Stress analysis of generally asymmetric non-prismatic beams subject to arbitrary loads

Non-prismatic beams are widely employed in several engineering fields, e.g., wind turbines, rotor blades, aircraft wings, and arched bridges. While analytical solutions for variable cross-section beams are desirable, a model describing all stress components for beams with general variation of their...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of mechanics, A, Solids Vol. 90; p. 104284
Main Authors Vilar, M.M.S., Hadjiloizi, D.A., Masjedi, P. Khaneh, Weaver, Paul M.
Format Journal Article
LanguageEnglish
Published Berlin Elsevier Masson SAS 01.11.2021
Elsevier BV
Subjects
Online AccessGet full text
ISSN0997-7538
1873-7285
DOI10.1016/j.euromechsol.2021.104284

Cover

Abstract Non-prismatic beams are widely employed in several engineering fields, e.g., wind turbines, rotor blades, aircraft wings, and arched bridges. While analytical solutions for variable cross-section beams are desirable, a model describing all stress components for beams with general variation of their cross-section under generalised loading remains an open and important problem to solve. To partly address this issue, we propose an analytical solution for stress recovery of untwisted, asymmetric, non-prismatic beams with smooth and continuous taper shape under general loading, considering plane stress conditions for isotropic materials undergoing small strains. The methodology follows Jourawski’s formulation, including the effect of asymmetric variable cross-section, with internal forces as known variables. We confirm the non-triviality of the stress field of non-prismatic beams, i.e., the dependency on all internal forces and beam geometry to shear and transverse stress distributions. As a particular novelty, the new formulation for transverse direct stress includes internal forces derivatives, resulting in greater accuracy than state-of-the-art models for distributed loading conditions. Also, closed-form solutions are introduced for non-prismatic and linearly tapered, generally asymmetric beams, both with rectangular cross-sections. For validation purposes, we consider three different practical beam models: a symmetric and an asymmetric, both linearly tapered, and an arched beam. The results, checked against commercial finite element analysis, show that the proposed model predicts the stress-field of non-prismatic beams under distributed loads with good levels of accuracy. Traction-free boundary condition requirements are naturally satisfied on the beam surfaces. •Recovery of the 2D stress field of non-prismatic beams under arbitrary loads.•Derivation of the transverse direct stress consistent with Cauchy-stress equilibrium.•Closed-form solutions for stresses for rectangular cross-section non-prismatic beams.•Reduction of the closed-form solution to linearly asymmetric tapered beams.
AbstractList Non-prismatic beams are widely employed in several engineering fields, e.g., wind turbines, rotor blades, aircraft wings, and arched bridges. While analytical solutions for variable cross-section beams are desirable, a model describing all stress components for beams with general variation of their cross-section under generalised loading remains an open and important problem to solve. To partly address this issue, we propose an analytical solution for stress recovery of untwisted, asymmetric, non-prismatic beams with smooth and continuous taper shape under general loading, considering plane stress conditions for isotropic materials undergoing small strains. The methodology follows Jourawski's formulation, including the effect of asymmetric variable cross-section, with internal forces as known variables. We confirm the non-triviality of the stress field of non-prismatic beams, i.e., the dependency on all internal forces and beam geometry to shear and transverse stress distributions. As a particular novelty, the new formulation for transverse direct stress includes internal forces derivatives, resulting in greater accuracy than state-of-the-art models for distributed loading conditions. Also, closed-form solutions are introduced for non-prismatic and linearly tapered, generally asymmetric beams, both with rectangular cross-sections. For validation purposes, we consider three different practical beam models: a symmetric and an asymmetric, both linearly tapered, and an arched beam. The results, checked against commercial finite element analysis, show that the proposed model predicts the stress-field of non-prismatic beams under distributed loads with good levels of accuracy. Traction-free boundary condition requirements are naturally satisfied on the beam surfaces.
Non-prismatic beams are widely employed in several engineering fields, e.g., wind turbines, rotor blades, aircraft wings, and arched bridges. While analytical solutions for variable cross-section beams are desirable, a model describing all stress components for beams with general variation of their cross-section under generalised loading remains an open and important problem to solve. To partly address this issue, we propose an analytical solution for stress recovery of untwisted, asymmetric, non-prismatic beams with smooth and continuous taper shape under general loading, considering plane stress conditions for isotropic materials undergoing small strains. The methodology follows Jourawski’s formulation, including the effect of asymmetric variable cross-section, with internal forces as known variables. We confirm the non-triviality of the stress field of non-prismatic beams, i.e., the dependency on all internal forces and beam geometry to shear and transverse stress distributions. As a particular novelty, the new formulation for transverse direct stress includes internal forces derivatives, resulting in greater accuracy than state-of-the-art models for distributed loading conditions. Also, closed-form solutions are introduced for non-prismatic and linearly tapered, generally asymmetric beams, both with rectangular cross-sections. For validation purposes, we consider three different practical beam models: a symmetric and an asymmetric, both linearly tapered, and an arched beam. The results, checked against commercial finite element analysis, show that the proposed model predicts the stress-field of non-prismatic beams under distributed loads with good levels of accuracy. Traction-free boundary condition requirements are naturally satisfied on the beam surfaces. •Recovery of the 2D stress field of non-prismatic beams under arbitrary loads.•Derivation of the transverse direct stress consistent with Cauchy-stress equilibrium.•Closed-form solutions for stresses for rectangular cross-section non-prismatic beams.•Reduction of the closed-form solution to linearly asymmetric tapered beams.
ArticleNumber 104284
Author Hadjiloizi, D.A.
Masjedi, P. Khaneh
Vilar, M.M.S.
Weaver, Paul M.
Author_xml – sequence: 1
  givenname: M.M.S.
  orcidid: 0000-0001-6670-6047
  surname: Vilar
  fullname: Vilar, M.M.S.
  email: Matheus.V.Santos@ul.ie
– sequence: 2
  givenname: D.A.
  orcidid: 0000-0001-6681-5104
  surname: Hadjiloizi
  fullname: Hadjiloizi, D.A.
  email: Demetra.Hadjiloizi@ul.ie
– sequence: 3
  givenname: P. Khaneh
  surname: Masjedi
  fullname: Masjedi, P. Khaneh
  email: Pedram.Masjedi@ul.ie
– sequence: 4
  givenname: Paul M.
  orcidid: 0000-0002-1905-4477
  surname: Weaver
  fullname: Weaver, Paul M.
  email: Paul.Weaver@ul.ie
BookMark eNqNkE9r3DAQxUVJIJs_30GhZ28ky7LkUylLmxQCPTTpVYzlcSNjW6lGW9hvXy3bQ-gpp2GGN2_m_S7Z2RpXZOxWiq0Usr2btrhPcUH_QnHe1qKWZd7UtvnANtIaVZna6jO2EV1nKqOVvWCXRJMQ4qjdsJ8_ckIiDivMBwrE48h_4YoJ5vnAgQ7LgjkFz8vd6jUFWiCXrkdYiNO-n9BnniOH1IecIB34HGGga3Y-wkx4869eseevX552D9Xj9_tvu8-PlVdK5AqacRh1pzVIDUa1vRW2ha6RqjXS9L20ygKglU0zdlKpxow4KNDglfXeCnXFPp58X1P8vUfKbor7VLKQq7VRWra6VkX16aTyKRIlHJ0PueSIa3k5zE4Kd4TpJvcGpjsCcieYxaH7z6GwWErcd-3uTrtYQPwJmBz5gKvHIaRCzw0xvMPlLwwomgY
CitedBy_id crossref_primary_10_34186_klujes_1183046
crossref_primary_10_1016_j_euromechsol_2023_105191
crossref_primary_10_1016_j_tws_2021_108812
crossref_primary_10_1016_j_compstruct_2024_118078
crossref_primary_10_1016_j_euromechsol_2025_105590
crossref_primary_10_1007_s10999_022_09601_0
crossref_primary_10_1007_s40997_024_00785_8
crossref_primary_10_1016_j_tws_2022_110384
crossref_primary_10_1007_s40997_024_00757_y
crossref_primary_10_1016_j_engstruct_2021_113169
crossref_primary_10_1016_j_compstruct_2021_114190
crossref_primary_10_1016_j_compstruct_2023_117063
crossref_primary_10_1016_j_ijsolstr_2023_112490
Cites_doi 10.1016/j.euromechsol.2020.103969
10.1002/nme.1620330306
10.1177/1099636215619775
10.1016/j.tws.2017.06.031
10.9744/ced.21.2.89-96
10.1061/(ASCE)0733-9399(1998)124:11(1290)
10.1061/(ASCE)ST.1943-541X.0001477
10.1016/j.compstruct.2020.112170
10.1016/j.cma.2018.07.033
10.1017/S0370164600031448
10.1061/(ASCE)SC.1943-5576.0000458
10.1115/1.3636564
10.1142/S1758825120500714
10.1016/j.apm.2019.07.018
10.1016/j.camwa.2017.04.025
10.1016/j.engstruct.2007.04.005
10.1016/j.engstruct.2015.11.010
10.2140/jomms.2008.3.425
10.1016/j.engstruct.2020.110252
10.2514/3.6996
10.1007/s00707-014-1281-3
10.1016/S0045-7949(01)00173-0
10.1061/(ASCE)0733-9445(1990)116:2(475)
10.1016/j.engstruct.2015.06.020
10.1016/j.tws.2019.01.008
10.1016/j.ijsolstr.2014.10.016
10.1112/plms/s1-32.1.247
10.2514/6.2020-0245
10.1007/s10999-016-9360-3
10.1061/(ASCE)0733-9399(1992)118:10(2128)
10.4236/ojce.2017.71003
10.1115/1.4025412
10.1016/0020-7403(95)00092-5
10.1016/j.engstruct.2008.05.011
10.1016/j.compstruc.2020.106339
10.1016/j.ijsolstr.2016.02.017
10.1016/j.euromechsol.2020.103975
10.1115/1.4040693
10.1007/s00366-019-00765-6
10.2140/jomms.2010.5.963
10.1016/j.apm.2019.12.010
ContentType Journal Article
Copyright 2021 The Authors
Copyright Elsevier BV Nov/Dec 2021
Copyright_xml – notice: 2021 The Authors
– notice: Copyright Elsevier BV Nov/Dec 2021
DBID 6I.
AAFTH
AAYXX
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
DOI 10.1016/j.euromechsol.2021.104284
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1873-7285
ExternalDocumentID 10_1016_j_euromechsol_2021_104284
S0997753821000668
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SST
SSZ
T5K
VH1
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
7SR
7TB
8BQ
8FD
EFKBS
FR3
JG9
KR7
ID FETCH-LOGICAL-c330t-a4fdf5955a15a736b8086a94136717bb1838aae8144f913347fed3a5ac38cc803
IEDL.DBID AIKHN
ISSN 0997-7538
IngestDate Fri Jul 25 06:13:02 EDT 2025
Thu Apr 24 22:55:12 EDT 2025
Tue Jul 01 01:55:22 EDT 2025
Fri Feb 23 02:42:53 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Tapered beam
Analytical solution
Beam modelling
Closed form
Non-prismatic beam
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c330t-a4fdf5955a15a736b8086a94136717bb1838aae8144f913347fed3a5ac38cc803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1905-4477
0000-0001-6670-6047
0000-0001-6681-5104
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0997753821000668
PQID 2573516523
PQPubID 2045479
ParticipantIDs proquest_journals_2573516523
crossref_citationtrail_10_1016_j_euromechsol_2021_104284
crossref_primary_10_1016_j_euromechsol_2021_104284
elsevier_sciencedirect_doi_10_1016_j_euromechsol_2021_104284
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November-December 2021
2021-11-00
20211101
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November-December 2021
PublicationDecade 2020
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle European journal of mechanics, A, Solids
PublicationYear 2021
Publisher Elsevier Masson SAS
Elsevier BV
Publisher_xml – name: Elsevier Masson SAS
– name: Elsevier BV
References Vu-Quoc, Léger (b48) 1992; 33
Bertolini, Eder, Taglialegne, Valvo (b9) 2019; 137
Gimena, Gonzaga, Gimena (b21) 2008; 30
Boley (b13) 1963; 30(3)
Al-Gahtani, Khan (b2) 1998; 124
Zhou, Fu, An (b52) 2020
Masjedi, Ovesy (b28) 2015; 54
Taglialegne (b43) 2018
Rezaiee-Pajand, Karimipour (b36) 2019
Blodgett (b12) 1966
Trahair, Ansourian (b47) 2016; 108
Rezaiee-Pajand, Karimipour (b38) 2020; 36
Bruhns (b14) 2003
Bertolini, Taglialegne (b10) 2020; 81
Wong, Gunawan, Agusta, Herryanto, Tanaya (b50) 2019; 21
Mercuri, Balduzzi, Asprone, Auricchio (b31) 2020; 213
Balduzzi, Aminbaghai, Auricchio, Füssl (b3) 2018; 14
Rezaiee-Pajand, Karimipour (b39) 2020; 5
Timoshenko, Goodier (b45) 1951
Masjedi, Ovesy (b27) 2015; 226
Rajagopal, Hodges (b35) 2014; 81
Balduzzi, Morganti, Auricchio, Reali (b7) 2017; 74
Rezaiee-Pajand, Karimipour (b37) 2020; 12
Bleich (b11) 1932
Timoshenko, Young (b46) 1965
Masjedi, Weaver (b30) 2020
Murín, Kutiš (b33) 2002; 80
Thomas, Hallett, Weaver (b44) 2020
Filippi, Pagani, Carrera (b19) 2018; 85
Romano, Zingone (b41) 1992; 118
Zhou, Zhang, Zhong, Zhao (b53) 2016; 142
Hodges, Ho, Yu (b22) 2008; 3
Balduzzi, Aminbaghai, Sacco, Füssl, Eberhardsteiner, Auricchio (b4) 2016; 90
Michell (b32) 1900; 1
Beltempo, Balduzzi, Alfano, Auricchio (b8) 2015; 101
Doeva, Masjedi, Weaver (b17) 2020; 81
Doeva, O., Khaneh Masjedi, P., Weaver, P.M., 2020a. Exact solution for the deflection of composite beams under non-uniformly distributed loads. In: AIAA Scitech 2020 Forum. p. 0245.
Balduzzi, Hochreiner, Füssl, Auricchio (b6) 2017; 7
Jourawski (b24) 1856
Balduzzi, Hochreiner, Füssl (b5) 2017; 119
Sokolnikoff, Redheffer (b42) 1958
Patni, Minera Rebulla, Weaver, Pirrera (b34) 2020
Weeger, Yeung, Dunn (b49) 2018; 342
Ai, Weaver (b1) 2017; 19
Romano (b40) 1996; 38
Krahula (b25) 1975; 13
Hodges, Rajagopal, Ho, Yu (b23) 2011; 5
Fertis, Keene (b18) 1990; 116
Masjedi, Weaver (b29) 2020; 81
Yildiz, Ikikardaslar, Khan (b51) 2020; 25
Masjedi, Maheri, Weaver (b26) 2019; 76
Carothers (b15) 1914; 33
Gimena, Gimena, Gonzaga (b20) 2008; 30
Gimena (10.1016/j.euromechsol.2021.104284_b20) 2008; 30
Krahula (10.1016/j.euromechsol.2021.104284_b25) 1975; 13
Romano (10.1016/j.euromechsol.2021.104284_b40) 1996; 38
Trahair (10.1016/j.euromechsol.2021.104284_b47) 2016; 108
Balduzzi (10.1016/j.euromechsol.2021.104284_b3) 2018; 14
Hodges (10.1016/j.euromechsol.2021.104284_b23) 2011; 5
Masjedi (10.1016/j.euromechsol.2021.104284_b30) 2020
Rezaiee-Pajand (10.1016/j.euromechsol.2021.104284_b39) 2020; 5
Timoshenko (10.1016/j.euromechsol.2021.104284_b45) 1951
Taglialegne (10.1016/j.euromechsol.2021.104284_b43) 2018
Rezaiee-Pajand (10.1016/j.euromechsol.2021.104284_b36) 2019
Balduzzi (10.1016/j.euromechsol.2021.104284_b5) 2017; 119
Timoshenko (10.1016/j.euromechsol.2021.104284_b46) 1965
Jourawski (10.1016/j.euromechsol.2021.104284_b24) 1856
Rajagopal (10.1016/j.euromechsol.2021.104284_b35) 2014; 81
Beltempo (10.1016/j.euromechsol.2021.104284_b8) 2015; 101
Michell (10.1016/j.euromechsol.2021.104284_b32) 1900; 1
Bruhns (10.1016/j.euromechsol.2021.104284_b14) 2003
Blodgett (10.1016/j.euromechsol.2021.104284_b12) 1966
Al-Gahtani (10.1016/j.euromechsol.2021.104284_b2) 1998; 124
Bleich (10.1016/j.euromechsol.2021.104284_b11) 1932
10.1016/j.euromechsol.2021.104284_b16
Romano (10.1016/j.euromechsol.2021.104284_b41) 1992; 118
Rezaiee-Pajand (10.1016/j.euromechsol.2021.104284_b38) 2020; 36
Thomas (10.1016/j.euromechsol.2021.104284_b44) 2020
Patni (10.1016/j.euromechsol.2021.104284_b34) 2020
Sokolnikoff (10.1016/j.euromechsol.2021.104284_b42) 1958
Ai (10.1016/j.euromechsol.2021.104284_b1) 2017; 19
Filippi (10.1016/j.euromechsol.2021.104284_b19) 2018; 85
Rezaiee-Pajand (10.1016/j.euromechsol.2021.104284_b37) 2020; 12
Balduzzi (10.1016/j.euromechsol.2021.104284_b7) 2017; 74
Zhou (10.1016/j.euromechsol.2021.104284_b53) 2016; 142
Yildiz (10.1016/j.euromechsol.2021.104284_b51) 2020; 25
Doeva (10.1016/j.euromechsol.2021.104284_b17) 2020; 81
Boley (10.1016/j.euromechsol.2021.104284_b13) 1963; 30(3)
Masjedi (10.1016/j.euromechsol.2021.104284_b29) 2020; 81
Wong (10.1016/j.euromechsol.2021.104284_b50) 2019; 21
Masjedi (10.1016/j.euromechsol.2021.104284_b26) 2019; 76
Balduzzi (10.1016/j.euromechsol.2021.104284_b6) 2017; 7
Zhou (10.1016/j.euromechsol.2021.104284_b52) 2020
Carothers (10.1016/j.euromechsol.2021.104284_b15) 1914; 33
Fertis (10.1016/j.euromechsol.2021.104284_b18) 1990; 116
Masjedi (10.1016/j.euromechsol.2021.104284_b28) 2015; 54
Mercuri (10.1016/j.euromechsol.2021.104284_b31) 2020; 213
Murín (10.1016/j.euromechsol.2021.104284_b33) 2002; 80
Bertolini (10.1016/j.euromechsol.2021.104284_b9) 2019; 137
Hodges (10.1016/j.euromechsol.2021.104284_b22) 2008; 3
Balduzzi (10.1016/j.euromechsol.2021.104284_b4) 2016; 90
Bertolini (10.1016/j.euromechsol.2021.104284_b10) 2020; 81
Weeger (10.1016/j.euromechsol.2021.104284_b49) 2018; 342
Vu-Quoc (10.1016/j.euromechsol.2021.104284_b48) 1992; 33
Gimena (10.1016/j.euromechsol.2021.104284_b21) 2008; 30
Masjedi (10.1016/j.euromechsol.2021.104284_b27) 2015; 226
References_xml – volume: 118
  start-page: 2128
  year: 1992
  end-page: 2134
  ident: b41
  article-title: Deflections of beams with varying rectangular cross section
  publication-title: J. Eng. Mech.
– volume: 85
  year: 2018
  ident: b19
  article-title: Accurate nonlinear dynamics and mode aberration of rotating blades
  publication-title: J. Appl. Mech.
– volume: 12
  year: 2020
  ident: b37
  article-title: Analytical scheme for solid stress analysis
  publication-title: Int. J. Appl. Mech.
– year: 1951
  ident: b45
  article-title: Theory of Elasticity
– volume: 81
  year: 2014
  ident: b35
  article-title: Asymptotic approach to oblique cross-sectional analysis of beams
  publication-title: J. Appl. Mech.
– volume: 25
  year: 2020
  ident: b51
  article-title: Theoretical and computational analysis of circular cantilever tapered beams
  publication-title: Pract. Period. Struct. Des. Constr.
– volume: 13
  start-page: 1390
  year: 1975
  end-page: 1391
  ident: b25
  article-title: Shear formula for beams of variable cross section
  publication-title: AIAA J.
– start-page: 1
  year: 2018
  end-page: 181
  ident: b43
  article-title: Analytical Study of Stress Fields in Wind Turbine Blades
– volume: 101
  start-page: 88
  year: 2015
  end-page: 98
  ident: b8
  article-title: Analytical derivation of a general 2D non-prismatic beam model based on the Hellinger–Reissner principle
  publication-title: Eng. Struct.
– volume: 5
  start-page: 147
  year: 2020
  end-page: 175
  ident: b39
  article-title: Two rectangular elements bbased on analytical functions
  publication-title: Adv. Comput. Des.
– year: 1965
  ident: b46
  article-title: Theory of Structures
– volume: 14
  start-page: 51
  year: 2018
  end-page: 70
  ident: b3
  article-title: Planar Timoshenko-like model for multilayer non-prismatic beams
  publication-title: Int. J. Mech. Mater. Des.
– volume: 90
  start-page: 236
  year: 2016
  end-page: 250
  ident: b4
  article-title: Non-prismatic beams: a simple and effective Timoshenko-like model
  publication-title: Int. J. Solids Struct.
– volume: 142
  start-page: 1
  year: 2016
  end-page: 10
  ident: b53
  article-title: Shear stress calculation and distribution in variable cross sections of box girders with corrugated steel webs
  publication-title: J. Struct. Eng.
– year: 1932
  ident: b11
  article-title: Stahlhochbauten: ihre Theorie, Berechnung und bauliche Gestaltung, Band. 1
– volume: 74
  start-page: 1531
  year: 2017
  end-page: 1541
  ident: b7
  article-title: Non-prismatic Timoshenko-like beam model: Numerical solution via isogeometric collocation
  publication-title: Comput. Math. Appl.
– volume: 3
  start-page: 425
  year: 2008
  end-page: 440
  ident: b22
  article-title: The effect of taper on section constants for in-plane deformation of an isotropic strip
  publication-title: J. Mech. Mater. Struct.
– volume: 226
  start-page: 1689
  year: 2015
  end-page: 1706
  ident: b27
  article-title: Large deflection analysis of geometrically exact spatial beams under conservative and nonconservative loads using intrinsic equations
  publication-title: Acta Mech.
– reference: Doeva, O., Khaneh Masjedi, P., Weaver, P.M., 2020a. Exact solution for the deflection of composite beams under non-uniformly distributed loads. In: AIAA Scitech 2020 Forum. p. 0245.
– volume: 1
  start-page: 247
  year: 1900
  end-page: 257
  ident: b32
  article-title: The stress in an aelotropic elastic solid with an infinite plane boundary
  publication-title: Proc. Lond. Math. Soc.
– volume: 54
  start-page: 183
  year: 2015
  end-page: 191
  ident: b28
  article-title: Chebyshev collocation method for static intrinsic equations of geometrically exact beams
  publication-title: Int. J. Solids Struct.
– volume: 33
  start-page: 553
  year: 1992
  end-page: 566
  ident: b48
  article-title: Efficient evaluation of the flexibility of tapered I-beams accounting for shear deformations
  publication-title: Internat. J. Numer. Methods Engrg.
– year: 1958
  ident: b42
  article-title: Mathematics of Physics and Modern Engineering
– year: 1966
  ident: b12
  article-title: Design of Welded Structures
– volume: 38
  start-page: 1017
  year: 1996
  end-page: 1035
  ident: b40
  article-title: Deflections of Timoshenko beam with varying cross-section
  publication-title: Int. J. Mech. Sci.
– volume: 80
  start-page: 329
  year: 2002
  end-page: 338
  ident: b33
  article-title: 3D-beam element with continuous variation of the cross-sectional area
  publication-title: Comput. Struct.
– volume: 76
  start-page: 938
  year: 2019
  end-page: 957
  ident: b26
  article-title: Large deflection of functionally graded porous beams based on a geometrically exact theory with a fully intrinsic formulation
  publication-title: Appl. Math. Model.
– volume: 124
  start-page: 1290
  year: 1998
  end-page: 1293
  ident: b2
  article-title: Exact analysis of nonprismatic beams
  publication-title: J. Eng. Mech.
– volume: 342
  start-page: 95
  year: 2018
  end-page: 115
  ident: b49
  article-title: Fully isogeometric modeling and analysis of nonlinear 3D beams with spatially varying geometric and material parameters
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 30(3)
  start-page: 373
  year: 1963
  end-page: 378
  ident: b13
  article-title: On the accuracy of the Bernoulli–Euler theory for beams of variable section
  publication-title: J. Appl. Mech.
– volume: 33
  start-page: 292
  year: 1914
  end-page: 306
  ident: b15
  article-title: XXVI.—Plane strain in a wedge, with applications to masonry Dams
  publication-title: Proc. Roy. Soc. Edinburgh
– volume: 81
  year: 2020
  ident: b10
  article-title: Analytical solution of the stresses in doubly tapered box girders
  publication-title: Eur. J. Mech. A Solids
– start-page: 328
  year: 1856
  end-page: 351
  ident: b24
  article-title: Sur la résistance d’un corps prismatique et d’une pièce composée en bois ou en tôle de fer à une force perpendiculaire à leur longueur
  publication-title: Annales des Ponts et Chaussées, Vol. 12
– volume: 119
  start-page: 934
  year: 2017
  end-page: 945
  ident: b5
  article-title: Stress recovery from one dimensional models for tapered bi-symmetric thin-walled I beams: Deficiencies in modern engineering tools and procedures
  publication-title: Thin-Walled Struct.
– volume: 81
  year: 2020
  ident: b17
  article-title: Static deflection of fully coupled composite timoshenko beams: An exact analytical solution
  publication-title: Eur. J. Mech. A Solids
– volume: 19
  start-page: 3
  year: 2017
  end-page: 25
  ident: b1
  article-title: Simplified analytical model for tapered sandwich beams using variable stiffness materials
  publication-title: J. Sandw. Struct. Mater.
– volume: 21
  start-page: 89
  year: 2019
  end-page: 96
  ident: b50
  article-title: On the derivation of exact solutions of a tapered cantilever Timoshenko beam
  publication-title: Civ. Eng. Dimens.
– volume: 81
  start-page: 16
  year: 2020
  end-page: 36
  ident: b29
  article-title: Analytical solution for the fully coupled static response of variable stiffness composite beams
  publication-title: Appl. Math. Model.
– volume: 5
  start-page: 963
  year: 2011
  end-page: 975
  ident: b23
  article-title: Stress and strain recovery for the in-plane deformation of an isotropic tapered strip-beam
  publication-title: J. Mech. Mater. Struct.
– year: 2020
  ident: b44
  article-title: Design considerations for variable stiffness, doubly curved composite plates
  publication-title: Compos. Struct.
– volume: 213
  year: 2020
  ident: b31
  article-title: Structural analysis of non-prismatic beams: Critical issues, accurate stress recovery, and analytical definition of the Finite Element (FE) stiffness matrix
  publication-title: Eng. Struct.
– volume: 36
  start-page: 1325
  year: 2020
  end-page: 1345
  ident: b38
  article-title: Three stress-based triangular elements
  publication-title: Eng. Comput.
– start-page: 1
  year: 2020
  end-page: 15
  ident: b52
  article-title: Distribution and properties of shear stress in elastic beams with variable cross section: Theoretical analysis and finite element modelling
  publication-title: KSCE J. Civ. Eng.
– volume: 30
  start-page: 404
  year: 2008
  end-page: 411
  ident: b21
  article-title: 3D-curved beam element with varying cross-sectional area under generalized loads
  publication-title: Eng. Struct.
– volume: 7
  start-page: 32
  year: 2017
  end-page: 62
  ident: b6
  article-title: Serviceability analysis of non-prismatic timber beams: derivation and validation of new and effective straightforward formulas
  publication-title: Open J. Civ. Eng.
– volume: 116
  start-page: 475
  year: 1990
  end-page: 489
  ident: b18
  article-title: Elastic and inelastic analysis of nonprismatic members
  publication-title: J. Struct. Eng.
– volume: 108
  start-page: 47
  year: 2016
  end-page: 52
  ident: b47
  article-title: In-plane behaviour of web-tapered beams
  publication-title: Eng. Struct.
– volume: 30
  start-page: 3355
  year: 2008
  end-page: 3364
  ident: b20
  article-title: Structural analysis of a curved beam element defined in global coordinates
  publication-title: Eng. Struct.
– volume: 137
  start-page: 527
  year: 2019
  end-page: 540
  ident: b9
  article-title: Stresses in constant tapered beams with thin-walled rectangular and circular cross sections
  publication-title: Thin-Walled Struct.
– year: 2003
  ident: b14
  article-title: Advanced Mechanics of Solids
– year: 2020
  ident: b30
  article-title: Variable stiffness composite beams subject to non-uniformly distributed loads: An analytical solution
  publication-title: Compos. Struct.
– start-page: 373
  year: 2019
  end-page: 410
  ident: b36
  article-title: Stress analysis by two cuboid isoparametric elements
  publication-title: Eur. J. Comput. Mech.
– year: 2020
  ident: b34
  article-title: Efficient modelling of beam-like structures with general non-prismatic, curved geometry
  publication-title: Comput. Struct.
– volume: 81
  year: 2020
  ident: 10.1016/j.euromechsol.2021.104284_b10
  article-title: Analytical solution of the stresses in doubly tapered box girders
  publication-title: Eur. J. Mech. A Solids
  doi: 10.1016/j.euromechsol.2020.103969
– volume: 33
  start-page: 553
  issue: 3
  year: 1992
  ident: 10.1016/j.euromechsol.2021.104284_b48
  article-title: Efficient evaluation of the flexibility of tapered I-beams accounting for shear deformations
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.1620330306
– volume: 19
  start-page: 3
  issue: 1
  year: 2017
  ident: 10.1016/j.euromechsol.2021.104284_b1
  article-title: Simplified analytical model for tapered sandwich beams using variable stiffness materials
  publication-title: J. Sandw. Struct. Mater.
  doi: 10.1177/1099636215619775
– volume: 119
  start-page: 934
  year: 2017
  ident: 10.1016/j.euromechsol.2021.104284_b5
  article-title: Stress recovery from one dimensional models for tapered bi-symmetric thin-walled I beams: Deficiencies in modern engineering tools and procedures
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2017.06.031
– volume: 21
  start-page: 89
  issue: 2
  year: 2019
  ident: 10.1016/j.euromechsol.2021.104284_b50
  article-title: On the derivation of exact solutions of a tapered cantilever Timoshenko beam
  publication-title: Civ. Eng. Dimens.
  doi: 10.9744/ced.21.2.89-96
– volume: 124
  start-page: 1290
  issue: 11
  year: 1998
  ident: 10.1016/j.euromechsol.2021.104284_b2
  article-title: Exact analysis of nonprismatic beams
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)0733-9399(1998)124:11(1290)
– volume: 142
  start-page: 1
  issue: 6
  year: 2016
  ident: 10.1016/j.euromechsol.2021.104284_b53
  article-title: Shear stress calculation and distribution in variable cross sections of box girders with corrugated steel webs
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)ST.1943-541X.0001477
– year: 2020
  ident: 10.1016/j.euromechsol.2021.104284_b44
  article-title: Design considerations for variable stiffness, doubly curved composite plates
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2020.112170
– volume: 342
  start-page: 95
  year: 2018
  ident: 10.1016/j.euromechsol.2021.104284_b49
  article-title: Fully isogeometric modeling and analysis of nonlinear 3D beams with spatially varying geometric and material parameters
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2018.07.033
– volume: 33
  start-page: 292
  year: 1914
  ident: 10.1016/j.euromechsol.2021.104284_b15
  article-title: XXVI.—Plane strain in a wedge, with applications to masonry Dams
  publication-title: Proc. Roy. Soc. Edinburgh
  doi: 10.1017/S0370164600031448
– start-page: 1
  year: 2018
  ident: 10.1016/j.euromechsol.2021.104284_b43
– volume: 25
  issue: 1
  year: 2020
  ident: 10.1016/j.euromechsol.2021.104284_b51
  article-title: Theoretical and computational analysis of circular cantilever tapered beams
  publication-title: Pract. Period. Struct. Des. Constr.
  doi: 10.1061/(ASCE)SC.1943-5576.0000458
– start-page: 1
  year: 2020
  ident: 10.1016/j.euromechsol.2021.104284_b52
  article-title: Distribution and properties of shear stress in elastic beams with variable cross section: Theoretical analysis and finite element modelling
  publication-title: KSCE J. Civ. Eng.
– volume: 30(3)
  start-page: 373
  year: 1963
  ident: 10.1016/j.euromechsol.2021.104284_b13
  article-title: On the accuracy of the Bernoulli–Euler theory for beams of variable section
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.3636564
– year: 2020
  ident: 10.1016/j.euromechsol.2021.104284_b30
  article-title: Variable stiffness composite beams subject to non-uniformly distributed loads: An analytical solution
  publication-title: Compos. Struct.
– volume: 12
  issue: 06
  year: 2020
  ident: 10.1016/j.euromechsol.2021.104284_b37
  article-title: Analytical scheme for solid stress analysis
  publication-title: Int. J. Appl. Mech.
  doi: 10.1142/S1758825120500714
– volume: 76
  start-page: 938
  year: 2019
  ident: 10.1016/j.euromechsol.2021.104284_b26
  article-title: Large deflection of functionally graded porous beams based on a geometrically exact theory with a fully intrinsic formulation
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2019.07.018
– volume: 74
  start-page: 1531
  issue: 7
  year: 2017
  ident: 10.1016/j.euromechsol.2021.104284_b7
  article-title: Non-prismatic Timoshenko-like beam model: Numerical solution via isogeometric collocation
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2017.04.025
– volume: 30
  start-page: 404
  issue: 2
  year: 2008
  ident: 10.1016/j.euromechsol.2021.104284_b21
  article-title: 3D-curved beam element with varying cross-sectional area under generalized loads
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2007.04.005
– year: 1951
  ident: 10.1016/j.euromechsol.2021.104284_b45
– volume: 108
  start-page: 47
  year: 2016
  ident: 10.1016/j.euromechsol.2021.104284_b47
  article-title: In-plane behaviour of web-tapered beams
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2015.11.010
– start-page: 373
  year: 2019
  ident: 10.1016/j.euromechsol.2021.104284_b36
  article-title: Stress analysis by two cuboid isoparametric elements
  publication-title: Eur. J. Comput. Mech.
– volume: 5
  start-page: 147
  issue: 2
  year: 2020
  ident: 10.1016/j.euromechsol.2021.104284_b39
  article-title: Two rectangular elements bbased on analytical functions
  publication-title: Adv. Comput. Des.
– volume: 3
  start-page: 425
  issue: 3
  year: 2008
  ident: 10.1016/j.euromechsol.2021.104284_b22
  article-title: The effect of taper on section constants for in-plane deformation of an isotropic strip
  publication-title: J. Mech. Mater. Struct.
  doi: 10.2140/jomms.2008.3.425
– year: 1966
  ident: 10.1016/j.euromechsol.2021.104284_b12
– volume: 213
  year: 2020
  ident: 10.1016/j.euromechsol.2021.104284_b31
  article-title: Structural analysis of non-prismatic beams: Critical issues, accurate stress recovery, and analytical definition of the Finite Element (FE) stiffness matrix
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2020.110252
– volume: 13
  start-page: 1390
  issue: 10
  year: 1975
  ident: 10.1016/j.euromechsol.2021.104284_b25
  article-title: Shear formula for beams of variable cross section
  publication-title: AIAA J.
  doi: 10.2514/3.6996
– volume: 226
  start-page: 1689
  issue: 6
  year: 2015
  ident: 10.1016/j.euromechsol.2021.104284_b27
  article-title: Large deflection analysis of geometrically exact spatial beams under conservative and nonconservative loads using intrinsic equations
  publication-title: Acta Mech.
  doi: 10.1007/s00707-014-1281-3
– volume: 80
  start-page: 329
  issue: 3–4
  year: 2002
  ident: 10.1016/j.euromechsol.2021.104284_b33
  article-title: 3D-beam element with continuous variation of the cross-sectional area
  publication-title: Comput. Struct.
  doi: 10.1016/S0045-7949(01)00173-0
– volume: 116
  start-page: 475
  issue: 2
  year: 1990
  ident: 10.1016/j.euromechsol.2021.104284_b18
  article-title: Elastic and inelastic analysis of nonprismatic members
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)0733-9445(1990)116:2(475)
– volume: 101
  start-page: 88
  year: 2015
  ident: 10.1016/j.euromechsol.2021.104284_b8
  article-title: Analytical derivation of a general 2D non-prismatic beam model based on the Hellinger–Reissner principle
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2015.06.020
– volume: 137
  start-page: 527
  year: 2019
  ident: 10.1016/j.euromechsol.2021.104284_b9
  article-title: Stresses in constant tapered beams with thin-walled rectangular and circular cross sections
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2019.01.008
– volume: 54
  start-page: 183
  year: 2015
  ident: 10.1016/j.euromechsol.2021.104284_b28
  article-title: Chebyshev collocation method for static intrinsic equations of geometrically exact beams
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2014.10.016
– year: 1958
  ident: 10.1016/j.euromechsol.2021.104284_b42
– volume: 1
  start-page: 247
  issue: 1
  year: 1900
  ident: 10.1016/j.euromechsol.2021.104284_b32
  article-title: The stress in an aelotropic elastic solid with an infinite plane boundary
  publication-title: Proc. Lond. Math. Soc.
  doi: 10.1112/plms/s1-32.1.247
– ident: 10.1016/j.euromechsol.2021.104284_b16
  doi: 10.2514/6.2020-0245
– volume: 14
  start-page: 51
  issue: 1
  year: 2018
  ident: 10.1016/j.euromechsol.2021.104284_b3
  article-title: Planar Timoshenko-like model for multilayer non-prismatic beams
  publication-title: Int. J. Mech. Mater. Des.
  doi: 10.1007/s10999-016-9360-3
– volume: 118
  start-page: 2128
  issue: 10
  year: 1992
  ident: 10.1016/j.euromechsol.2021.104284_b41
  article-title: Deflections of beams with varying rectangular cross section
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)0733-9399(1992)118:10(2128)
– volume: 7
  start-page: 32
  issue: 1
  year: 2017
  ident: 10.1016/j.euromechsol.2021.104284_b6
  article-title: Serviceability analysis of non-prismatic timber beams: derivation and validation of new and effective straightforward formulas
  publication-title: Open J. Civ. Eng.
  doi: 10.4236/ojce.2017.71003
– year: 1965
  ident: 10.1016/j.euromechsol.2021.104284_b46
– year: 2003
  ident: 10.1016/j.euromechsol.2021.104284_b14
– volume: 81
  issue: 3
  year: 2014
  ident: 10.1016/j.euromechsol.2021.104284_b35
  article-title: Asymptotic approach to oblique cross-sectional analysis of beams
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4025412
– start-page: 328
  year: 1856
  ident: 10.1016/j.euromechsol.2021.104284_b24
  article-title: Sur la résistance d’un corps prismatique et d’une pièce composée en bois ou en tôle de fer à une force perpendiculaire à leur longueur
– year: 1932
  ident: 10.1016/j.euromechsol.2021.104284_b11
– volume: 38
  start-page: 1017
  issue: 8–9
  year: 1996
  ident: 10.1016/j.euromechsol.2021.104284_b40
  article-title: Deflections of Timoshenko beam with varying cross-section
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/0020-7403(95)00092-5
– volume: 30
  start-page: 3355
  issue: 11
  year: 2008
  ident: 10.1016/j.euromechsol.2021.104284_b20
  article-title: Structural analysis of a curved beam element defined in global coordinates
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2008.05.011
– year: 2020
  ident: 10.1016/j.euromechsol.2021.104284_b34
  article-title: Efficient modelling of beam-like structures with general non-prismatic, curved geometry
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2020.106339
– volume: 90
  start-page: 236
  year: 2016
  ident: 10.1016/j.euromechsol.2021.104284_b4
  article-title: Non-prismatic beams: a simple and effective Timoshenko-like model
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2016.02.017
– volume: 81
  year: 2020
  ident: 10.1016/j.euromechsol.2021.104284_b17
  article-title: Static deflection of fully coupled composite timoshenko beams: An exact analytical solution
  publication-title: Eur. J. Mech. A Solids
  doi: 10.1016/j.euromechsol.2020.103975
– volume: 85
  issue: 11
  year: 2018
  ident: 10.1016/j.euromechsol.2021.104284_b19
  article-title: Accurate nonlinear dynamics and mode aberration of rotating blades
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4040693
– volume: 36
  start-page: 1325
  issue: 4
  year: 2020
  ident: 10.1016/j.euromechsol.2021.104284_b38
  article-title: Three stress-based triangular elements
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-019-00765-6
– volume: 5
  start-page: 963
  issue: 6
  year: 2011
  ident: 10.1016/j.euromechsol.2021.104284_b23
  article-title: Stress and strain recovery for the in-plane deformation of an isotropic tapered strip-beam
  publication-title: J. Mech. Mater. Struct.
  doi: 10.2140/jomms.2010.5.963
– volume: 81
  start-page: 16
  year: 2020
  ident: 10.1016/j.euromechsol.2021.104284_b29
  article-title: Analytical solution for the fully coupled static response of variable stiffness composite beams
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2019.12.010
SSID ssj0002021
Score 2.3728359
Snippet Non-prismatic beams are widely employed in several engineering fields, e.g., wind turbines, rotor blades, aircraft wings, and arched bridges. While analytical...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104284
SubjectTerms Analytical solution
Asymmetry
Beam modelling
Boundary conditions
Closed form
Cross-sections
Exact solutions
Finite element method
Free boundaries
Internal forces
Isotropic material
Model accuracy
Non-prismatic beam
Plane stress
Rotor blades
Rotor blades (turbomachinery)
Stress analysis
Stress distribution
Tapered beam
Wind turbines
Wings (aircraft)
Title Stress analysis of generally asymmetric non-prismatic beams subject to arbitrary loads
URI https://dx.doi.org/10.1016/j.euromechsol.2021.104284
https://www.proquest.com/docview/2573516523
Volume 90
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60gnjxLb6J4HVtd5O0CXgpolRFLz7wFpJsopXWilsPvfjbzexmfYEgeNxlJ4SZZGa-TeYbgH1hmKA-Z4lzjiWIEBJhKUskl8JLPC_UWO98cdnu3bCzO343BUd1LQxeq4y-v_LppbeOb5pRm83nfr95hTWfIdkWWVoGTjENMxmVbd6Ame7pee_ywyEHfF82zkPiURSYhb3Pa15IgTF09iFY-gA_xEPPTLDfwtQPh11GoZNFmI_pI-lWM1yCKfe0DAsxlSRxoxYrcHtV1oAQHTlHyMiT-4phejAhupgMh9hKy5KA_pOSChGZW4lxeliQ4tXg3xkyHhH9YvplYT4ZjHRerMLNyfH1US-JLRQSS2lrnGjmc88l5zrlukPbRgQIoyVDora0Y0zY0EJrJwKs8jLAVdbxLqeaa0uFtaJF16ARJuLWgYhc6qAy06GaMZe3DPL0OC9pK8ul9HYDRK0xZSO_OLa5GKj6Itmj-qJshcpWlbI3IPsQfa5INv4idFibRX1bMSoEg7-Ib9emVHHbFir4L8rTdgDnm_8bfQvm8KkqWtyGxvjl1e2E7GVsdmH64C3djWv0HYVZ8RA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60gnrxLT6qRvC69pGkTcBLEaW-evGBt5BkE620trj14L83s5v1BYLgdXcnhJlkZr5N5huAA2GYoD5liXOOJYgQEmEpSySXwks8L9RY73zVa3Vv2fk9v5-C47IWBq9VRt9f-PTcW8cntajN2rjfr11jzWdItkWzkQdOMQ0zjAe0V4GZztlFt_fhkAO-zxvnIfEoCszC_uc1L6TAGDr7GCx9iB_ioWdTsN_C1A-HnUeh0yVYiOkj6RQzXIYp97wCizGVJHGjZqtwd53XgBAdOUfIyJOHgmF68EZ09jYcYistSwL6T3IqRGRuJcbpYUayV4N_Z8hkRPSL6eeF-WQw0mm2BrenJzfH3SS2UEgspfVJoplPPZec6wbXbdoyIkAYLRkStTXaxoQNLbR2IsAqLwNcZW3vUqq5tlRYK-p0HSphIm4DiEilDiozbaoZc2ndIE-P85LWm6mU3m6CKDWmbOQXxzYXA1VeJHtSX5StUNmqUPYmND9ExwXJxl-EjkqzqG8rRoVg8BfxamlKFbdtpoL_orzRCuB863-j78Fc9-bqUl2e9S62YR7fFAWMVahMXl7dTshkJmY3rtR3TWPy_w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stress+analysis+of+generally+asymmetric+non-prismatic+beams+subject+to+arbitrary+loads&rft.jtitle=European+journal+of+mechanics%2C+A%2C+Solids&rft.au=Vilar%2C+M.M.S.&rft.au=Hadjiloizi%2C+D.A.&rft.au=Masjedi%2C+P.+Khaneh&rft.au=Weaver%2C+Paul+M.&rft.date=2021-11-01&rft.pub=Elsevier+Masson+SAS&rft.issn=0997-7538&rft.eissn=1873-7285&rft.volume=90&rft_id=info:doi/10.1016%2Fj.euromechsol.2021.104284&rft.externalDocID=S0997753821000668
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0997-7538&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0997-7538&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0997-7538&client=summon