Artificial Intelligence Algorithm for Optimal Time Series Data Model
In order to solve the limitation of a large number of literatures on the study of modeling, simulation and prediction of time series data, there is no model selection, and a certain model is directly used for analysis. For three types of artificial intelligence models often applied to time series an...
Saved in:
Published in | IEEE access Vol. 13; pp. 124211 - 124224 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
IEEE
2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In order to solve the limitation of a large number of literatures on the study of modeling, simulation and prediction of time series data, there is no model selection, and a certain model is directly used for analysis. For three types of artificial intelligence models often applied to time series analysis: hidden Markov Carrier model, artificial neural network model and autoregressive moving average model are used to study model selection based on simulation comparison method. The study of nonlinear integration methods, using intelligent system methods to learn the weighting mode, has made the model's generalization ability and the degree is of fit to the sample data have been significantly improved. At the same time, numerical simulations are performed on various models, and the characteristics of the time series generated by various models are investigated. Based on the characteristics, the theory and algorithm of model selection are proposed. The model selection theory and algorithm in this paper is used for empirical analysis. For the artificial intelligence models commonly used in time series analysis such as autoregressive moving average model, artificial neural network model, hidden Markov model, etc., when selecting the research model, the method of simulation comparison can be used. The experimental results show that the time series data generated by various models have different mathematical and physical characteristics, which provide a basis for model selection. At the same time, the selection theory is practical. The model selected by the theory has a good fit and prediction effect. The generation of different models has different mathematical characteristics of time series data, which also provides a basis for selecting models. |
---|---|
AbstractList | In order to solve the limitation of a large number of literatures on the study of modeling, simulation and prediction of time series data, there is no model selection, and a certain model is directly used for analysis. For three types of artificial intelligence models often applied to time series analysis: hidden Markov Carrier model, artificial neural network model and autoregressive moving average model are used to study model selection based on simulation comparison method. The study of nonlinear integration methods, using intelligent system methods to learn the weighting mode, has made the model's generalization ability and the degree is of fit to the sample data have been significantly improved. At the same time, numerical simulations are performed on various models, and the characteristics of the time series generated by various models are investigated. Based on the characteristics, the theory and algorithm of model selection are proposed. The model selection theory and algorithm in this paper is used for empirical analysis. For the artificial intelligence models commonly used in time series analysis such as autoregressive moving average model, artificial neural network model, hidden Markov model, etc., when selecting the research model, the method of simulation comparison can be used. The experimental results show that the time series data generated by various models have different mathematical and physical characteristics, which provide a basis for model selection. At the same time, the selection theory is practical. The model selected by the theory has a good fit and prediction effect. The generation of different models has different mathematical characteristics of time series data, which also provides a basis for selecting models. |
Author | Wang, Kang |
Author_xml | – sequence: 1 givenname: Kang orcidid: 0000-0001-9394-3857 surname: Wang fullname: Wang, Kang email: kaobowang@163.com organization: School of Humanities and Media, Pingxiang University, Pingxiang, China |
BookMark | eNpNUMtuwjAQtCoqlVK-gEt-INSO48Q-RoG2SFQcoGfLjzU1Cglycunf1zQIdS-zGu3M7s4zmrRdCwgtCF4SgsVrVdfr_X6Z4QwvM8FJzvkDmmakEClltJj865_QvO9POBaPFCunaFWFwTtvvGqSTTtA0_gjtAaSqjl2wQ_f58R1IdldBn-OIwd_hmQPwUOfrNSgks_OQvOCHp1qepjfcIa-3taH-iPd7t43dbVNDaV4SAUorTQDzWnOCsWxYgxAGy6IIYRbIIXVDnPtcm25g7IUitmyMEqUOQGgM7QZfW2nTvIS4knhR3bKyz-iC0ep4jumAWkzjgurdAmly10GcXdEkTnLDMEqi1509DKh6_sA7u5HsLzmKsdc5TVXecs1qhajygPAXSEwFQXO6S-MuXcc |
CODEN | IAECCG |
Cites_doi | 10.1007/978-3-0348-7976-7_8 10.1613/jair.5500 10.1007/s11036-017-0934-6 10.1166/jctn.2015.4670 10.1007/s13201-017-0543-3 10.1016/j.artmed.2016.01.005 10.1007/s40031-016-0271-3 10.1109/TVCG.2018.2825424 10.1016/j.engappai.2017.06.002 10.1007/s13762-014-0717-6 10.1016/j.procs.2018.05.167 10.1007/s40030-017-0215-1 10.1007/s11356-015-4965-x 10.1109/TCC.2015.2511720 10.1016/j.engappai.2018.03.006 10.1049/joe.2017.0338 10.1007/978-3-319-46675-0_4 10.1016/j.neucom.2015.02.074 10.1016/j.rser.2018.04.050 10.1155/2016/3917892 10.1142/S0218001418600042 10.1609/aimag.v36i2.2590 10.1007/s00500-015-1752-z 10.1016/j.artmed.2018.02.002 10.1142/S0218001418500362 10.1007/s00704-015-1634-4 10.1088/1742-6596/1168/3/032018 10.1007/978-3-642-23765-2_18 10.1109/TC.2015.2485230 10.1109/JSTARS.2017.2739858 10.1007/s00521-015-2039-0 10.1016/j.engappai.2015.01.006 10.1002/cncy.22176 10.1017/s0263574715001034 10.1007/s13748-019-00176-0 10.1016/j.engappai.2017.06.016 10.1016/j.engappai.2016.07.005 10.1007/978-81-322-2544-7_12 10.1007/978-81-322-2544-7_8 10.1007/s11277-016-3340-7 10.1007/978-3-319-32034-2_15 10.1142/S1793005715500076 10.1142/S0218001416590102 10.1007/s10462-017-9575-1 10.1007/s10115-017-1090-9 10.1109/TITS.2016.2620483 |
ContentType | Journal Article |
DBID | 97E ESBDL RIA RIE AAYXX CITATION DOA |
DOI | 10.1109/ACCESS.2020.2981488 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 124224 |
ExternalDocumentID | oai_doaj_org_article_d2806dab7e7f4f2e9eaf4f92fd5c10a2 10_1109_ACCESS_2020_2981488 9039604 |
Genre | orig-research |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c330t-9eabab5eb83456a80a55eebc891c118de16dbf08bf4bd8fe779a5d76ca9741ee3 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:28:46 EDT 2025 Thu Jul 31 00:42:23 EDT 2025 Wed Aug 27 02:13:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c330t-9eabab5eb83456a80a55eebc891c118de16dbf08bf4bd8fe779a5d76ca9741ee3 |
ORCID | 0000-0001-9394-3857 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9039604 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d2806dab7e7f4f2e9eaf4f92fd5c10a2 ieee_primary_9039604 crossref_primary_10_1109_ACCESS_2020_2981488 |
PublicationCentury | 2000 |
PublicationDate | 20250000 2025-00-00 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 20250000 |
PublicationDecade | 2020 |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref12 ref15 ref14 ref52 ref11 Weihang (ref7) 2016; 42 ref17 ref16 ref19 ref18 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 Wanjawa (ref27) 2016; 5 ref9 ref4 ref3 ref6 Zheng (ref51) 2015; 35 ref5 ref40 ref35 Grohs (ref37) 2018; 2 ref34 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Qi (ref50) 2018; 3 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref29 Tank (ref10) 2015; 24 |
References_xml | – ident: ref30 doi: 10.1007/978-3-0348-7976-7_8 – ident: ref34 doi: 10.1613/jair.5500 – ident: ref16 doi: 10.1007/s11036-017-0934-6 – ident: ref3 doi: 10.1166/jctn.2015.4670 – volume: 3 start-page: 1009 year: 2018 ident: ref50 article-title: Edge computing application: Real-time anomaly detection algorithm for sensing data publication-title: J. Comput. Res. Develop. – ident: ref36 doi: 10.1007/s13201-017-0543-3 – ident: ref26 doi: 10.1016/j.artmed.2016.01.005 – ident: ref39 doi: 10.1007/s40031-016-0271-3 – ident: ref11 doi: 10.1109/TVCG.2018.2825424 – volume: 5 start-page: 124 issue: 3 year: 2016 ident: ref27 article-title: Evaluating the performance of ANN prediction system at shanghai stock market in the period – ident: ref19 doi: 10.1016/j.engappai.2017.06.002 – ident: ref15 doi: 10.1007/s13762-014-0717-6 – ident: ref45 doi: 10.1016/j.procs.2018.05.167 – volume: 42 start-page: 196 issue: 6 year: 2016 ident: ref7 article-title: A joint classification learning algorithm for feature sequences of time-series data publication-title: Comput. Eng. – ident: ref17 doi: 10.1007/s40030-017-0215-1 – ident: ref41 doi: 10.1007/s11356-015-4965-x – ident: ref47 doi: 10.1109/TCC.2015.2511720 – ident: ref9 doi: 10.1016/j.engappai.2018.03.006 – ident: ref38 doi: 10.1049/joe.2017.0338 – ident: ref28 doi: 10.1007/978-3-319-46675-0_4 – ident: ref29 doi: 10.1016/j.neucom.2015.02.074 – ident: ref21 doi: 10.1016/j.rser.2018.04.050 – ident: ref33 doi: 10.1155/2016/3917892 – ident: ref23 doi: 10.1142/S0218001418600042 – ident: ref40 doi: 10.1609/aimag.v36i2.2590 – ident: ref18 doi: 10.1007/s00500-015-1752-z – ident: ref12 doi: 10.1016/j.artmed.2018.02.002 – ident: ref25 doi: 10.1142/S0218001418500362 – ident: ref49 doi: 10.1007/s00704-015-1634-4 – ident: ref13 doi: 10.1088/1742-6596/1168/3/032018 – ident: ref31 doi: 10.1007/978-3-642-23765-2_18 – ident: ref42 doi: 10.1109/TC.2015.2485230 – ident: ref43 doi: 10.1109/JSTARS.2017.2739858 – ident: ref14 doi: 10.1007/s00521-015-2039-0 – ident: ref8 doi: 10.1016/j.engappai.2015.01.006 – ident: ref48 doi: 10.1002/cncy.22176 – ident: ref44 doi: 10.1017/s0263574715001034 – ident: ref1 doi: 10.1007/s13748-019-00176-0 – ident: ref22 doi: 10.1016/j.engappai.2017.06.016 – volume: 24 start-page: 70 issue: 5 year: 2015 ident: ref10 article-title: Bayesian structure learning for stationary time series publication-title: Statistics – ident: ref2 doi: 10.1016/j.engappai.2016.07.005 – ident: ref24 doi: 10.1007/978-81-322-2544-7_12 – ident: ref46 doi: 10.1007/978-81-322-2544-7_8 – ident: ref52 doi: 10.1007/s11277-016-3340-7 – ident: ref4 doi: 10.1007/978-3-319-32034-2_15 – ident: ref5 doi: 10.1142/S1793005715500076 – ident: ref6 doi: 10.1142/S0218001416590102 – ident: ref32 doi: 10.1007/s10462-017-9575-1 – volume: 35 start-page: 2162 issue: 9 year: 2015 ident: ref51 article-title: Research on model and algorithm for optimal power flow of large-scale high voltage direct current transmission system publication-title: Zhongguo Dianji Gongcheng Xuebao/Proc. Chin. Soc. Electr. Eng. – ident: ref20 doi: 10.1007/s10115-017-1090-9 – ident: ref35 doi: 10.1109/TITS.2016.2620483 – volume: 2 start-page: 1314 issue: 2 year: 2018 ident: ref37 article-title: A proof that artificial neural networks overcome the curse of dimensionality in the numerical approximation of Black-Scholes partial differential equations publication-title: Papers |
SSID | ssj0000816957 |
Score | 2.3341103 |
Snippet | In order to solve the limitation of a large number of literatures on the study of modeling, simulation and prediction of time series data, there is no model... |
SourceID | doaj crossref ieee |
SourceType | Open Website Index Database Publisher |
StartPage | 124211 |
SubjectTerms | Analytical models artificial intelligence algorithm Autoregressive processes Computational modeling data model Data models generalization ability Hidden Markov models Predictive models Time series Time series analysis weight pattern |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQUBDlJQ-MhDp2XNtjaakKErBQqVvkxxmGPhCU_885CVU7sTBFSqxT_F10d58df0fItQHlVBCQMeF8VljrMqeAZ0hvRUz8Ith03vnpuTeeFI9TOd1o9ZX-CavlgWvguiFt_QWLBlQsIgcDFq-GxyB9zmwVfTHnbZCpKgbrvGekamSGcma6_cEAZ4SEkLNbbjSyAL2ViirF_q0WK1WGGR2Q_aY0pP36lQ7JDiyOyN6GYGCbDNPDWvOBPmyIadL-7G2JNP99TrEIpS8YB-Y4JJ3voGn9C77o0K4sTZ3PZsdkMrp_HYyzpg9C5oVgqwyn7KyT4LTAcsdqZqUEcF6b3CM_CJD3gotMu1i4oCMoZawMquctkoUcQJyQ1mK5gFNCo1PG8MAgl75QQmsZwHJvovc8j5p1yM0vJOVHLXdRVjSBmbJGsEwIlg2CHXKXYFsPTVrV1Q30YNl4sPzLgx3STqCvjRgmkmLM2X_YPie7PDXsrdZMLkhr9fkNl1hFrNxV9cH8AFRHxck priority: 102 providerName: Directory of Open Access Journals |
Title | Artificial Intelligence Algorithm for Optimal Time Series Data Model |
URI | https://ieeexplore.ieee.org/document/9039604 https://doaj.org/article/d2806dab7e7f4f2e9eaf4f92fd5c10a2 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTxsxEB0BJ3ooLbRqCo184JgNXnsd28eQFKVIwKVI3Fb-GAMqJIhuLvx6bO8mCqiHnnbltVb2zOx63tjzBuBYo7TScywot66ojLGFlciKCG95SPjCm5TvfHE5ml1X5zfiZgsG61wYRMyHz3CYbvNevl-4ZQqVnWjKE5fINmxH4Nbmaq3jKamAhBayIxYqqT4ZTyZxDhECMjpkWkW_X71ZfDJH_5uiKnlNOduDi9Vo2qMkf4bLxg7dyzuixv8d7if42DmXZNxaw2fYwvk-fNigHDyAaXrYskaQXxt0nGT8cLt4vm_uHkl0Y8lV_JM8xi4pQ4SkCBr-JVPTGJJqpz18geuzn78ns6KrpFA4zmlTaDTWWIFW8egwGUWNEIjWKV26iDA8liNvA1U2VNargFJqI7wcORPhRonIv8LOfDHHb0CClVozT7EUrpJcKeHRMKeDc6wMivZgsBJx_dQSZtQZaFBdtxqpk0bqTiM9OE1qWHdNbNe5IUqy7j6e2qftX2-iEclQBYZxOvGqWfDCldSwHhwk6a9f0gn--7-bD2GXpSK-OY5yBDvN8xJ_RM-isf2MyPvZsF4BvTXOnA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcgAOvArqAgUf4Ea2jhOv7QOH7S7VLn1waaXegh9jQG13UZsVgt_Sv9L_xjhJVy3iWolTIseyZM_Enm888w3AW4PKqVBgxgvns9JalzmFIiN4W8SEL4JN-c57-4PJYfnpSB6twMUyFwYRm-Az7KfX5i4_zP0iuco2DS8Sl0gXQrmDv34SQDv_MB2TNN8Jsf3xYDTJuhoCmSekXmcGrbNOotMFmQpWcyslovPa5J5s64D5ILjItYulCzqiUsbKoAbekqGdIxY07h24S3aGFG122NKDk0pWGKk6KqOcm83haESrRqBT8L4wmpCGvnHcNVUBbpRxaU6x7UdweTX_NnjluL-oXd___osa8n9doMfwsDOf2bDV9yewgrOn8OAaqeIajNPHlheDTa8RjrLhydf52ff62ykjQ519pr3ylLqkHBiWfIR4zsa2tixVhzt5Boe3Mo3nsDqbz3AdWHTKGBE45tKXqtBaBrTCm-i9yKPmPXh_JdLqR0sJUjVQipuq1YAqaUDVaUAPtpLYl10Tn3fTQJKruu2hCumCO1j6TVQso0CaDj2NiEH6nFvRg7Uk7eUgnaBf_Lv5DdybHOztVrvT_Z2XcF-kksWN1-gVrNZnC9wgO6p2rxt1ZvDlttXjD2hwLvI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence+Algorithm+for+Optimal+Time+Series+Data+Model&rft.jtitle=IEEE+access&rft.au=Wang%2C+Kang&rft.date=2025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=124211&rft.epage=124224&rft_id=info:doi/10.1109%2FACCESS.2020.2981488&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2020_2981488 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |