Real-Time Control Strategy of Exoskeleton Locomotion Trajectory Based on Multi-modal Fusion
The exoskeleton robot is a typical man–machine integration system in the human loop. The ideal man–machine state is to achieve motion coordination, stable output, strong personalization, and reduce man–machine confrontation during motion. In order to achieve an ideal man–machine state, a Time-varyin...
Saved in:
Published in | Journal of bionics engineering Vol. 20; no. 6; pp. 2670 - 2682 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
01.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The exoskeleton robot is a typical man–machine integration system in the human loop. The ideal man–machine state is to achieve motion coordination, stable output, strong personalization, and reduce man–machine confrontation during motion. In order to achieve an ideal man–machine state, a Time-varying Adaptive Gait Trajectory Generator (TAGT) is designed to estimate the motion intention of the wearer and generate a personalized gait trajectory. TAGT can enhance the hybrid intelligent decision-making ability under human–machine collaboration, promote good motion coordination between the exoskeleton and the wearer, and reduce metabolic consumption. An important feature of this controller is that it utilizes a multi-layer control strategy to provide locomotion assistance to the wearer, while allowing the user to control the gait trajectory based on human–robot Interaction (HRI) force and locomotion information. In this article, a Temporal Convolutional Gait Prediction (TCGP) model is designed to learn the personalized gait trajectory of the wearer, and the control performance of the model is further improved by fusing the predefined gait trajectory method with an adaptive interactive force control model. A human-in-the-loop control strategy is formed with the feedback information to stabilize the motion trajectory of the output joints and update the system state in real time based on the feedback from the inertial and interactive force signal. The experimental study employs able-bodied subjects wearing the exoskeleton for motion trajectory control to evaluate the performance of the proposed TAGT model in online adjustments. Data from these evaluations demonstrate that the controller TAGT has good motor coordination and can satisfy the subject to control the motor within a certain range according to the walking habit, guaranteeing the stability of the closed-loop system. |
---|---|
AbstractList | The exoskeleton robot is a typical man–machine integration system in the human loop. The ideal man–machine state is to achieve motion coordination, stable output, strong personalization, and reduce man–machine confrontation during motion. In order to achieve an ideal man–machine state, a Time-varying Adaptive Gait Trajectory Generator (TAGT) is designed to estimate the motion intention of the wearer and generate a personalized gait trajectory. TAGT can enhance the hybrid intelligent decision-making ability under human–machine collaboration, promote good motion coordination between the exoskeleton and the wearer, and reduce metabolic consumption. An important feature of this controller is that it utilizes a multi-layer control strategy to provide locomotion assistance to the wearer, while allowing the user to control the gait trajectory based on human–robot Interaction (HRI) force and locomotion information. In this article, a Temporal Convolutional Gait Prediction (TCGP) model is designed to learn the personalized gait trajectory of the wearer, and the control performance of the model is further improved by fusing the predefined gait trajectory method with an adaptive interactive force control model. A human-in-the-loop control strategy is formed with the feedback information to stabilize the motion trajectory of the output joints and update the system state in real time based on the feedback from the inertial and interactive force signal. The experimental study employs able-bodied subjects wearing the exoskeleton for motion trajectory control to evaluate the performance of the proposed TAGT model in online adjustments. Data from these evaluations demonstrate that the controller TAGT has good motor coordination and can satisfy the subject to control the motor within a certain range according to the walking habit, guaranteeing the stability of the closed-loop system. |
Author | Zhen, Tao Yan, Lei |
Author_xml | – sequence: 1 givenname: Tao surname: Zhen fullname: Zhen, Tao organization: College of Engineering, Beijing Forestry University – sequence: 2 givenname: Lei orcidid: 0000-0002-8467-8331 surname: Yan fullname: Yan, Lei email: mark_yanlei@bjfu.edu.cn organization: College of Engineering, Beijing Forestry University |
BookMark | eNp9kMFOAyEQhompiW31BTzxAigMu8vuUZtWTWpMtJ48EJZlm63sYoAmtk8vtZ489MSEmW8m_zdBo8ENBqFrRm8YpeI2ZAA8JxQ4oZRXguzP0BjyjBNgGRuhMSsEkCKH6gJNQthQmldQ8jH6eDXKklXXGzxzQ_TO4rfoVTTrHXYtnn-78GmsiW7AS6dd72KXypVXG6Oj8zt8r4JpcPp73trYkd41yuLFNqSxS3TeKhvM1d87Re-L-Wr2SJYvD0-zuyXRnNNIqroWdcZUXjGV5aU2LWepUxcalBaNZhx4WWgutNCsppAp0RSgWFMwBQnhUwTHvdq7ELxp5ZfveuV3klF50COPemTSI3_1yH2Cyn-Q7qI6pEvxO3sa5Uc0pDvD2ni5cVs_pIinqB8lmH3l |
CitedBy_id | crossref_primary_10_1016_j_compbiomed_2024_108565 |
Cites_doi | 10.1109/LRA.2022.3160668 10.1109/LRA.2021.3115572 10.1177/0018720820957467 10.1163/156855307781746061 10.1109/TMECH.2022.3156168 10.1007/s42235-018-0068-y 10.1016/j.jbiomech.2013.09.032 10.1109/LRA.2021.3062562 10.1109/TMECH.2006.871087 10.1007/s42235-022-00302-0 10.1179/2045772313Y.0000000126 10.1109/TNSRE.2021.3107376 10.1016/j.apergo.2021.103615 10.1109/TASE.2018.2841358 10.1109/TBME.2022.3165547 10.1109/TNSRE.2019.2914095 10.1097/PHM.0b013e318269d9a3 10.1310/sci2102-93 10.1007/s42235-018-0082-0 10.1007/s42235-022-00249-2 10.1007/s42235-022-00230-z 10.1007/s42235-022-00172-6 10.1016/j.pmrj.2016.07.534 10.1186/s12984-023-01144-5 10.1186/s12984-015-0062-0 10.1109/TIE.2022.3152016 10.1186/s12984-018-0468-6 10.2522/ptj.20050266 10.1007/s12553-019-00372-x |
ContentType | Journal Article |
Copyright | Jilin University 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: Jilin University 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s42235-023-00397-z |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) Biology |
EISSN | 2543-2141 |
EndPage | 2682 |
ExternalDocumentID | 10_1007_s42235_023_00397_z |
GroupedDBID | --K --M -EM -SC -S~ .~1 0R~ 1B1 1~. 1~5 2B. 2C. 4.4 406 457 4G. 5GY 5VR 5VS 7-5 71M 8P~ 8UJ 92E 92I 92Q 93N AACDK AACTN AAEDT AAEDW AAHNG AAIAL AAIKJ AAJBT AAKOC AALRI AAOAW AASML AATNV AAUYE AAXDM AAXKI AAXUO ABAKF ABDZT ABECU ABFTV ABJNI ABKCH ABMAC ABMQK ABTEG ABTKH ABTMW ABWVN ABXDB ACAOD ACDAQ ACDTI ACGFS ACHSB ACNNM ACOKC ACPIV ACRLP ACRPL ACZOJ ADBBV ADEZE ADKNI ADMUD ADNMO ADRFC ADTZH ADURQ ADYFF AEBSH AECPX AEFQL AEIPS AEKER AEMSY AENEX AESKC AFBBN AFKWA AFQWF AFUIB AGDGC AGHFR AGJBK AGMZJ AGQEE AGRTI AGUBO AGYEJ AHJVU AIAKS AIEXJ AIGIU AIKHN AILAN AITGF AITUG AJOXV AJZVZ AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMKLP AMRAJ AMXSW AMYLF ANKPU AXJTR AXYYD BGNMA BKOJK BLXMC CAJEC CCEZO CEKLB CHBEP CS3 CW9 DPUIP DU5 EBLON EBS EFJIC EJD EO9 EP2 EP3 FA0 FDB FIGPU FINBP FIRID FNLPD FNPLU FSGXE FYGXN GBLVA GGCAI GJIRD HG6 HZ~ IAO IHR IKXTQ ITC IWAJR J-C J1W JJJVA JZLTJ KOM KOV LLZTM M41 M4Y MO0 N9A NPVJJ NQJWS NU0 O-L O9- O9J OAUVE OZT P-8 P-9 P2P PC. PT4 Q-- Q38 RIG RLLFE ROL RSV SDC SDF SDG SES SJYHP SNE SNPRN SOHCF SOJ SPC SRMVM SSLCW SST SSZ STPWE T5K TCJ TGP U1G U5M UOJIU UTJUX VEKWB VFIZW WFFXF ZMTXR AATTM AAYWO AAYXX ABBRH ABDBE ABFSG ACSTC ACVFH ADCNI AEUPX AEZWR AFDZB AFHIU AFOHR AFPUW AFXIZ AGCQF AGRNS AHPBZ AHWEU AIGII AIIUN AIXLP AKBMS AKYEP ATHPR AYFIA CITATION SSH |
ID | FETCH-LOGICAL-c330t-9bb7b41a591a458cef31c33b6c2ac7dc132386c37c7c1b024a7d62a1d61a21a43 |
ISSN | 1672-6529 |
IngestDate | Thu Apr 24 22:56:46 EDT 2025 Tue Jul 01 00:55:17 EDT 2025 Fri Feb 21 02:44:07 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Multi-layer control strategy Hybrid intelligent Exoskeleton Human–machine collaboration Time-varying adaptive gait |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c330t-9bb7b41a591a458cef31c33b6c2ac7dc132386c37c7c1b024a7d62a1d61a21a43 |
ORCID | 0000-0002-8467-8331 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1007_s42235_023_00397_z crossref_citationtrail_10_1007_s42235_023_00397_z springer_journals_10_1007_s42235_023_00397_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20231100 2023-11-00 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 20231100 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | Journal of bionics engineering |
PublicationTitleAbbrev | J Bionic Eng |
PublicationYear | 2023 |
Publisher | Springer Nature Singapore |
Publisher_xml | – name: Springer Nature Singapore |
References | de Jesús, F., Joan, L. P., Erik, P., Josep, M. F., Laura, M. C. (CR19) 2023; 20 McGibbon, Sexton, Jayaraman, Deems-Dluhy, Gryfe, Novak, Dutta, Fabara, Adans-Dester, Bonato (CR13) 2018; 15 Wang, Chen, Li, Dong, Du, Shen, Zhao (CR18) 2018; 15 Elprama, Vanderborght, An (CR1) 2022 Zhu, Wu, Chen, Zhao (CR4) 2022; 7 Hartigan, Kandilakis, Dalley, Clausen, Wilson, Morrison, Etheridge, Farris (CR8) 2015; 21 Zoss, Kazerooni, Chu (CR26) 2006; 11 Suzuki, Mito, Kawamoto, Hasegawa, Sankai (CR12) 2007; 21 Zheng, Zhu, Zhang, Zhao, Chen, Zhao (CR22) 2018; 15 Proud, Lai, Mudie, Carstairs, Billing, Garofolini, Begg (CR2) 2022; 64 Kang, Molinaro, Choi, Camargo, Young (CR24) 2022; 69 Buesing, Fisch, O’Donnell, Shahidi, Thomas, Mummidisetty, Williams, Takahashi, Rymer, Jayaraman (CR11) 2015; 12 Wang, Wu, Gao, Wang, Li, Xu, Dong (CR21) 2022; 19 Hong, Chun, Kim, Park (CR15) 2019; 27 Fineberg (CR29) 2013; 36 Wu, Liu, Chen, Guo (CR14) 2018; 15 Liu, Li, Li, Gu, Sun (CR25) 2022; 20 Shushtari, Nasiri, Arami (CR17) 2022; 7 Li, Liu, Li, Sun, Liu, Gu (CR5) 2022; 19 Kang, Molinaro, Duggal, Chen, Kunapuli, Young (CR28) 2021; 6 Sharifi, Mehr, Mushahwar, Tavakoli (CR20) 2022; 27 Yun, Kim, Shin, Lee, Deshpande, Kim (CR27) 2014; 47 Meng, Xu, Xie, Mahmutjan, Li, Yu (CR10) 2023; 20 Hernández-Sierra, Mendoza-Gutierrez, Mejía-Rodríguez (CR3) 2020; 10 Israel, Campbell, Kahn, Hornby (CR16) 2006; 86 He, Xiong, Chen, Fan, Huang, Fu (CR6) 2021; 29 Esquenazi, Talaty, Packel, Saulino (CR9) 2012; 91 Park, Choi, Kong (CR23) 2022; 70 Alberto (CR7) 2017; 9 C He (397_CR6) 2021; 29 KW Park (397_CR23) 2022; 70 JK Proud (397_CR2) 2022; 64 E Alberto (397_CR7) 2017; 9 A Esquenazi (397_CR9) 2012; 91 Q Meng (397_CR10) 2023; 20 I Kang (397_CR28) 2021; 6 K Suzuki (397_CR12) 2007; 21 C Hartigan (397_CR8) 2015; 21 T Zheng (397_CR22) 2018; 15 L Wang (397_CR18) 2018; 15 AB Zoss (397_CR26) 2006; 11 Y Zhu (397_CR4) 2022; 7 Y Yun (397_CR27) 2014; 47 K Liu (397_CR25) 2022; 20 JF Israel (397_CR16) 2006; 86 X Wu (397_CR14) 2018; 15 M Sharifi (397_CR20) 2022; 27 SA Elprama (397_CR1) 2022 C Buesing (397_CR11) 2015; 12 WT Li (397_CR5) 2022; 19 M de Jesús (397_CR19) 2023; 20 DB Fineberg (397_CR29) 2013; 36 JQ Wang (397_CR21) 2022; 19 M Shushtari (397_CR17) 2022; 7 CA McGibbon (397_CR13) 2018; 15 J Hong (397_CR15) 2019; 27 I Kang (397_CR24) 2022; 69 LJ Hernández-Sierra (397_CR3) 2020; 10 |
References_xml | – volume: 7 start-page: 5787 issue: 2 year: 2022 end-page: 5794 ident: CR4 article-title: Design and voluntary control of variable stiffness exoskeleton based on sEMG driven model publication-title: IEEE Robotics and Automation Letters doi: 10.1109/LRA.2022.3160668 – volume: 7 start-page: 128 issue: 1 year: 2022 end-page: 134 ident: CR17 article-title: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons publication-title: IEEE Robotics and Automation Letters doi: 10.1109/LRA.2021.3115572 – volume: 64 start-page: 527 year: 2022 end-page: 554 ident: CR2 article-title: Exoskeleton application to military manual handling tasks publication-title: Human Factors: The Journal of Human Factors and Ergonomics Society doi: 10.1177/0018720820957467 – volume: 21 start-page: 1441 issue: 12 year: 2007 end-page: 1469 ident: CR12 article-title: Intention-based walking support for paraplegia patients with Robot Suit HAL publication-title: Advanced Robotics. doi: 10.1163/156855307781746061 – volume: 27 start-page: 645 issue: 2 year: 2022 end-page: 655 ident: CR20 article-title: Autonomous locomotion trajectory shaping and nonlinear control for lower limb exoskeletons publication-title: IEEE/ASME Transactions on Mechatronics doi: 10.1109/TMECH.2022.3156168 – volume: 15 start-page: 805 issue: 5 year: 2018 end-page: 819 ident: CR18 article-title: High precision data-driven force control of compact elastic module for a lower extremity augmentation device publication-title: Journal of Bionic Engineering doi: 10.1007/s42235-018-0068-y – volume: 47 start-page: 186 issue: 1 year: 2014 end-page: 192 ident: CR27 article-title: Statistical method for prediction of gait kinematics with gaussian process regression publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2013.09.032 – volume: 6 start-page: 3491 issue: 2 year: 2021 end-page: 3497 ident: CR28 article-title: Real-time gait phase estimation for robotic hip exoskeleton control during multimodal locomotion publication-title: IEEE Robotics and Automation Letters. doi: 10.1109/LRA.2021.3062562 – volume: 11 start-page: 128 issue: 2 year: 2006 end-page: 138 ident: CR26 article-title: Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX) publication-title: IEEE/ASME Transactions on Mechatronics doi: 10.1109/TMECH.2006.871087 – volume: 20 start-page: 1021 issue: 3 year: 2022 end-page: 1035 ident: CR25 article-title: Compliant control of lower limb rehabilitation exoskeleton robot based on flexible transmission publication-title: Journal of Bionic Engineering doi: 10.1007/s42235-022-00302-0 – volume: 36 start-page: 313 issue: 4 year: 2013 end-page: 321 ident: CR29 article-title: Vertical ground reaction force-based analysis of powered exoskeleton-assisted walking in persons with motor-complete paraplegia publication-title: The Journal of Spinal Cord Medicine doi: 10.1179/2045772313Y.0000000126 – volume: 29 start-page: 1795 year: 2021 end-page: 1805 ident: CR6 article-title: Preliminary assessment of a postural synergy-based exoskeleton for post-stroke upper limb rehabilitation publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2021.3107376 – year: 2022 ident: CR1 article-title: An industrial exoskeleton user acceptance framework based on a literature review of empirical studies publication-title: Applied Ergonomics doi: 10.1016/j.apergo.2021.103615 – volume: 15 start-page: 1459 year: 2018 end-page: 1470 ident: CR14 article-title: Individualized gait pattern generation for sharing lower limb exoskeleton robot publication-title: IEEE Transactions on Automation Science and Engineering doi: 10.1109/TASE.2018.2841358 – volume: 69 start-page: 3234 issue: 10 year: 2022 end-page: 3242 ident: CR24 article-title: Subject-independent continuous locomotion mode classification for robotic hip exoskeleton applications publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2022.3165547 – volume: 27 start-page: 1236 issue: 6 year: 2019 end-page: 1245 ident: CR15 article-title: Gaussian process trajectory learning and synthesis of individualized gait motions publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2019.2914095 – volume: 91 start-page: 911 issue: 11 year: 2012 end-page: 921 ident: CR9 article-title: The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury publication-title: American Journal of Physical Medicine & Rehabilitation. doi: 10.1097/PHM.0b013e318269d9a3 – volume: 21 start-page: 93 issue: 2 year: 2015 end-page: 99 ident: CR8 article-title: Mobility outcomes following five training sessions with a powered exoskeleton publication-title: Topics in Spinal Cord Injury Rehabilitation. doi: 10.1310/sci2102-93 – volume: 15 start-page: 941 issue: 6 year: 2018 end-page: 949 ident: CR22 article-title: Parametric gait online generation of a lower-limb exoskeleton for individuals with paraplegia publication-title: Journal of Bionic Engineering doi: 10.1007/s42235-018-0082-0 – volume: 20 start-page: 146 issue: 1 year: 2023 end-page: 157 ident: CR10 article-title: Driving power for a portable elbow exoskeleton based on gravity-balancing coupled model publication-title: Journal of Bionic Engineering doi: 10.1007/s42235-022-00249-2 – volume: 19 start-page: 1359 issue: 5 year: 2022 end-page: 1373 ident: CR21 article-title: Integral real-time locomotion mode recognition based on GA-CNN for lower limb exoskeleton publication-title: Journal of Bionic Engineering doi: 10.1007/s42235-022-00230-z – volume: 19 start-page: 688 issue: 3 year: 2022 end-page: 699 ident: CR5 article-title: Development and evaluation of a wearable lower limb rehabilitation robot publication-title: Journal of Bionic Engineering doi: 10.1007/s42235-022-00172-6 – volume: 9 start-page: 46 issue: 1 year: 2017 end-page: 62 ident: CR7 article-title: Powered exoskeletons for walking assistance in persons with central nervous system injuries: A narrative review publication-title: PM & R: The Journal of Injury, Function, and Rehabilitation doi: 10.1016/j.pmrj.2016.07.534 – volume: 20 start-page: 23 issue: 1 year: 2023 ident: CR19 article-title: Control strategies used in lower limb exoskeletons for gait rehabilitation after brain injury: A systematic review and analysis of clinical effectiveness publication-title: Journal of Neuroengineering and Rehabilitation doi: 10.1186/s12984-023-01144-5 – volume: 12 start-page: 69 year: 2015 ident: CR11 article-title: Effects of a wearable exoskeleton stride management assist system (sma®) on spatiotemporal gait characteristics in individuals after stroke: A randomized controlled trial publication-title: Journal of Neuroengineering & Rehabilitation doi: 10.1186/s12984-015-0062-0 – volume: 70 start-page: 646 issue: 1 year: 2022 end-page: 656 ident: CR23 article-title: Hybrid filtered disturbance observer for precise motion generation of a powered exoskeleton publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2022.3152016 – volume: 15 start-page: 117 year: 2018 ident: CR13 article-title: Evaluation of the Keeogo exoskeleton for assisting ambulatory activities in people with multiple sclerosis: An open-label, randomized, cross-over trial publication-title: Journal of NeuroEngineering and Rehabilitation doi: 10.1186/s12984-018-0468-6 – volume: 86 start-page: 1466 issue: 11 year: 2006 end-page: 1478 ident: CR16 article-title: Metabolic costs and muscle activity patterns during robotic- and therapist-assisted treadmill walking in individuals with incomplete spinal cord injury publication-title: Physical Therapy doi: 10.2522/ptj.20050266 – volume: 10 start-page: 447 issue: 2 year: 2020 end-page: 451 ident: CR3 article-title: Design of a haptic system for medical image manipulation using augmented reality publication-title: Health and technology doi: 10.1007/s12553-019-00372-x – volume: 27 start-page: 1236 issue: 6 year: 2019 ident: 397_CR15 publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2019.2914095 – volume: 36 start-page: 313 issue: 4 year: 2013 ident: 397_CR29 publication-title: The Journal of Spinal Cord Medicine doi: 10.1179/2045772313Y.0000000126 – volume: 20 start-page: 23 issue: 1 year: 2023 ident: 397_CR19 publication-title: Journal of Neuroengineering and Rehabilitation doi: 10.1186/s12984-023-01144-5 – volume: 11 start-page: 128 issue: 2 year: 2006 ident: 397_CR26 publication-title: IEEE/ASME Transactions on Mechatronics doi: 10.1109/TMECH.2006.871087 – volume: 9 start-page: 46 issue: 1 year: 2017 ident: 397_CR7 publication-title: PM & R: The Journal of Injury, Function, and Rehabilitation doi: 10.1016/j.pmrj.2016.07.534 – volume: 91 start-page: 911 issue: 11 year: 2012 ident: 397_CR9 publication-title: American Journal of Physical Medicine & Rehabilitation. doi: 10.1097/PHM.0b013e318269d9a3 – volume: 7 start-page: 128 issue: 1 year: 2022 ident: 397_CR17 publication-title: IEEE Robotics and Automation Letters doi: 10.1109/LRA.2021.3115572 – volume: 7 start-page: 5787 issue: 2 year: 2022 ident: 397_CR4 publication-title: IEEE Robotics and Automation Letters doi: 10.1109/LRA.2022.3160668 – volume: 15 start-page: 805 issue: 5 year: 2018 ident: 397_CR18 publication-title: Journal of Bionic Engineering doi: 10.1007/s42235-018-0068-y – volume: 27 start-page: 645 issue: 2 year: 2022 ident: 397_CR20 publication-title: IEEE/ASME Transactions on Mechatronics doi: 10.1109/TMECH.2022.3156168 – volume: 15 start-page: 1459 year: 2018 ident: 397_CR14 publication-title: IEEE Transactions on Automation Science and Engineering doi: 10.1109/TASE.2018.2841358 – volume: 19 start-page: 688 issue: 3 year: 2022 ident: 397_CR5 publication-title: Journal of Bionic Engineering doi: 10.1007/s42235-022-00172-6 – volume: 86 start-page: 1466 issue: 11 year: 2006 ident: 397_CR16 publication-title: Physical Therapy doi: 10.2522/ptj.20050266 – volume: 6 start-page: 3491 issue: 2 year: 2021 ident: 397_CR28 publication-title: IEEE Robotics and Automation Letters. doi: 10.1109/LRA.2021.3062562 – volume: 19 start-page: 1359 issue: 5 year: 2022 ident: 397_CR21 publication-title: Journal of Bionic Engineering doi: 10.1007/s42235-022-00230-z – volume: 29 start-page: 1795 year: 2021 ident: 397_CR6 publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2021.3107376 – volume: 15 start-page: 117 year: 2018 ident: 397_CR13 publication-title: Journal of NeuroEngineering and Rehabilitation doi: 10.1186/s12984-018-0468-6 – volume: 15 start-page: 941 issue: 6 year: 2018 ident: 397_CR22 publication-title: Journal of Bionic Engineering doi: 10.1007/s42235-018-0082-0 – volume: 47 start-page: 186 issue: 1 year: 2014 ident: 397_CR27 publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2013.09.032 – volume: 10 start-page: 447 issue: 2 year: 2020 ident: 397_CR3 publication-title: Health and technology doi: 10.1007/s12553-019-00372-x – volume: 20 start-page: 146 issue: 1 year: 2023 ident: 397_CR10 publication-title: Journal of Bionic Engineering doi: 10.1007/s42235-022-00249-2 – volume: 64 start-page: 527 year: 2022 ident: 397_CR2 publication-title: Human Factors: The Journal of Human Factors and Ergonomics Society doi: 10.1177/0018720820957467 – volume: 21 start-page: 1441 issue: 12 year: 2007 ident: 397_CR12 publication-title: Advanced Robotics. doi: 10.1163/156855307781746061 – volume: 21 start-page: 93 issue: 2 year: 2015 ident: 397_CR8 publication-title: Topics in Spinal Cord Injury Rehabilitation. doi: 10.1310/sci2102-93 – year: 2022 ident: 397_CR1 publication-title: Applied Ergonomics doi: 10.1016/j.apergo.2021.103615 – volume: 12 start-page: 69 year: 2015 ident: 397_CR11 publication-title: Journal of Neuroengineering & Rehabilitation doi: 10.1186/s12984-015-0062-0 – volume: 69 start-page: 3234 issue: 10 year: 2022 ident: 397_CR24 publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2022.3165547 – volume: 20 start-page: 1021 issue: 3 year: 2022 ident: 397_CR25 publication-title: Journal of Bionic Engineering doi: 10.1007/s42235-022-00302-0 – volume: 70 start-page: 646 issue: 1 year: 2022 ident: 397_CR23 publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2022.3152016 |
SSID | ssj0059283 |
Score | 2.320073 |
Snippet | The exoskeleton robot is a typical man–machine integration system in the human loop. The ideal man–machine state is to achieve motion coordination, stable... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 2670 |
SubjectTerms | Artificial Intelligence Biochemical Engineering Bioinformatics Biomaterials Biomedical Engineering and Bioengineering Biomedical Engineering/Biotechnology Engineering Research Article |
Title | Real-Time Control Strategy of Exoskeleton Locomotion Trajectory Based on Multi-modal Fusion |
URI | https://link.springer.com/article/10.1007/s42235-023-00397-z |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagCAkOqF1AlJd84ABaXMV2Ym-OgFpVCDjAVqrEIfIrErRsENlKdA_8dsaPPLYLFeUSRd5JVrvzeTwezzeD0LMyy-vCZ4nP9MySHFBBNFOaZKqQGZ05mJueO_z-gzg8yt8eF8dDQD-wS5Z6z6z-yCv5H63CGOjVs2SvoNn-pTAA96BfuIKG4fpPOv4IXh7xJA5P3AsZ56nYbDg23__ZtCewqvjCGe8a08SGPb6c-dcQqj-fvoYlzPrjgkDDJd8aCwo7OGs7XW06rdqHb007dUMZwyH0HC3YXDW9KUnEBvdlHFxgPLHsLgYXfea0P8_45Nt0w77AjSymkIyIIoUtXBjzBHvCaKxo1ZlZlo3gtGYzRWwdktZfJmI3og3bHtM52hwcGk8q58TziiVZDStZn1_Y12IOwhUIV0G4Wl1HNxhsKHyvi71ffTJQUbJQsLX_MYleFUiWG1-47sKsn58Ht2S-je4k1eBXERw76JpbTNDN2GH0fIJuj-pNTtBOsuQtfp7Kjb-4iz73KMIJRbhDEW5qPEIRHlCEBxThgCIMYyMU4Yiie-joYH_-5pCklhvEcJ4tSam11DlVRUlVXsyMqzmFT7QwTBlpDeXg4gnDpZGGavDvlLSCKWoFVQwe4ffR1qJZuAcI19LlNlPcCNhhZKwuJeztndCZ1ZYbne8i2v2LlUn16H1blNPq79rbRdP-me-xGsul0i875VRp1raXiD-8mvgjdGuYMY_R1vLHmXsCDupSPw3Y-g2cqYu9 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+Control+Strategy+of+Exoskeleton+Locomotion+Trajectory+Based+on+Multi-modal+Fusion&rft.jtitle=Journal+of+bionics+engineering&rft.au=Zhen%2C+Tao&rft.au=Yan%2C+Lei&rft.date=2023-11-01&rft.pub=Springer+Nature+Singapore&rft.issn=1672-6529&rft.eissn=2543-2141&rft.volume=20&rft.issue=6&rft.spage=2670&rft.epage=2682&rft_id=info:doi/10.1007%2Fs42235-023-00397-z&rft.externalDocID=10_1007_s42235_023_00397_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1672-6529&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1672-6529&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1672-6529&client=summon |