: Shiyu surname: Yang fullname: Yang, Shiyu – sequence: 2 givenname: Yuanfang surname: Lin fullname: Lin, Yuanfang – sequence: 3 givenname: Haiyu surname: Yu fullname: Yu, Haiyu – sequence: 4 givenname: Xianghua surname: Xu fullname: Xu, Xianghua – sequence: 5 givenname: Xingang orcidid: 0000-0003-4875-2829 surname: Liang fullname: Liang, Xingang email: liangxg@tsinghua.edu.cn |
BookMark | eNqNkDtPwzAURj0UibbwHzywJviRhyOxQEUBUYmlzNate926JE7kmCL49bSEBaZOdzpH3z0TMvKtR0KuOEs548X1LoWuq-MWQwM1-k0qmMhSLoRSbETGXOZVkknOz8mk73eMcaHKbEyelwNBG_CwwQZ9pK2l9h1rukWItHf-jTpPwQUTwEa6d0Bt3X7QDuKWtl10jfuC6Fp_Qc4s1D1e_t4peZ3fL2ePyeLl4Wl2u0iMlCwmUArFlV2hRYScSZtLhRVakxUqQ2bkSkDFmaiMqfiam0JhIYuSV6bkOYCUU3I3eE1o-z6g1cbFnwUxgKs1Z_qYRO_03yT6mEQPSQ6Sm3-SLrgGwuep-HzA8fDo3mHQvXHoDa5dQBP1unWnib4Bxs2M5Q |
CitedBy_id | crossref_primary_10_1016_j_cja_2025_103452 crossref_primary_10_1016_j_apsusc_2024_160700 |
Cites_doi | 10.1109/ACCESS.2022.3193396 10.1016/j.dt.2023.02.025 10.1016/j.euromechflu.2019.07.007 10.1016/j.cam.2006.10.074 10.2514/6.1992-3092 10.2514/6.2018-0612 10.1016/j.applthermaleng.2023.120427 10.1016/j.apnum.2007.01.008 10.1007/s11831-021-09694-4 10.2514/6.2022-0750 10.2514/6.2019-3471 10.2514/6.2019-1663 10.1007/s40430-018-1078-8 10.2514/6.2002-3871 10.1016/j.paerosci.2021.100767 10.2514/1.G000845 10.1016/j.compositesb.2019.106930 10.1115/1.4040036 10.6028/NIST.IR.6659 10.3390/aerospace10080730 10.2514/6.1997-5507 10.1007/978-981-99-8861-7_62 10.2514/6.2009-4248 10.1016/j.ijheatmasstransfer.2022.122775 10.2514/6.2018-0856 10.1016/j.jcis.2022.03.112 10.1016/j.fuel.2022.126993 10.1109/AUS.2016.7748157 10.2514/1.B34240 10.1016/j.csite.2023.102715 10.2514/6.2024-2202 10.2514/6.2020-1825 10.1007/s10854-015-3116-y 10.2514/1.T5494 10.2514/1.T5142 10.1007/s10765-022-03100-2 10.1109/TTE.2015.2426499 10.2514/6.2019-1662 10.2514/6.2004-3886 10.1016/j.applthermaleng.2020.114985 10.1016/j.fuel.2021.122673 10.2514/1.B38695 10.2514/6.2016-1621 10.1016/j.cja.2020.06.021 10.4271/931145 10.2514/1.T6044 10.2514/1.J059237 10.1016/j.ast.2019.03.047 10.1016/j.enconman.2022.115510 10.3390/e21030223 10.2514/6.2016-1622 10.2514/6.2022-3291 10.1016/j.progpolymsci.2016.05.001 10.2514/6.2023-1045 10.1016/j.rser.2017.06.024 10.1016/j.ijrefrig.2014.08.010 10.2514/6.2021-3322 10.1007/978-3-031-17929-7_1 10.1016/j.ast.2021.106490 10.1016/j.greenca.2023.08.004 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.applthermaleng.2024.122880 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_applthermaleng_2024_122880 S1359431124005489 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABJNI ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJOXV AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W JARJE JJJVA KOM MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSG SSR SST SSZ T5K TN5 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FGOYB HZ~ M41 R2- SSH |
ID | FETCH-LOGICAL-c330t-a72818fbefeea503f538e9efc4684e0c3b2a91029cc91d1c68e636719c715aa33 |
IEDL.DBID | .~1 |
ISSN | 1359-4311 |
IngestDate | Thu Apr 24 23:03:07 EDT 2025 Tue Jul 01 02:05:58 EDT 2025 Sat May 04 15:43:16 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fuel heat sink Thermal management system Dynamic optimal control Aircraft Flow path optimization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c330t-a72818fbefeea503f538e9efc4684e0c3b2a91029cc91d1c68e636719c715aa33 |
ORCID | 0000-0003-4875-2829 |
ParticipantIDs | crossref_citationtrail_10_1016_j_applthermaleng_2024_122880 crossref_primary_10_1016_j_applthermaleng_2024_122880 elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2024_122880 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 2024-06-00 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Applied thermal engineering |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Zhuang, Xu, Liu (b0060) 2022; 259 Doman (b0220) 2018; 32 Zinatloo-Ajabshir, Emsaki, Hosseinzadeh (b0100) 2022; 619 Broatch, Olmeda, García-Tíscar (b0055) 2022; 190 Nazari-Heris, Mohammadi-Ivatloo, Gharehpetian (b0265) 2018; 81 Mao, Li, Wang (b0115) 2019; 21 Bao, Ye, Wang (b0150) 2023; 454 A.S. White, E. Waddington, J.M. Merret, et al., System-level utilization of low-grade, MW-scale thermal loads for electric aircraft, in: AIAA AVIATION 2022 Forum, Chicago, Illinois & Virtual, USA, 2022, Doi: 10.2514/6.2022-3291. Burger, Laachachi, Ferriol (b0080) 2016; 61 Y. Ho, T. Lin, B.P. Hill, et al., Thermal benefits of advanced integrated fuel system using JP-8+100 fuel, in: 1997 World Aviation Congress, Anaheim, California, USA, 1997, Doi: 10.2514/6.1997-5507. Kellermann, Fuhrmann, Shamiyeh (b0030) 2022; 38 Huang, Doman (b0225) 2018; 10 T. Edwards, B. Harrison, S. Zabarnick, et al., Update on the development of JP-8+100, in: 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Fort Lauderdale, Florida, USA, 2004, Doi: 10.2514/6.2004-3886. G.P. Huang, D.B. Doman, M.W. Oppenheimer, et al., Topology optimization of a fuel thermal management system, in: AIAA Aviation 2019 Forum, Dallas, Texas, USA, Doi: 10.2514/6.2019-3471. W.M. Kays, A.L. London, Compact heat exchangers, 3rd ed., USA, 1984. Chang, Paige (b0330) 2007; 57 T.J. Bruno, M. Huber, A. Laesecke, et al., Thermodynamic, transport, and chemical properties of reference JP-8, NIST Interagency/Internal Report (NISTIR), National Institute of Standards and Technology, Gaithersburg, Maryland, 2010 Gad (b0290) 2022; 29 Kassoul, Zufferey, Cheikhrouhou (b0285) 2022; 10 Xie, Wang (b0090) 2023; 1 M.W. Oppenheimer, D.O. Sigthorsson, D.B. Doman, Extending aircraft thermal endurance by fuel pump sizing, in: 2018 AIAA Guidance, Navigation, and Control Conference, Kissimmee, Florida, USA, 2018, Doi: 10.2514/6.2018-0856. Liu, Xu, Fu (b0300) 2023; 42 Corporan, Williams, Stouffer (b0130) 2023; 335 Mortazavi-Derazkola, Zinatloo-Ajabshir, Salavati-Niasari (b0110) 2015; 26 German (b0200) 2012; 28 Avci, Karagoz (b0315) 2019; 78 Toksarı (b0275) 2007; 209 . H. Huang, L. Spadaccini, D. Sobel, Endothermic heat-sink of jet fuels for scramjet cooling, in: 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Indianapolis, Indiana, USA, 2002, Doi: 10.2514/6.2002-3871. Moroney (b0050) 1957; 76 A. Yuhas, R. Ray, Effects of bleed air extraction of thrust levels on the F404-GE-400 turbofan engine, in: 28th Joint Propulsion Conference and Exhibit, Nashville, Tennessee, USA, 1992, Doi: 10.2514/6.1992-3092. S. Yang, Y. Lin, X. Xu, et al., Extension of aircraft thermal endurance by multi-return fuel tank system, in: Proceedings of the 6th China Aeronautical Science and Technology Conference, Jiaxing, Zhejiang, China, 2023, Doi: 10.1007/978-981-99-8861-7_62. Maalouf, Isikveren, Dumoulin (b0160) 2019; 33 D.O. Sigthorsson, M.W. Oppenheimer, D.B. Doman, Aircraft thermal endurance enhancement using a dual tank configuration and temperature regulation, in: 2018 AIAA Guidance, Navigation, and Control Conference, Kissimmee, Florida, USA, 2018, Doi: 10.2514/6.2018-0612. Zhou, Huang (b0010) 2021; 110 Li, Geiselhart (b0005) 2021; 59 Rezayeenik, Mousavi-Kamazani, Zinatloo-Ajabshir (b0095) 2023; 129 Q. Su, S. Chang, S. Yang, Analysis of aircraft integrated thermal management using fuel as heat sink, in: 2016 IEEE International Conference on Aircraft Utility Systems (AUS), Beijing, China, 2016, Doi: 10.1109/AUS.2016.7748157. van Heerden, Judt, Jafari (b0020) 2022; 128 D.O. Sigthorsson, M.W. Oppenheimer, D.B. Doman, Aircraft thermal endurance optimization part II: using a simple dual tank topology and robust temperature regulation, in: AIAA Scitech 2019 Forum, San Diego, California, USA, 2019, Doi: 10.2514/6.2019-1663. Zhang, Lin, Guo (b0170) 2023; 10 Zhang, Wang, Ji (b0280) 2015; 2015 Yang, Tao (b0310) 2006 Zinatloo-Ajabshir, Salavati-Niasari (b0105) 2019; 174 Wang, Zhao, Bao (b0145) 2022; 313 Coutinho, Bento, Souza (b0035) 2023; 227 D.B. Doman, Fuel flow control for extending aircraft thermal endurance part II: closed loop control, in: AIAA Guidance, Navigation, and Control Conference, San Diego, California, USA, 2016, Doi: 10.2514/6.2016-1622. Russ, Drela (b0155) 1993; 931145 Siengchin (b0085) 2023; 24 D.O. Sigthorsson, M.W. Oppenheimer, D.B. Doman, FLEX versus dual tank thermal management systems, in: AIAA SCITECH 2023 Forum, National Harbor, Maryland & Online, 2023, Doi: 10.2514/6.2023-1045. Kellermann, Habermann, Vratny (b0165) 2020; 170 C. Lents, Impact of weight, drag and power demand on aircraft energy consumption, in: AIAA Propulsion and Energy 2021 Forum, Virtual, 2021, Doi: 10.2514/6.2021-3322. D.O. Sigthorsson, M.W. Oppenheimer, D.B. Doman, N-tank continuous framework for thermal management to enhance thermal endurance, in: AIAA SCITECH 2024 Forum, Orlando, Florida, USA, 2024, Doi: 10.2514/6.2024-2202. D.O. Sigthorsson, M.W. Oppenheimer, D.B. Doman, Aircraft thermal endurance optimization part I: using a mixed dual tank topology and robust temperature regulation, in: AIAA Scitech 2019 Forum, San Diego, California, USA, 2019, Doi: 10.2514/6.2019-1662. Elaziz, Ewees, Neggaz (b0260) 2021; 176 Sojoudi, Nourbakhsh, Shokouhmand (b0295) 2018; 40 Sarlioglu, Morris (b0015) 2015; 1 Y. Lin, K. Kota, L. Chow, et al., Design of a thermal management system for directed energy weapons, in: 41st AIAA Thermophysics Conference, San Antonio, Texas, USA, 2009, Doi: 10.2514/6.2009-4248. Huang, Doman, Oppenheimer (b0245) 2022; 36 Doman (b0320) 2015; 38 Moon, Seo, Ha (b0125) 2019; 89 D.O. Sigthorsson, M.W. Oppenheimer, D.B. Doman, Flight endurance enhancement via thermal management system control subject to multiple limitations, in: AIAA Scitech 2020 Forum, Orlando, Florida, USA, 2020, Doi: 10.2514/6.2020-1825. Wang, Li, Liu (b0075) 2021; 34 Fortin, Bruno, Lovestead (bib331) 2023; 44 D.B. Doman, Fuel flow control for extending aircraft thermal endurance part I: underlying principles, in: AIAA Guidance, Navigation, and Control Conference, San Diego, California, USA, 2016, Doi: 10.2514/6.2016-1621. Michalak, Emo, Ervin (b0025) 2014; 48 O. Khare, S. Ahmed, Y. Singh, An overview of swarm intelligence-based algorithms, in: Design and Applications of Nature Inspired Optimization, Women in Engineering and Science, 2023, Doi: 10.1007/978-3-031-17929-7_1. D.O. Sigthorsson, M.W. Oppenheimer, D.B. Doman, N-tank thermal management system framework for thermal endurance enhancement, in: AIAA SCITECH 2022 Forum, San Diego, California & Virtual, 2022, Doi: 10.2514/6.2022-0750. Moon (10.1016/j.applthermaleng.2024.122880_b0125) 2019; 89 Rezayeenik (10.1016/j.applthermaleng.2024.122880_b0095) 2023; 129 Huang (10.1016/j.applthermaleng.2024.122880_b0225) 2018; 10 Zhang (10.1016/j.applthermaleng.2024.122880_b0170) 2023; 10 Gad (10.1016/j.applthermaleng.2024.122880_b0290) 2022; 29 Sojoudi (10.1016/j.applthermaleng.2024.122880_b0295) 2018; 40 van Heerden (10.1016/j.applthermaleng.2024.122880_b0020) 2022; 128 10.1016/j.applthermaleng.2024.122880_b0045 10.1016/j.applthermaleng.2024.122880_b0120 10.1016/j.applthermaleng.2024.122880_b0240 10.1016/j.applthermaleng.2024.122880_b0040 Fortin (10.1016/j.applthermaleng.2024.122880_bib331) 2023; 44 Mortazavi-Derazkola (10.1016/j.applthermaleng.2024.122880_b0110) 2015; 26 Maalouf (10.1016/j.applthermaleng.2024.122880_b0160) 2019; 33 10.1016/j.applthermaleng.2024.122880_b0205 Zhou (10.1016/j.applthermaleng.2024.122880_b0010) 2021; 110 10.1016/j.applthermaleng.2024.122880_b0325 Bao (10.1016/j.applthermaleng.2024.122880_b0150) 2023; 454 Doman (10.1016/j.applthermaleng.2024.122880_b0220) 2018; 32 Huang (10.1016/j.applthermaleng.2024.122880_b0245) 2022; 36 Toksarı (10.1016/j.applthermaleng.2024.122880_b0275) 2007; 209 10.1016/j.applthermaleng.2024.122880_b0270 Kellermann (10.1016/j.applthermaleng.2024.122880_b0165) 2020; 170 10.1016/j.applthermaleng.2024.122880_b0070 10.1016/j.applthermaleng.2024.122880_b0190 Zinatloo-Ajabshir (10.1016/j.applthermaleng.2024.122880_b0100) 2022; 619 Russ (10.1016/j.applthermaleng.2024.122880_b0155) 1993; 931145 10.1016/j.applthermaleng.2024.122880_b0230 10.1016/j.applthermaleng.2024.122880_b0195 Avci (10.1016/j.applthermaleng.2024.122880_b0315) 2019; 78 10.1016/j.applthermaleng.2024.122880_b0235 Elaziz (10.1016/j.applthermaleng.2024.122880_b0260) 2021; 176 Siengchin (10.1016/j.applthermaleng.2024.122880_b0085) 2023; 24 Zinatloo-Ajabshir (10.1016/j.applthermaleng.2024.122880_b0105) 2019; 174 10.1016/j.applthermaleng.2024.122880_b0180 Mao (10.1016/j.applthermaleng.2024.122880_b0115) 2019; 21 Moroney (10.1016/j.applthermaleng.2024.122880_b0050) 1957; 76 Doman (10.1016/j.applthermaleng.2024.122880_b0320) 2015; 38 Xie (10.1016/j.applthermaleng.2024.122880_b0090) 2023; 1 Nazari-Heris (10.1016/j.applthermaleng.2024.122880_b0265) 2018; 81 Zhuang (10.1016/j.applthermaleng.2024.122880_b0060) 2022; 259 Burger (10.1016/j.applthermaleng.2024.122880_b0080) 2016; 61 Yang (10.1016/j.applthermaleng.2024.122880_b0310) 2006 10.1016/j.applthermaleng.2024.122880_b0065 10.1016/j.applthermaleng.2024.122880_b0185 10.1016/j.applthermaleng.2024.122880_b0140 Chang (10.1016/j.applthermaleng.2024.122880_b0330) 2007; 57 Wang (10.1016/j.applthermaleng.2024.122880_b0145) 2022; 313 10.1016/j.applthermaleng.2024.122880_b0305 Kassoul (10.1016/j.applthermaleng.2024.122880_b0285) 2022; 10 Corporan (10.1016/j.applthermaleng.2024.122880_b0130) 2023; 335 Kellermann (10.1016/j.applthermaleng.2024.122880_b0030) 2022; 38 Broatch (10.1016/j.applthermaleng.2024.122880_b0055) 2022; 190 Li (10.1016/j.applthermaleng.2024.122880_b0005) 2021; 59 Sarlioglu (10.1016/j.applthermaleng.2024.122880_b0015) 2015; 1 10.1016/j.applthermaleng.2024.122880_b0135 10.1016/j.applthermaleng.2024.122880_b0255 10.1016/j.applthermaleng.2024.122880_b0210 Wang (10.1016/j.applthermaleng.2024.122880_b0075) 2021; 34 German (10.1016/j.applthermaleng.2024.122880_b0200) 2012; 28 10.1016/j.applthermaleng.2024.122880_b0175 10.1016/j.applthermaleng.2024.122880_b0250 Zhang (10.1016/j.applthermaleng.2024.122880_b0280) 2015; 2015 Coutinho (10.1016/j.applthermaleng.2024.122880_b0035) 2023; 227 Liu (10.1016/j.applthermaleng.2024.122880_b0300) 2023; 42 10.1016/j.applthermaleng.2024.122880_b0215 Michalak (10.1016/j.applthermaleng.2024.122880_b0025) 2014; 48 |
References_xml | – volume: 174 year: 2019 ident: b0105 article-title: Preparation of magnetically retrievable CoFe publication-title: Compos. Part B-Eng. – reference: H. Huang, L. Spadaccini, D. Sobel, Endothermic heat-sink of jet fuels for scramjet cooling, in: 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Indianapolis, Indiana, USA, 2002, Doi: 10.2514/6.2002-3871. – volume: 38 start-page: 2084 year: 2015 end-page: 2095 ident: b0320 article-title: Optimal cruise altitude for aircraft thermal management publication-title: J. Guid. Control Dynam. – volume: 128 year: 2022 ident: b0020 article-title: Aircraft thermal management: practices, technology, system architectures, future challenges, and opportunities publication-title: Prog. Aerosp. Sci. – volume: 78 start-page: 182 year: 2019 end-page: 187 ident: b0315 article-title: A new explicit friction factor formula for laminar, transition and turbulent flows in smooth and rough pipes publication-title: Eur. J. Mech. B-Fluid – volume: 335 year: 2023 ident: b0130 article-title: High temperature fuel impacts on combustion characteristics of a swirl-stabilized combustor publication-title: Fuel – volume: 40 start-page: 183 year: 2018 ident: b0295 article-title: Experimental evaluation of temperature rise in centrifugal pumps at partial flow rates publication-title: J. Braz. Soc. Mech. Sci. Eng. – reference: D.O. Sigthorsson, M.W. Oppenheimer, D.B. Doman, N-tank thermal management system framework for thermal endurance enhancement, in: AIAA SCITECH 2022 Forum, San Diego, California & Virtual, 2022, Doi: 10.2514/6.2022-0750. – reference: A. Yuhas, R. Ray, Effects of bleed air extraction of thrust levels on the F404-GE-400 turbofan engine, in: 28th Joint Propulsion Conference and Exhibit, Nashville, Tennessee, USA, 1992, Doi: 10.2514/6.1992-3092. – volume: 454 year: 2023 ident: b0150 article-title: Experiment and modelling of supercritical pyrolysis and coking of RP-3 aviation kerosene in a U-bend tube publication-title: Chem. Eng. J. – reference: D.O. Sigthorsson, M.W. Oppenheimer, D.B. Doman, Aircraft thermal endurance optimization part II: using a simple dual tank topology and robust temperature regulation, in: AIAA Scitech 2019 Forum, San Diego, California, USA, 2019, Doi: 10.2514/6.2019-1663. – volume: 32 start-page: 35 year: 2018 end-page: 50 ident: b0220 article-title: Fuel flow topology and control for extending aircraft thermal endurance publication-title: J. Thermophys. Heat Tr – reference: Y. Lin, K. Kota, L. Chow, et al., Design of a thermal management system for directed energy weapons, in: 41st AIAA Thermophysics Conference, San Antonio, Texas, USA, 2009, Doi: 10.2514/6.2009-4248. – year: 2006 ident: b0310 article-title: Heat transfer – volume: 48 start-page: 10 year: 2014 end-page: 18 ident: b0025 article-title: Control strategy for aircraft vapor compression system operation publication-title: Int. J. Refrig – volume: 33 start-page: 472 year: 2019 end-page: 482 ident: b0160 article-title: High-temperature heat pump for aircraft engine oil cooling publication-title: J Thermophys Heat Tr – volume: 931145 year: 1993 ident: b0155 article-title: Ram air heat exchangers for very high-altitude subsonic aircraft publication-title: SAE Technical Paper – volume: 57 start-page: 1240 year: 2007 end-page: 1244 ident: b0330 article-title: Euclidean distances and least squares problems for a given set of vectors publication-title: Appl. Numer. Math. – volume: 110 year: 2021 ident: b0010 article-title: Mixed design of radar/infrared stealth for advanced fighter intake and exhaust system publication-title: Aerosp. Sci. Technol. – volume: 1 start-page: 47 year: 2023 end-page: 57 ident: b0090 article-title: Thermal conductivity of carbon-based nanomaterials: deep understanding of the structural effects publication-title: Green Carbon – volume: 209 start-page: 160 year: 2007 end-page: 166 ident: b0275 article-title: A heuristic approach to find the global optimum of function publication-title: J. Comput. Appl. Math. – volume: 36 start-page: 13 year: 2022 end-page: 27 ident: b0245 article-title: Control of a switched mode fuel thermal management system publication-title: J. Thermophys. Heat Tr. – volume: 2015 year: 2015 ident: b0280 article-title: A comprehensive survey on particle swarm optimization algorithm and its applications publication-title: Math. Probl. Eng. – volume: 10 start-page: 78320 year: 2022 end-page: 78344 ident: b0285 article-title: Exponential particle swarm optimization for global optimization publication-title: IEEE Access – volume: 44 start-page: 5 year: 2023 ident: bib331 article-title: Comparison of heat capacity measurements of alternative and conventional aviation fuels publication-title: Int. J. Thermophys. – volume: 34 start-page: 1 year: 2021 end-page: 27 ident: b0075 article-title: Recent active thermal management technologies for the development of energy-optimized aerospace vehicles in China publication-title: Chin. J. Aeronaut. – reference: D.O. Sigthorsson, M.W. Oppenheimer, D.B. Doman, FLEX versus dual tank thermal management systems, in: AIAA SCITECH 2023 Forum, National Harbor, Maryland & Online, 2023, Doi: 10.2514/6.2023-1045. – reference: T.J. Bruno, M. Huber, A. Laesecke, et al., Thermodynamic, transport, and chemical properties of reference JP-8, NIST Interagency/Internal Report (NISTIR), National Institute of Standards and Technology, Gaithersburg, Maryland, 2010, – volume: 259 year: 2022 ident: b0060 article-title: Superiority analysis of the cooled cooling air technology for low bypass ratio aero-engine under typical flight mission publication-title: Energ. Convers. Manage. – volume: 176 year: 2021 ident: b0260 article-title: Cooperative meta-heuristic algorithms for global optimization problems publication-title: Expert Syst. Appl. – volume: 1 start-page: 54 year: 2015 end-page: 64 ident: b0015 article-title: More electric aircraft: review, challenges, and opportunities for commercial transport aircraft publication-title: IEEE T Transp. Electr. – volume: 26 start-page: 5658 year: 2015 end-page: 5667 ident: b0110 article-title: Preparation and characterization of Nd publication-title: J. Mater. Sci. Mater. El – volume: 38 start-page: 736 year: 2022 end-page: 751 ident: b0030 article-title: Design of a battery cooling system for hybrid electric aircraft publication-title: J. Propul. Power – volume: 10 year: 2018 ident: b0225 article-title: Thermal management of single- and dual-tank fuel-flow topologies using an optimal control strategy publication-title: J. Therm. Sci. Eng. Appl. – volume: 59 start-page: 165 year: 2021 end-page: 179 ident: b0005 article-title: Multidisciplinary design optimization of low-boom supersonic aircraft with mission constraints publication-title: AIAA J. – reference: Y. Ho, T. Lin, B.P. Hill, et al., Thermal benefits of advanced integrated fuel system using JP-8+100 fuel, in: 1997 World Aviation Congress, Anaheim, California, USA, 1997, Doi: 10.2514/6.1997-5507. – reference: A.S. White, E. Waddington, J.M. Merret, et al., System-level utilization of low-grade, MW-scale thermal loads for electric aircraft, in: AIAA AVIATION 2022 Forum, Chicago, Illinois & Virtual, USA, 2022, Doi: 10.2514/6.2022-3291. – volume: 10 start-page: 730 year: 2023 ident: b0170 article-title: Optimization research on the heat transfer capacity of an aircraft fuel thermal management system publication-title: Aerospace-Basel – reference: O. Khare, S. Ahmed, Y. Singh, An overview of swarm intelligence-based algorithms, in: Design and Applications of Nature Inspired Optimization, Women in Engineering and Science, 2023, Doi: 10.1007/978-3-031-17929-7_1. – volume: 28 start-page: 204 year: 2012 end-page: 210 ident: b0200 article-title: Tank heating model for aircraft fuel thermal systems with recirculation publication-title: J. Propul. Power – volume: 190 year: 2022 ident: b0055 article-title: Experimental aerothermal characterization of surface air-cooled oil coolers for turbofan engines publication-title: Int. J. Heat Mass Tran. – reference: D.B. Doman, Fuel flow control for extending aircraft thermal endurance part II: closed loop control, in: AIAA Guidance, Navigation, and Control Conference, San Diego, California, USA, 2016, Doi: 10.2514/6.2016-1622. – volume: 29 start-page: 2531 year: 2022 end-page: 2561 ident: b0290 article-title: Particle swarm optimization algorithm and its applications: a systematic review publication-title: Arch. Comput. Method E – volume: 61 start-page: 1 year: 2016 end-page: 28 ident: b0080 article-title: Review of thermal conductivity in composites: mechanisms, parameters and theory publication-title: Prog. Polym. Sci. – volume: 42 year: 2023 ident: b0300 article-title: Thermal dynamic and failure research on an air-fuel heat exchanger for aero-engine cooling publication-title: Case Stud. Therm. Eng. – reference: T. Edwards, B. Harrison, S. Zabarnick, et al., Update on the development of JP-8+100, in: 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Fort Lauderdale, Florida, USA, 2004, Doi: 10.2514/6.2004-3886. – reference: S. Yang, Y. Lin, X. Xu, et al., Extension of aircraft thermal endurance by multi-return fuel tank system, in: Proceedings of the 6th China Aeronautical Science and Technology Conference, Jiaxing, Zhejiang, China, 2023, Doi: 10.1007/978-981-99-8861-7_62. – reference: D.O. Sigthorsson, M.W. Oppenheimer, D.B. Doman, Flight endurance enhancement via thermal management system control subject to multiple limitations, in: AIAA Scitech 2020 Forum, Orlando, Florida, USA, 2020, Doi: 10.2514/6.2020-1825. – volume: 170 year: 2020 ident: b0165 article-title: Assessment of fuel as alternative heat sink for future aircraft publication-title: Appl. Therm. Eng. – volume: 129 year: 2023 ident: b0095 article-title: CeVO publication-title: Appl. Phys. A-Mater. – volume: 76 start-page: 217 year: 1957 end-page: 221 ident: b0050 article-title: Ram-air cooling systems for aircraft generators publication-title: Trans. Amer. Instit. Electr. Eng. Appl. Ind. – volume: 313 year: 2022 ident: b0145 article-title: Thermal cracking and coke deposition characteristics of aviation kerosene RP-3 in an S-bend tube publication-title: Fuel – volume: 81 start-page: 2128 year: 2018 end-page: 2143 ident: b0265 article-title: A comprehensive review of heuristic optimization algorithms for optimal combined heat and power dispatch from economic and environmental perspectives publication-title: Renew. Sust. Energ Rev. – reference: D.O. Sigthorsson, M.W. Oppenheimer, D.B. Doman, Aircraft thermal endurance optimization part I: using a mixed dual tank topology and robust temperature regulation, in: AIAA Scitech 2019 Forum, San Diego, California, USA, 2019, Doi: 10.2514/6.2019-1662. – reference: C. Lents, Impact of weight, drag and power demand on aircraft energy consumption, in: AIAA Propulsion and Energy 2021 Forum, Virtual, 2021, Doi: 10.2514/6.2021-3322. – volume: 619 start-page: 1 year: 2022 end-page: 13 ident: b0100 article-title: Innovative construction of a novel lanthanide cerate nanostructured photocatalyst for efficient treatment of contaminated water under sunlight publication-title: J. Colloid Interf. Sci. – reference: D.O. Sigthorsson, M.W. Oppenheimer, D.B. Doman, N-tank continuous framework for thermal management to enhance thermal endurance, in: AIAA SCITECH 2024 Forum, Orlando, Florida, USA, 2024, Doi: 10.2514/6.2024-2202. – volume: 227 year: 2023 ident: b0035 article-title: A review on the recent developments in thermal management systems for hybrid-electric aircraft publication-title: Appl. Therm. Eng. – volume: 21 start-page: 223 year: 2019 ident: b0115 article-title: Cooling ability/capacity and exergy penalty analysis of each heat sink of modern supersonic aircraft publication-title: Entropy-Switz – reference: . – reference: D.O. Sigthorsson, M.W. Oppenheimer, D.B. Doman, Aircraft thermal endurance enhancement using a dual tank configuration and temperature regulation, in: 2018 AIAA Guidance, Navigation, and Control Conference, Kissimmee, Florida, USA, 2018, Doi: 10.2514/6.2018-0612. – reference: W.M. Kays, A.L. London, Compact heat exchangers, 3rd ed., USA, 1984. – volume: 24 start-page: 1 year: 2023 end-page: 17 ident: b0085 article-title: A review on lightweight materials for defence applications: present and future developments publication-title: Def. Technol. – reference: Q. Su, S. Chang, S. Yang, Analysis of aircraft integrated thermal management using fuel as heat sink, in: 2016 IEEE International Conference on Aircraft Utility Systems (AUS), Beijing, China, 2016, Doi: 10.1109/AUS.2016.7748157. – reference: M.W. Oppenheimer, D.O. Sigthorsson, D.B. Doman, Extending aircraft thermal endurance by fuel pump sizing, in: 2018 AIAA Guidance, Navigation, and Control Conference, Kissimmee, Florida, USA, 2018, Doi: 10.2514/6.2018-0856. – reference: G.P. Huang, D.B. Doman, M.W. Oppenheimer, et al., Topology optimization of a fuel thermal management system, in: AIAA Aviation 2019 Forum, Dallas, Texas, USA, Doi: 10.2514/6.2019-3471. – volume: 89 start-page: 77 year: 2019 end-page: 88 ident: b0125 article-title: De-icing of fuel/oil heat exchange systems via fuel flow direction switching device publication-title: Aerosp. Sci. Technol. – reference: D.B. Doman, Fuel flow control for extending aircraft thermal endurance part I: underlying principles, in: AIAA Guidance, Navigation, and Control Conference, San Diego, California, USA, 2016, Doi: 10.2514/6.2016-1621. – volume: 10 start-page: 78320 year: 2022 ident: 10.1016/j.applthermaleng.2024.122880_b0285 article-title: Exponential particle swarm optimization for global optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3193396 – volume: 24 start-page: 1 year: 2023 ident: 10.1016/j.applthermaleng.2024.122880_b0085 article-title: A review on lightweight materials for defence applications: present and future developments publication-title: Def. Technol. doi: 10.1016/j.dt.2023.02.025 – volume: 78 start-page: 182 year: 2019 ident: 10.1016/j.applthermaleng.2024.122880_b0315 article-title: A new explicit friction factor formula for laminar, transition and turbulent flows in smooth and rough pipes publication-title: Eur. J. Mech. B-Fluid doi: 10.1016/j.euromechflu.2019.07.007 – volume: 209 start-page: 160 issue: 2 year: 2007 ident: 10.1016/j.applthermaleng.2024.122880_b0275 article-title: A heuristic approach to find the global optimum of function publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2006.10.074 – ident: 10.1016/j.applthermaleng.2024.122880_b0070 doi: 10.2514/6.1992-3092 – ident: 10.1016/j.applthermaleng.2024.122880_b0230 doi: 10.2514/6.2018-0612 – volume: 227 year: 2023 ident: 10.1016/j.applthermaleng.2024.122880_b0035 article-title: A review on the recent developments in thermal management systems for hybrid-electric aircraft publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2023.120427 – volume: 57 start-page: 1240 issue: 11–12 year: 2007 ident: 10.1016/j.applthermaleng.2024.122880_b0330 article-title: Euclidean distances and least squares problems for a given set of vectors publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2007.01.008 – volume: 29 start-page: 2531 year: 2022 ident: 10.1016/j.applthermaleng.2024.122880_b0290 article-title: Particle swarm optimization algorithm and its applications: a systematic review publication-title: Arch. Comput. Method E doi: 10.1007/s11831-021-09694-4 – ident: 10.1016/j.applthermaleng.2024.122880_b0195 doi: 10.2514/6.2022-0750 – ident: 10.1016/j.applthermaleng.2024.122880_b0250 doi: 10.2514/6.2019-3471 – ident: 10.1016/j.applthermaleng.2024.122880_b0240 doi: 10.2514/6.2019-1663 – year: 2006 ident: 10.1016/j.applthermaleng.2024.122880_b0310 – volume: 40 start-page: 183 year: 2018 ident: 10.1016/j.applthermaleng.2024.122880_b0295 article-title: Experimental evaluation of temperature rise in centrifugal pumps at partial flow rates publication-title: J. Braz. Soc. Mech. Sci. Eng. doi: 10.1007/s40430-018-1078-8 – ident: 10.1016/j.applthermaleng.2024.122880_b0120 doi: 10.2514/6.2002-3871 – volume: 128 year: 2022 ident: 10.1016/j.applthermaleng.2024.122880_b0020 article-title: Aircraft thermal management: practices, technology, system architectures, future challenges, and opportunities publication-title: Prog. Aerosp. Sci. doi: 10.1016/j.paerosci.2021.100767 – volume: 38 start-page: 2084 issue: 11 year: 2015 ident: 10.1016/j.applthermaleng.2024.122880_b0320 article-title: Optimal cruise altitude for aircraft thermal management publication-title: J. Guid. Control Dynam. doi: 10.2514/1.G000845 – volume: 174 year: 2019 ident: 10.1016/j.applthermaleng.2024.122880_b0105 article-title: Preparation of magnetically retrievable CoFe2O4@SiO2@Dy2Ce2O7 nanocomposites as novel photocatalyst for highly efficient degradation of organic contaminants publication-title: Compos. Part B-Eng. doi: 10.1016/j.compositesb.2019.106930 – volume: 10 issue: 4 year: 2018 ident: 10.1016/j.applthermaleng.2024.122880_b0225 article-title: Thermal management of single- and dual-tank fuel-flow topologies using an optimal control strategy publication-title: J. Therm. Sci. Eng. Appl. doi: 10.1115/1.4040036 – ident: 10.1016/j.applthermaleng.2024.122880_b0325 doi: 10.6028/NIST.IR.6659 – volume: 10 start-page: 730 issue: 8 year: 2023 ident: 10.1016/j.applthermaleng.2024.122880_b0170 article-title: Optimization research on the heat transfer capacity of an aircraft fuel thermal management system publication-title: Aerospace-Basel doi: 10.3390/aerospace10080730 – ident: 10.1016/j.applthermaleng.2024.122880_b0140 doi: 10.2514/6.1997-5507 – ident: 10.1016/j.applthermaleng.2024.122880_b0185 doi: 10.1007/978-981-99-8861-7_62 – ident: 10.1016/j.applthermaleng.2024.122880_b0040 doi: 10.2514/6.2009-4248 – volume: 190 year: 2022 ident: 10.1016/j.applthermaleng.2024.122880_b0055 article-title: Experimental aerothermal characterization of surface air-cooled oil coolers for turbofan engines publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2022.122775 – ident: 10.1016/j.applthermaleng.2024.122880_b0180 doi: 10.2514/6.2018-0856 – volume: 619 start-page: 1 year: 2022 ident: 10.1016/j.applthermaleng.2024.122880_b0100 article-title: Innovative construction of a novel lanthanide cerate nanostructured photocatalyst for efficient treatment of contaminated water under sunlight publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2022.03.112 – volume: 335 year: 2023 ident: 10.1016/j.applthermaleng.2024.122880_b0130 article-title: High temperature fuel impacts on combustion characteristics of a swirl-stabilized combustor publication-title: Fuel doi: 10.1016/j.fuel.2022.126993 – ident: 10.1016/j.applthermaleng.2024.122880_b0175 doi: 10.1109/AUS.2016.7748157 – volume: 28 start-page: 204 issue: 1 year: 2012 ident: 10.1016/j.applthermaleng.2024.122880_b0200 article-title: Tank heating model for aircraft fuel thermal systems with recirculation publication-title: J. Propul. Power doi: 10.2514/1.B34240 – ident: 10.1016/j.applthermaleng.2024.122880_b0305 – volume: 42 year: 2023 ident: 10.1016/j.applthermaleng.2024.122880_b0300 article-title: Thermal dynamic and failure research on an air-fuel heat exchanger for aero-engine cooling publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2023.102715 – volume: 176 year: 2021 ident: 10.1016/j.applthermaleng.2024.122880_b0260 article-title: Cooperative meta-heuristic algorithms for global optimization problems publication-title: Expert Syst. Appl. – ident: 10.1016/j.applthermaleng.2024.122880_b0190 doi: 10.2514/6.2024-2202 – ident: 10.1016/j.applthermaleng.2024.122880_b0205 doi: 10.2514/6.2020-1825 – volume: 26 start-page: 5658 year: 2015 ident: 10.1016/j.applthermaleng.2024.122880_b0110 article-title: Preparation and characterization of Nd2O3 nanostructures via a new facile solvent-less route publication-title: J. Mater. Sci. Mater. El doi: 10.1007/s10854-015-3116-y – volume: 33 start-page: 472 issue: 2 year: 2019 ident: 10.1016/j.applthermaleng.2024.122880_b0160 article-title: High-temperature heat pump for aircraft engine oil cooling publication-title: J Thermophys Heat Tr doi: 10.2514/1.T5494 – volume: 76 start-page: 217 issue: 4 year: 1957 ident: 10.1016/j.applthermaleng.2024.122880_b0050 article-title: Ram-air cooling systems for aircraft generators publication-title: Trans. Amer. Instit. Electr. Eng. Appl. Ind. – volume: 32 start-page: 35 issue: 1 year: 2018 ident: 10.1016/j.applthermaleng.2024.122880_b0220 article-title: Fuel flow topology and control for extending aircraft thermal endurance publication-title: J. Thermophys. Heat Tr doi: 10.2514/1.T5142 – volume: 44 start-page: 5 year: 2023 ident: 10.1016/j.applthermaleng.2024.122880_bib331 article-title: Comparison of heat capacity measurements of alternative and conventional aviation fuels publication-title: Int. J. Thermophys. doi: 10.1007/s10765-022-03100-2 – volume: 1 start-page: 54 issue: 1 year: 2015 ident: 10.1016/j.applthermaleng.2024.122880_b0015 article-title: More electric aircraft: review, challenges, and opportunities for commercial transport aircraft publication-title: IEEE T Transp. Electr. doi: 10.1109/TTE.2015.2426499 – ident: 10.1016/j.applthermaleng.2024.122880_b0235 doi: 10.2514/6.2019-1662 – ident: 10.1016/j.applthermaleng.2024.122880_b0135 doi: 10.2514/6.2004-3886 – volume: 170 year: 2020 ident: 10.1016/j.applthermaleng.2024.122880_b0165 article-title: Assessment of fuel as alternative heat sink for future aircraft publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2020.114985 – volume: 313 year: 2022 ident: 10.1016/j.applthermaleng.2024.122880_b0145 article-title: Thermal cracking and coke deposition characteristics of aviation kerosene RP-3 in an S-bend tube publication-title: Fuel doi: 10.1016/j.fuel.2021.122673 – volume: 38 start-page: 736 issue: 5 year: 2022 ident: 10.1016/j.applthermaleng.2024.122880_b0030 article-title: Design of a battery cooling system for hybrid electric aircraft publication-title: J. Propul. Power doi: 10.2514/1.B38695 – ident: 10.1016/j.applthermaleng.2024.122880_b0210 doi: 10.2514/6.2016-1621 – volume: 34 start-page: 1 issue: 2 year: 2021 ident: 10.1016/j.applthermaleng.2024.122880_b0075 article-title: Recent active thermal management technologies for the development of energy-optimized aerospace vehicles in China publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2020.06.021 – volume: 931145 year: 1993 ident: 10.1016/j.applthermaleng.2024.122880_b0155 article-title: Ram air heat exchangers for very high-altitude subsonic aircraft publication-title: SAE Technical Paper doi: 10.4271/931145 – volume: 36 start-page: 13 issue: 1 year: 2022 ident: 10.1016/j.applthermaleng.2024.122880_b0245 article-title: Control of a switched mode fuel thermal management system publication-title: J. Thermophys. Heat Tr. doi: 10.2514/1.T6044 – volume: 59 start-page: 165 issue: 1 year: 2021 ident: 10.1016/j.applthermaleng.2024.122880_b0005 article-title: Multidisciplinary design optimization of low-boom supersonic aircraft with mission constraints publication-title: AIAA J. doi: 10.2514/1.J059237 – volume: 89 start-page: 77 year: 2019 ident: 10.1016/j.applthermaleng.2024.122880_b0125 article-title: De-icing of fuel/oil heat exchange systems via fuel flow direction switching device publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2019.03.047 – volume: 259 year: 2022 ident: 10.1016/j.applthermaleng.2024.122880_b0060 article-title: Superiority analysis of the cooled cooling air technology for low bypass ratio aero-engine under typical flight mission publication-title: Energ. Convers. Manage. doi: 10.1016/j.enconman.2022.115510 – volume: 21 start-page: 223 issue: 3 year: 2019 ident: 10.1016/j.applthermaleng.2024.122880_b0115 article-title: Cooling ability/capacity and exergy penalty analysis of each heat sink of modern supersonic aircraft publication-title: Entropy-Switz doi: 10.3390/e21030223 – ident: 10.1016/j.applthermaleng.2024.122880_b0215 doi: 10.2514/6.2016-1622 – ident: 10.1016/j.applthermaleng.2024.122880_b0045 doi: 10.2514/6.2022-3291 – volume: 61 start-page: 1 year: 2016 ident: 10.1016/j.applthermaleng.2024.122880_b0080 article-title: Review of thermal conductivity in composites: mechanisms, parameters and theory publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2016.05.001 – ident: 10.1016/j.applthermaleng.2024.122880_b0255 doi: 10.2514/6.2023-1045 – volume: 129 issue: 47 year: 2023 ident: 10.1016/j.applthermaleng.2024.122880_b0095 article-title: CeVO4/rGO nanocomposite: facile hydrothermal synthesis, characterization, and electrochemical hydrogen storage publication-title: Appl. Phys. A-Mater. – volume: 81 start-page: 2128 issue: 2 year: 2018 ident: 10.1016/j.applthermaleng.2024.122880_b0265 article-title: A comprehensive review of heuristic optimization algorithms for optimal combined heat and power dispatch from economic and environmental perspectives publication-title: Renew. Sust. Energ Rev. doi: 10.1016/j.rser.2017.06.024 – volume: 48 start-page: 10 year: 2014 ident: 10.1016/j.applthermaleng.2024.122880_b0025 article-title: Control strategy for aircraft vapor compression system operation publication-title: Int. J. Refrig doi: 10.1016/j.ijrefrig.2014.08.010 – ident: 10.1016/j.applthermaleng.2024.122880_b0065 doi: 10.2514/6.2021-3322 – ident: 10.1016/j.applthermaleng.2024.122880_b0270 doi: 10.1007/978-3-031-17929-7_1 – volume: 454 issue: 2 year: 2023 ident: 10.1016/j.applthermaleng.2024.122880_b0150 article-title: Experiment and modelling of supercritical pyrolysis and coking of RP-3 aviation kerosene in a U-bend tube publication-title: Chem. Eng. J. – volume: 110 year: 2021 ident: 10.1016/j.applthermaleng.2024.122880_b0010 article-title: Mixed design of radar/infrared stealth for advanced fighter intake and exhaust system publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2021.106490 – volume: 1 start-page: 47 issue: 1 year: 2023 ident: 10.1016/j.applthermaleng.2024.122880_b0090 article-title: Thermal conductivity of carbon-based nanomaterials: deep understanding of the structural effects publication-title: Green Carbon doi: 10.1016/j.greenca.2023.08.004 – volume: 2015 year: 2015 ident: 10.1016/j.applthermaleng.2024.122880_b0280 article-title: A comprehensive survey on particle swarm optimization algorithm and its applications publication-title: Math. Probl. Eng. |
SSID | ssj0012874 |
Score | 2.452044 |
Snippet | •The FHSCR is evaluated and applied to the fuel heat sink optimization.•A new architecture of the AFTMS is designed to enhance the heat dissipation.•The FHSCR... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 122880 |
SubjectTerms | Aircraft Dynamic optimal control Flow path optimization Fuel heat sink Thermal management system |
Title | Thermal management of fuel heat sink in aircraft via flow path optimization |
URI | https://dx.doi.org/10.1016/j.applthermaleng.2024.122880 |
Volume | 246 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na8JAEF3EQmkPpZ_UfsgevEaz2U02Sw9FpGIr9VIFb2Gz7kKKJmK1vfW3d8ckVqEHoceE7BAmw5sZ8uYNQo2YxNxmLuMYoaXDmHKdUHPhuNSAuLnxQwWDwq-DoDdiL2N_XEGdchYGaJUF9ueYvkbr4k6r8GZrniStN0J9YdMfARakrbthiI8xDlHe_N7QPAjoua-bLl848PQhavxyvOAnMdRZMwlrS2y36LEm8bwQRCL_SlNbqad7ik6KmhG389c6QxWdnqPjLSXBC9Qf5vbxbENnwZnBZqWnGOAWf9ieEycplslCLaRZ4s9EYjPNvjDsJMaZRY5ZMZJ5iUbdp2Gn5xR7EhxFqbt0JAdJJxNro7X0rZctiGmhjWJByLSraOxJWxV4QilBJkQFoQ5owIlQnPhSUnqFqmmW6muEPWECyq2Z0KZtxSfSVi-u0IT5E8MM1TX0ULolUoWIOOyymEYlW-w92nVqBE6NcqfWkL85Pc_FNPY891h-gWgnOCKL-3tZuPm3hVt0BFc5S-wOVZeLlb639cgyrq8Dro4O2s_93uAHBaXjJg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JSwMxFH4UBZeDuGJdc9Dj2GYmswQRERda23qxgrcxkyYw0kVqVbz4p_yDvteZ1goeBOl1hjzCl-QtM1--B3CQ8CTEyGUdK41yhNBlJzKhdMqeJXFz60eaLgo3boLKnbi-9-8L8Dm6C0O0ytz3Zz596K3zJ6UczdJTmpZuuedLDH-cWJCYd8ucWVkz729Ytz2fVC9wkQ9d9-qyeV5x8tYCjsYCfuCokFSQbGKsMcrHieG5N9JYLYJImLL2EldhIHWl1pK3uA4iE3hByKUOua8UfQVFvz8rcBi1TTj6GPNKOAnID6s8Xzo0vTk4-CaV0V9pSuw6ivqkYHnqiiPuuhGpUv4WFydi3dUyLOVJKjvLcFiBgumuwuKEdOEa1JqZfdYZ82dYzzL7YtqM_Dt7xiKXpV2m0r7uKztgr6litt17Y9QEmfXQVXXyO6DrcDcV9DZgptvrmk1grrSBF6KZCPMEHbYUpktlabjwW1ZYzxTheARLrHPVcmqe0Y5H9LTH-CeoMYEaZ6AWwR-PfsrUO_447nS0AvGP3RhjoPmTha1_W9iH-UqzUY_r1ZvaNizQm4yitgMzg_6L2cVkaJDsDTcfg4dp7_YvZmofAQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+management+of+fuel+heat+sink+in+aircraft+via+flow+path+optimization&rft.jtitle=Applied+thermal+engineering&rft.au=Yang%2C+Shiyu&rft.au=Lin%2C+Yuanfang&rft.au=Yu%2C+Haiyu&rft.au=Xu%2C+Xianghua&rft.date=2024-06-01&rft.issn=1359-4311&rft.volume=246&rft.spage=122880&rft_id=info:doi/10.1016%2Fj.applthermaleng.2024.122880&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_applthermaleng_2024_122880 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon |