Real-Time Control Strategy of Exoskeleton Locomotion Trajectory Based on Multi-modal Fusion

The exoskeleton robot is a typical man–machine integration system in the human loop. The ideal man–machine state is to achieve motion coordination, stable output, strong personalization, and reduce man–machine confrontation during motion. In order to achieve an ideal man–machine state, a Time-varyin...

Full description

Saved in:
Bibliographic Details
Published inJournal of bionics engineering Vol. 20; no. 6; pp. 2670 - 2682
Main Authors Zhen, Tao, Yan, Lei
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The exoskeleton robot is a typical man–machine integration system in the human loop. The ideal man–machine state is to achieve motion coordination, stable output, strong personalization, and reduce man–machine confrontation during motion. In order to achieve an ideal man–machine state, a Time-varying Adaptive Gait Trajectory Generator (TAGT) is designed to estimate the motion intention of the wearer and generate a personalized gait trajectory. TAGT can enhance the hybrid intelligent decision-making ability under human–machine collaboration, promote good motion coordination between the exoskeleton and the wearer, and reduce metabolic consumption. An important feature of this controller is that it utilizes a multi-layer control strategy to provide locomotion assistance to the wearer, while allowing the user to control the gait trajectory based on human–robot Interaction (HRI) force and locomotion information. In this article, a Temporal Convolutional Gait Prediction (TCGP) model is designed to learn the personalized gait trajectory of the wearer, and the control performance of the model is further improved by fusing the predefined gait trajectory method with an adaptive interactive force control model. A human-in-the-loop control strategy is formed with the feedback information to stabilize the motion trajectory of the output joints and update the system state in real time based on the feedback from the inertial and interactive force signal. The experimental study employs able-bodied subjects wearing the exoskeleton for motion trajectory control to evaluate the performance of the proposed TAGT model in online adjustments. Data from these evaluations demonstrate that the controller TAGT has good motor coordination and can satisfy the subject to control the motor within a certain range according to the walking habit, guaranteeing the stability of the closed-loop system.
AbstractList The exoskeleton robot is a typical man–machine integration system in the human loop. The ideal man–machine state is to achieve motion coordination, stable output, strong personalization, and reduce man–machine confrontation during motion. In order to achieve an ideal man–machine state, a Time-varying Adaptive Gait Trajectory Generator (TAGT) is designed to estimate the motion intention of the wearer and generate a personalized gait trajectory. TAGT can enhance the hybrid intelligent decision-making ability under human–machine collaboration, promote good motion coordination between the exoskeleton and the wearer, and reduce metabolic consumption. An important feature of this controller is that it utilizes a multi-layer control strategy to provide locomotion assistance to the wearer, while allowing the user to control the gait trajectory based on human–robot Interaction (HRI) force and locomotion information. In this article, a Temporal Convolutional Gait Prediction (TCGP) model is designed to learn the personalized gait trajectory of the wearer, and the control performance of the model is further improved by fusing the predefined gait trajectory method with an adaptive interactive force control model. A human-in-the-loop control strategy is formed with the feedback information to stabilize the motion trajectory of the output joints and update the system state in real time based on the feedback from the inertial and interactive force signal. The experimental study employs able-bodied subjects wearing the exoskeleton for motion trajectory control to evaluate the performance of the proposed TAGT model in online adjustments. Data from these evaluations demonstrate that the controller TAGT has good motor coordination and can satisfy the subject to control the motor within a certain range according to the walking habit, guaranteeing the stability of the closed-loop system.
Author Zhen, Tao
Yan, Lei
Author_xml – sequence: 1
  givenname: Tao
  surname: Zhen
  fullname: Zhen, Tao
  organization: College of Engineering, Beijing Forestry University
– sequence: 2
  givenname: Lei
  orcidid: 0000-0002-8467-8331
  surname: Yan
  fullname: Yan, Lei
  email: mark_yanlei@bjfu.edu.cn
  organization: College of Engineering, Beijing Forestry University
BookMark eNp9kMFOAyEQhompiW31BTzxAigMu8vuUZtWTWpMtJ48EJZlm63sYoAmtk8vtZ489MSEmW8m_zdBo8ENBqFrRm8YpeI2ZAA8JxQ4oZRXguzP0BjyjBNgGRuhMSsEkCKH6gJNQthQmldQ8jH6eDXKklXXGzxzQ_TO4rfoVTTrHXYtnn-78GmsiW7AS6dd72KXypVXG6Oj8zt8r4JpcPp73trYkd41yuLFNqSxS3TeKhvM1d87Re-L-Wr2SJYvD0-zuyXRnNNIqroWdcZUXjGV5aU2LWepUxcalBaNZhx4WWgutNCsppAp0RSgWFMwBQnhUwTHvdq7ELxp5ZfveuV3klF50COPemTSI3_1yH2Cyn-Q7qI6pEvxO3sa5Uc0pDvD2ni5cVs_pIinqB8lmH3l
CitedBy_id crossref_primary_10_1016_j_compbiomed_2024_108565
Cites_doi 10.1109/LRA.2022.3160668
10.1109/LRA.2021.3115572
10.1177/0018720820957467
10.1163/156855307781746061
10.1109/TMECH.2022.3156168
10.1007/s42235-018-0068-y
10.1016/j.jbiomech.2013.09.032
10.1109/LRA.2021.3062562
10.1109/TMECH.2006.871087
10.1007/s42235-022-00302-0
10.1179/2045772313Y.0000000126
10.1109/TNSRE.2021.3107376
10.1016/j.apergo.2021.103615
10.1109/TASE.2018.2841358
10.1109/TBME.2022.3165547
10.1109/TNSRE.2019.2914095
10.1097/PHM.0b013e318269d9a3
10.1310/sci2102-93
10.1007/s42235-018-0082-0
10.1007/s42235-022-00249-2
10.1007/s42235-022-00230-z
10.1007/s42235-022-00172-6
10.1016/j.pmrj.2016.07.534
10.1186/s12984-023-01144-5
10.1186/s12984-015-0062-0
10.1109/TIE.2022.3152016
10.1186/s12984-018-0468-6
10.2522/ptj.20050266
10.1007/s12553-019-00372-x
ContentType Journal Article
Copyright Jilin University 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: Jilin University 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s42235-023-00397-z
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
Biology
EISSN 2543-2141
EndPage 2682
ExternalDocumentID 10_1007_s42235_023_00397_z
GroupedDBID --K
--M
-EM
-SC
-S~
.~1
0R~
1B1
1~.
1~5
2B.
2C.
4.4
406
457
4G.
5GY
5VR
5VS
7-5
71M
8P~
8UJ
92E
92I
92Q
93N
AACDK
AACTN
AAEDT
AAEDW
AAHNG
AAIAL
AAIKJ
AAJBT
AAKOC
AALRI
AAOAW
AASML
AATNV
AAUYE
AAXDM
AAXKI
AAXUO
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABKCH
ABMAC
ABMQK
ABTEG
ABTKH
ABTMW
ABWVN
ABXDB
ACAOD
ACDAQ
ACDTI
ACGFS
ACHSB
ACNNM
ACOKC
ACPIV
ACRLP
ACRPL
ACZOJ
ADBBV
ADEZE
ADKNI
ADMUD
ADNMO
ADRFC
ADTZH
ADURQ
ADYFF
AEBSH
AECPX
AEFQL
AEIPS
AEKER
AEMSY
AENEX
AESKC
AFBBN
AFKWA
AFQWF
AFUIB
AGDGC
AGHFR
AGJBK
AGMZJ
AGQEE
AGRTI
AGUBO
AGYEJ
AHJVU
AIAKS
AIEXJ
AIGIU
AIKHN
AILAN
AITGF
AITUG
AJOXV
AJZVZ
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMKLP
AMRAJ
AMXSW
AMYLF
ANKPU
AXJTR
AXYYD
BGNMA
BKOJK
BLXMC
CAJEC
CCEZO
CEKLB
CHBEP
CS3
CW9
DPUIP
DU5
EBLON
EBS
EFJIC
EJD
EO9
EP2
EP3
FA0
FDB
FIGPU
FINBP
FIRID
FNLPD
FNPLU
FSGXE
FYGXN
GBLVA
GGCAI
GJIRD
HG6
HZ~
IAO
IHR
IKXTQ
ITC
IWAJR
J-C
J1W
JJJVA
JZLTJ
KOM
KOV
LLZTM
M41
M4Y
MO0
N9A
NPVJJ
NQJWS
NU0
O-L
O9-
O9J
OAUVE
OZT
P-8
P-9
P2P
PC.
PT4
Q--
Q38
RIG
RLLFE
ROL
RSV
SDC
SDF
SDG
SES
SJYHP
SNE
SNPRN
SOHCF
SOJ
SPC
SRMVM
SSLCW
SST
SSZ
STPWE
T5K
TCJ
TGP
U1G
U5M
UOJIU
UTJUX
VEKWB
VFIZW
WFFXF
ZMTXR
AATTM
AAYWO
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ACVFH
ADCNI
AEUPX
AEZWR
AFDZB
AFHIU
AFOHR
AFPUW
AFXIZ
AGCQF
AGRNS
AHPBZ
AHWEU
AIGII
AIIUN
AIXLP
AKBMS
AKYEP
ATHPR
AYFIA
CITATION
SSH
ID FETCH-LOGICAL-c330t-9bb7b41a591a458cef31c33b6c2ac7dc132386c37c7c1b024a7d62a1d61a21a43
ISSN 1672-6529
IngestDate Thu Apr 24 22:56:46 EDT 2025
Tue Jul 01 00:55:17 EDT 2025
Fri Feb 21 02:44:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Multi-layer control strategy
Hybrid intelligent
Exoskeleton
Human–machine collaboration
Time-varying adaptive gait
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c330t-9bb7b41a591a458cef31c33b6c2ac7dc132386c37c7c1b024a7d62a1d61a21a43
ORCID 0000-0002-8467-8331
PageCount 13
ParticipantIDs crossref_primary_10_1007_s42235_023_00397_z
crossref_citationtrail_10_1007_s42235_023_00397_z
springer_journals_10_1007_s42235_023_00397_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231100
2023-11-00
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 20231100
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Journal of bionics engineering
PublicationTitleAbbrev J Bionic Eng
PublicationYear 2023
Publisher Springer Nature Singapore
Publisher_xml – name: Springer Nature Singapore
References de Jesús, F., Joan, L. P., Erik, P., Josep, M. F., Laura, M. C. (CR19) 2023; 20
McGibbon, Sexton, Jayaraman, Deems-Dluhy, Gryfe, Novak, Dutta, Fabara, Adans-Dester, Bonato (CR13) 2018; 15
Wang, Chen, Li, Dong, Du, Shen, Zhao (CR18) 2018; 15
Elprama, Vanderborght, An (CR1) 2022
Zhu, Wu, Chen, Zhao (CR4) 2022; 7
Hartigan, Kandilakis, Dalley, Clausen, Wilson, Morrison, Etheridge, Farris (CR8) 2015; 21
Zoss, Kazerooni, Chu (CR26) 2006; 11
Suzuki, Mito, Kawamoto, Hasegawa, Sankai (CR12) 2007; 21
Zheng, Zhu, Zhang, Zhao, Chen, Zhao (CR22) 2018; 15
Proud, Lai, Mudie, Carstairs, Billing, Garofolini, Begg (CR2) 2022; 64
Kang, Molinaro, Choi, Camargo, Young (CR24) 2022; 69
Buesing, Fisch, O’Donnell, Shahidi, Thomas, Mummidisetty, Williams, Takahashi, Rymer, Jayaraman (CR11) 2015; 12
Wang, Wu, Gao, Wang, Li, Xu, Dong (CR21) 2022; 19
Hong, Chun, Kim, Park (CR15) 2019; 27
Fineberg (CR29) 2013; 36
Wu, Liu, Chen, Guo (CR14) 2018; 15
Liu, Li, Li, Gu, Sun (CR25) 2022; 20
Shushtari, Nasiri, Arami (CR17) 2022; 7
Li, Liu, Li, Sun, Liu, Gu (CR5) 2022; 19
Kang, Molinaro, Duggal, Chen, Kunapuli, Young (CR28) 2021; 6
Sharifi, Mehr, Mushahwar, Tavakoli (CR20) 2022; 27
Yun, Kim, Shin, Lee, Deshpande, Kim (CR27) 2014; 47
Meng, Xu, Xie, Mahmutjan, Li, Yu (CR10) 2023; 20
Hernández-Sierra, Mendoza-Gutierrez, Mejía-Rodríguez (CR3) 2020; 10
Israel, Campbell, Kahn, Hornby (CR16) 2006; 86
He, Xiong, Chen, Fan, Huang, Fu (CR6) 2021; 29
Esquenazi, Talaty, Packel, Saulino (CR9) 2012; 91
Park, Choi, Kong (CR23) 2022; 70
Alberto (CR7) 2017; 9
C He (397_CR6) 2021; 29
KW Park (397_CR23) 2022; 70
JK Proud (397_CR2) 2022; 64
E Alberto (397_CR7) 2017; 9
A Esquenazi (397_CR9) 2012; 91
Q Meng (397_CR10) 2023; 20
I Kang (397_CR28) 2021; 6
K Suzuki (397_CR12) 2007; 21
C Hartigan (397_CR8) 2015; 21
T Zheng (397_CR22) 2018; 15
L Wang (397_CR18) 2018; 15
AB Zoss (397_CR26) 2006; 11
Y Zhu (397_CR4) 2022; 7
Y Yun (397_CR27) 2014; 47
K Liu (397_CR25) 2022; 20
JF Israel (397_CR16) 2006; 86
X Wu (397_CR14) 2018; 15
M Sharifi (397_CR20) 2022; 27
SA Elprama (397_CR1) 2022
C Buesing (397_CR11) 2015; 12
WT Li (397_CR5) 2022; 19
M de Jesús (397_CR19) 2023; 20
DB Fineberg (397_CR29) 2013; 36
JQ Wang (397_CR21) 2022; 19
M Shushtari (397_CR17) 2022; 7
CA McGibbon (397_CR13) 2018; 15
J Hong (397_CR15) 2019; 27
I Kang (397_CR24) 2022; 69
LJ Hernández-Sierra (397_CR3) 2020; 10
References_xml – volume: 7
  start-page: 5787
  issue: 2
  year: 2022
  end-page: 5794
  ident: CR4
  article-title: Design and voluntary control of variable stiffness exoskeleton based on sEMG driven model
  publication-title: IEEE Robotics and Automation Letters
  doi: 10.1109/LRA.2022.3160668
– volume: 7
  start-page: 128
  issue: 1
  year: 2022
  end-page: 134
  ident: CR17
  article-title: Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons
  publication-title: IEEE Robotics and Automation Letters
  doi: 10.1109/LRA.2021.3115572
– volume: 64
  start-page: 527
  year: 2022
  end-page: 554
  ident: CR2
  article-title: Exoskeleton application to military manual handling tasks
  publication-title: Human Factors: The Journal of Human Factors and Ergonomics Society
  doi: 10.1177/0018720820957467
– volume: 21
  start-page: 1441
  issue: 12
  year: 2007
  end-page: 1469
  ident: CR12
  article-title: Intention-based walking support for paraplegia patients with Robot Suit HAL
  publication-title: Advanced Robotics.
  doi: 10.1163/156855307781746061
– volume: 27
  start-page: 645
  issue: 2
  year: 2022
  end-page: 655
  ident: CR20
  article-title: Autonomous locomotion trajectory shaping and nonlinear control for lower limb exoskeletons
  publication-title: IEEE/ASME Transactions on Mechatronics
  doi: 10.1109/TMECH.2022.3156168
– volume: 15
  start-page: 805
  issue: 5
  year: 2018
  end-page: 819
  ident: CR18
  article-title: High precision data-driven force control of compact elastic module for a lower extremity augmentation device
  publication-title: Journal of Bionic Engineering
  doi: 10.1007/s42235-018-0068-y
– volume: 47
  start-page: 186
  issue: 1
  year: 2014
  end-page: 192
  ident: CR27
  article-title: Statistical method for prediction of gait kinematics with gaussian process regression
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2013.09.032
– volume: 6
  start-page: 3491
  issue: 2
  year: 2021
  end-page: 3497
  ident: CR28
  article-title: Real-time gait phase estimation for robotic hip exoskeleton control during multimodal locomotion
  publication-title: IEEE Robotics and Automation Letters.
  doi: 10.1109/LRA.2021.3062562
– volume: 11
  start-page: 128
  issue: 2
  year: 2006
  end-page: 138
  ident: CR26
  article-title: Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX)
  publication-title: IEEE/ASME Transactions on Mechatronics
  doi: 10.1109/TMECH.2006.871087
– volume: 20
  start-page: 1021
  issue: 3
  year: 2022
  end-page: 1035
  ident: CR25
  article-title: Compliant control of lower limb rehabilitation exoskeleton robot based on flexible transmission
  publication-title: Journal of Bionic Engineering
  doi: 10.1007/s42235-022-00302-0
– volume: 36
  start-page: 313
  issue: 4
  year: 2013
  end-page: 321
  ident: CR29
  article-title: Vertical ground reaction force-based analysis of powered exoskeleton-assisted walking in persons with motor-complete paraplegia
  publication-title: The Journal of Spinal Cord Medicine
  doi: 10.1179/2045772313Y.0000000126
– volume: 29
  start-page: 1795
  year: 2021
  end-page: 1805
  ident: CR6
  article-title: Preliminary assessment of a postural synergy-based exoskeleton for post-stroke upper limb rehabilitation
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2021.3107376
– year: 2022
  ident: CR1
  article-title: An industrial exoskeleton user acceptance framework based on a literature review of empirical studies
  publication-title: Applied Ergonomics
  doi: 10.1016/j.apergo.2021.103615
– volume: 15
  start-page: 1459
  year: 2018
  end-page: 1470
  ident: CR14
  article-title: Individualized gait pattern generation for sharing lower limb exoskeleton robot
  publication-title: IEEE Transactions on Automation Science and Engineering
  doi: 10.1109/TASE.2018.2841358
– volume: 69
  start-page: 3234
  issue: 10
  year: 2022
  end-page: 3242
  ident: CR24
  article-title: Subject-independent continuous locomotion mode classification for robotic hip exoskeleton applications
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2022.3165547
– volume: 27
  start-page: 1236
  issue: 6
  year: 2019
  end-page: 1245
  ident: CR15
  article-title: Gaussian process trajectory learning and synthesis of individualized gait motions
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2019.2914095
– volume: 91
  start-page: 911
  issue: 11
  year: 2012
  end-page: 921
  ident: CR9
  article-title: The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury
  publication-title: American Journal of Physical Medicine & Rehabilitation.
  doi: 10.1097/PHM.0b013e318269d9a3
– volume: 21
  start-page: 93
  issue: 2
  year: 2015
  end-page: 99
  ident: CR8
  article-title: Mobility outcomes following five training sessions with a powered exoskeleton
  publication-title: Topics in Spinal Cord Injury Rehabilitation.
  doi: 10.1310/sci2102-93
– volume: 15
  start-page: 941
  issue: 6
  year: 2018
  end-page: 949
  ident: CR22
  article-title: Parametric gait online generation of a lower-limb exoskeleton for individuals with paraplegia
  publication-title: Journal of Bionic Engineering
  doi: 10.1007/s42235-018-0082-0
– volume: 20
  start-page: 146
  issue: 1
  year: 2023
  end-page: 157
  ident: CR10
  article-title: Driving power for a portable elbow exoskeleton based on gravity-balancing coupled model
  publication-title: Journal of Bionic Engineering
  doi: 10.1007/s42235-022-00249-2
– volume: 19
  start-page: 1359
  issue: 5
  year: 2022
  end-page: 1373
  ident: CR21
  article-title: Integral real-time locomotion mode recognition based on GA-CNN for lower limb exoskeleton
  publication-title: Journal of Bionic Engineering
  doi: 10.1007/s42235-022-00230-z
– volume: 19
  start-page: 688
  issue: 3
  year: 2022
  end-page: 699
  ident: CR5
  article-title: Development and evaluation of a wearable lower limb rehabilitation robot
  publication-title: Journal of Bionic Engineering
  doi: 10.1007/s42235-022-00172-6
– volume: 9
  start-page: 46
  issue: 1
  year: 2017
  end-page: 62
  ident: CR7
  article-title: Powered exoskeletons for walking assistance in persons with central nervous system injuries: A narrative review
  publication-title: PM & R: The Journal of Injury, Function, and Rehabilitation
  doi: 10.1016/j.pmrj.2016.07.534
– volume: 20
  start-page: 23
  issue: 1
  year: 2023
  ident: CR19
  article-title: Control strategies used in lower limb exoskeletons for gait rehabilitation after brain injury: A systematic review and analysis of clinical effectiveness
  publication-title: Journal of Neuroengineering and Rehabilitation
  doi: 10.1186/s12984-023-01144-5
– volume: 12
  start-page: 69
  year: 2015
  ident: CR11
  article-title: Effects of a wearable exoskeleton stride management assist system (sma®) on spatiotemporal gait characteristics in individuals after stroke: A randomized controlled trial
  publication-title: Journal of Neuroengineering & Rehabilitation
  doi: 10.1186/s12984-015-0062-0
– volume: 70
  start-page: 646
  issue: 1
  year: 2022
  end-page: 656
  ident: CR23
  article-title: Hybrid filtered disturbance observer for precise motion generation of a powered exoskeleton
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2022.3152016
– volume: 15
  start-page: 117
  year: 2018
  ident: CR13
  article-title: Evaluation of the Keeogo exoskeleton for assisting ambulatory activities in people with multiple sclerosis: An open-label, randomized, cross-over trial
  publication-title: Journal of NeuroEngineering and Rehabilitation
  doi: 10.1186/s12984-018-0468-6
– volume: 86
  start-page: 1466
  issue: 11
  year: 2006
  end-page: 1478
  ident: CR16
  article-title: Metabolic costs and muscle activity patterns during robotic- and therapist-assisted treadmill walking in individuals with incomplete spinal cord injury
  publication-title: Physical Therapy
  doi: 10.2522/ptj.20050266
– volume: 10
  start-page: 447
  issue: 2
  year: 2020
  end-page: 451
  ident: CR3
  article-title: Design of a haptic system for medical image manipulation using augmented reality
  publication-title: Health and technology
  doi: 10.1007/s12553-019-00372-x
– volume: 27
  start-page: 1236
  issue: 6
  year: 2019
  ident: 397_CR15
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2019.2914095
– volume: 36
  start-page: 313
  issue: 4
  year: 2013
  ident: 397_CR29
  publication-title: The Journal of Spinal Cord Medicine
  doi: 10.1179/2045772313Y.0000000126
– volume: 20
  start-page: 23
  issue: 1
  year: 2023
  ident: 397_CR19
  publication-title: Journal of Neuroengineering and Rehabilitation
  doi: 10.1186/s12984-023-01144-5
– volume: 11
  start-page: 128
  issue: 2
  year: 2006
  ident: 397_CR26
  publication-title: IEEE/ASME Transactions on Mechatronics
  doi: 10.1109/TMECH.2006.871087
– volume: 9
  start-page: 46
  issue: 1
  year: 2017
  ident: 397_CR7
  publication-title: PM & R: The Journal of Injury, Function, and Rehabilitation
  doi: 10.1016/j.pmrj.2016.07.534
– volume: 91
  start-page: 911
  issue: 11
  year: 2012
  ident: 397_CR9
  publication-title: American Journal of Physical Medicine & Rehabilitation.
  doi: 10.1097/PHM.0b013e318269d9a3
– volume: 7
  start-page: 128
  issue: 1
  year: 2022
  ident: 397_CR17
  publication-title: IEEE Robotics and Automation Letters
  doi: 10.1109/LRA.2021.3115572
– volume: 7
  start-page: 5787
  issue: 2
  year: 2022
  ident: 397_CR4
  publication-title: IEEE Robotics and Automation Letters
  doi: 10.1109/LRA.2022.3160668
– volume: 15
  start-page: 805
  issue: 5
  year: 2018
  ident: 397_CR18
  publication-title: Journal of Bionic Engineering
  doi: 10.1007/s42235-018-0068-y
– volume: 27
  start-page: 645
  issue: 2
  year: 2022
  ident: 397_CR20
  publication-title: IEEE/ASME Transactions on Mechatronics
  doi: 10.1109/TMECH.2022.3156168
– volume: 15
  start-page: 1459
  year: 2018
  ident: 397_CR14
  publication-title: IEEE Transactions on Automation Science and Engineering
  doi: 10.1109/TASE.2018.2841358
– volume: 19
  start-page: 688
  issue: 3
  year: 2022
  ident: 397_CR5
  publication-title: Journal of Bionic Engineering
  doi: 10.1007/s42235-022-00172-6
– volume: 86
  start-page: 1466
  issue: 11
  year: 2006
  ident: 397_CR16
  publication-title: Physical Therapy
  doi: 10.2522/ptj.20050266
– volume: 6
  start-page: 3491
  issue: 2
  year: 2021
  ident: 397_CR28
  publication-title: IEEE Robotics and Automation Letters.
  doi: 10.1109/LRA.2021.3062562
– volume: 19
  start-page: 1359
  issue: 5
  year: 2022
  ident: 397_CR21
  publication-title: Journal of Bionic Engineering
  doi: 10.1007/s42235-022-00230-z
– volume: 29
  start-page: 1795
  year: 2021
  ident: 397_CR6
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2021.3107376
– volume: 15
  start-page: 117
  year: 2018
  ident: 397_CR13
  publication-title: Journal of NeuroEngineering and Rehabilitation
  doi: 10.1186/s12984-018-0468-6
– volume: 15
  start-page: 941
  issue: 6
  year: 2018
  ident: 397_CR22
  publication-title: Journal of Bionic Engineering
  doi: 10.1007/s42235-018-0082-0
– volume: 47
  start-page: 186
  issue: 1
  year: 2014
  ident: 397_CR27
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2013.09.032
– volume: 10
  start-page: 447
  issue: 2
  year: 2020
  ident: 397_CR3
  publication-title: Health and technology
  doi: 10.1007/s12553-019-00372-x
– volume: 20
  start-page: 146
  issue: 1
  year: 2023
  ident: 397_CR10
  publication-title: Journal of Bionic Engineering
  doi: 10.1007/s42235-022-00249-2
– volume: 64
  start-page: 527
  year: 2022
  ident: 397_CR2
  publication-title: Human Factors: The Journal of Human Factors and Ergonomics Society
  doi: 10.1177/0018720820957467
– volume: 21
  start-page: 1441
  issue: 12
  year: 2007
  ident: 397_CR12
  publication-title: Advanced Robotics.
  doi: 10.1163/156855307781746061
– volume: 21
  start-page: 93
  issue: 2
  year: 2015
  ident: 397_CR8
  publication-title: Topics in Spinal Cord Injury Rehabilitation.
  doi: 10.1310/sci2102-93
– year: 2022
  ident: 397_CR1
  publication-title: Applied Ergonomics
  doi: 10.1016/j.apergo.2021.103615
– volume: 12
  start-page: 69
  year: 2015
  ident: 397_CR11
  publication-title: Journal of Neuroengineering & Rehabilitation
  doi: 10.1186/s12984-015-0062-0
– volume: 69
  start-page: 3234
  issue: 10
  year: 2022
  ident: 397_CR24
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2022.3165547
– volume: 20
  start-page: 1021
  issue: 3
  year: 2022
  ident: 397_CR25
  publication-title: Journal of Bionic Engineering
  doi: 10.1007/s42235-022-00302-0
– volume: 70
  start-page: 646
  issue: 1
  year: 2022
  ident: 397_CR23
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2022.3152016
SSID ssj0059283
Score 2.320073
Snippet The exoskeleton robot is a typical man–machine integration system in the human loop. The ideal man–machine state is to achieve motion coordination, stable...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 2670
SubjectTerms Artificial Intelligence
Biochemical Engineering
Bioinformatics
Biomaterials
Biomedical Engineering and Bioengineering
Biomedical Engineering/Biotechnology
Engineering
Research Article
Title Real-Time Control Strategy of Exoskeleton Locomotion Trajectory Based on Multi-modal Fusion
URI https://link.springer.com/article/10.1007/s42235-023-00397-z
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagCAkOqF1AlJd84ABaXMV2Ym-OgFpVCDjAVqrEIfIrErRsENlKdA_8dsaPPLYLFeUSRd5JVrvzeTwezzeD0LMyy-vCZ4nP9MySHFBBNFOaZKqQGZ05mJueO_z-gzg8yt8eF8dDQD-wS5Z6z6z-yCv5H63CGOjVs2SvoNn-pTAA96BfuIKG4fpPOv4IXh7xJA5P3AsZ56nYbDg23__ZtCewqvjCGe8a08SGPb6c-dcQqj-fvoYlzPrjgkDDJd8aCwo7OGs7XW06rdqHb007dUMZwyH0HC3YXDW9KUnEBvdlHFxgPLHsLgYXfea0P8_45Nt0w77AjSymkIyIIoUtXBjzBHvCaKxo1ZlZlo3gtGYzRWwdktZfJmI3og3bHtM52hwcGk8q58TziiVZDStZn1_Y12IOwhUIV0G4Wl1HNxhsKHyvi71ffTJQUbJQsLX_MYleFUiWG1-47sKsn58Ht2S-je4k1eBXERw76JpbTNDN2GH0fIJuj-pNTtBOsuQtfp7Kjb-4iz73KMIJRbhDEW5qPEIRHlCEBxThgCIMYyMU4Yiie-joYH_-5pCklhvEcJ4tSam11DlVRUlVXsyMqzmFT7QwTBlpDeXg4gnDpZGGavDvlLSCKWoFVQwe4ffR1qJZuAcI19LlNlPcCNhhZKwuJeztndCZ1ZYbne8i2v2LlUn16H1blNPq79rbRdP-me-xGsul0i875VRp1raXiD-8mvgjdGuYMY_R1vLHmXsCDupSPw3Y-g2cqYu9
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+Control+Strategy+of+Exoskeleton+Locomotion+Trajectory+Based+on+Multi-modal+Fusion&rft.jtitle=Journal+of+bionics+engineering&rft.au=Zhen%2C+Tao&rft.au=Yan%2C+Lei&rft.date=2023-11-01&rft.pub=Springer+Nature+Singapore&rft.issn=1672-6529&rft.eissn=2543-2141&rft.volume=20&rft.issue=6&rft.spage=2670&rft.epage=2682&rft_id=info:doi/10.1007%2Fs42235-023-00397-z&rft.externalDocID=10_1007_s42235_023_00397_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1672-6529&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1672-6529&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1672-6529&client=summon