Thermal management of fuel heat sink in aircraft via flow path optimization

•The FHSCR is evaluated and applied to the fuel heat sink optimization.•A new architecture of the AFTMS is designed to enhance the heat dissipation.•The FHSCR is reduced by 14.16% compared to the original architecture.•A dynamic optimal controller based on the MVD-PSO algorithm is established.•Therm...

Full description

Saved in:
Bibliographic Details
Published inApplied thermal engineering Vol. 246; p. 122880
Main Authors Yang, Shiyu, Lin, Yuanfang, Yu, Haiyu, Xu, Xianghua, Liang, Xingang
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The FHSCR is evaluated and applied to the fuel heat sink optimization.•A new architecture of the AFTMS is designed to enhance the heat dissipation.•The FHSCR is reduced by 14.16% compared to the original architecture.•A dynamic optimal controller based on the MVD-PSO algorithm is established.•Thermal endurance can be extended up to 37.42% and a mission test is conducted. With the rapid increase of aircraft thermal loads, efficiently utilizing the fuel heat sink has received widespread attention in recent years. To improve the performance of the aircraft fuel thermal management system (AFTMS), a concept of the fuel heat sink consumption rate (FHSCR) is proposed to assess the system heat dissipation, and an optimization criterion of fuel heat sink is established based on the FHSCR. Besides, a new architecture of the AFTMS with a middle fuel return branch (MFRB) and a recirculation fuel supply branch (RFSB) is designed to enhance the heat dissipation capacity, and unlike previous studies, only the flow path of the fuel supply and return subsystem (FSRS) has been changed here without additional fuel tanks. Moreover, a dynamic optimal controller based on the particle swarm optimization (PSO) algorithm with the minimum variation distance (MVD-PSO) is developed for obtaining the optimal control parameters and eliminating the parameter oscillation, which is applied in the comparison calculations under both a single condition and a complete mission profile. The calculation results show that compared to the original architecture, the new architecture can reduce the FHSCR by 14.16% under the standard condition, and the thermal endurance of the standard and extreme conditions is extended by 37.42% and 19.54%, respectively. In addition, the new architecture exhibits a better thermal management performance during the whole mission as well. To sum up, comprehensively dealing with the waste heat by both the combustion fuel and ram air is crucial for system cooling, and the new architecture improves the heat dissipation capacity of the AFTMS significantly. This paper provides a novel flow path optimization guide for the AFTMS.
AbstractList •The FHSCR is evaluated and applied to the fuel heat sink optimization.•A new architecture of the AFTMS is designed to enhance the heat dissipation.•The FHSCR is reduced by 14.16% compared to the original architecture.•A dynamic optimal controller based on the MVD-PSO algorithm is established.•Thermal endurance can be extended up to 37.42% and a mission test is conducted. With the rapid increase of aircraft thermal loads, efficiently utilizing the fuel heat sink has received widespread attention in recent years. To improve the performance of the aircraft fuel thermal management system (AFTMS), a concept of the fuel heat sink consumption rate (FHSCR) is proposed to assess the system heat dissipation, and an optimization criterion of fuel heat sink is established based on the FHSCR. Besides, a new architecture of the AFTMS with a middle fuel return branch (MFRB) and a recirculation fuel supply branch (RFSB) is designed to enhance the heat dissipation capacity, and unlike previous studies, only the flow path of the fuel supply and return subsystem (FSRS) has been changed here without additional fuel tanks. Moreover, a dynamic optimal controller based on the particle swarm optimization (PSO) algorithm with the minimum variation distance (MVD-PSO) is developed for obtaining the optimal control parameters and eliminating the parameter oscillation, which is applied in the comparison calculations under both a single condition and a complete mission profile. The calculation results show that compared to the original architecture, the new architecture can reduce the FHSCR by 14.16% under the standard condition, and the thermal endurance of the standard and extreme conditions is extended by 37.42% and 19.54%, respectively. In addition, the new architecture exhibits a better thermal management performance during the whole mission as well. To sum up, comprehensively dealing with the waste heat by both the combustion fuel and ram air is crucial for system cooling, and the new architecture improves the heat dissipation capacity of the AFTMS significantly. This paper provides a novel flow path optimization guide for the AFTMS.
ArticleNumber 122880
Author Lin, Yuanfang
Liang, Xingang
Yu, Haiyu
Xu, Xianghua
Yang, Shiyu
Author_xml – sequence: 1
  givenname: Shiyu
  surname: Yang
  fullname: Yang, Shiyu
– sequence: 2
  givenname: Yuanfang
  surname: Lin
  fullname: Lin, Yuanfang
– sequence: 3
  givenname: Haiyu
  surname: Yu
  fullname: Yu, Haiyu
– sequence: 4
  givenname: Xianghua
  surname: Xu
  fullname: Xu, Xianghua
– sequence: 5
  givenname: Xingang
  orcidid: 0000-0003-4875-2829
  surname: Liang
  fullname: Liang, Xingang
  email: liangxg@tsinghua.edu.cn
BookMark eNqNkDtPwzAURj0UibbwHzywJviRhyOxQEUBUYmlzNate926JE7kmCL49bSEBaZOdzpH3z0TMvKtR0KuOEs548X1LoWuq-MWQwM1-k0qmMhSLoRSbETGXOZVkknOz8mk73eMcaHKbEyelwNBG_CwwQZ9pK2l9h1rukWItHf-jTpPwQUTwEa6d0Bt3X7QDuKWtl10jfuC6Fp_Qc4s1D1e_t4peZ3fL2ePyeLl4Wl2u0iMlCwmUArFlV2hRYScSZtLhRVakxUqQ2bkSkDFmaiMqfiam0JhIYuSV6bkOYCUU3I3eE1o-z6g1cbFnwUxgKs1Z_qYRO_03yT6mEQPSQ6Sm3-SLrgGwuep-HzA8fDo3mHQvXHoDa5dQBP1unWnib4Bxs2M5Q
CitedBy_id crossref_primary_10_1016_j_cja_2025_103452
crossref_primary_10_1016_j_apsusc_2024_160700
Cites_doi 10.1109/ACCESS.2022.3193396
10.1016/j.dt.2023.02.025
10.1016/j.euromechflu.2019.07.007
10.1016/j.cam.2006.10.074
10.2514/6.1992-3092
10.2514/6.2018-0612
10.1016/j.applthermaleng.2023.120427
10.1016/j.apnum.2007.01.008
10.1007/s11831-021-09694-4
10.2514/6.2022-0750
10.2514/6.2019-3471
10.2514/6.2019-1663
10.1007/s40430-018-1078-8
10.2514/6.2002-3871
10.1016/j.paerosci.2021.100767
10.2514/1.G000845
10.1016/j.compositesb.2019.106930
10.1115/1.4040036
10.6028/NIST.IR.6659
10.3390/aerospace10080730
10.2514/6.1997-5507
10.1007/978-981-99-8861-7_62
10.2514/6.2009-4248
10.1016/j.ijheatmasstransfer.2022.122775
10.2514/6.2018-0856
10.1016/j.jcis.2022.03.112
10.1016/j.fuel.2022.126993
10.1109/AUS.2016.7748157
10.2514/1.B34240
10.1016/j.csite.2023.102715
10.2514/6.2024-2202
10.2514/6.2020-1825
10.1007/s10854-015-3116-y
10.2514/1.T5494
10.2514/1.T5142
10.1007/s10765-022-03100-2
10.1109/TTE.2015.2426499
10.2514/6.2019-1662
10.2514/6.2004-3886
10.1016/j.applthermaleng.2020.114985
10.1016/j.fuel.2021.122673
10.2514/1.B38695
10.2514/6.2016-1621
10.1016/j.cja.2020.06.021
10.4271/931145
10.2514/1.T6044
10.2514/1.J059237
10.1016/j.ast.2019.03.047
10.1016/j.enconman.2022.115510
10.3390/e21030223
10.2514/6.2016-1622
10.2514/6.2022-3291
10.1016/j.progpolymsci.2016.05.001
10.2514/6.2023-1045
10.1016/j.rser.2017.06.024
10.1016/j.ijrefrig.2014.08.010
10.2514/6.2021-3322
10.1007/978-3-031-17929-7_1
10.1016/j.ast.2021.106490
10.1016/j.greenca.2023.08.004
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.applthermaleng.2024.122880
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_applthermaleng_2024_122880
S1359431124005489
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
JARJE
JJJVA
KOM
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FGOYB
HZ~
M41
R2-
SSH
ID FETCH-LOGICAL-c330t-a72818fbefeea503f538e9efc4684e0c3b2a91029cc91d1c68e636719c715aa33
IEDL.DBID .~1
ISSN 1359-4311
IngestDate Thu Apr 24 23:03:07 EDT 2025
Tue Jul 01 02:05:58 EDT 2025
Sat May 04 15:43:16 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Fuel heat sink
Thermal management system
Dynamic optimal control
Aircraft
Flow path optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c330t-a72818fbefeea503f538e9efc4684e0c3b2a91029cc91d1c68e636719c715aa33
ORCID 0000-0003-4875-2829
ParticipantIDs crossref_citationtrail_10_1016_j_applthermaleng_2024_122880
crossref_primary_10_1016_j_applthermaleng_2024_122880
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2024_122880
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
2024-06-00
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied thermal engineering
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhuang, Xu, Liu (b0060) 2022; 259
Doman (b0220) 2018; 32
Zinatloo-Ajabshir, Emsaki, Hosseinzadeh (b0100) 2022; 619
Broatch, Olmeda, García-Tíscar (b0055) 2022; 190
Nazari-Heris, Mohammadi-Ivatloo, Gharehpetian (b0265) 2018; 81
Mao, Li, Wang (b0115) 2019; 21
Bao, Ye, Wang (b0150) 2023; 454
A.S. White, E. Waddington, J.M. Merret, et al., System-level utilization of low-grade, MW-scale thermal loads for electric aircraft, in: AIAA AVIATION 2022 Forum, Chicago, Illinois & Virtual, USA, 2022, Doi: 10.2514/6.2022-3291.
Burger, Laachachi, Ferriol (b0080) 2016; 61
Y. Ho, T. Lin, B.P. Hill, et al., Thermal benefits of advanced integrated fuel system using JP-8+100 fuel, in: 1997 World Aviation Congress, Anaheim, California, USA, 1997, Doi: 10.2514/6.1997-5507.
Kellermann, Fuhrmann, Shamiyeh (b0030) 2022; 38
Huang, Doman (b0225) 2018; 10
T. Edwards, B. Harrison, S. Zabarnick, et al., Update on the development of JP-8+100, in: 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Fort Lauderdale, Florida, USA, 2004, Doi: 10.2514/6.2004-3886.
G.P. Huang, D.B. Doman, M.W. Oppenheimer, et al., Topology optimization of a fuel thermal management system, in: AIAA Aviation 2019 Forum, Dallas, Texas, USA, Doi: 10.2514/6.2019-3471.
W.M. Kays, A.L. London, Compact heat exchangers, 3rd ed., USA, 1984.
Chang, Paige (b0330) 2007; 57
T.J. Bruno, M. Huber, A. Laesecke, et al., Thermodynamic, transport, and chemical properties of reference JP-8, NIST Interagency/Internal Report (NISTIR), National Institute of Standards and Technology, Gaithersburg, Maryland, 2010
Gad (b0290) 2022; 29
Kassoul, Zufferey, Cheikhrouhou (b0285) 2022; 10
Xie, Wang (b0090) 2023; 1
M.W. Oppenheimer, D.O. Sigthorsson, D.B. Doman, Extending aircraft thermal endurance by fuel pump sizing, in: 2018 AIAA Guidance, Navigation, and Control Conference, Kissimmee, Florida, USA, 2018, Doi: 10.2514/6.2018-0856.
Liu, Xu, Fu (b0300) 2023; 42
Corporan, Williams, Stouffer (b0130) 2023; 335
Mortazavi-Derazkola, Zinatloo-Ajabshir, Salavati-Niasari (b0110) 2015; 26
German (b0200) 2012; 28
Avci, Karagoz (b0315) 2019; 78
Toksarı (b0275) 2007; 209
.
H. Huang, L. Spadaccini, D. Sobel, Endothermic heat-sink of jet fuels for scramjet cooling, in: 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Indianapolis, Indiana, USA, 2002, Doi: 10.2514/6.2002-3871.
Moroney (b0050) 1957; 76
A. Yuhas, R. Ray, Effects of bleed air extraction of thrust levels on the F404-GE-400 turbofan engine, in: 28th Joint Propulsion Conference and Exhibit, Nashville, Tennessee, USA, 1992, Doi: 10.2514/6.1992-3092.
S. Yang, Y. Lin, X. Xu, et al., Extension of aircraft thermal endurance by multi-return fuel tank system, in: Proceedings of the 6th China Aeronautical Science and Technology Conference, Jiaxing, Zhejiang, China, 2023, Doi: 10.1007/978-981-99-8861-7_62.
Maalouf, Isikveren, Dumoulin (b0160) 2019; 33
D.O. Sigthorsson, M.W. Oppenheimer, D.B. Doman, Aircraft thermal endurance enhancement using a dual tank configuration and temperature regulation, in: 2018 AIAA Guidance, Navigation, and Control Conference, Kissimmee, Florida, USA, 2018, Doi: 10.2514/6.2018-0612.
Zhou, Huang (b0010) 2021; 110
Li, Geiselhart (b0005) 2021; 59
Rezayeenik, Mousavi-Kamazani, Zinatloo-Ajabshir (b0095) 2023; 129
Q. Su, S. Chang, S. Yang, Analysis of aircraft integrated thermal management using fuel as heat sink, in: 2016 IEEE International Conference on Aircraft Utility Systems (AUS), Beijing, China, 2016, Doi: 10.1109/AUS.2016.7748157.
van Heerden, Judt, Jafari (b0020) 2022; 128
D.O. Sigthorsson, M.W. Oppenheimer, D.B. Doman, Aircraft thermal endurance optimization part II: using a simple dual tank topology and robust temperature regulation, in: AIAA Scitech 2019 Forum, San Diego, California, USA, 2019, Doi: 10.2514/6.2019-1663.
Zhang, Lin, Guo (b0170) 2023; 10
Zhang, Wang, Ji (b0280) 2015; 2015
Yang, Tao (b0310) 2006
Zinatloo-Ajabshir, Salavati-Niasari (b0105) 2019; 174
Wang, Zhao, Bao (b0145) 2022; 313
Coutinho, Bento, Souza (b0035) 2023; 227
D.B. Doman, Fuel flow control for extending aircraft thermal endurance part II: closed loop control, in: AIAA Guidance, Navigation, and Control Conference, San Diego, California, USA, 2016, Doi: 10.2514/6.2016-1622.
Russ, Drela (b0155) 1993; 931145
Siengchin (b0085) 2023; 24
D.O. Sigthorsson, M.W. Oppenheimer, D.B. Doman, FLEX versus dual tank thermal management systems, in: AIAA SCITECH 2023 Forum, National Harbor, Maryland & Online, 2023, Doi: 10.2514/6.2023-1045.
Kellermann, Habermann, Vratny (b0165) 2020; 170
C. Lents, Impact of weight, drag and power demand on aircraft energy consumption, in: AIAA Propulsion and Energy 2021 Forum, Virtual, 2021, Doi: 10.2514/6.2021-3322.
D.O. Sigthorsson, M.W. Oppenheimer, D.B. Doman, N-tank continuous framework for thermal management to enhance thermal endurance, in: AIAA SCITECH 2024 Forum, Orlando, Florida, USA, 2024, Doi: 10.2514/6.2024-2202.
D.O. Sigthorsson, M.W. Oppenheimer, D.B. Doman, Aircraft thermal endurance optimization part I: using a mixed dual tank topology and robust temperature regulation, in: AIAA Scitech 2019 Forum, San Diego, California, USA, 2019, Doi: 10.2514/6.2019-1662.
Elaziz, Ewees, Neggaz (b0260) 2021; 176
Sojoudi, Nourbakhsh, Shokouhmand (b0295) 2018; 40
Sarlioglu, Morris (b0015) 2015; 1
Y. Lin, K. Kota, L. Chow, et al., Design of a thermal management system for directed energy weapons, in: 41st AIAA Thermophysics Conference, San Antonio, Texas, USA, 2009, Doi: 10.2514/6.2009-4248.
Huang, Doman, Oppenheimer (b0245) 2022; 36
Doman (b0320) 2015; 38
Moon, Seo, Ha (b0125) 2019; 89
D.O. Sigthorsson, M.W. Oppenheimer, D.B. Doman, Flight endurance enhancement via thermal management system control subject to multiple limitations, in: AIAA Scitech 2020 Forum, Orlando, Florida, USA, 2020, Doi: 10.2514/6.2020-1825.
Wang, Li, Liu (b0075) 2021; 34
Fortin, Bruno, Lovestead (bib331) 2023; 44
D.B. Doman, Fuel flow control for extending aircraft thermal endurance part I: underlying principles, in: AIAA Guidance, Navigation, and Control Conference, San Diego, California, USA, 2016, Doi: 10.2514/6.2016-1621.
Michalak, Emo, Ervin (b0025) 2014; 48
O. Khare, S. Ahmed, Y. Singh, An overview of swarm intelligence-based algorithms, in: Design and Applications of Nature Inspired Optimization, Women in Engineering and Science, 2023, Doi: 10.1007/978-3-031-17929-7_1.
D.O. Sigthorsson, M.W. Oppenheimer, D.B. Doman, N-tank thermal management system framework for thermal endurance enhancement, in: AIAA SCITECH 2022 Forum, San Diego, California & Virtual, 2022, Doi: 10.2514/6.2022-0750.
Moon (10.1016/j.applthermaleng.2024.122880_b0125) 2019; 89
Rezayeenik (10.1016/j.applthermaleng.2024.122880_b0095) 2023; 129
Huang (10.1016/j.applthermaleng.2024.122880_b0225) 2018; 10
Zhang (10.1016/j.applthermaleng.2024.122880_b0170) 2023; 10
Gad (10.1016/j.applthermaleng.2024.122880_b0290) 2022; 29
Sojoudi (10.1016/j.applthermaleng.2024.122880_b0295) 2018; 40
van Heerden (10.1016/j.applthermaleng.2024.122880_b0020) 2022; 128
10.1016/j.applthermaleng.2024.122880_b0045
10.1016/j.applthermaleng.2024.122880_b0120
10.1016/j.applthermaleng.2024.122880_b0240
10.1016/j.applthermaleng.2024.122880_b0040
Fortin (10.1016/j.applthermaleng.2024.122880_bib331) 2023; 44
Mortazavi-Derazkola (10.1016/j.applthermaleng.2024.122880_b0110) 2015; 26
Maalouf (10.1016/j.applthermaleng.2024.122880_b0160) 2019; 33
10.1016/j.applthermaleng.2024.122880_b0205
Zhou (10.1016/j.applthermaleng.2024.122880_b0010) 2021; 110
10.1016/j.applthermaleng.2024.122880_b0325
Bao (10.1016/j.applthermaleng.2024.122880_b0150) 2023; 454
Doman (10.1016/j.applthermaleng.2024.122880_b0220) 2018; 32
Huang (10.1016/j.applthermaleng.2024.122880_b0245) 2022; 36
Toksarı (10.1016/j.applthermaleng.2024.122880_b0275) 2007; 209
10.1016/j.applthermaleng.2024.122880_b0270
Kellermann (10.1016/j.applthermaleng.2024.122880_b0165) 2020; 170
10.1016/j.applthermaleng.2024.122880_b0070
10.1016/j.applthermaleng.2024.122880_b0190
Zinatloo-Ajabshir (10.1016/j.applthermaleng.2024.122880_b0100) 2022; 619
Russ (10.1016/j.applthermaleng.2024.122880_b0155) 1993; 931145
10.1016/j.applthermaleng.2024.122880_b0230
10.1016/j.applthermaleng.2024.122880_b0195
Avci (10.1016/j.applthermaleng.2024.122880_b0315) 2019; 78
10.1016/j.applthermaleng.2024.122880_b0235
Elaziz (10.1016/j.applthermaleng.2024.122880_b0260) 2021; 176
Siengchin (10.1016/j.applthermaleng.2024.122880_b0085) 2023; 24
Zinatloo-Ajabshir (10.1016/j.applthermaleng.2024.122880_b0105) 2019; 174
10.1016/j.applthermaleng.2024.122880_b0180
Mao (10.1016/j.applthermaleng.2024.122880_b0115) 2019; 21
Moroney (10.1016/j.applthermaleng.2024.122880_b0050) 1957; 76
Doman (10.1016/j.applthermaleng.2024.122880_b0320) 2015; 38
Xie (10.1016/j.applthermaleng.2024.122880_b0090) 2023; 1
Nazari-Heris (10.1016/j.applthermaleng.2024.122880_b0265) 2018; 81
Zhuang (10.1016/j.applthermaleng.2024.122880_b0060) 2022; 259
Burger (10.1016/j.applthermaleng.2024.122880_b0080) 2016; 61
Yang (10.1016/j.applthermaleng.2024.122880_b0310) 2006
10.1016/j.applthermaleng.2024.122880_b0065
10.1016/j.applthermaleng.2024.122880_b0185
10.1016/j.applthermaleng.2024.122880_b0140
Chang (10.1016/j.applthermaleng.2024.122880_b0330) 2007; 57
Wang (10.1016/j.applthermaleng.2024.122880_b0145) 2022; 313
10.1016/j.applthermaleng.2024.122880_b0305
Kassoul (10.1016/j.applthermaleng.2024.122880_b0285) 2022; 10
Corporan (10.1016/j.applthermaleng.2024.122880_b0130) 2023; 335
Kellermann (10.1016/j.applthermaleng.2024.122880_b0030) 2022; 38
Broatch (10.1016/j.applthermaleng.2024.122880_b0055) 2022; 190
Li (10.1016/j.applthermaleng.2024.122880_b0005) 2021; 59
Sarlioglu (10.1016/j.applthermaleng.2024.122880_b0015) 2015; 1
10.1016/j.applthermaleng.2024.122880_b0135
10.1016/j.applthermaleng.2024.122880_b0255
10.1016/j.applthermaleng.2024.122880_b0210
Wang (10.1016/j.applthermaleng.2024.122880_b0075) 2021; 34
German (10.1016/j.applthermaleng.2024.122880_b0200) 2012; 28
10.1016/j.applthermaleng.2024.122880_b0175
10.1016/j.applthermaleng.2024.122880_b0250
Zhang (10.1016/j.applthermaleng.2024.122880_b0280) 2015; 2015
Coutinho (10.1016/j.applthermaleng.2024.122880_b0035) 2023; 227
Liu (10.1016/j.applthermaleng.2024.122880_b0300) 2023; 42
10.1016/j.applthermaleng.2024.122880_b0215
Michalak (10.1016/j.applthermaleng.2024.122880_b0025) 2014; 48
References_xml – volume: 174
  year: 2019
  ident: b0105
  article-title: Preparation of magnetically retrievable CoFe
  publication-title: Compos. Part B-Eng.
– reference: H. Huang, L. Spadaccini, D. Sobel, Endothermic heat-sink of jet fuels for scramjet cooling, in: 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Indianapolis, Indiana, USA, 2002, Doi: 10.2514/6.2002-3871.
– volume: 38
  start-page: 2084
  year: 2015
  end-page: 2095
  ident: b0320
  article-title: Optimal cruise altitude for aircraft thermal management
  publication-title: J. Guid. Control Dynam.
– volume: 128
  year: 2022
  ident: b0020
  article-title: Aircraft thermal management: practices, technology, system architectures, future challenges, and opportunities
  publication-title: Prog. Aerosp. Sci.
– volume: 78
  start-page: 182
  year: 2019
  end-page: 187
  ident: b0315
  article-title: A new explicit friction factor formula for laminar, transition and turbulent flows in smooth and rough pipes
  publication-title: Eur. J. Mech. B-Fluid
– volume: 335
  year: 2023
  ident: b0130
  article-title: High temperature fuel impacts on combustion characteristics of a swirl-stabilized combustor
  publication-title: Fuel
– volume: 40
  start-page: 183
  year: 2018
  ident: b0295
  article-title: Experimental evaluation of temperature rise in centrifugal pumps at partial flow rates
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
– reference: D.O. Sigthorsson, M.W. Oppenheimer, D.B. Doman, N-tank thermal management system framework for thermal endurance enhancement, in: AIAA SCITECH 2022 Forum, San Diego, California & Virtual, 2022, Doi: 10.2514/6.2022-0750.
– reference: A. Yuhas, R. Ray, Effects of bleed air extraction of thrust levels on the F404-GE-400 turbofan engine, in: 28th Joint Propulsion Conference and Exhibit, Nashville, Tennessee, USA, 1992, Doi: 10.2514/6.1992-3092.
– volume: 454
  year: 2023
  ident: b0150
  article-title: Experiment and modelling of supercritical pyrolysis and coking of RP-3 aviation kerosene in a U-bend tube
  publication-title: Chem. Eng. J.
– reference: D.O. Sigthorsson, M.W. Oppenheimer, D.B. Doman, Aircraft thermal endurance optimization part II: using a simple dual tank topology and robust temperature regulation, in: AIAA Scitech 2019 Forum, San Diego, California, USA, 2019, Doi: 10.2514/6.2019-1663.
– volume: 32
  start-page: 35
  year: 2018
  end-page: 50
  ident: b0220
  article-title: Fuel flow topology and control for extending aircraft thermal endurance
  publication-title: J. Thermophys. Heat Tr
– reference: Y. Lin, K. Kota, L. Chow, et al., Design of a thermal management system for directed energy weapons, in: 41st AIAA Thermophysics Conference, San Antonio, Texas, USA, 2009, Doi: 10.2514/6.2009-4248.
– year: 2006
  ident: b0310
  article-title: Heat transfer
– volume: 48
  start-page: 10
  year: 2014
  end-page: 18
  ident: b0025
  article-title: Control strategy for aircraft vapor compression system operation
  publication-title: Int. J. Refrig
– volume: 33
  start-page: 472
  year: 2019
  end-page: 482
  ident: b0160
  article-title: High-temperature heat pump for aircraft engine oil cooling
  publication-title: J Thermophys Heat Tr
– volume: 931145
  year: 1993
  ident: b0155
  article-title: Ram air heat exchangers for very high-altitude subsonic aircraft
  publication-title: SAE Technical Paper
– volume: 57
  start-page: 1240
  year: 2007
  end-page: 1244
  ident: b0330
  article-title: Euclidean distances and least squares problems for a given set of vectors
  publication-title: Appl. Numer. Math.
– volume: 110
  year: 2021
  ident: b0010
  article-title: Mixed design of radar/infrared stealth for advanced fighter intake and exhaust system
  publication-title: Aerosp. Sci. Technol.
– volume: 1
  start-page: 47
  year: 2023
  end-page: 57
  ident: b0090
  article-title: Thermal conductivity of carbon-based nanomaterials: deep understanding of the structural effects
  publication-title: Green Carbon
– volume: 209
  start-page: 160
  year: 2007
  end-page: 166
  ident: b0275
  article-title: A heuristic approach to find the global optimum of function
  publication-title: J. Comput. Appl. Math.
– volume: 36
  start-page: 13
  year: 2022
  end-page: 27
  ident: b0245
  article-title: Control of a switched mode fuel thermal management system
  publication-title: J. Thermophys. Heat Tr.
– volume: 2015
  year: 2015
  ident: b0280
  article-title: A comprehensive survey on particle swarm optimization algorithm and its applications
  publication-title: Math. Probl. Eng.
– volume: 10
  start-page: 78320
  year: 2022
  end-page: 78344
  ident: b0285
  article-title: Exponential particle swarm optimization for global optimization
  publication-title: IEEE Access
– volume: 44
  start-page: 5
  year: 2023
  ident: bib331
  article-title: Comparison of heat capacity measurements of alternative and conventional aviation fuels
  publication-title: Int. J. Thermophys.
– volume: 34
  start-page: 1
  year: 2021
  end-page: 27
  ident: b0075
  article-title: Recent active thermal management technologies for the development of energy-optimized aerospace vehicles in China
  publication-title: Chin. J. Aeronaut.
– reference: D.O. Sigthorsson, M.W. Oppenheimer, D.B. Doman, FLEX versus dual tank thermal management systems, in: AIAA SCITECH 2023 Forum, National Harbor, Maryland & Online, 2023, Doi: 10.2514/6.2023-1045.
– reference: T.J. Bruno, M. Huber, A. Laesecke, et al., Thermodynamic, transport, and chemical properties of reference JP-8, NIST Interagency/Internal Report (NISTIR), National Institute of Standards and Technology, Gaithersburg, Maryland, 2010,
– volume: 259
  year: 2022
  ident: b0060
  article-title: Superiority analysis of the cooled cooling air technology for low bypass ratio aero-engine under typical flight mission
  publication-title: Energ. Convers. Manage.
– volume: 176
  year: 2021
  ident: b0260
  article-title: Cooperative meta-heuristic algorithms for global optimization problems
  publication-title: Expert Syst. Appl.
– volume: 1
  start-page: 54
  year: 2015
  end-page: 64
  ident: b0015
  article-title: More electric aircraft: review, challenges, and opportunities for commercial transport aircraft
  publication-title: IEEE T Transp. Electr.
– volume: 26
  start-page: 5658
  year: 2015
  end-page: 5667
  ident: b0110
  article-title: Preparation and characterization of Nd
  publication-title: J. Mater. Sci. Mater. El
– volume: 38
  start-page: 736
  year: 2022
  end-page: 751
  ident: b0030
  article-title: Design of a battery cooling system for hybrid electric aircraft
  publication-title: J. Propul. Power
– volume: 10
  year: 2018
  ident: b0225
  article-title: Thermal management of single- and dual-tank fuel-flow topologies using an optimal control strategy
  publication-title: J. Therm. Sci. Eng. Appl.
– volume: 59
  start-page: 165
  year: 2021
  end-page: 179
  ident: b0005
  article-title: Multidisciplinary design optimization of low-boom supersonic aircraft with mission constraints
  publication-title: AIAA J.
– reference: Y. Ho, T. Lin, B.P. Hill, et al., Thermal benefits of advanced integrated fuel system using JP-8+100 fuel, in: 1997 World Aviation Congress, Anaheim, California, USA, 1997, Doi: 10.2514/6.1997-5507.
– reference: A.S. White, E. Waddington, J.M. Merret, et al., System-level utilization of low-grade, MW-scale thermal loads for electric aircraft, in: AIAA AVIATION 2022 Forum, Chicago, Illinois & Virtual, USA, 2022, Doi: 10.2514/6.2022-3291.
– volume: 10
  start-page: 730
  year: 2023
  ident: b0170
  article-title: Optimization research on the heat transfer capacity of an aircraft fuel thermal management system
  publication-title: Aerospace-Basel
– reference: O. Khare, S. Ahmed, Y. Singh, An overview of swarm intelligence-based algorithms, in: Design and Applications of Nature Inspired Optimization, Women in Engineering and Science, 2023, Doi: 10.1007/978-3-031-17929-7_1.
– volume: 28
  start-page: 204
  year: 2012
  end-page: 210
  ident: b0200
  article-title: Tank heating model for aircraft fuel thermal systems with recirculation
  publication-title: J. Propul. Power
– volume: 190
  year: 2022
  ident: b0055
  article-title: Experimental aerothermal characterization of surface air-cooled oil coolers for turbofan engines
  publication-title: Int. J. Heat Mass Tran.
– reference: D.B. Doman, Fuel flow control for extending aircraft thermal endurance part II: closed loop control, in: AIAA Guidance, Navigation, and Control Conference, San Diego, California, USA, 2016, Doi: 10.2514/6.2016-1622.
– volume: 29
  start-page: 2531
  year: 2022
  end-page: 2561
  ident: b0290
  article-title: Particle swarm optimization algorithm and its applications: a systematic review
  publication-title: Arch. Comput. Method E
– volume: 61
  start-page: 1
  year: 2016
  end-page: 28
  ident: b0080
  article-title: Review of thermal conductivity in composites: mechanisms, parameters and theory
  publication-title: Prog. Polym. Sci.
– volume: 42
  year: 2023
  ident: b0300
  article-title: Thermal dynamic and failure research on an air-fuel heat exchanger for aero-engine cooling
  publication-title: Case Stud. Therm. Eng.
– reference: T. Edwards, B. Harrison, S. Zabarnick, et al., Update on the development of JP-8+100, in: 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Fort Lauderdale, Florida, USA, 2004, Doi: 10.2514/6.2004-3886.
– reference: S. Yang, Y. Lin, X. Xu, et al., Extension of aircraft thermal endurance by multi-return fuel tank system, in: Proceedings of the 6th China Aeronautical Science and Technology Conference, Jiaxing, Zhejiang, China, 2023, Doi: 10.1007/978-981-99-8861-7_62.
– reference: D.O. Sigthorsson, M.W. Oppenheimer, D.B. Doman, Flight endurance enhancement via thermal management system control subject to multiple limitations, in: AIAA Scitech 2020 Forum, Orlando, Florida, USA, 2020, Doi: 10.2514/6.2020-1825.
– volume: 170
  year: 2020
  ident: b0165
  article-title: Assessment of fuel as alternative heat sink for future aircraft
  publication-title: Appl. Therm. Eng.
– volume: 129
  year: 2023
  ident: b0095
  article-title: CeVO
  publication-title: Appl. Phys. A-Mater.
– volume: 76
  start-page: 217
  year: 1957
  end-page: 221
  ident: b0050
  article-title: Ram-air cooling systems for aircraft generators
  publication-title: Trans. Amer. Instit. Electr. Eng. Appl. Ind.
– volume: 313
  year: 2022
  ident: b0145
  article-title: Thermal cracking and coke deposition characteristics of aviation kerosene RP-3 in an S-bend tube
  publication-title: Fuel
– volume: 81
  start-page: 2128
  year: 2018
  end-page: 2143
  ident: b0265
  article-title: A comprehensive review of heuristic optimization algorithms for optimal combined heat and power dispatch from economic and environmental perspectives
  publication-title: Renew. Sust. Energ Rev.
– reference: D.O. Sigthorsson, M.W. Oppenheimer, D.B. Doman, Aircraft thermal endurance optimization part I: using a mixed dual tank topology and robust temperature regulation, in: AIAA Scitech 2019 Forum, San Diego, California, USA, 2019, Doi: 10.2514/6.2019-1662.
– reference: C. Lents, Impact of weight, drag and power demand on aircraft energy consumption, in: AIAA Propulsion and Energy 2021 Forum, Virtual, 2021, Doi: 10.2514/6.2021-3322.
– volume: 619
  start-page: 1
  year: 2022
  end-page: 13
  ident: b0100
  article-title: Innovative construction of a novel lanthanide cerate nanostructured photocatalyst for efficient treatment of contaminated water under sunlight
  publication-title: J. Colloid Interf. Sci.
– reference: D.O. Sigthorsson, M.W. Oppenheimer, D.B. Doman, N-tank continuous framework for thermal management to enhance thermal endurance, in: AIAA SCITECH 2024 Forum, Orlando, Florida, USA, 2024, Doi: 10.2514/6.2024-2202.
– volume: 227
  year: 2023
  ident: b0035
  article-title: A review on the recent developments in thermal management systems for hybrid-electric aircraft
  publication-title: Appl. Therm. Eng.
– volume: 21
  start-page: 223
  year: 2019
  ident: b0115
  article-title: Cooling ability/capacity and exergy penalty analysis of each heat sink of modern supersonic aircraft
  publication-title: Entropy-Switz
– reference: .
– reference: D.O. Sigthorsson, M.W. Oppenheimer, D.B. Doman, Aircraft thermal endurance enhancement using a dual tank configuration and temperature regulation, in: 2018 AIAA Guidance, Navigation, and Control Conference, Kissimmee, Florida, USA, 2018, Doi: 10.2514/6.2018-0612.
– reference: W.M. Kays, A.L. London, Compact heat exchangers, 3rd ed., USA, 1984.
– volume: 24
  start-page: 1
  year: 2023
  end-page: 17
  ident: b0085
  article-title: A review on lightweight materials for defence applications: present and future developments
  publication-title: Def. Technol.
– reference: Q. Su, S. Chang, S. Yang, Analysis of aircraft integrated thermal management using fuel as heat sink, in: 2016 IEEE International Conference on Aircraft Utility Systems (AUS), Beijing, China, 2016, Doi: 10.1109/AUS.2016.7748157.
– reference: M.W. Oppenheimer, D.O. Sigthorsson, D.B. Doman, Extending aircraft thermal endurance by fuel pump sizing, in: 2018 AIAA Guidance, Navigation, and Control Conference, Kissimmee, Florida, USA, 2018, Doi: 10.2514/6.2018-0856.
– reference: G.P. Huang, D.B. Doman, M.W. Oppenheimer, et al., Topology optimization of a fuel thermal management system, in: AIAA Aviation 2019 Forum, Dallas, Texas, USA, Doi: 10.2514/6.2019-3471.
– volume: 89
  start-page: 77
  year: 2019
  end-page: 88
  ident: b0125
  article-title: De-icing of fuel/oil heat exchange systems via fuel flow direction switching device
  publication-title: Aerosp. Sci. Technol.
– reference: D.B. Doman, Fuel flow control for extending aircraft thermal endurance part I: underlying principles, in: AIAA Guidance, Navigation, and Control Conference, San Diego, California, USA, 2016, Doi: 10.2514/6.2016-1621.
– volume: 10
  start-page: 78320
  year: 2022
  ident: 10.1016/j.applthermaleng.2024.122880_b0285
  article-title: Exponential particle swarm optimization for global optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3193396
– volume: 24
  start-page: 1
  year: 2023
  ident: 10.1016/j.applthermaleng.2024.122880_b0085
  article-title: A review on lightweight materials for defence applications: present and future developments
  publication-title: Def. Technol.
  doi: 10.1016/j.dt.2023.02.025
– volume: 78
  start-page: 182
  year: 2019
  ident: 10.1016/j.applthermaleng.2024.122880_b0315
  article-title: A new explicit friction factor formula for laminar, transition and turbulent flows in smooth and rough pipes
  publication-title: Eur. J. Mech. B-Fluid
  doi: 10.1016/j.euromechflu.2019.07.007
– volume: 209
  start-page: 160
  issue: 2
  year: 2007
  ident: 10.1016/j.applthermaleng.2024.122880_b0275
  article-title: A heuristic approach to find the global optimum of function
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2006.10.074
– ident: 10.1016/j.applthermaleng.2024.122880_b0070
  doi: 10.2514/6.1992-3092
– ident: 10.1016/j.applthermaleng.2024.122880_b0230
  doi: 10.2514/6.2018-0612
– volume: 227
  year: 2023
  ident: 10.1016/j.applthermaleng.2024.122880_b0035
  article-title: A review on the recent developments in thermal management systems for hybrid-electric aircraft
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2023.120427
– volume: 57
  start-page: 1240
  issue: 11–12
  year: 2007
  ident: 10.1016/j.applthermaleng.2024.122880_b0330
  article-title: Euclidean distances and least squares problems for a given set of vectors
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2007.01.008
– volume: 29
  start-page: 2531
  year: 2022
  ident: 10.1016/j.applthermaleng.2024.122880_b0290
  article-title: Particle swarm optimization algorithm and its applications: a systematic review
  publication-title: Arch. Comput. Method E
  doi: 10.1007/s11831-021-09694-4
– ident: 10.1016/j.applthermaleng.2024.122880_b0195
  doi: 10.2514/6.2022-0750
– ident: 10.1016/j.applthermaleng.2024.122880_b0250
  doi: 10.2514/6.2019-3471
– ident: 10.1016/j.applthermaleng.2024.122880_b0240
  doi: 10.2514/6.2019-1663
– year: 2006
  ident: 10.1016/j.applthermaleng.2024.122880_b0310
– volume: 40
  start-page: 183
  year: 2018
  ident: 10.1016/j.applthermaleng.2024.122880_b0295
  article-title: Experimental evaluation of temperature rise in centrifugal pumps at partial flow rates
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
  doi: 10.1007/s40430-018-1078-8
– ident: 10.1016/j.applthermaleng.2024.122880_b0120
  doi: 10.2514/6.2002-3871
– volume: 128
  year: 2022
  ident: 10.1016/j.applthermaleng.2024.122880_b0020
  article-title: Aircraft thermal management: practices, technology, system architectures, future challenges, and opportunities
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/j.paerosci.2021.100767
– volume: 38
  start-page: 2084
  issue: 11
  year: 2015
  ident: 10.1016/j.applthermaleng.2024.122880_b0320
  article-title: Optimal cruise altitude for aircraft thermal management
  publication-title: J. Guid. Control Dynam.
  doi: 10.2514/1.G000845
– volume: 174
  year: 2019
  ident: 10.1016/j.applthermaleng.2024.122880_b0105
  article-title: Preparation of magnetically retrievable CoFe2O4@SiO2@Dy2Ce2O7 nanocomposites as novel photocatalyst for highly efficient degradation of organic contaminants
  publication-title: Compos. Part B-Eng.
  doi: 10.1016/j.compositesb.2019.106930
– volume: 10
  issue: 4
  year: 2018
  ident: 10.1016/j.applthermaleng.2024.122880_b0225
  article-title: Thermal management of single- and dual-tank fuel-flow topologies using an optimal control strategy
  publication-title: J. Therm. Sci. Eng. Appl.
  doi: 10.1115/1.4040036
– ident: 10.1016/j.applthermaleng.2024.122880_b0325
  doi: 10.6028/NIST.IR.6659
– volume: 10
  start-page: 730
  issue: 8
  year: 2023
  ident: 10.1016/j.applthermaleng.2024.122880_b0170
  article-title: Optimization research on the heat transfer capacity of an aircraft fuel thermal management system
  publication-title: Aerospace-Basel
  doi: 10.3390/aerospace10080730
– ident: 10.1016/j.applthermaleng.2024.122880_b0140
  doi: 10.2514/6.1997-5507
– ident: 10.1016/j.applthermaleng.2024.122880_b0185
  doi: 10.1007/978-981-99-8861-7_62
– ident: 10.1016/j.applthermaleng.2024.122880_b0040
  doi: 10.2514/6.2009-4248
– volume: 190
  year: 2022
  ident: 10.1016/j.applthermaleng.2024.122880_b0055
  article-title: Experimental aerothermal characterization of surface air-cooled oil coolers for turbofan engines
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2022.122775
– ident: 10.1016/j.applthermaleng.2024.122880_b0180
  doi: 10.2514/6.2018-0856
– volume: 619
  start-page: 1
  year: 2022
  ident: 10.1016/j.applthermaleng.2024.122880_b0100
  article-title: Innovative construction of a novel lanthanide cerate nanostructured photocatalyst for efficient treatment of contaminated water under sunlight
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2022.03.112
– volume: 335
  year: 2023
  ident: 10.1016/j.applthermaleng.2024.122880_b0130
  article-title: High temperature fuel impacts on combustion characteristics of a swirl-stabilized combustor
  publication-title: Fuel
  doi: 10.1016/j.fuel.2022.126993
– ident: 10.1016/j.applthermaleng.2024.122880_b0175
  doi: 10.1109/AUS.2016.7748157
– volume: 28
  start-page: 204
  issue: 1
  year: 2012
  ident: 10.1016/j.applthermaleng.2024.122880_b0200
  article-title: Tank heating model for aircraft fuel thermal systems with recirculation
  publication-title: J. Propul. Power
  doi: 10.2514/1.B34240
– ident: 10.1016/j.applthermaleng.2024.122880_b0305
– volume: 42
  year: 2023
  ident: 10.1016/j.applthermaleng.2024.122880_b0300
  article-title: Thermal dynamic and failure research on an air-fuel heat exchanger for aero-engine cooling
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2023.102715
– volume: 176
  year: 2021
  ident: 10.1016/j.applthermaleng.2024.122880_b0260
  article-title: Cooperative meta-heuristic algorithms for global optimization problems
  publication-title: Expert Syst. Appl.
– ident: 10.1016/j.applthermaleng.2024.122880_b0190
  doi: 10.2514/6.2024-2202
– ident: 10.1016/j.applthermaleng.2024.122880_b0205
  doi: 10.2514/6.2020-1825
– volume: 26
  start-page: 5658
  year: 2015
  ident: 10.1016/j.applthermaleng.2024.122880_b0110
  article-title: Preparation and characterization of Nd2O3 nanostructures via a new facile solvent-less route
  publication-title: J. Mater. Sci. Mater. El
  doi: 10.1007/s10854-015-3116-y
– volume: 33
  start-page: 472
  issue: 2
  year: 2019
  ident: 10.1016/j.applthermaleng.2024.122880_b0160
  article-title: High-temperature heat pump for aircraft engine oil cooling
  publication-title: J Thermophys Heat Tr
  doi: 10.2514/1.T5494
– volume: 76
  start-page: 217
  issue: 4
  year: 1957
  ident: 10.1016/j.applthermaleng.2024.122880_b0050
  article-title: Ram-air cooling systems for aircraft generators
  publication-title: Trans. Amer. Instit. Electr. Eng. Appl. Ind.
– volume: 32
  start-page: 35
  issue: 1
  year: 2018
  ident: 10.1016/j.applthermaleng.2024.122880_b0220
  article-title: Fuel flow topology and control for extending aircraft thermal endurance
  publication-title: J. Thermophys. Heat Tr
  doi: 10.2514/1.T5142
– volume: 44
  start-page: 5
  year: 2023
  ident: 10.1016/j.applthermaleng.2024.122880_bib331
  article-title: Comparison of heat capacity measurements of alternative and conventional aviation fuels
  publication-title: Int. J. Thermophys.
  doi: 10.1007/s10765-022-03100-2
– volume: 1
  start-page: 54
  issue: 1
  year: 2015
  ident: 10.1016/j.applthermaleng.2024.122880_b0015
  article-title: More electric aircraft: review, challenges, and opportunities for commercial transport aircraft
  publication-title: IEEE T Transp. Electr.
  doi: 10.1109/TTE.2015.2426499
– ident: 10.1016/j.applthermaleng.2024.122880_b0235
  doi: 10.2514/6.2019-1662
– ident: 10.1016/j.applthermaleng.2024.122880_b0135
  doi: 10.2514/6.2004-3886
– volume: 170
  year: 2020
  ident: 10.1016/j.applthermaleng.2024.122880_b0165
  article-title: Assessment of fuel as alternative heat sink for future aircraft
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2020.114985
– volume: 313
  year: 2022
  ident: 10.1016/j.applthermaleng.2024.122880_b0145
  article-title: Thermal cracking and coke deposition characteristics of aviation kerosene RP-3 in an S-bend tube
  publication-title: Fuel
  doi: 10.1016/j.fuel.2021.122673
– volume: 38
  start-page: 736
  issue: 5
  year: 2022
  ident: 10.1016/j.applthermaleng.2024.122880_b0030
  article-title: Design of a battery cooling system for hybrid electric aircraft
  publication-title: J. Propul. Power
  doi: 10.2514/1.B38695
– ident: 10.1016/j.applthermaleng.2024.122880_b0210
  doi: 10.2514/6.2016-1621
– volume: 34
  start-page: 1
  issue: 2
  year: 2021
  ident: 10.1016/j.applthermaleng.2024.122880_b0075
  article-title: Recent active thermal management technologies for the development of energy-optimized aerospace vehicles in China
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/j.cja.2020.06.021
– volume: 931145
  year: 1993
  ident: 10.1016/j.applthermaleng.2024.122880_b0155
  article-title: Ram air heat exchangers for very high-altitude subsonic aircraft
  publication-title: SAE Technical Paper
  doi: 10.4271/931145
– volume: 36
  start-page: 13
  issue: 1
  year: 2022
  ident: 10.1016/j.applthermaleng.2024.122880_b0245
  article-title: Control of a switched mode fuel thermal management system
  publication-title: J. Thermophys. Heat Tr.
  doi: 10.2514/1.T6044
– volume: 59
  start-page: 165
  issue: 1
  year: 2021
  ident: 10.1016/j.applthermaleng.2024.122880_b0005
  article-title: Multidisciplinary design optimization of low-boom supersonic aircraft with mission constraints
  publication-title: AIAA J.
  doi: 10.2514/1.J059237
– volume: 89
  start-page: 77
  year: 2019
  ident: 10.1016/j.applthermaleng.2024.122880_b0125
  article-title: De-icing of fuel/oil heat exchange systems via fuel flow direction switching device
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2019.03.047
– volume: 259
  year: 2022
  ident: 10.1016/j.applthermaleng.2024.122880_b0060
  article-title: Superiority analysis of the cooled cooling air technology for low bypass ratio aero-engine under typical flight mission
  publication-title: Energ. Convers. Manage.
  doi: 10.1016/j.enconman.2022.115510
– volume: 21
  start-page: 223
  issue: 3
  year: 2019
  ident: 10.1016/j.applthermaleng.2024.122880_b0115
  article-title: Cooling ability/capacity and exergy penalty analysis of each heat sink of modern supersonic aircraft
  publication-title: Entropy-Switz
  doi: 10.3390/e21030223
– ident: 10.1016/j.applthermaleng.2024.122880_b0215
  doi: 10.2514/6.2016-1622
– ident: 10.1016/j.applthermaleng.2024.122880_b0045
  doi: 10.2514/6.2022-3291
– volume: 61
  start-page: 1
  year: 2016
  ident: 10.1016/j.applthermaleng.2024.122880_b0080
  article-title: Review of thermal conductivity in composites: mechanisms, parameters and theory
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2016.05.001
– ident: 10.1016/j.applthermaleng.2024.122880_b0255
  doi: 10.2514/6.2023-1045
– volume: 129
  issue: 47
  year: 2023
  ident: 10.1016/j.applthermaleng.2024.122880_b0095
  article-title: CeVO4/rGO nanocomposite: facile hydrothermal synthesis, characterization, and electrochemical hydrogen storage
  publication-title: Appl. Phys. A-Mater.
– volume: 81
  start-page: 2128
  issue: 2
  year: 2018
  ident: 10.1016/j.applthermaleng.2024.122880_b0265
  article-title: A comprehensive review of heuristic optimization algorithms for optimal combined heat and power dispatch from economic and environmental perspectives
  publication-title: Renew. Sust. Energ Rev.
  doi: 10.1016/j.rser.2017.06.024
– volume: 48
  start-page: 10
  year: 2014
  ident: 10.1016/j.applthermaleng.2024.122880_b0025
  article-title: Control strategy for aircraft vapor compression system operation
  publication-title: Int. J. Refrig
  doi: 10.1016/j.ijrefrig.2014.08.010
– ident: 10.1016/j.applthermaleng.2024.122880_b0065
  doi: 10.2514/6.2021-3322
– ident: 10.1016/j.applthermaleng.2024.122880_b0270
  doi: 10.1007/978-3-031-17929-7_1
– volume: 454
  issue: 2
  year: 2023
  ident: 10.1016/j.applthermaleng.2024.122880_b0150
  article-title: Experiment and modelling of supercritical pyrolysis and coking of RP-3 aviation kerosene in a U-bend tube
  publication-title: Chem. Eng. J.
– volume: 110
  year: 2021
  ident: 10.1016/j.applthermaleng.2024.122880_b0010
  article-title: Mixed design of radar/infrared stealth for advanced fighter intake and exhaust system
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2021.106490
– volume: 1
  start-page: 47
  issue: 1
  year: 2023
  ident: 10.1016/j.applthermaleng.2024.122880_b0090
  article-title: Thermal conductivity of carbon-based nanomaterials: deep understanding of the structural effects
  publication-title: Green Carbon
  doi: 10.1016/j.greenca.2023.08.004
– volume: 2015
  year: 2015
  ident: 10.1016/j.applthermaleng.2024.122880_b0280
  article-title: A comprehensive survey on particle swarm optimization algorithm and its applications
  publication-title: Math. Probl. Eng.
SSID ssj0012874
Score 2.452044
Snippet •The FHSCR is evaluated and applied to the fuel heat sink optimization.•A new architecture of the AFTMS is designed to enhance the heat dissipation.•The FHSCR...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 122880
SubjectTerms Aircraft
Dynamic optimal control
Flow path optimization
Fuel heat sink
Thermal management system
Title Thermal management of fuel heat sink in aircraft via flow path optimization
URI https://dx.doi.org/10.1016/j.applthermaleng.2024.122880
Volume 246
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na8JAEF3EQmkPpZ_UfsgevEaz2U02Sw9FpGIr9VIFb2Gz7kKKJmK1vfW3d8ckVqEHoceE7BAmw5sZ8uYNQo2YxNxmLuMYoaXDmHKdUHPhuNSAuLnxQwWDwq-DoDdiL2N_XEGdchYGaJUF9ueYvkbr4k6r8GZrniStN0J9YdMfARakrbthiI8xDlHe_N7QPAjoua-bLl848PQhavxyvOAnMdRZMwlrS2y36LEm8bwQRCL_SlNbqad7ik6KmhG389c6QxWdnqPjLSXBC9Qf5vbxbENnwZnBZqWnGOAWf9ieEycplslCLaRZ4s9EYjPNvjDsJMaZRY5ZMZJ5iUbdp2Gn5xR7EhxFqbt0JAdJJxNro7X0rZctiGmhjWJByLSraOxJWxV4QilBJkQFoQ5owIlQnPhSUnqFqmmW6muEPWECyq2Z0KZtxSfSVi-u0IT5E8MM1TX0ULolUoWIOOyymEYlW-w92nVqBE6NcqfWkL85Pc_FNPY891h-gWgnOCKL-3tZuPm3hVt0BFc5S-wOVZeLlb639cgyrq8Dro4O2s_93uAHBaXjJg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JSwMxFH4UBZeDuGJdc9Dj2GYmswQRERda23qxgrcxkyYw0kVqVbz4p_yDvteZ1goeBOl1hjzCl-QtM1--B3CQ8CTEyGUdK41yhNBlJzKhdMqeJXFz60eaLgo3boLKnbi-9-8L8Dm6C0O0ytz3Zz596K3zJ6UczdJTmpZuuedLDH-cWJCYd8ucWVkz729Ytz2fVC9wkQ9d9-qyeV5x8tYCjsYCfuCokFSQbGKsMcrHieG5N9JYLYJImLL2EldhIHWl1pK3uA4iE3hByKUOua8UfQVFvz8rcBi1TTj6GPNKOAnID6s8Xzo0vTk4-CaV0V9pSuw6ivqkYHnqiiPuuhGpUv4WFydi3dUyLOVJKjvLcFiBgumuwuKEdOEa1JqZfdYZ82dYzzL7YtqM_Dt7xiKXpV2m0r7uKztgr6litt17Y9QEmfXQVXXyO6DrcDcV9DZgptvrmk1grrSBF6KZCPMEHbYUpktlabjwW1ZYzxTheARLrHPVcmqe0Y5H9LTH-CeoMYEaZ6AWwR-PfsrUO_447nS0AvGP3RhjoPmTha1_W9iH-UqzUY_r1ZvaNizQm4yitgMzg_6L2cVkaJDsDTcfg4dp7_YvZmofAQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+management+of+fuel+heat+sink+in+aircraft+via+flow+path+optimization&rft.jtitle=Applied+thermal+engineering&rft.au=Yang%2C+Shiyu&rft.au=Lin%2C+Yuanfang&rft.au=Yu%2C+Haiyu&rft.au=Xu%2C+Xianghua&rft.date=2024-06-01&rft.issn=1359-4311&rft.volume=246&rft.spage=122880&rft_id=info:doi/10.1016%2Fj.applthermaleng.2024.122880&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_applthermaleng_2024_122880
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon