Artificial Intelligence Algorithm for Optimal Time Series Data Model

In order to solve the limitation of a large number of literatures on the study of modeling, simulation and prediction of time series data, there is no model selection, and a certain model is directly used for analysis. For three types of artificial intelligence models often applied to time series an...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 13; pp. 124211 - 124224
Main Author Wang, Kang
Format Journal Article
LanguageEnglish
Published IEEE 2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In order to solve the limitation of a large number of literatures on the study of modeling, simulation and prediction of time series data, there is no model selection, and a certain model is directly used for analysis. For three types of artificial intelligence models often applied to time series analysis: hidden Markov Carrier model, artificial neural network model and autoregressive moving average model are used to study model selection based on simulation comparison method. The study of nonlinear integration methods, using intelligent system methods to learn the weighting mode, has made the model's generalization ability and the degree is of fit to the sample data have been significantly improved. At the same time, numerical simulations are performed on various models, and the characteristics of the time series generated by various models are investigated. Based on the characteristics, the theory and algorithm of model selection are proposed. The model selection theory and algorithm in this paper is used for empirical analysis. For the artificial intelligence models commonly used in time series analysis such as autoregressive moving average model, artificial neural network model, hidden Markov model, etc., when selecting the research model, the method of simulation comparison can be used. The experimental results show that the time series data generated by various models have different mathematical and physical characteristics, which provide a basis for model selection. At the same time, the selection theory is practical. The model selected by the theory has a good fit and prediction effect. The generation of different models has different mathematical characteristics of time series data, which also provides a basis for selecting models.
AbstractList In order to solve the limitation of a large number of literatures on the study of modeling, simulation and prediction of time series data, there is no model selection, and a certain model is directly used for analysis. For three types of artificial intelligence models often applied to time series analysis: hidden Markov Carrier model, artificial neural network model and autoregressive moving average model are used to study model selection based on simulation comparison method. The study of nonlinear integration methods, using intelligent system methods to learn the weighting mode, has made the model's generalization ability and the degree is of fit to the sample data have been significantly improved. At the same time, numerical simulations are performed on various models, and the characteristics of the time series generated by various models are investigated. Based on the characteristics, the theory and algorithm of model selection are proposed. The model selection theory and algorithm in this paper is used for empirical analysis. For the artificial intelligence models commonly used in time series analysis such as autoregressive moving average model, artificial neural network model, hidden Markov model, etc., when selecting the research model, the method of simulation comparison can be used. The experimental results show that the time series data generated by various models have different mathematical and physical characteristics, which provide a basis for model selection. At the same time, the selection theory is practical. The model selected by the theory has a good fit and prediction effect. The generation of different models has different mathematical characteristics of time series data, which also provides a basis for selecting models.
Author Wang, Kang
Author_xml – sequence: 1
  givenname: Kang
  orcidid: 0000-0001-9394-3857
  surname: Wang
  fullname: Wang, Kang
  email: kaobowang@163.com
  organization: School of Humanities and Media, Pingxiang University, Pingxiang, China
BookMark eNpNUMtuwjAQtCoqlVK-gEt-INSO48Q-RoG2SFQcoGfLjzU1Cglycunf1zQIdS-zGu3M7s4zmrRdCwgtCF4SgsVrVdfr_X6Z4QwvM8FJzvkDmmakEClltJj865_QvO9POBaPFCunaFWFwTtvvGqSTTtA0_gjtAaSqjl2wQ_f58R1IdldBn-OIwd_hmQPwUOfrNSgks_OQvOCHp1qepjfcIa-3taH-iPd7t43dbVNDaV4SAUorTQDzWnOCsWxYgxAGy6IIYRbIIXVDnPtcm25g7IUitmyMEqUOQGgM7QZfW2nTvIS4knhR3bKyz-iC0ep4jumAWkzjgurdAmly10GcXdEkTnLDMEqi1509DKh6_sA7u5HsLzmKsdc5TVXecs1qhajygPAXSEwFQXO6S-MuXcc
CODEN IAECCG
Cites_doi 10.1007/978-3-0348-7976-7_8
10.1613/jair.5500
10.1007/s11036-017-0934-6
10.1166/jctn.2015.4670
10.1007/s13201-017-0543-3
10.1016/j.artmed.2016.01.005
10.1007/s40031-016-0271-3
10.1109/TVCG.2018.2825424
10.1016/j.engappai.2017.06.002
10.1007/s13762-014-0717-6
10.1016/j.procs.2018.05.167
10.1007/s40030-017-0215-1
10.1007/s11356-015-4965-x
10.1109/TCC.2015.2511720
10.1016/j.engappai.2018.03.006
10.1049/joe.2017.0338
10.1007/978-3-319-46675-0_4
10.1016/j.neucom.2015.02.074
10.1016/j.rser.2018.04.050
10.1155/2016/3917892
10.1142/S0218001418600042
10.1609/aimag.v36i2.2590
10.1007/s00500-015-1752-z
10.1016/j.artmed.2018.02.002
10.1142/S0218001418500362
10.1007/s00704-015-1634-4
10.1088/1742-6596/1168/3/032018
10.1007/978-3-642-23765-2_18
10.1109/TC.2015.2485230
10.1109/JSTARS.2017.2739858
10.1007/s00521-015-2039-0
10.1016/j.engappai.2015.01.006
10.1002/cncy.22176
10.1017/s0263574715001034
10.1007/s13748-019-00176-0
10.1016/j.engappai.2017.06.016
10.1016/j.engappai.2016.07.005
10.1007/978-81-322-2544-7_12
10.1007/978-81-322-2544-7_8
10.1007/s11277-016-3340-7
10.1007/978-3-319-32034-2_15
10.1142/S1793005715500076
10.1142/S0218001416590102
10.1007/s10462-017-9575-1
10.1007/s10115-017-1090-9
10.1109/TITS.2016.2620483
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
DOA
DOI 10.1109/ACCESS.2020.2981488
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 124224
ExternalDocumentID oai_doaj_org_article_d2806dab7e7f4f2e9eaf4f92fd5c10a2
10_1109_ACCESS_2020_2981488
9039604
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c330t-9eabab5eb83456a80a55eebc891c118de16dbf08bf4bd8fe779a5d76ca9741ee3
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:28:46 EDT 2025
Thu Jul 31 00:42:23 EDT 2025
Wed Aug 27 02:13:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c330t-9eabab5eb83456a80a55eebc891c118de16dbf08bf4bd8fe779a5d76ca9741ee3
ORCID 0000-0001-9394-3857
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9039604
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_d2806dab7e7f4f2e9eaf4f92fd5c10a2
ieee_primary_9039604
crossref_primary_10_1109_ACCESS_2020_2981488
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref52
ref11
Weihang (ref7) 2016; 42
ref17
ref16
ref19
ref18
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
Wanjawa (ref27) 2016; 5
ref9
ref4
ref3
ref6
Zheng (ref51) 2015; 35
ref5
ref40
ref35
Grohs (ref37) 2018; 2
ref34
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Qi (ref50) 2018; 3
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref29
Tank (ref10) 2015; 24
References_xml – ident: ref30
  doi: 10.1007/978-3-0348-7976-7_8
– ident: ref34
  doi: 10.1613/jair.5500
– ident: ref16
  doi: 10.1007/s11036-017-0934-6
– ident: ref3
  doi: 10.1166/jctn.2015.4670
– volume: 3
  start-page: 1009
  year: 2018
  ident: ref50
  article-title: Edge computing application: Real-time anomaly detection algorithm for sensing data
  publication-title: J. Comput. Res. Develop.
– ident: ref36
  doi: 10.1007/s13201-017-0543-3
– ident: ref26
  doi: 10.1016/j.artmed.2016.01.005
– ident: ref39
  doi: 10.1007/s40031-016-0271-3
– ident: ref11
  doi: 10.1109/TVCG.2018.2825424
– volume: 5
  start-page: 124
  issue: 3
  year: 2016
  ident: ref27
  article-title: Evaluating the performance of ANN prediction system at shanghai stock market in the period
– ident: ref19
  doi: 10.1016/j.engappai.2017.06.002
– ident: ref15
  doi: 10.1007/s13762-014-0717-6
– ident: ref45
  doi: 10.1016/j.procs.2018.05.167
– volume: 42
  start-page: 196
  issue: 6
  year: 2016
  ident: ref7
  article-title: A joint classification learning algorithm for feature sequences of time-series data
  publication-title: Comput. Eng.
– ident: ref17
  doi: 10.1007/s40030-017-0215-1
– ident: ref41
  doi: 10.1007/s11356-015-4965-x
– ident: ref47
  doi: 10.1109/TCC.2015.2511720
– ident: ref9
  doi: 10.1016/j.engappai.2018.03.006
– ident: ref38
  doi: 10.1049/joe.2017.0338
– ident: ref28
  doi: 10.1007/978-3-319-46675-0_4
– ident: ref29
  doi: 10.1016/j.neucom.2015.02.074
– ident: ref21
  doi: 10.1016/j.rser.2018.04.050
– ident: ref33
  doi: 10.1155/2016/3917892
– ident: ref23
  doi: 10.1142/S0218001418600042
– ident: ref40
  doi: 10.1609/aimag.v36i2.2590
– ident: ref18
  doi: 10.1007/s00500-015-1752-z
– ident: ref12
  doi: 10.1016/j.artmed.2018.02.002
– ident: ref25
  doi: 10.1142/S0218001418500362
– ident: ref49
  doi: 10.1007/s00704-015-1634-4
– ident: ref13
  doi: 10.1088/1742-6596/1168/3/032018
– ident: ref31
  doi: 10.1007/978-3-642-23765-2_18
– ident: ref42
  doi: 10.1109/TC.2015.2485230
– ident: ref43
  doi: 10.1109/JSTARS.2017.2739858
– ident: ref14
  doi: 10.1007/s00521-015-2039-0
– ident: ref8
  doi: 10.1016/j.engappai.2015.01.006
– ident: ref48
  doi: 10.1002/cncy.22176
– ident: ref44
  doi: 10.1017/s0263574715001034
– ident: ref1
  doi: 10.1007/s13748-019-00176-0
– ident: ref22
  doi: 10.1016/j.engappai.2017.06.016
– volume: 24
  start-page: 70
  issue: 5
  year: 2015
  ident: ref10
  article-title: Bayesian structure learning for stationary time series
  publication-title: Statistics
– ident: ref2
  doi: 10.1016/j.engappai.2016.07.005
– ident: ref24
  doi: 10.1007/978-81-322-2544-7_12
– ident: ref46
  doi: 10.1007/978-81-322-2544-7_8
– ident: ref52
  doi: 10.1007/s11277-016-3340-7
– ident: ref4
  doi: 10.1007/978-3-319-32034-2_15
– ident: ref5
  doi: 10.1142/S1793005715500076
– ident: ref6
  doi: 10.1142/S0218001416590102
– ident: ref32
  doi: 10.1007/s10462-017-9575-1
– volume: 35
  start-page: 2162
  issue: 9
  year: 2015
  ident: ref51
  article-title: Research on model and algorithm for optimal power flow of large-scale high voltage direct current transmission system
  publication-title: Zhongguo Dianji Gongcheng Xuebao/Proc. Chin. Soc. Electr. Eng.
– ident: ref20
  doi: 10.1007/s10115-017-1090-9
– ident: ref35
  doi: 10.1109/TITS.2016.2620483
– volume: 2
  start-page: 1314
  issue: 2
  year: 2018
  ident: ref37
  article-title: A proof that artificial neural networks overcome the curse of dimensionality in the numerical approximation of Black-Scholes partial differential equations
  publication-title: Papers
SSID ssj0000816957
Score 2.3341103
Snippet In order to solve the limitation of a large number of literatures on the study of modeling, simulation and prediction of time series data, there is no model...
SourceID doaj
crossref
ieee
SourceType Open Website
Index Database
Publisher
StartPage 124211
SubjectTerms Analytical models
artificial intelligence algorithm
Autoregressive processes
Computational modeling
data model
Data models
generalization ability
Hidden Markov models
Predictive models
Time series
Time series analysis
weight pattern
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQUBDlJQ-MhDp2XNtjaakKErBQqVvkxxmGPhCU_885CVU7sTBFSqxT_F10d58df0fItQHlVBCQMeF8VljrMqeAZ0hvRUz8Ith03vnpuTeeFI9TOd1o9ZX-CavlgWvguiFt_QWLBlQsIgcDFq-GxyB9zmwVfTHnbZCpKgbrvGekamSGcma6_cEAZ4SEkLNbbjSyAL2ViirF_q0WK1WGGR2Q_aY0pP36lQ7JDiyOyN6GYGCbDNPDWvOBPmyIadL-7G2JNP99TrEIpS8YB-Y4JJ3voGn9C77o0K4sTZ3PZsdkMrp_HYyzpg9C5oVgqwyn7KyT4LTAcsdqZqUEcF6b3CM_CJD3gotMu1i4oCMoZawMquctkoUcQJyQ1mK5gFNCo1PG8MAgl75QQmsZwHJvovc8j5p1yM0vJOVHLXdRVjSBmbJGsEwIlg2CHXKXYFsPTVrV1Q30YNl4sPzLgx3STqCvjRgmkmLM2X_YPie7PDXsrdZMLkhr9fkNl1hFrNxV9cH8AFRHxck
  priority: 102
  providerName: Directory of Open Access Journals
Title Artificial Intelligence Algorithm for Optimal Time Series Data Model
URI https://ieeexplore.ieee.org/document/9039604
https://doaj.org/article/d2806dab7e7f4f2e9eaf4f92fd5c10a2
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTxsxEB0BJ3ooLbRqCo184JgNXnsd28eQFKVIwKVI3Fb-GAMqJIhuLvx6bO8mCqiHnnbltVb2zOx63tjzBuBYo7TScywot66ojLGFlciKCG95SPjCm5TvfHE5ml1X5zfiZgsG61wYRMyHz3CYbvNevl-4ZQqVnWjKE5fINmxH4Nbmaq3jKamAhBayIxYqqT4ZTyZxDhECMjpkWkW_X71ZfDJH_5uiKnlNOduDi9Vo2qMkf4bLxg7dyzuixv8d7if42DmXZNxaw2fYwvk-fNigHDyAaXrYskaQXxt0nGT8cLt4vm_uHkl0Y8lV_JM8xi4pQ4SkCBr-JVPTGJJqpz18geuzn78ns6KrpFA4zmlTaDTWWIFW8egwGUWNEIjWKV26iDA8liNvA1U2VNargFJqI7wcORPhRonIv8LOfDHHb0CClVozT7EUrpJcKeHRMKeDc6wMivZgsBJx_dQSZtQZaFBdtxqpk0bqTiM9OE1qWHdNbNe5IUqy7j6e2qftX2-iEclQBYZxOvGqWfDCldSwHhwk6a9f0gn--7-bD2GXpSK-OY5yBDvN8xJ_RM-isf2MyPvZsF4BvTXOnA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcgAOvArqAgUf4Ea2jhOv7QOH7S7VLn1waaXegh9jQG13UZsVgt_Sv9L_xjhJVy3iWolTIseyZM_Enm888w3AW4PKqVBgxgvns9JalzmFIiN4W8SEL4JN-c57-4PJYfnpSB6twMUyFwYRm-Az7KfX5i4_zP0iuco2DS8Sl0gXQrmDv34SQDv_MB2TNN8Jsf3xYDTJuhoCmSekXmcGrbNOotMFmQpWcyslovPa5J5s64D5ILjItYulCzqiUsbKoAbekqGdIxY07h24S3aGFG122NKDk0pWGKk6KqOcm83haESrRqBT8L4wmpCGvnHcNVUBbpRxaU6x7UdweTX_NnjluL-oXd___osa8n9doMfwsDOf2bDV9yewgrOn8OAaqeIajNPHlheDTa8RjrLhydf52ff62ykjQ519pr3ylLqkHBiWfIR4zsa2tixVhzt5Boe3Mo3nsDqbz3AdWHTKGBE45tKXqtBaBrTCm-i9yKPmPXh_JdLqR0sJUjVQipuq1YAqaUDVaUAPtpLYl10Tn3fTQJKruu2hCumCO1j6TVQso0CaDj2NiEH6nFvRg7Uk7eUgnaBf_Lv5DdybHOztVrvT_Z2XcF-kksWN1-gVrNZnC9wgO6p2rxt1ZvDlttXjD2hwLvI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence+Algorithm+for+Optimal+Time+Series+Data+Model&rft.jtitle=IEEE+access&rft.au=Wang%2C+Kang&rft.date=2025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=124211&rft.epage=124224&rft_id=info:doi/10.1109%2FACCESS.2020.2981488&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2020_2981488
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon