Stress analysis of generally asymmetric non-prismatic beams subject to arbitrary loads
Non-prismatic beams are widely employed in several engineering fields, e.g., wind turbines, rotor blades, aircraft wings, and arched bridges. While analytical solutions for variable cross-section beams are desirable, a model describing all stress components for beams with general variation of their...
Saved in:
Published in | European journal of mechanics, A, Solids Vol. 90; p. 104284 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin
Elsevier Masson SAS
01.11.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0997-7538 1873-7285 |
DOI | 10.1016/j.euromechsol.2021.104284 |
Cover
Abstract | Non-prismatic beams are widely employed in several engineering fields, e.g., wind turbines, rotor blades, aircraft wings, and arched bridges. While analytical solutions for variable cross-section beams are desirable, a model describing all stress components for beams with general variation of their cross-section under generalised loading remains an open and important problem to solve. To partly address this issue, we propose an analytical solution for stress recovery of untwisted, asymmetric, non-prismatic beams with smooth and continuous taper shape under general loading, considering plane stress conditions for isotropic materials undergoing small strains. The methodology follows Jourawski’s formulation, including the effect of asymmetric variable cross-section, with internal forces as known variables. We confirm the non-triviality of the stress field of non-prismatic beams, i.e., the dependency on all internal forces and beam geometry to shear and transverse stress distributions. As a particular novelty, the new formulation for transverse direct stress includes internal forces derivatives, resulting in greater accuracy than state-of-the-art models for distributed loading conditions. Also, closed-form solutions are introduced for non-prismatic and linearly tapered, generally asymmetric beams, both with rectangular cross-sections. For validation purposes, we consider three different practical beam models: a symmetric and an asymmetric, both linearly tapered, and an arched beam. The results, checked against commercial finite element analysis, show that the proposed model predicts the stress-field of non-prismatic beams under distributed loads with good levels of accuracy. Traction-free boundary condition requirements are naturally satisfied on the beam surfaces.
•Recovery of the 2D stress field of non-prismatic beams under arbitrary loads.•Derivation of the transverse direct stress consistent with Cauchy-stress equilibrium.•Closed-form solutions for stresses for rectangular cross-section non-prismatic beams.•Reduction of the closed-form solution to linearly asymmetric tapered beams. |
---|---|
AbstractList | Non-prismatic beams are widely employed in several engineering fields, e.g., wind turbines, rotor blades, aircraft wings, and arched bridges. While analytical solutions for variable cross-section beams are desirable, a model describing all stress components for beams with general variation of their cross-section under generalised loading remains an open and important problem to solve. To partly address this issue, we propose an analytical solution for stress recovery of untwisted, asymmetric, non-prismatic beams with smooth and continuous taper shape under general loading, considering plane stress conditions for isotropic materials undergoing small strains. The methodology follows Jourawski's formulation, including the effect of asymmetric variable cross-section, with internal forces as known variables. We confirm the non-triviality of the stress field of non-prismatic beams, i.e., the dependency on all internal forces and beam geometry to shear and transverse stress distributions. As a particular novelty, the new formulation for transverse direct stress includes internal forces derivatives, resulting in greater accuracy than state-of-the-art models for distributed loading conditions. Also, closed-form solutions are introduced for non-prismatic and linearly tapered, generally asymmetric beams, both with rectangular cross-sections. For validation purposes, we consider three different practical beam models: a symmetric and an asymmetric, both linearly tapered, and an arched beam. The results, checked against commercial finite element analysis, show that the proposed model predicts the stress-field of non-prismatic beams under distributed loads with good levels of accuracy. Traction-free boundary condition requirements are naturally satisfied on the beam surfaces. Non-prismatic beams are widely employed in several engineering fields, e.g., wind turbines, rotor blades, aircraft wings, and arched bridges. While analytical solutions for variable cross-section beams are desirable, a model describing all stress components for beams with general variation of their cross-section under generalised loading remains an open and important problem to solve. To partly address this issue, we propose an analytical solution for stress recovery of untwisted, asymmetric, non-prismatic beams with smooth and continuous taper shape under general loading, considering plane stress conditions for isotropic materials undergoing small strains. The methodology follows Jourawski’s formulation, including the effect of asymmetric variable cross-section, with internal forces as known variables. We confirm the non-triviality of the stress field of non-prismatic beams, i.e., the dependency on all internal forces and beam geometry to shear and transverse stress distributions. As a particular novelty, the new formulation for transverse direct stress includes internal forces derivatives, resulting in greater accuracy than state-of-the-art models for distributed loading conditions. Also, closed-form solutions are introduced for non-prismatic and linearly tapered, generally asymmetric beams, both with rectangular cross-sections. For validation purposes, we consider three different practical beam models: a symmetric and an asymmetric, both linearly tapered, and an arched beam. The results, checked against commercial finite element analysis, show that the proposed model predicts the stress-field of non-prismatic beams under distributed loads with good levels of accuracy. Traction-free boundary condition requirements are naturally satisfied on the beam surfaces. •Recovery of the 2D stress field of non-prismatic beams under arbitrary loads.•Derivation of the transverse direct stress consistent with Cauchy-stress equilibrium.•Closed-form solutions for stresses for rectangular cross-section non-prismatic beams.•Reduction of the closed-form solution to linearly asymmetric tapered beams. |
ArticleNumber | 104284 |
Author | Hadjiloizi, D.A. Masjedi, P. Khaneh Vilar, M.M.S. Weaver, Paul M. |
Author_xml | – sequence: 1 givenname: M.M.S. orcidid: 0000-0001-6670-6047 surname: Vilar fullname: Vilar, M.M.S. email: Matheus.V.Santos@ul.ie – sequence: 2 givenname: D.A. orcidid: 0000-0001-6681-5104 surname: Hadjiloizi fullname: Hadjiloizi, D.A. email: Demetra.Hadjiloizi@ul.ie – sequence: 3 givenname: P. Khaneh surname: Masjedi fullname: Masjedi, P. Khaneh email: Pedram.Masjedi@ul.ie – sequence: 4 givenname: Paul M. orcidid: 0000-0002-1905-4477 surname: Weaver fullname: Weaver, Paul M. email: Paul.Weaver@ul.ie |
BookMark | eNqNkE9r3DAQxUVJIJs_30GhZ28ky7LkUylLmxQCPTTpVYzlcSNjW6lGW9hvXy3bQ-gpp2GGN2_m_S7Z2RpXZOxWiq0Usr2btrhPcUH_QnHe1qKWZd7UtvnANtIaVZna6jO2EV1nKqOVvWCXRJMQ4qjdsJ8_ckIiDivMBwrE48h_4YoJ5vnAgQ7LgjkFz8vd6jUFWiCXrkdYiNO-n9BnniOH1IecIB34HGGga3Y-wkx4869eseevX552D9Xj9_tvu8-PlVdK5AqacRh1pzVIDUa1vRW2ha6RqjXS9L20ygKglU0zdlKpxow4KNDglfXeCnXFPp58X1P8vUfKbor7VLKQq7VRWra6VkX16aTyKRIlHJ0PueSIa3k5zE4Kd4TpJvcGpjsCcieYxaH7z6GwWErcd-3uTrtYQPwJmBz5gKvHIaRCzw0xvMPlLwwomgY |
CitedBy_id | crossref_primary_10_34186_klujes_1183046 crossref_primary_10_1016_j_euromechsol_2023_105191 crossref_primary_10_1016_j_tws_2021_108812 crossref_primary_10_1016_j_compstruct_2024_118078 crossref_primary_10_1016_j_euromechsol_2025_105590 crossref_primary_10_1007_s10999_022_09601_0 crossref_primary_10_1007_s40997_024_00785_8 crossref_primary_10_1016_j_tws_2022_110384 crossref_primary_10_1007_s40997_024_00757_y crossref_primary_10_1016_j_engstruct_2021_113169 crossref_primary_10_1016_j_compstruct_2021_114190 crossref_primary_10_1016_j_compstruct_2023_117063 crossref_primary_10_1016_j_ijsolstr_2023_112490 |
Cites_doi | 10.1016/j.euromechsol.2020.103969 10.1002/nme.1620330306 10.1177/1099636215619775 10.1016/j.tws.2017.06.031 10.9744/ced.21.2.89-96 10.1061/(ASCE)0733-9399(1998)124:11(1290) 10.1061/(ASCE)ST.1943-541X.0001477 10.1016/j.compstruct.2020.112170 10.1016/j.cma.2018.07.033 10.1017/S0370164600031448 10.1061/(ASCE)SC.1943-5576.0000458 10.1115/1.3636564 10.1142/S1758825120500714 10.1016/j.apm.2019.07.018 10.1016/j.camwa.2017.04.025 10.1016/j.engstruct.2007.04.005 10.1016/j.engstruct.2015.11.010 10.2140/jomms.2008.3.425 10.1016/j.engstruct.2020.110252 10.2514/3.6996 10.1007/s00707-014-1281-3 10.1016/S0045-7949(01)00173-0 10.1061/(ASCE)0733-9445(1990)116:2(475) 10.1016/j.engstruct.2015.06.020 10.1016/j.tws.2019.01.008 10.1016/j.ijsolstr.2014.10.016 10.1112/plms/s1-32.1.247 10.2514/6.2020-0245 10.1007/s10999-016-9360-3 10.1061/(ASCE)0733-9399(1992)118:10(2128) 10.4236/ojce.2017.71003 10.1115/1.4025412 10.1016/0020-7403(95)00092-5 10.1016/j.engstruct.2008.05.011 10.1016/j.compstruc.2020.106339 10.1016/j.ijsolstr.2016.02.017 10.1016/j.euromechsol.2020.103975 10.1115/1.4040693 10.1007/s00366-019-00765-6 10.2140/jomms.2010.5.963 10.1016/j.apm.2019.12.010 |
ContentType | Journal Article |
Copyright | 2021 The Authors Copyright Elsevier BV Nov/Dec 2021 |
Copyright_xml | – notice: 2021 The Authors – notice: Copyright Elsevier BV Nov/Dec 2021 |
DBID | 6I. AAFTH AAYXX CITATION 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.1016/j.euromechsol.2021.104284 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1873-7285 |
ExternalDocumentID | 10_1016_j_euromechsol_2021_104284 S0997753821000668 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACKIV ACNNM ACRLP ADEZE ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SST SSZ T5K VH1 XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH 7SR 7TB 8BQ 8FD EFKBS FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c330t-a4fdf5955a15a736b8086a94136717bb1838aae8144f913347fed3a5ac38cc803 |
IEDL.DBID | AIKHN |
ISSN | 0997-7538 |
IngestDate | Fri Jul 25 06:13:02 EDT 2025 Thu Apr 24 22:55:12 EDT 2025 Tue Jul 01 01:55:22 EDT 2025 Fri Feb 23 02:42:53 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Tapered beam Analytical solution Beam modelling Closed form Non-prismatic beam |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c330t-a4fdf5955a15a736b8086a94136717bb1838aae8144f913347fed3a5ac38cc803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1905-4477 0000-0001-6670-6047 0000-0001-6681-5104 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0997753821000668 |
PQID | 2573516523 |
PQPubID | 2045479 |
ParticipantIDs | proquest_journals_2573516523 crossref_citationtrail_10_1016_j_euromechsol_2021_104284 crossref_primary_10_1016_j_euromechsol_2021_104284 elsevier_sciencedirect_doi_10_1016_j_euromechsol_2021_104284 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November-December 2021 2021-11-00 20211101 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: November-December 2021 |
PublicationDecade | 2020 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin |
PublicationTitle | European journal of mechanics, A, Solids |
PublicationYear | 2021 |
Publisher | Elsevier Masson SAS Elsevier BV |
Publisher_xml | – name: Elsevier Masson SAS – name: Elsevier BV |
References | Vu-Quoc, Léger (b48) 1992; 33 Bertolini, Eder, Taglialegne, Valvo (b9) 2019; 137 Gimena, Gonzaga, Gimena (b21) 2008; 30 Boley (b13) 1963; 30(3) Al-Gahtani, Khan (b2) 1998; 124 Zhou, Fu, An (b52) 2020 Masjedi, Ovesy (b28) 2015; 54 Taglialegne (b43) 2018 Rezaiee-Pajand, Karimipour (b36) 2019 Blodgett (b12) 1966 Trahair, Ansourian (b47) 2016; 108 Rezaiee-Pajand, Karimipour (b38) 2020; 36 Bruhns (b14) 2003 Bertolini, Taglialegne (b10) 2020; 81 Wong, Gunawan, Agusta, Herryanto, Tanaya (b50) 2019; 21 Mercuri, Balduzzi, Asprone, Auricchio (b31) 2020; 213 Balduzzi, Aminbaghai, Auricchio, Füssl (b3) 2018; 14 Rezaiee-Pajand, Karimipour (b39) 2020; 5 Timoshenko, Goodier (b45) 1951 Masjedi, Ovesy (b27) 2015; 226 Rajagopal, Hodges (b35) 2014; 81 Balduzzi, Morganti, Auricchio, Reali (b7) 2017; 74 Rezaiee-Pajand, Karimipour (b37) 2020; 12 Bleich (b11) 1932 Timoshenko, Young (b46) 1965 Masjedi, Weaver (b30) 2020 Murín, Kutiš (b33) 2002; 80 Thomas, Hallett, Weaver (b44) 2020 Filippi, Pagani, Carrera (b19) 2018; 85 Romano, Zingone (b41) 1992; 118 Zhou, Zhang, Zhong, Zhao (b53) 2016; 142 Hodges, Ho, Yu (b22) 2008; 3 Balduzzi, Aminbaghai, Sacco, Füssl, Eberhardsteiner, Auricchio (b4) 2016; 90 Michell (b32) 1900; 1 Beltempo, Balduzzi, Alfano, Auricchio (b8) 2015; 101 Doeva, Masjedi, Weaver (b17) 2020; 81 Doeva, O., Khaneh Masjedi, P., Weaver, P.M., 2020a. Exact solution for the deflection of composite beams under non-uniformly distributed loads. In: AIAA Scitech 2020 Forum. p. 0245. Balduzzi, Hochreiner, Füssl, Auricchio (b6) 2017; 7 Jourawski (b24) 1856 Balduzzi, Hochreiner, Füssl (b5) 2017; 119 Sokolnikoff, Redheffer (b42) 1958 Patni, Minera Rebulla, Weaver, Pirrera (b34) 2020 Weeger, Yeung, Dunn (b49) 2018; 342 Ai, Weaver (b1) 2017; 19 Romano (b40) 1996; 38 Krahula (b25) 1975; 13 Hodges, Rajagopal, Ho, Yu (b23) 2011; 5 Fertis, Keene (b18) 1990; 116 Masjedi, Weaver (b29) 2020; 81 Yildiz, Ikikardaslar, Khan (b51) 2020; 25 Masjedi, Maheri, Weaver (b26) 2019; 76 Carothers (b15) 1914; 33 Gimena, Gimena, Gonzaga (b20) 2008; 30 Gimena (10.1016/j.euromechsol.2021.104284_b20) 2008; 30 Krahula (10.1016/j.euromechsol.2021.104284_b25) 1975; 13 Romano (10.1016/j.euromechsol.2021.104284_b40) 1996; 38 Trahair (10.1016/j.euromechsol.2021.104284_b47) 2016; 108 Balduzzi (10.1016/j.euromechsol.2021.104284_b3) 2018; 14 Hodges (10.1016/j.euromechsol.2021.104284_b23) 2011; 5 Masjedi (10.1016/j.euromechsol.2021.104284_b30) 2020 Rezaiee-Pajand (10.1016/j.euromechsol.2021.104284_b39) 2020; 5 Timoshenko (10.1016/j.euromechsol.2021.104284_b45) 1951 Taglialegne (10.1016/j.euromechsol.2021.104284_b43) 2018 Rezaiee-Pajand (10.1016/j.euromechsol.2021.104284_b36) 2019 Balduzzi (10.1016/j.euromechsol.2021.104284_b5) 2017; 119 Timoshenko (10.1016/j.euromechsol.2021.104284_b46) 1965 Jourawski (10.1016/j.euromechsol.2021.104284_b24) 1856 Rajagopal (10.1016/j.euromechsol.2021.104284_b35) 2014; 81 Beltempo (10.1016/j.euromechsol.2021.104284_b8) 2015; 101 Michell (10.1016/j.euromechsol.2021.104284_b32) 1900; 1 Bruhns (10.1016/j.euromechsol.2021.104284_b14) 2003 Blodgett (10.1016/j.euromechsol.2021.104284_b12) 1966 Al-Gahtani (10.1016/j.euromechsol.2021.104284_b2) 1998; 124 Bleich (10.1016/j.euromechsol.2021.104284_b11) 1932 10.1016/j.euromechsol.2021.104284_b16 Romano (10.1016/j.euromechsol.2021.104284_b41) 1992; 118 Rezaiee-Pajand (10.1016/j.euromechsol.2021.104284_b38) 2020; 36 Thomas (10.1016/j.euromechsol.2021.104284_b44) 2020 Patni (10.1016/j.euromechsol.2021.104284_b34) 2020 Sokolnikoff (10.1016/j.euromechsol.2021.104284_b42) 1958 Ai (10.1016/j.euromechsol.2021.104284_b1) 2017; 19 Filippi (10.1016/j.euromechsol.2021.104284_b19) 2018; 85 Rezaiee-Pajand (10.1016/j.euromechsol.2021.104284_b37) 2020; 12 Balduzzi (10.1016/j.euromechsol.2021.104284_b7) 2017; 74 Zhou (10.1016/j.euromechsol.2021.104284_b53) 2016; 142 Yildiz (10.1016/j.euromechsol.2021.104284_b51) 2020; 25 Doeva (10.1016/j.euromechsol.2021.104284_b17) 2020; 81 Boley (10.1016/j.euromechsol.2021.104284_b13) 1963; 30(3) Masjedi (10.1016/j.euromechsol.2021.104284_b29) 2020; 81 Wong (10.1016/j.euromechsol.2021.104284_b50) 2019; 21 Masjedi (10.1016/j.euromechsol.2021.104284_b26) 2019; 76 Balduzzi (10.1016/j.euromechsol.2021.104284_b6) 2017; 7 Zhou (10.1016/j.euromechsol.2021.104284_b52) 2020 Carothers (10.1016/j.euromechsol.2021.104284_b15) 1914; 33 Fertis (10.1016/j.euromechsol.2021.104284_b18) 1990; 116 Masjedi (10.1016/j.euromechsol.2021.104284_b28) 2015; 54 Mercuri (10.1016/j.euromechsol.2021.104284_b31) 2020; 213 Murín (10.1016/j.euromechsol.2021.104284_b33) 2002; 80 Bertolini (10.1016/j.euromechsol.2021.104284_b9) 2019; 137 Hodges (10.1016/j.euromechsol.2021.104284_b22) 2008; 3 Balduzzi (10.1016/j.euromechsol.2021.104284_b4) 2016; 90 Bertolini (10.1016/j.euromechsol.2021.104284_b10) 2020; 81 Weeger (10.1016/j.euromechsol.2021.104284_b49) 2018; 342 Vu-Quoc (10.1016/j.euromechsol.2021.104284_b48) 1992; 33 Gimena (10.1016/j.euromechsol.2021.104284_b21) 2008; 30 Masjedi (10.1016/j.euromechsol.2021.104284_b27) 2015; 226 |
References_xml | – volume: 118 start-page: 2128 year: 1992 end-page: 2134 ident: b41 article-title: Deflections of beams with varying rectangular cross section publication-title: J. Eng. Mech. – volume: 85 year: 2018 ident: b19 article-title: Accurate nonlinear dynamics and mode aberration of rotating blades publication-title: J. Appl. Mech. – volume: 12 year: 2020 ident: b37 article-title: Analytical scheme for solid stress analysis publication-title: Int. J. Appl. Mech. – year: 1951 ident: b45 article-title: Theory of Elasticity – volume: 81 year: 2014 ident: b35 article-title: Asymptotic approach to oblique cross-sectional analysis of beams publication-title: J. Appl. Mech. – volume: 25 year: 2020 ident: b51 article-title: Theoretical and computational analysis of circular cantilever tapered beams publication-title: Pract. Period. Struct. Des. Constr. – volume: 13 start-page: 1390 year: 1975 end-page: 1391 ident: b25 article-title: Shear formula for beams of variable cross section publication-title: AIAA J. – start-page: 1 year: 2018 end-page: 181 ident: b43 article-title: Analytical Study of Stress Fields in Wind Turbine Blades – volume: 101 start-page: 88 year: 2015 end-page: 98 ident: b8 article-title: Analytical derivation of a general 2D non-prismatic beam model based on the Hellinger–Reissner principle publication-title: Eng. Struct. – volume: 5 start-page: 147 year: 2020 end-page: 175 ident: b39 article-title: Two rectangular elements bbased on analytical functions publication-title: Adv. Comput. Des. – year: 1965 ident: b46 article-title: Theory of Structures – volume: 14 start-page: 51 year: 2018 end-page: 70 ident: b3 article-title: Planar Timoshenko-like model for multilayer non-prismatic beams publication-title: Int. J. Mech. Mater. Des. – volume: 90 start-page: 236 year: 2016 end-page: 250 ident: b4 article-title: Non-prismatic beams: a simple and effective Timoshenko-like model publication-title: Int. J. Solids Struct. – volume: 142 start-page: 1 year: 2016 end-page: 10 ident: b53 article-title: Shear stress calculation and distribution in variable cross sections of box girders with corrugated steel webs publication-title: J. Struct. Eng. – year: 1932 ident: b11 article-title: Stahlhochbauten: ihre Theorie, Berechnung und bauliche Gestaltung, Band. 1 – volume: 74 start-page: 1531 year: 2017 end-page: 1541 ident: b7 article-title: Non-prismatic Timoshenko-like beam model: Numerical solution via isogeometric collocation publication-title: Comput. Math. Appl. – volume: 3 start-page: 425 year: 2008 end-page: 440 ident: b22 article-title: The effect of taper on section constants for in-plane deformation of an isotropic strip publication-title: J. Mech. Mater. Struct. – volume: 226 start-page: 1689 year: 2015 end-page: 1706 ident: b27 article-title: Large deflection analysis of geometrically exact spatial beams under conservative and nonconservative loads using intrinsic equations publication-title: Acta Mech. – reference: Doeva, O., Khaneh Masjedi, P., Weaver, P.M., 2020a. Exact solution for the deflection of composite beams under non-uniformly distributed loads. In: AIAA Scitech 2020 Forum. p. 0245. – volume: 1 start-page: 247 year: 1900 end-page: 257 ident: b32 article-title: The stress in an aelotropic elastic solid with an infinite plane boundary publication-title: Proc. Lond. Math. Soc. – volume: 54 start-page: 183 year: 2015 end-page: 191 ident: b28 article-title: Chebyshev collocation method for static intrinsic equations of geometrically exact beams publication-title: Int. J. Solids Struct. – volume: 33 start-page: 553 year: 1992 end-page: 566 ident: b48 article-title: Efficient evaluation of the flexibility of tapered I-beams accounting for shear deformations publication-title: Internat. J. Numer. Methods Engrg. – year: 1958 ident: b42 article-title: Mathematics of Physics and Modern Engineering – year: 1966 ident: b12 article-title: Design of Welded Structures – volume: 38 start-page: 1017 year: 1996 end-page: 1035 ident: b40 article-title: Deflections of Timoshenko beam with varying cross-section publication-title: Int. J. Mech. Sci. – volume: 80 start-page: 329 year: 2002 end-page: 338 ident: b33 article-title: 3D-beam element with continuous variation of the cross-sectional area publication-title: Comput. Struct. – volume: 76 start-page: 938 year: 2019 end-page: 957 ident: b26 article-title: Large deflection of functionally graded porous beams based on a geometrically exact theory with a fully intrinsic formulation publication-title: Appl. Math. Model. – volume: 124 start-page: 1290 year: 1998 end-page: 1293 ident: b2 article-title: Exact analysis of nonprismatic beams publication-title: J. Eng. Mech. – volume: 342 start-page: 95 year: 2018 end-page: 115 ident: b49 article-title: Fully isogeometric modeling and analysis of nonlinear 3D beams with spatially varying geometric and material parameters publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 30(3) start-page: 373 year: 1963 end-page: 378 ident: b13 article-title: On the accuracy of the Bernoulli–Euler theory for beams of variable section publication-title: J. Appl. Mech. – volume: 33 start-page: 292 year: 1914 end-page: 306 ident: b15 article-title: XXVI.—Plane strain in a wedge, with applications to masonry Dams publication-title: Proc. Roy. Soc. Edinburgh – volume: 81 year: 2020 ident: b10 article-title: Analytical solution of the stresses in doubly tapered box girders publication-title: Eur. J. Mech. A Solids – start-page: 328 year: 1856 end-page: 351 ident: b24 article-title: Sur la résistance d’un corps prismatique et d’une pièce composée en bois ou en tôle de fer à une force perpendiculaire à leur longueur publication-title: Annales des Ponts et Chaussées, Vol. 12 – volume: 119 start-page: 934 year: 2017 end-page: 945 ident: b5 article-title: Stress recovery from one dimensional models for tapered bi-symmetric thin-walled I beams: Deficiencies in modern engineering tools and procedures publication-title: Thin-Walled Struct. – volume: 81 year: 2020 ident: b17 article-title: Static deflection of fully coupled composite timoshenko beams: An exact analytical solution publication-title: Eur. J. Mech. A Solids – volume: 19 start-page: 3 year: 2017 end-page: 25 ident: b1 article-title: Simplified analytical model for tapered sandwich beams using variable stiffness materials publication-title: J. Sandw. Struct. Mater. – volume: 21 start-page: 89 year: 2019 end-page: 96 ident: b50 article-title: On the derivation of exact solutions of a tapered cantilever Timoshenko beam publication-title: Civ. Eng. Dimens. – volume: 81 start-page: 16 year: 2020 end-page: 36 ident: b29 article-title: Analytical solution for the fully coupled static response of variable stiffness composite beams publication-title: Appl. Math. Model. – volume: 5 start-page: 963 year: 2011 end-page: 975 ident: b23 article-title: Stress and strain recovery for the in-plane deformation of an isotropic tapered strip-beam publication-title: J. Mech. Mater. Struct. – year: 2020 ident: b44 article-title: Design considerations for variable stiffness, doubly curved composite plates publication-title: Compos. Struct. – volume: 213 year: 2020 ident: b31 article-title: Structural analysis of non-prismatic beams: Critical issues, accurate stress recovery, and analytical definition of the Finite Element (FE) stiffness matrix publication-title: Eng. Struct. – volume: 36 start-page: 1325 year: 2020 end-page: 1345 ident: b38 article-title: Three stress-based triangular elements publication-title: Eng. Comput. – start-page: 1 year: 2020 end-page: 15 ident: b52 article-title: Distribution and properties of shear stress in elastic beams with variable cross section: Theoretical analysis and finite element modelling publication-title: KSCE J. Civ. Eng. – volume: 30 start-page: 404 year: 2008 end-page: 411 ident: b21 article-title: 3D-curved beam element with varying cross-sectional area under generalized loads publication-title: Eng. Struct. – volume: 7 start-page: 32 year: 2017 end-page: 62 ident: b6 article-title: Serviceability analysis of non-prismatic timber beams: derivation and validation of new and effective straightforward formulas publication-title: Open J. Civ. Eng. – volume: 116 start-page: 475 year: 1990 end-page: 489 ident: b18 article-title: Elastic and inelastic analysis of nonprismatic members publication-title: J. Struct. Eng. – volume: 108 start-page: 47 year: 2016 end-page: 52 ident: b47 article-title: In-plane behaviour of web-tapered beams publication-title: Eng. Struct. – volume: 30 start-page: 3355 year: 2008 end-page: 3364 ident: b20 article-title: Structural analysis of a curved beam element defined in global coordinates publication-title: Eng. Struct. – volume: 137 start-page: 527 year: 2019 end-page: 540 ident: b9 article-title: Stresses in constant tapered beams with thin-walled rectangular and circular cross sections publication-title: Thin-Walled Struct. – year: 2003 ident: b14 article-title: Advanced Mechanics of Solids – year: 2020 ident: b30 article-title: Variable stiffness composite beams subject to non-uniformly distributed loads: An analytical solution publication-title: Compos. Struct. – start-page: 373 year: 2019 end-page: 410 ident: b36 article-title: Stress analysis by two cuboid isoparametric elements publication-title: Eur. J. Comput. Mech. – year: 2020 ident: b34 article-title: Efficient modelling of beam-like structures with general non-prismatic, curved geometry publication-title: Comput. Struct. – volume: 81 year: 2020 ident: 10.1016/j.euromechsol.2021.104284_b10 article-title: Analytical solution of the stresses in doubly tapered box girders publication-title: Eur. J. Mech. A Solids doi: 10.1016/j.euromechsol.2020.103969 – volume: 33 start-page: 553 issue: 3 year: 1992 ident: 10.1016/j.euromechsol.2021.104284_b48 article-title: Efficient evaluation of the flexibility of tapered I-beams accounting for shear deformations publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.1620330306 – volume: 19 start-page: 3 issue: 1 year: 2017 ident: 10.1016/j.euromechsol.2021.104284_b1 article-title: Simplified analytical model for tapered sandwich beams using variable stiffness materials publication-title: J. Sandw. Struct. Mater. doi: 10.1177/1099636215619775 – volume: 119 start-page: 934 year: 2017 ident: 10.1016/j.euromechsol.2021.104284_b5 article-title: Stress recovery from one dimensional models for tapered bi-symmetric thin-walled I beams: Deficiencies in modern engineering tools and procedures publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2017.06.031 – volume: 21 start-page: 89 issue: 2 year: 2019 ident: 10.1016/j.euromechsol.2021.104284_b50 article-title: On the derivation of exact solutions of a tapered cantilever Timoshenko beam publication-title: Civ. Eng. Dimens. doi: 10.9744/ced.21.2.89-96 – volume: 124 start-page: 1290 issue: 11 year: 1998 ident: 10.1016/j.euromechsol.2021.104284_b2 article-title: Exact analysis of nonprismatic beams publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)0733-9399(1998)124:11(1290) – volume: 142 start-page: 1 issue: 6 year: 2016 ident: 10.1016/j.euromechsol.2021.104284_b53 article-title: Shear stress calculation and distribution in variable cross sections of box girders with corrugated steel webs publication-title: J. Struct. Eng. doi: 10.1061/(ASCE)ST.1943-541X.0001477 – year: 2020 ident: 10.1016/j.euromechsol.2021.104284_b44 article-title: Design considerations for variable stiffness, doubly curved composite plates publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2020.112170 – volume: 342 start-page: 95 year: 2018 ident: 10.1016/j.euromechsol.2021.104284_b49 article-title: Fully isogeometric modeling and analysis of nonlinear 3D beams with spatially varying geometric and material parameters publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2018.07.033 – volume: 33 start-page: 292 year: 1914 ident: 10.1016/j.euromechsol.2021.104284_b15 article-title: XXVI.—Plane strain in a wedge, with applications to masonry Dams publication-title: Proc. Roy. Soc. Edinburgh doi: 10.1017/S0370164600031448 – start-page: 1 year: 2018 ident: 10.1016/j.euromechsol.2021.104284_b43 – volume: 25 issue: 1 year: 2020 ident: 10.1016/j.euromechsol.2021.104284_b51 article-title: Theoretical and computational analysis of circular cantilever tapered beams publication-title: Pract. Period. Struct. Des. Constr. doi: 10.1061/(ASCE)SC.1943-5576.0000458 – start-page: 1 year: 2020 ident: 10.1016/j.euromechsol.2021.104284_b52 article-title: Distribution and properties of shear stress in elastic beams with variable cross section: Theoretical analysis and finite element modelling publication-title: KSCE J. Civ. Eng. – volume: 30(3) start-page: 373 year: 1963 ident: 10.1016/j.euromechsol.2021.104284_b13 article-title: On the accuracy of the Bernoulli–Euler theory for beams of variable section publication-title: J. Appl. Mech. doi: 10.1115/1.3636564 – year: 2020 ident: 10.1016/j.euromechsol.2021.104284_b30 article-title: Variable stiffness composite beams subject to non-uniformly distributed loads: An analytical solution publication-title: Compos. Struct. – volume: 12 issue: 06 year: 2020 ident: 10.1016/j.euromechsol.2021.104284_b37 article-title: Analytical scheme for solid stress analysis publication-title: Int. J. Appl. Mech. doi: 10.1142/S1758825120500714 – volume: 76 start-page: 938 year: 2019 ident: 10.1016/j.euromechsol.2021.104284_b26 article-title: Large deflection of functionally graded porous beams based on a geometrically exact theory with a fully intrinsic formulation publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2019.07.018 – volume: 74 start-page: 1531 issue: 7 year: 2017 ident: 10.1016/j.euromechsol.2021.104284_b7 article-title: Non-prismatic Timoshenko-like beam model: Numerical solution via isogeometric collocation publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2017.04.025 – volume: 30 start-page: 404 issue: 2 year: 2008 ident: 10.1016/j.euromechsol.2021.104284_b21 article-title: 3D-curved beam element with varying cross-sectional area under generalized loads publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2007.04.005 – year: 1951 ident: 10.1016/j.euromechsol.2021.104284_b45 – volume: 108 start-page: 47 year: 2016 ident: 10.1016/j.euromechsol.2021.104284_b47 article-title: In-plane behaviour of web-tapered beams publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2015.11.010 – start-page: 373 year: 2019 ident: 10.1016/j.euromechsol.2021.104284_b36 article-title: Stress analysis by two cuboid isoparametric elements publication-title: Eur. J. Comput. Mech. – volume: 5 start-page: 147 issue: 2 year: 2020 ident: 10.1016/j.euromechsol.2021.104284_b39 article-title: Two rectangular elements bbased on analytical functions publication-title: Adv. Comput. Des. – volume: 3 start-page: 425 issue: 3 year: 2008 ident: 10.1016/j.euromechsol.2021.104284_b22 article-title: The effect of taper on section constants for in-plane deformation of an isotropic strip publication-title: J. Mech. Mater. Struct. doi: 10.2140/jomms.2008.3.425 – year: 1966 ident: 10.1016/j.euromechsol.2021.104284_b12 – volume: 213 year: 2020 ident: 10.1016/j.euromechsol.2021.104284_b31 article-title: Structural analysis of non-prismatic beams: Critical issues, accurate stress recovery, and analytical definition of the Finite Element (FE) stiffness matrix publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2020.110252 – volume: 13 start-page: 1390 issue: 10 year: 1975 ident: 10.1016/j.euromechsol.2021.104284_b25 article-title: Shear formula for beams of variable cross section publication-title: AIAA J. doi: 10.2514/3.6996 – volume: 226 start-page: 1689 issue: 6 year: 2015 ident: 10.1016/j.euromechsol.2021.104284_b27 article-title: Large deflection analysis of geometrically exact spatial beams under conservative and nonconservative loads using intrinsic equations publication-title: Acta Mech. doi: 10.1007/s00707-014-1281-3 – volume: 80 start-page: 329 issue: 3–4 year: 2002 ident: 10.1016/j.euromechsol.2021.104284_b33 article-title: 3D-beam element with continuous variation of the cross-sectional area publication-title: Comput. Struct. doi: 10.1016/S0045-7949(01)00173-0 – volume: 116 start-page: 475 issue: 2 year: 1990 ident: 10.1016/j.euromechsol.2021.104284_b18 article-title: Elastic and inelastic analysis of nonprismatic members publication-title: J. Struct. Eng. doi: 10.1061/(ASCE)0733-9445(1990)116:2(475) – volume: 101 start-page: 88 year: 2015 ident: 10.1016/j.euromechsol.2021.104284_b8 article-title: Analytical derivation of a general 2D non-prismatic beam model based on the Hellinger–Reissner principle publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2015.06.020 – volume: 137 start-page: 527 year: 2019 ident: 10.1016/j.euromechsol.2021.104284_b9 article-title: Stresses in constant tapered beams with thin-walled rectangular and circular cross sections publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2019.01.008 – volume: 54 start-page: 183 year: 2015 ident: 10.1016/j.euromechsol.2021.104284_b28 article-title: Chebyshev collocation method for static intrinsic equations of geometrically exact beams publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2014.10.016 – year: 1958 ident: 10.1016/j.euromechsol.2021.104284_b42 – volume: 1 start-page: 247 issue: 1 year: 1900 ident: 10.1016/j.euromechsol.2021.104284_b32 article-title: The stress in an aelotropic elastic solid with an infinite plane boundary publication-title: Proc. Lond. Math. Soc. doi: 10.1112/plms/s1-32.1.247 – ident: 10.1016/j.euromechsol.2021.104284_b16 doi: 10.2514/6.2020-0245 – volume: 14 start-page: 51 issue: 1 year: 2018 ident: 10.1016/j.euromechsol.2021.104284_b3 article-title: Planar Timoshenko-like model for multilayer non-prismatic beams publication-title: Int. J. Mech. Mater. Des. doi: 10.1007/s10999-016-9360-3 – volume: 118 start-page: 2128 issue: 10 year: 1992 ident: 10.1016/j.euromechsol.2021.104284_b41 article-title: Deflections of beams with varying rectangular cross section publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)0733-9399(1992)118:10(2128) – volume: 7 start-page: 32 issue: 1 year: 2017 ident: 10.1016/j.euromechsol.2021.104284_b6 article-title: Serviceability analysis of non-prismatic timber beams: derivation and validation of new and effective straightforward formulas publication-title: Open J. Civ. Eng. doi: 10.4236/ojce.2017.71003 – year: 1965 ident: 10.1016/j.euromechsol.2021.104284_b46 – year: 2003 ident: 10.1016/j.euromechsol.2021.104284_b14 – volume: 81 issue: 3 year: 2014 ident: 10.1016/j.euromechsol.2021.104284_b35 article-title: Asymptotic approach to oblique cross-sectional analysis of beams publication-title: J. Appl. Mech. doi: 10.1115/1.4025412 – start-page: 328 year: 1856 ident: 10.1016/j.euromechsol.2021.104284_b24 article-title: Sur la résistance d’un corps prismatique et d’une pièce composée en bois ou en tôle de fer à une force perpendiculaire à leur longueur – year: 1932 ident: 10.1016/j.euromechsol.2021.104284_b11 – volume: 38 start-page: 1017 issue: 8–9 year: 1996 ident: 10.1016/j.euromechsol.2021.104284_b40 article-title: Deflections of Timoshenko beam with varying cross-section publication-title: Int. J. Mech. Sci. doi: 10.1016/0020-7403(95)00092-5 – volume: 30 start-page: 3355 issue: 11 year: 2008 ident: 10.1016/j.euromechsol.2021.104284_b20 article-title: Structural analysis of a curved beam element defined in global coordinates publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2008.05.011 – year: 2020 ident: 10.1016/j.euromechsol.2021.104284_b34 article-title: Efficient modelling of beam-like structures with general non-prismatic, curved geometry publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2020.106339 – volume: 90 start-page: 236 year: 2016 ident: 10.1016/j.euromechsol.2021.104284_b4 article-title: Non-prismatic beams: a simple and effective Timoshenko-like model publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2016.02.017 – volume: 81 year: 2020 ident: 10.1016/j.euromechsol.2021.104284_b17 article-title: Static deflection of fully coupled composite timoshenko beams: An exact analytical solution publication-title: Eur. J. Mech. A Solids doi: 10.1016/j.euromechsol.2020.103975 – volume: 85 issue: 11 year: 2018 ident: 10.1016/j.euromechsol.2021.104284_b19 article-title: Accurate nonlinear dynamics and mode aberration of rotating blades publication-title: J. Appl. Mech. doi: 10.1115/1.4040693 – volume: 36 start-page: 1325 issue: 4 year: 2020 ident: 10.1016/j.euromechsol.2021.104284_b38 article-title: Three stress-based triangular elements publication-title: Eng. Comput. doi: 10.1007/s00366-019-00765-6 – volume: 5 start-page: 963 issue: 6 year: 2011 ident: 10.1016/j.euromechsol.2021.104284_b23 article-title: Stress and strain recovery for the in-plane deformation of an isotropic tapered strip-beam publication-title: J. Mech. Mater. Struct. doi: 10.2140/jomms.2010.5.963 – volume: 81 start-page: 16 year: 2020 ident: 10.1016/j.euromechsol.2021.104284_b29 article-title: Analytical solution for the fully coupled static response of variable stiffness composite beams publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2019.12.010 |
SSID | ssj0002021 |
Score | 2.3728359 |
Snippet | Non-prismatic beams are widely employed in several engineering fields, e.g., wind turbines, rotor blades, aircraft wings, and arched bridges. While analytical... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 104284 |
SubjectTerms | Analytical solution Asymmetry Beam modelling Boundary conditions Closed form Cross-sections Exact solutions Finite element method Free boundaries Internal forces Isotropic material Model accuracy Non-prismatic beam Plane stress Rotor blades Rotor blades (turbomachinery) Stress analysis Stress distribution Tapered beam Wind turbines Wings (aircraft) |
Title | Stress analysis of generally asymmetric non-prismatic beams subject to arbitrary loads |
URI | https://dx.doi.org/10.1016/j.euromechsol.2021.104284 https://www.proquest.com/docview/2573516523 |
Volume | 90 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60gnjxLb6J4HVtd5O0CXgpolRFLz7wFpJsopXWilsPvfjbzexmfYEgeNxlJ4SZZGa-TeYbgH1hmKA-Z4lzjiWIEBJhKUskl8JLPC_UWO98cdnu3bCzO343BUd1LQxeq4y-v_LppbeOb5pRm83nfr95hTWfIdkWWVoGTjENMxmVbd6Ame7pee_ywyEHfF82zkPiURSYhb3Pa15IgTF09iFY-gA_xEPPTLDfwtQPh11GoZNFmI_pI-lWM1yCKfe0DAsxlSRxoxYrcHtV1oAQHTlHyMiT-4phejAhupgMh9hKy5KA_pOSChGZW4lxeliQ4tXg3xkyHhH9YvplYT4ZjHRerMLNyfH1US-JLRQSS2lrnGjmc88l5zrlukPbRgQIoyVDora0Y0zY0EJrJwKs8jLAVdbxLqeaa0uFtaJF16ARJuLWgYhc6qAy06GaMZe3DPL0OC9pK8ul9HYDRK0xZSO_OLa5GKj6Itmj-qJshcpWlbI3IPsQfa5INv4idFibRX1bMSoEg7-Ib9emVHHbFir4L8rTdgDnm_8bfQvm8KkqWtyGxvjl1e2E7GVsdmH64C3djWv0HYVZ8RA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60gnrxLT6qRvC69pGkTcBLEaW-evGBt5BkE620trj14L83s5v1BYLgdXcnhJlkZr5N5huAA2GYoD5liXOOJYgQEmEpSySXwks8L9RY73zVa3Vv2fk9v5-C47IWBq9VRt9f-PTcW8cntajN2rjfr11jzWdItkWzkQdOMQ0zjAe0V4GZztlFt_fhkAO-zxvnIfEoCszC_uc1L6TAGDr7GCx9iB_ioWdTsN_C1A-HnUeh0yVYiOkj6RQzXIYp97wCizGVJHGjZqtwd53XgBAdOUfIyJOHgmF68EZ09jYcYistSwL6T3IqRGRuJcbpYUayV4N_Z8hkRPSL6eeF-WQw0mm2BrenJzfH3SS2UEgspfVJoplPPZec6wbXbdoyIkAYLRkStTXaxoQNLbR2IsAqLwNcZW3vUqq5tlRYK-p0HSphIm4DiEilDiozbaoZc2ndIE-P85LWm6mU3m6CKDWmbOQXxzYXA1VeJHtSX5StUNmqUPYmND9ExwXJxl-EjkqzqG8rRoVg8BfxamlKFbdtpoL_orzRCuB863-j78Fc9-bqUl2e9S62YR7fFAWMVahMXl7dTshkJmY3rtR3TWPy_w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stress+analysis+of+generally+asymmetric+non-prismatic+beams+subject+to+arbitrary+loads&rft.jtitle=European+journal+of+mechanics%2C+A%2C+Solids&rft.au=Vilar%2C+M.M.S.&rft.au=Hadjiloizi%2C+D.A.&rft.au=Masjedi%2C+P.+Khaneh&rft.au=Weaver%2C+Paul+M.&rft.date=2021-11-01&rft.pub=Elsevier+Masson+SAS&rft.issn=0997-7538&rft.eissn=1873-7285&rft.volume=90&rft_id=info:doi/10.1016%2Fj.euromechsol.2021.104284&rft.externalDocID=S0997753821000668 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0997-7538&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0997-7538&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0997-7538&client=summon |