Topology optimization of stiffness constrained flexure-hinges for precision and range maximization

•Flexure-hinges, a commonly used compliant design element are optimized.•Investigation of precision-based cost function for use within topology optimization.•Characterisation of hinges with respect to motion range, stress and precision.•Novel hinges designed, which enhance range when subject to prec...

Full description

Saved in:
Bibliographic Details
Published inMechanism and machine theory Vol. 150; p. 103874
Main Authors Pinskier, Joshua, Shirinzadeh, Bijan, Ghafarian, Mohammadali, Das, Tilok Kumar, Al-Jodah, Ammar, Nowell, Rohan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2020
Online AccessGet full text

Cover

Loading…
Abstract •Flexure-hinges, a commonly used compliant design element are optimized.•Investigation of precision-based cost function for use within topology optimization.•Characterisation of hinges with respect to motion range, stress and precision.•Novel hinges designed, which enhance range when subject to precision restrictions. Compliant hinges are one of the most widely used design elements in precision mechanism design. They enable higher precision rotation than multi-part hinges and facilitate the adaptation of macro-scale parallel mechanisms into micro-scale. Existing hinge designs offer either a large range at the expense of rotational accuracy or attempt to produce accuracy at the expense of range and stiffness. This paper investigates novel hinge structures which increases range, stiffness and precision and characterises the trade-off between the parameters. A computational topology optimization methodology is developed, and the effects of varying geometry and orientation investigated. Two novel hinges are proposed based on the results, which can be employed in heuristic mechanism designs and their enhanced performance demonstrated in a 3-PRR positioning mechanism.
AbstractList •Flexure-hinges, a commonly used compliant design element are optimized.•Investigation of precision-based cost function for use within topology optimization.•Characterisation of hinges with respect to motion range, stress and precision.•Novel hinges designed, which enhance range when subject to precision restrictions. Compliant hinges are one of the most widely used design elements in precision mechanism design. They enable higher precision rotation than multi-part hinges and facilitate the adaptation of macro-scale parallel mechanisms into micro-scale. Existing hinge designs offer either a large range at the expense of rotational accuracy or attempt to produce accuracy at the expense of range and stiffness. This paper investigates novel hinge structures which increases range, stiffness and precision and characterises the trade-off between the parameters. A computational topology optimization methodology is developed, and the effects of varying geometry and orientation investigated. Two novel hinges are proposed based on the results, which can be employed in heuristic mechanism designs and their enhanced performance demonstrated in a 3-PRR positioning mechanism.
ArticleNumber 103874
Author Shirinzadeh, Bijan
Nowell, Rohan
Ghafarian, Mohammadali
Pinskier, Joshua
Das, Tilok Kumar
Al-Jodah, Ammar
Author_xml – sequence: 1
  givenname: Joshua
  orcidid: 0000-0002-8878-9012
  surname: Pinskier
  fullname: Pinskier, Joshua
  email: joshua.pinskier@monash.edu
– sequence: 2
  givenname: Bijan
  surname: Shirinzadeh
  fullname: Shirinzadeh, Bijan
– sequence: 3
  givenname: Mohammadali
  orcidid: 0000-0003-4649-650X
  surname: Ghafarian
  fullname: Ghafarian, Mohammadali
– sequence: 4
  givenname: Tilok Kumar
  surname: Das
  fullname: Das, Tilok Kumar
– sequence: 5
  givenname: Ammar
  orcidid: 0000-0003-4536-1240
  surname: Al-Jodah
  fullname: Al-Jodah, Ammar
– sequence: 6
  givenname: Rohan
  surname: Nowell
  fullname: Nowell, Rohan
BookMark eNqNkD1PwzAURS1UJNrCf_DAmmLHCYklFqgoIFVi6cBmvfijcZXYkR1Qy68noQgJpk5vuLpH754ZmjjvNELXlCwoobc3u0WrZd2CrPta-3BYpCQdI1YW2Rma0rJgCeOcT9CUEJ4llGZvF2gW444QUuQZm6Jq4zvf-O0B-663rf2E3nqHvcGxt8Y4HSOW3sU-gHVaYdPo_XvQSW3dVkdsfMBd0NLGsQVO4QBDgFvY_8Iu0bmBJuqrnztHm9XjZvmcrF-fXpb360QyRvqEA2Oy4sYQU0rOiUwBCKgUCkmVqSTkYGihVc7LnBBVKq6q1FRVZaQEA2yO7o5YGXyMQRvRBdtCOAhKxKhL7MRfXWLUJY66hvrDv7q0_ff_4_TmVMjqCNHDzg-rg4jSaie1soOkXihvTwN9ARQ3muk
CitedBy_id crossref_primary_10_3390_mi12091063
crossref_primary_10_1016_j_precisioneng_2023_03_014
crossref_primary_10_3390_rs15010172
crossref_primary_10_3390_mi13070993
crossref_primary_10_1016_j_mechmachtheory_2020_104159
crossref_primary_10_1063_10_0019384
crossref_primary_10_1002_aisy_202300505
crossref_primary_10_1016_j_actaastro_2022_11_042
crossref_primary_10_1145_3670693
crossref_primary_10_1007_s00366_021_01552_y
crossref_primary_10_1016_j_cma_2024_116909
crossref_primary_10_1016_j_mechmachtheory_2022_104743
crossref_primary_10_1007_s40430_022_03658_w
crossref_primary_10_1002_adem_202300102
crossref_primary_10_1063_5_0147774
crossref_primary_10_3390_machines11010096
crossref_primary_10_3390_aerospace10070636
crossref_primary_10_1109_ACCESS_2020_3043411
crossref_primary_10_3390_mi14122229
crossref_primary_10_1016_j_mechmachtheory_2020_104069
crossref_primary_10_2139_ssrn_4199435
crossref_primary_10_1007_s40430_020_02549_2
crossref_primary_10_3390_app11083538
crossref_primary_10_1109_ACCESS_2022_3179589
crossref_primary_10_1109_JSEN_2023_3342041
crossref_primary_10_3390_pr11102914
crossref_primary_10_1002_aisy_202100086
crossref_primary_10_1016_j_precisioneng_2023_02_004
crossref_primary_10_1016_j_robot_2022_104209
crossref_primary_10_1016_j_compstruc_2023_107210
crossref_primary_10_1016_j_precisioneng_2021_05_012
Cites_doi 10.1016/j.rcim.2015.07.004
10.1109/TMECH.2014.2300481
10.1016/j.rcim.2014.10.003
10.1016/j.mechatronics.2018.01.007
10.1016/j.precisioneng.2012.11.004
10.1081/SME-120020289
10.1016/0045-7825(91)90046-9
10.1016/j.sna.2013.11.011
10.1007/s00158-015-1279-z
10.1016/j.mechmachtheory.2019.103622
10.1016/j.precisioneng.2018.10.008
10.1109/TMECH.2013.2262801
10.1016/j.precisioneng.2016.12.012
10.1007/BF01650949
10.1109/TMECH.2015.2503728
10.1002/nme.1620240207
10.1142/S0219519418400122
10.1016/j.mechatronics.2016.10.004
10.1016/j.mechmachtheory.2013.12.006
10.1016/j.mechmachtheory.2015.08.016
10.1007/s00158-014-1107-x
10.1002/cpa.3160390202
10.1016/j.ijmecsci.2017.11.023
10.1016/j.mechmachtheory.2017.12.017
10.1109/TIE.2013.2257139
10.1016/j.precisioneng.2016.02.007
10.1177/0954406216671346
10.1016/j.precisioneng.2016.12.004
10.1080/08905459708945415
10.1007/s11431-013-5446-4
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.mechmachtheory.2020.103874
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3999
ExternalDocumentID 10_1016_j_mechmachtheory_2020_103874
S0094114X20300951
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
T9H
TN5
TWZ
WUQ
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c330t-9a33cb9ff0f8c990c2aa0ad2a7c1dfbca5af17ed598500d8d9db2fbbbfccafa3
IEDL.DBID .~1
ISSN 0094-114X
IngestDate Tue Jul 01 01:48:33 EDT 2025
Thu Apr 24 22:56:40 EDT 2025
Fri Feb 23 02:47:07 EST 2024
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c330t-9a33cb9ff0f8c990c2aa0ad2a7c1dfbca5af17ed598500d8d9db2fbbbfccafa3
ORCID 0000-0003-4536-1240
0000-0002-8878-9012
0000-0003-4649-650X
ParticipantIDs crossref_primary_10_1016_j_mechmachtheory_2020_103874
crossref_citationtrail_10_1016_j_mechmachtheory_2020_103874
elsevier_sciencedirect_doi_10_1016_j_mechmachtheory_2020_103874
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2020
2020-08-00
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: August 2020
PublicationDecade 2020
PublicationTitle Mechanism and machine theory
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Bhagat, Shirinzadeh, Clark, Chea, Qin, Tian, Zhang (bib0009) 2014; 74
Frecker (bib0027) 2013
Liu, Tovar (bib0033) 2014; 50
Svanberg (bib0034) 1987; 24
Bhagat, Shirinzadeh, Clark, Qin, Tian, Zhang (bib0004) 2014; 19
Cai, Tian, Wang, Zhang, Shirinzadeh (bib0003) 2016; 37
Bakhtiari-Shahri, Moeenfard (bib0036) 2018; 135
Kohn, Strang (bib0028) 1986; 39
Qin, Shirinzadeh, Tian, Zhang, Bhagat (bib0006) 2014; 19
Pinskier, Shirinzadeh, Clark, Qin (bib0011) 2016; 40
Leon, Daniel, Jun, Leon, Alexandersen, Fonseca, Sigmund (bib0016) 2015; 52
Svanberg (bib0035) 2002; 12
Malaeke, Moeenfard (bib0019) 2017; 48
Xu (bib0010) 2014; 61
Zhu, Zhang, Zhang, Liang, Zang, Li, Wang (bib0018) 2020; 143
Zhou, Rozvany (bib0030) 1991; 89
Bharanidaran, Ramesh (bib0015) 2014; 205
Yin, Ananthasuresh (bib0012) 2003; 31
Zhang, Hills, Zhong, Shirinzadeh, Smith, Gu (bib0013) 2018
Liu, Zhang, Fatikow (bib0023) 2017; 48
Zhu, Zhang, Liu, Chen, Li (bib0026) 2019; 32
Bendsøe (bib0029) 1989; 1
Guo, Tian, Liu, Wang, Liu, Shirinzadeh, Zhang (bib0005) 2015; 32
Jin, Zhang (bib0017) 2016; 95
Sigmund (bib0031) 1997; 25
Merriam, Howell (bib0021) 2016; 45
Pinskier, Shirinzadeh (bib0022) 2019; 55
Clark, Shirinzadeh, Pinskier, Tian, Zhang (bib0014) 2018; 122
Howell (bib0001) 2001
Pinskier, Shirinzadeh, Clark, Qin (bib0007) 2018; 50
Liu, Zhang, Fatikow (bib0024) 2017; 231
Bendsøe, Sigmund (bib0032) 2003
Clark, Shirinzadeh, Tian, Yao (bib0008) 2016; 21
Qin, Shirinzadeh, Zhang, Tian (bib0002) 2013; 37
Awtar, Sen (bib0020) 2010; 132
Zhu, Zhang, Fatikow (bib0025) 2014; 57
Leon (10.1016/j.mechmachtheory.2020.103874_bib0016) 2015; 52
Zhang (10.1016/j.mechmachtheory.2020.103874_bib0013) 2018
Pinskier (10.1016/j.mechmachtheory.2020.103874_bib0022) 2019; 55
Liu (10.1016/j.mechmachtheory.2020.103874_bib0033) 2014; 50
Pinskier (10.1016/j.mechmachtheory.2020.103874_bib0011) 2016; 40
Bendsøe (10.1016/j.mechmachtheory.2020.103874_bib0032) 2003
Xu (10.1016/j.mechmachtheory.2020.103874_bib0010) 2014; 61
Bakhtiari-Shahri (10.1016/j.mechmachtheory.2020.103874_bib0036) 2018; 135
Zhu (10.1016/j.mechmachtheory.2020.103874_bib0026) 2019; 32
Zhu (10.1016/j.mechmachtheory.2020.103874_bib0025) 2014; 57
Cai (10.1016/j.mechmachtheory.2020.103874_bib0003) 2016; 37
Pinskier (10.1016/j.mechmachtheory.2020.103874_bib0007) 2018; 50
Frecker (10.1016/j.mechmachtheory.2020.103874_bib0027) 2013
Guo (10.1016/j.mechmachtheory.2020.103874_bib0005) 2015; 32
Liu (10.1016/j.mechmachtheory.2020.103874_bib0024) 2017; 231
Qin (10.1016/j.mechmachtheory.2020.103874_bib0002) 2013; 37
Awtar (10.1016/j.mechmachtheory.2020.103874_bib0020) 2010; 132
Svanberg (10.1016/j.mechmachtheory.2020.103874_bib0034) 1987; 24
Jin (10.1016/j.mechmachtheory.2020.103874_bib0017) 2016; 95
Sigmund (10.1016/j.mechmachtheory.2020.103874_bib0031) 1997; 25
Howell (10.1016/j.mechmachtheory.2020.103874_bib0001) 2001
Clark (10.1016/j.mechmachtheory.2020.103874_bib0008) 2016; 21
Bhagat (10.1016/j.mechmachtheory.2020.103874_bib0009) 2014; 74
Merriam (10.1016/j.mechmachtheory.2020.103874_bib0021) 2016; 45
Zhu (10.1016/j.mechmachtheory.2020.103874_bib0018) 2020; 143
Bharanidaran (10.1016/j.mechmachtheory.2020.103874_bib0015) 2014; 205
Clark (10.1016/j.mechmachtheory.2020.103874_bib0014) 2018; 122
Svanberg (10.1016/j.mechmachtheory.2020.103874_bib0035) 2002; 12
Kohn (10.1016/j.mechmachtheory.2020.103874_bib0028) 1986; 39
Liu (10.1016/j.mechmachtheory.2020.103874_bib0023) 2017; 48
Bendsøe (10.1016/j.mechmachtheory.2020.103874_bib0029) 1989; 1
Zhou (10.1016/j.mechmachtheory.2020.103874_bib0030) 1991; 89
Malaeke (10.1016/j.mechmachtheory.2020.103874_bib0019) 2017; 48
Bhagat (10.1016/j.mechmachtheory.2020.103874_bib0004) 2014; 19
Qin (10.1016/j.mechmachtheory.2020.103874_bib0006) 2014; 19
Yin (10.1016/j.mechmachtheory.2020.103874_bib0012) 2003; 31
References_xml – year: 2018
  ident: bib0013
  article-title: GPU-Accelerated Finite element modeling of bio-heat conduction for simulation of thermal ablation
  publication-title: J. Mech. Med. Biol.
– volume: 52
  start-page: 929
  year: 2015
  end-page: 943
  ident: bib0016
  article-title: Stress-constrained topology optimization for compliant mechanism design
  publication-title: Struct. Multidiscip. Optim.
– volume: 135
  start-page: 383
  year: 2018
  end-page: 397
  ident: bib0036
  article-title: Topology optimization of fundamental compliant mechanisms using a novel asymmetric beam flexure
  publication-title: Int. J. Mech. Sci.
– volume: 37
  start-page: 415
  year: 2013
  end-page: 424
  ident: bib0002
  article-title: Compliance modeling and analysis of statically indeterminate symmetric flexure structures
  publication-title: Precis. Eng.
– volume: 231
  start-page: 4635
  year: 2017
  end-page: 4645
  ident: bib0024
  article-title: Design of flexure hinges based on stress-constrained topology optimization
  publication-title: Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
– volume: 95
  start-page: 42
  year: 2016
  end-page: 58
  ident: bib0017
  article-title: A new topology optimization method for planar compliant parallel mechanisms
  publication-title: Mech. Mach. Theory
– volume: 31
  start-page: 151
  year: 2003
  end-page: 179
  ident: bib0012
  article-title: Design of distributed compliant mechanisms
  publication-title: Mech. Based Des. Struct. Mach.
– volume: 21
  start-page: 1222
  year: 2016
  end-page: 1232
  ident: bib0008
  article-title: Development of a passive compliant mechanism for measurement of micro/nanoscale planar 3-DOF motions
  publication-title: IEEE/ASME Trans. Mechatron.
– year: 2001
  ident: bib0001
  article-title: Compliant Mechanisms
– volume: 55
  start-page: 397
  year: 2019
  end-page: 407
  ident: bib0022
  article-title: Topology optimization of leaf flexures to maximize in-plane to out-of-plane compliance ratio
  publication-title: Precis. Eng.
– volume: 32
  year: 2019
  ident: bib0026
  article-title: Topological and shape optimization of flexure hinges for designing compliant mechanisms using the level set method
  publication-title: Chin. J. Mech. Eng. (Engl. Ed.)
– year: 2003
  ident: bib0032
  article-title: Topology Optimization: Theory, Methods, and Applications
– volume: 48
  start-page: 216
  year: 2017
  end-page: 233
  ident: bib0019
  article-title: A novel flexure beam module with low stiffness loss in compliant mechanisms
  publication-title: Precis. Eng.
– volume: 40
  start-page: 156
  year: 2016
  end-page: 166
  ident: bib0011
  article-title: Design, development and analysis of a haptic-enabled modular flexure-based manipulator
  publication-title: Mechatronics
– volume: 74
  start-page: 173
  year: 2014
  end-page: 187
  ident: bib0009
  article-title: Design and analysis of a novel flexure-based 3-DOF mechanism
  publication-title: Mech. Mach. Theory
– volume: 205
  start-page: 156
  year: 2014
  end-page: 163
  ident: bib0015
  article-title: Numerical simulation and experimental investigation of a topologically optimized compliant microgripper
  publication-title: Sens. Actuat. A Phys.
– volume: 143
  start-page: 103622
  year: 2020
  ident: bib0018
  article-title: Design of compliant mechanisms using continuum topology optimization: a review
  publication-title: Mech. Mach. Theory
– volume: 24
  start-page: 359
  year: 1987
  end-page: 373
  ident: bib0034
  article-title: The method of moving asymptotesa new method for structural optimization
  publication-title: Int. J. Numer. Methods Eng.
– volume: 45
  start-page: 160
  year: 2016
  end-page: 167
  ident: bib0021
  article-title: Lattice flexures: geometries for stiffness reduction of blade flexures
  publication-title: Precis. Eng.
– volume: 57
  start-page: 560
  year: 2014
  end-page: 567
  ident: bib0025
  article-title: Design of single-axis flexure hinges using continuum topology optimization method
  publication-title: Sci. China Technol. Sci.
– volume: 132
  start-page: 1
  year: 2010
  end-page: 11
  ident: bib0020
  article-title: A generalized constraint model for two-Dimensional beam flexures : nonlinear load-Displacement formulation
  publication-title: J. Mech. Des.
– volume: 37
  start-page: 125
  year: 2016
  end-page: 138
  ident: bib0003
  article-title: Development of a Piezo-driven 3-DOF stage with T-shape flexible hinge mechanism
  publication-title: Robot. Comput. Integr. Manuf.
– volume: 50
  start-page: 55
  year: 2018
  end-page: 68
  ident: bib0007
  article-title: Development of a 4-DOF haptic micromanipulator utilizing a hybrid parallel-serial flexure mechanism
  publication-title: Mechatronics
– volume: 122
  start-page: 113
  year: 2018
  end-page: 131
  ident: bib0014
  article-title: Topology optimisation of bridge input structures with maximal amplification for design of flexure mechanisms
  publication-title: Mech. Mach. Theory
– volume: 32
  start-page: 93
  year: 2015
  end-page: 105
  ident: bib0005
  article-title: Design and control methodology of a 3-DOF flexure-based mechanism for micro/nano-positioning
  publication-title: Robot. Comput. Integr. Manuf.
– volume: 25
  start-page: 493
  year: 1997
  end-page: 524
  ident: bib0031
  article-title: On the design of compliant mechanisms using topology optimization
  publication-title: Mech. Struct. Mach.
– volume: 12
  start-page: 555
  year: 2002
  end-page: 573
  ident: bib0035
  article-title: Methods based on conservative convex separable
  publication-title: Soc. Ind. Appl. Math.
– volume: 39
  start-page: 139
  year: 1986
  end-page: 182
  ident: bib0028
  article-title: Optimal design and relaxation of variational problems, II
  publication-title: Commun. Pure Appl. Math.
– start-page: Pages93
  year: 2013
  end-page: 107
  ident: bib0027
  article-title: Optimization
  publication-title: Handbook of Compliant Mechanisms
– volume: 61
  start-page: 893
  year: 2014
  end-page: 903
  ident: bib0010
  article-title: Design and development of a compact flexure-based XY precision positioning system with centimeter range
  publication-title: IEEE Trans. Ind. Electron.
– volume: 19
  start-page: 872
  year: 2014
  end-page: 881
  ident: bib0006
  article-title: Design and computational optimization of a decoupled 2-DOF monolithic mechanism
  publication-title: IEEE/ASME Trans. Mechatron.
– volume: 1
  start-page: 193
  year: 1989
  end-page: 202
  ident: bib0029
  article-title: Optimal shape design as a material distribution problem
  publication-title: Struct. Optim.
– volume: 48
  start-page: 292
  year: 2017
  end-page: 304
  ident: bib0023
  article-title: Design and analysis of a multi-notched flexure hinge for compliant mechanisms
  publication-title: Precis. Eng.
– volume: 19
  start-page: 1737
  year: 2014
  end-page: 1745
  ident: bib0004
  article-title: Experimental investigation of robust motion tracking control for a 2-DOF flexure-based mechanism
  publication-title: IEEE/ASME Trans. Mechatron.
– volume: 50
  start-page: 1175
  year: 2014
  end-page: 1196
  ident: bib0033
  article-title: An efficient 3D topology optimization code written in matlab
  publication-title: Struct. Multidiscip. Optim.
– volume: 89
  start-page: 309
  year: 1991
  end-page: 336
  ident: bib0030
  article-title: The COC algorithm, part II: topological, geometrical and generalized shape optimization
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 37
  start-page: 125
  year: 2016
  ident: 10.1016/j.mechmachtheory.2020.103874_bib0003
  article-title: Development of a Piezo-driven 3-DOF stage with T-shape flexible hinge mechanism
  publication-title: Robot. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2015.07.004
– volume: 19
  start-page: 1737
  issue: 6
  year: 2014
  ident: 10.1016/j.mechmachtheory.2020.103874_bib0004
  article-title: Experimental investigation of robust motion tracking control for a 2-DOF flexure-based mechanism
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2014.2300481
– volume: 32
  start-page: 93
  year: 2015
  ident: 10.1016/j.mechmachtheory.2020.103874_bib0005
  article-title: Design and control methodology of a 3-DOF flexure-based mechanism for micro/nano-positioning
  publication-title: Robot. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2014.10.003
– volume: 50
  start-page: 55
  year: 2018
  ident: 10.1016/j.mechmachtheory.2020.103874_bib0007
  article-title: Development of a 4-DOF haptic micromanipulator utilizing a hybrid parallel-serial flexure mechanism
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2018.01.007
– start-page: Pages93
  year: 2013
  ident: 10.1016/j.mechmachtheory.2020.103874_bib0027
  article-title: Optimization
– volume: 32
  issue: 1
  year: 2019
  ident: 10.1016/j.mechmachtheory.2020.103874_bib0026
  article-title: Topological and shape optimization of flexure hinges for designing compliant mechanisms using the level set method
  publication-title: Chin. J. Mech. Eng. (Engl. Ed.)
– volume: 37
  start-page: 415
  issue: 2
  year: 2013
  ident: 10.1016/j.mechmachtheory.2020.103874_bib0002
  article-title: Compliance modeling and analysis of statically indeterminate symmetric flexure structures
  publication-title: Precis. Eng.
  doi: 10.1016/j.precisioneng.2012.11.004
– volume: 31
  start-page: 151
  issue: 2
  year: 2003
  ident: 10.1016/j.mechmachtheory.2020.103874_bib0012
  article-title: Design of distributed compliant mechanisms
  publication-title: Mech. Based Des. Struct. Mach.
  doi: 10.1081/SME-120020289
– volume: 89
  start-page: 309
  issue: 1–3
  year: 1991
  ident: 10.1016/j.mechmachtheory.2020.103874_bib0030
  article-title: The COC algorithm, part II: topological, geometrical and generalized shape optimization
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(91)90046-9
– volume: 132
  start-page: 1
  issue: August 2010
  year: 2010
  ident: 10.1016/j.mechmachtheory.2020.103874_bib0020
  article-title: A generalized constraint model for two-Dimensional beam flexures : nonlinear load-Displacement formulation
  publication-title: J. Mech. Des.
– volume: 205
  start-page: 156
  year: 2014
  ident: 10.1016/j.mechmachtheory.2020.103874_bib0015
  article-title: Numerical simulation and experimental investigation of a topologically optimized compliant microgripper
  publication-title: Sens. Actuat. A Phys.
  doi: 10.1016/j.sna.2013.11.011
– year: 2001
  ident: 10.1016/j.mechmachtheory.2020.103874_bib0001
– volume: 52
  start-page: 929
  issue: 5
  year: 2015
  ident: 10.1016/j.mechmachtheory.2020.103874_bib0016
  article-title: Stress-constrained topology optimization for compliant mechanism design
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-015-1279-z
– volume: 143
  start-page: 103622
  year: 2020
  ident: 10.1016/j.mechmachtheory.2020.103874_bib0018
  article-title: Design of compliant mechanisms using continuum topology optimization: a review
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2019.103622
– volume: 55
  start-page: 397
  year: 2019
  ident: 10.1016/j.mechmachtheory.2020.103874_bib0022
  article-title: Topology optimization of leaf flexures to maximize in-plane to out-of-plane compliance ratio
  publication-title: Precis. Eng.
  doi: 10.1016/j.precisioneng.2018.10.008
– volume: 19
  start-page: 872
  issue: 3
  year: 2014
  ident: 10.1016/j.mechmachtheory.2020.103874_bib0006
  article-title: Design and computational optimization of a decoupled 2-DOF monolithic mechanism
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2013.2262801
– volume: 48
  start-page: 292
  year: 2017
  ident: 10.1016/j.mechmachtheory.2020.103874_bib0023
  article-title: Design and analysis of a multi-notched flexure hinge for compliant mechanisms
  publication-title: Precis. Eng.
  doi: 10.1016/j.precisioneng.2016.12.012
– volume: 1
  start-page: 193
  issue: 4
  year: 1989
  ident: 10.1016/j.mechmachtheory.2020.103874_bib0029
  article-title: Optimal shape design as a material distribution problem
  publication-title: Struct. Optim.
  doi: 10.1007/BF01650949
– volume: 21
  start-page: 1222
  issue: 3
  year: 2016
  ident: 10.1016/j.mechmachtheory.2020.103874_bib0008
  article-title: Development of a passive compliant mechanism for measurement of micro/nanoscale planar 3-DOF motions
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2015.2503728
– volume: 24
  start-page: 359
  issue: 2
  year: 1987
  ident: 10.1016/j.mechmachtheory.2020.103874_bib0034
  article-title: The method of moving asymptotesa new method for structural optimization
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1620240207
– volume: 12
  start-page: 555
  issue: 2
  year: 2002
  ident: 10.1016/j.mechmachtheory.2020.103874_bib0035
  article-title: Methods based on conservative convex separable
  publication-title: Soc. Ind. Appl. Math.
– year: 2018
  ident: 10.1016/j.mechmachtheory.2020.103874_bib0013
  article-title: GPU-Accelerated Finite element modeling of bio-heat conduction for simulation of thermal ablation
  publication-title: J. Mech. Med. Biol.
  doi: 10.1142/S0219519418400122
– volume: 40
  start-page: 156
  year: 2016
  ident: 10.1016/j.mechmachtheory.2020.103874_bib0011
  article-title: Design, development and analysis of a haptic-enabled modular flexure-based manipulator
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2016.10.004
– volume: 74
  start-page: 173
  year: 2014
  ident: 10.1016/j.mechmachtheory.2020.103874_bib0009
  article-title: Design and analysis of a novel flexure-based 3-DOF mechanism
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2013.12.006
– volume: 95
  start-page: 42
  year: 2016
  ident: 10.1016/j.mechmachtheory.2020.103874_bib0017
  article-title: A new topology optimization method for planar compliant parallel mechanisms
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2015.08.016
– year: 2003
  ident: 10.1016/j.mechmachtheory.2020.103874_bib0032
– volume: 50
  start-page: 1175
  issue: 6
  year: 2014
  ident: 10.1016/j.mechmachtheory.2020.103874_bib0033
  article-title: An efficient 3D topology optimization code written in matlab
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-014-1107-x
– volume: 39
  start-page: 139
  issue: 2
  year: 1986
  ident: 10.1016/j.mechmachtheory.2020.103874_bib0028
  article-title: Optimal design and relaxation of variational problems, II
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.3160390202
– volume: 135
  start-page: 383
  issue: August 2017
  year: 2018
  ident: 10.1016/j.mechmachtheory.2020.103874_bib0036
  article-title: Topology optimization of fundamental compliant mechanisms using a novel asymmetric beam flexure
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2017.11.023
– volume: 122
  start-page: 113
  year: 2018
  ident: 10.1016/j.mechmachtheory.2020.103874_bib0014
  article-title: Topology optimisation of bridge input structures with maximal amplification for design of flexure mechanisms
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2017.12.017
– volume: 61
  start-page: 893
  issue: 2
  year: 2014
  ident: 10.1016/j.mechmachtheory.2020.103874_bib0010
  article-title: Design and development of a compact flexure-based XY precision positioning system with centimeter range
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2013.2257139
– volume: 45
  start-page: 160
  year: 2016
  ident: 10.1016/j.mechmachtheory.2020.103874_bib0021
  article-title: Lattice flexures: geometries for stiffness reduction of blade flexures
  publication-title: Precis. Eng.
  doi: 10.1016/j.precisioneng.2016.02.007
– volume: 231
  start-page: 4635
  issue: 24
  year: 2017
  ident: 10.1016/j.mechmachtheory.2020.103874_bib0024
  article-title: Design of flexure hinges based on stress-constrained topology optimization
  publication-title: Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
  doi: 10.1177/0954406216671346
– volume: 48
  start-page: 216
  year: 2017
  ident: 10.1016/j.mechmachtheory.2020.103874_bib0019
  article-title: A novel flexure beam module with low stiffness loss in compliant mechanisms
  publication-title: Precis. Eng.
  doi: 10.1016/j.precisioneng.2016.12.004
– volume: 25
  start-page: 493
  issue: 4
  year: 1997
  ident: 10.1016/j.mechmachtheory.2020.103874_bib0031
  article-title: On the design of compliant mechanisms using topology optimization
  publication-title: Mech. Struct. Mach.
  doi: 10.1080/08905459708945415
– volume: 57
  start-page: 560
  issue: 3
  year: 2014
  ident: 10.1016/j.mechmachtheory.2020.103874_bib0025
  article-title: Design of single-axis flexure hinges using continuum topology optimization method
  publication-title: Sci. China Technol. Sci.
  doi: 10.1007/s11431-013-5446-4
SSID ssj0007543
Score 2.4440606
Snippet •Flexure-hinges, a commonly used compliant design element are optimized.•Investigation of precision-based cost function for use within topology...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103874
Title Topology optimization of stiffness constrained flexure-hinges for precision and range maximization
URI https://dx.doi.org/10.1016/j.mechmachtheory.2020.103874
Volume 150
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KBdGD-MT6KHvodW0emxcepBRLVeypQm9h9kUrJi2xhfbib3e32b7AQ8FjQnaTzE5mvizfN4NQQ-kk67rSI0pASGgEHoEkAiJ5yLgAwaLlPuR7L-x-0NdBMKig9koLY2iVNvaXMX0Zre2ZprVmczIaGY1vom9DB572UwMUjIKdRsbLH342NI8osMy5hBJz9SFqbDhemeTDDPhwKRpc6L9Fr6wYHtG_09RW6umcohOLGXGrfKwzVJH5OTreqiR4gVi_bHawwGMdAzIrrsRjhfUnrJSJZ5gbKGg6QkiB1ZeczwpJzP6T_MYaueJJYdvtYMgFLozoAGcwX092ifqd5367S2z7BMJ935mSBHyfs0QpR8VcJx3uATggPIi4KxTjEIByIymCJA4cR8QiEcxTjDGlV1WBf4Wq-TiX1whrUCMpixNKA0XB40yGIuR-HIIbMMeFGnpcGSvltrS4eZ-vdMUh-0x3TZ0aU6elqWsoWI-elCU29hz3tFqXdMdlUp0N9prh5t8z3KIjc1QyAu9QdVrM5L1GKVNWX7phHR20Xt66vV-yfO_e
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JSgNBEC00AZeDuOJuH7w2ztI9Cx5EREk0ySlCbkP1hpFsxATi39ud6cQIHgSvM1TNTHX1qzdNLQDXxgbZMNQRNQoTylKMKOYpUi0TIRUqkc7PIZutpPbKnju8swYPi1oYl1bpsb_E9Dla-ys33po3o27X1fjm9jGsE1k_dURhHaquOxWvQPW-_lJrLQE55T55LmfUCWzA9XeaV1_Ltz7Kt3nd4Kf9YYzKpuEp-z1SrUSfp13Y8bSR3JdvtgdrerAP2yvNBA9AtMt5B59kaGGg7-srydAQu4uNcZBGpGODbiiEVsT09Gw61tQdQekPYskrGY39xB2CA0XGru6A9HG2VHYI7afH9kON-gkKVMZxMKE5xrEUuTGByaSNOzJCDFBFmMpQGSGRowlTrXie8SBQmcqViIwQwtiFNRgfQWUwHOhjIJbXaCaynDFuGEZS6EQlMs4SDLkIQjyB24WxCum7i7vv6RWLNLL34qepC2fqojT1CfCl9KjssvFHubvFuhQ_vKawAeFPGk7_reEKNmvtZqNo1FsvZ7Dl7pQJgudQmYyn-sKSlom49E75BdqO8o8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topology+optimization+of+stiffness+constrained+flexure-hinges+for+precision+and+range+maximization&rft.jtitle=Mechanism+and+machine+theory&rft.au=Pinskier%2C+Joshua&rft.au=Shirinzadeh%2C+Bijan&rft.au=Ghafarian%2C+Mohammadali&rft.au=Das%2C+Tilok+Kumar&rft.date=2020-08-01&rft.issn=0094-114X&rft.volume=150&rft.spage=103874&rft_id=info:doi/10.1016%2Fj.mechmachtheory.2020.103874&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mechmachtheory_2020_103874
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-114X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-114X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-114X&client=summon