Topology optimization of stiffness constrained flexure-hinges for precision and range maximization
•Flexure-hinges, a commonly used compliant design element are optimized.•Investigation of precision-based cost function for use within topology optimization.•Characterisation of hinges with respect to motion range, stress and precision.•Novel hinges designed, which enhance range when subject to prec...
Saved in:
Published in | Mechanism and machine theory Vol. 150; p. 103874 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.08.2020
|
Online Access | Get full text |
Cover
Loading…
Abstract | •Flexure-hinges, a commonly used compliant design element are optimized.•Investigation of precision-based cost function for use within topology optimization.•Characterisation of hinges with respect to motion range, stress and precision.•Novel hinges designed, which enhance range when subject to precision restrictions.
Compliant hinges are one of the most widely used design elements in precision mechanism design. They enable higher precision rotation than multi-part hinges and facilitate the adaptation of macro-scale parallel mechanisms into micro-scale. Existing hinge designs offer either a large range at the expense of rotational accuracy or attempt to produce accuracy at the expense of range and stiffness. This paper investigates novel hinge structures which increases range, stiffness and precision and characterises the trade-off between the parameters. A computational topology optimization methodology is developed, and the effects of varying geometry and orientation investigated. Two novel hinges are proposed based on the results, which can be employed in heuristic mechanism designs and their enhanced performance demonstrated in a 3-PRR positioning mechanism. |
---|---|
AbstractList | •Flexure-hinges, a commonly used compliant design element are optimized.•Investigation of precision-based cost function for use within topology optimization.•Characterisation of hinges with respect to motion range, stress and precision.•Novel hinges designed, which enhance range when subject to precision restrictions.
Compliant hinges are one of the most widely used design elements in precision mechanism design. They enable higher precision rotation than multi-part hinges and facilitate the adaptation of macro-scale parallel mechanisms into micro-scale. Existing hinge designs offer either a large range at the expense of rotational accuracy or attempt to produce accuracy at the expense of range and stiffness. This paper investigates novel hinge structures which increases range, stiffness and precision and characterises the trade-off between the parameters. A computational topology optimization methodology is developed, and the effects of varying geometry and orientation investigated. Two novel hinges are proposed based on the results, which can be employed in heuristic mechanism designs and their enhanced performance demonstrated in a 3-PRR positioning mechanism. |
ArticleNumber | 103874 |
Author | Shirinzadeh, Bijan Nowell, Rohan Ghafarian, Mohammadali Pinskier, Joshua Das, Tilok Kumar Al-Jodah, Ammar |
Author_xml | – sequence: 1 givenname: Joshua orcidid: 0000-0002-8878-9012 surname: Pinskier fullname: Pinskier, Joshua email: joshua.pinskier@monash.edu – sequence: 2 givenname: Bijan surname: Shirinzadeh fullname: Shirinzadeh, Bijan – sequence: 3 givenname: Mohammadali orcidid: 0000-0003-4649-650X surname: Ghafarian fullname: Ghafarian, Mohammadali – sequence: 4 givenname: Tilok Kumar surname: Das fullname: Das, Tilok Kumar – sequence: 5 givenname: Ammar orcidid: 0000-0003-4536-1240 surname: Al-Jodah fullname: Al-Jodah, Ammar – sequence: 6 givenname: Rohan surname: Nowell fullname: Nowell, Rohan |
BookMark | eNqNkD1PwzAURS1UJNrCf_DAmmLHCYklFqgoIFVi6cBmvfijcZXYkR1Qy68noQgJpk5vuLpH754ZmjjvNELXlCwoobc3u0WrZd2CrPta-3BYpCQdI1YW2Rma0rJgCeOcT9CUEJ4llGZvF2gW444QUuQZm6Jq4zvf-O0B-663rf2E3nqHvcGxt8Y4HSOW3sU-gHVaYdPo_XvQSW3dVkdsfMBd0NLGsQVO4QBDgFvY_8Iu0bmBJuqrnztHm9XjZvmcrF-fXpb360QyRvqEA2Oy4sYQU0rOiUwBCKgUCkmVqSTkYGihVc7LnBBVKq6q1FRVZaQEA2yO7o5YGXyMQRvRBdtCOAhKxKhL7MRfXWLUJY66hvrDv7q0_ff_4_TmVMjqCNHDzg-rg4jSaie1soOkXihvTwN9ARQ3muk |
CitedBy_id | crossref_primary_10_3390_mi12091063 crossref_primary_10_1016_j_precisioneng_2023_03_014 crossref_primary_10_3390_rs15010172 crossref_primary_10_3390_mi13070993 crossref_primary_10_1016_j_mechmachtheory_2020_104159 crossref_primary_10_1063_10_0019384 crossref_primary_10_1002_aisy_202300505 crossref_primary_10_1016_j_actaastro_2022_11_042 crossref_primary_10_1145_3670693 crossref_primary_10_1007_s00366_021_01552_y crossref_primary_10_1016_j_cma_2024_116909 crossref_primary_10_1016_j_mechmachtheory_2022_104743 crossref_primary_10_1007_s40430_022_03658_w crossref_primary_10_1002_adem_202300102 crossref_primary_10_1063_5_0147774 crossref_primary_10_3390_machines11010096 crossref_primary_10_3390_aerospace10070636 crossref_primary_10_1109_ACCESS_2020_3043411 crossref_primary_10_3390_mi14122229 crossref_primary_10_1016_j_mechmachtheory_2020_104069 crossref_primary_10_2139_ssrn_4199435 crossref_primary_10_1007_s40430_020_02549_2 crossref_primary_10_3390_app11083538 crossref_primary_10_1109_ACCESS_2022_3179589 crossref_primary_10_1109_JSEN_2023_3342041 crossref_primary_10_3390_pr11102914 crossref_primary_10_1002_aisy_202100086 crossref_primary_10_1016_j_precisioneng_2023_02_004 crossref_primary_10_1016_j_robot_2022_104209 crossref_primary_10_1016_j_compstruc_2023_107210 crossref_primary_10_1016_j_precisioneng_2021_05_012 |
Cites_doi | 10.1016/j.rcim.2015.07.004 10.1109/TMECH.2014.2300481 10.1016/j.rcim.2014.10.003 10.1016/j.mechatronics.2018.01.007 10.1016/j.precisioneng.2012.11.004 10.1081/SME-120020289 10.1016/0045-7825(91)90046-9 10.1016/j.sna.2013.11.011 10.1007/s00158-015-1279-z 10.1016/j.mechmachtheory.2019.103622 10.1016/j.precisioneng.2018.10.008 10.1109/TMECH.2013.2262801 10.1016/j.precisioneng.2016.12.012 10.1007/BF01650949 10.1109/TMECH.2015.2503728 10.1002/nme.1620240207 10.1142/S0219519418400122 10.1016/j.mechatronics.2016.10.004 10.1016/j.mechmachtheory.2013.12.006 10.1016/j.mechmachtheory.2015.08.016 10.1007/s00158-014-1107-x 10.1002/cpa.3160390202 10.1016/j.ijmecsci.2017.11.023 10.1016/j.mechmachtheory.2017.12.017 10.1109/TIE.2013.2257139 10.1016/j.precisioneng.2016.02.007 10.1177/0954406216671346 10.1016/j.precisioneng.2016.12.004 10.1080/08905459708945415 10.1007/s11431-013-5446-4 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.mechmachtheory.2020.103874 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3999 |
ExternalDocumentID | 10_1016_j_mechmachtheory_2020_103874 S0094114X20300951 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K T9H TN5 TWZ WUQ XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c330t-9a33cb9ff0f8c990c2aa0ad2a7c1dfbca5af17ed598500d8d9db2fbbbfccafa3 |
IEDL.DBID | .~1 |
ISSN | 0094-114X |
IngestDate | Tue Jul 01 01:48:33 EDT 2025 Thu Apr 24 22:56:40 EDT 2025 Fri Feb 23 02:47:07 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c330t-9a33cb9ff0f8c990c2aa0ad2a7c1dfbca5af17ed598500d8d9db2fbbbfccafa3 |
ORCID | 0000-0003-4536-1240 0000-0002-8878-9012 0000-0003-4649-650X |
ParticipantIDs | crossref_primary_10_1016_j_mechmachtheory_2020_103874 crossref_citationtrail_10_1016_j_mechmachtheory_2020_103874 elsevier_sciencedirect_doi_10_1016_j_mechmachtheory_2020_103874 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2020 2020-08-00 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: August 2020 |
PublicationDecade | 2020 |
PublicationTitle | Mechanism and machine theory |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Bhagat, Shirinzadeh, Clark, Chea, Qin, Tian, Zhang (bib0009) 2014; 74 Frecker (bib0027) 2013 Liu, Tovar (bib0033) 2014; 50 Svanberg (bib0034) 1987; 24 Bhagat, Shirinzadeh, Clark, Qin, Tian, Zhang (bib0004) 2014; 19 Cai, Tian, Wang, Zhang, Shirinzadeh (bib0003) 2016; 37 Bakhtiari-Shahri, Moeenfard (bib0036) 2018; 135 Kohn, Strang (bib0028) 1986; 39 Qin, Shirinzadeh, Tian, Zhang, Bhagat (bib0006) 2014; 19 Pinskier, Shirinzadeh, Clark, Qin (bib0011) 2016; 40 Leon, Daniel, Jun, Leon, Alexandersen, Fonseca, Sigmund (bib0016) 2015; 52 Svanberg (bib0035) 2002; 12 Malaeke, Moeenfard (bib0019) 2017; 48 Xu (bib0010) 2014; 61 Zhu, Zhang, Zhang, Liang, Zang, Li, Wang (bib0018) 2020; 143 Zhou, Rozvany (bib0030) 1991; 89 Bharanidaran, Ramesh (bib0015) 2014; 205 Yin, Ananthasuresh (bib0012) 2003; 31 Zhang, Hills, Zhong, Shirinzadeh, Smith, Gu (bib0013) 2018 Liu, Zhang, Fatikow (bib0023) 2017; 48 Zhu, Zhang, Liu, Chen, Li (bib0026) 2019; 32 Bendsøe (bib0029) 1989; 1 Guo, Tian, Liu, Wang, Liu, Shirinzadeh, Zhang (bib0005) 2015; 32 Jin, Zhang (bib0017) 2016; 95 Sigmund (bib0031) 1997; 25 Merriam, Howell (bib0021) 2016; 45 Pinskier, Shirinzadeh (bib0022) 2019; 55 Clark, Shirinzadeh, Pinskier, Tian, Zhang (bib0014) 2018; 122 Howell (bib0001) 2001 Pinskier, Shirinzadeh, Clark, Qin (bib0007) 2018; 50 Liu, Zhang, Fatikow (bib0024) 2017; 231 Bendsøe, Sigmund (bib0032) 2003 Clark, Shirinzadeh, Tian, Yao (bib0008) 2016; 21 Qin, Shirinzadeh, Zhang, Tian (bib0002) 2013; 37 Awtar, Sen (bib0020) 2010; 132 Zhu, Zhang, Fatikow (bib0025) 2014; 57 Leon (10.1016/j.mechmachtheory.2020.103874_bib0016) 2015; 52 Zhang (10.1016/j.mechmachtheory.2020.103874_bib0013) 2018 Pinskier (10.1016/j.mechmachtheory.2020.103874_bib0022) 2019; 55 Liu (10.1016/j.mechmachtheory.2020.103874_bib0033) 2014; 50 Pinskier (10.1016/j.mechmachtheory.2020.103874_bib0011) 2016; 40 Bendsøe (10.1016/j.mechmachtheory.2020.103874_bib0032) 2003 Xu (10.1016/j.mechmachtheory.2020.103874_bib0010) 2014; 61 Bakhtiari-Shahri (10.1016/j.mechmachtheory.2020.103874_bib0036) 2018; 135 Zhu (10.1016/j.mechmachtheory.2020.103874_bib0026) 2019; 32 Zhu (10.1016/j.mechmachtheory.2020.103874_bib0025) 2014; 57 Cai (10.1016/j.mechmachtheory.2020.103874_bib0003) 2016; 37 Pinskier (10.1016/j.mechmachtheory.2020.103874_bib0007) 2018; 50 Frecker (10.1016/j.mechmachtheory.2020.103874_bib0027) 2013 Guo (10.1016/j.mechmachtheory.2020.103874_bib0005) 2015; 32 Liu (10.1016/j.mechmachtheory.2020.103874_bib0024) 2017; 231 Qin (10.1016/j.mechmachtheory.2020.103874_bib0002) 2013; 37 Awtar (10.1016/j.mechmachtheory.2020.103874_bib0020) 2010; 132 Svanberg (10.1016/j.mechmachtheory.2020.103874_bib0034) 1987; 24 Jin (10.1016/j.mechmachtheory.2020.103874_bib0017) 2016; 95 Sigmund (10.1016/j.mechmachtheory.2020.103874_bib0031) 1997; 25 Howell (10.1016/j.mechmachtheory.2020.103874_bib0001) 2001 Clark (10.1016/j.mechmachtheory.2020.103874_bib0008) 2016; 21 Bhagat (10.1016/j.mechmachtheory.2020.103874_bib0009) 2014; 74 Merriam (10.1016/j.mechmachtheory.2020.103874_bib0021) 2016; 45 Zhu (10.1016/j.mechmachtheory.2020.103874_bib0018) 2020; 143 Bharanidaran (10.1016/j.mechmachtheory.2020.103874_bib0015) 2014; 205 Clark (10.1016/j.mechmachtheory.2020.103874_bib0014) 2018; 122 Svanberg (10.1016/j.mechmachtheory.2020.103874_bib0035) 2002; 12 Kohn (10.1016/j.mechmachtheory.2020.103874_bib0028) 1986; 39 Liu (10.1016/j.mechmachtheory.2020.103874_bib0023) 2017; 48 Bendsøe (10.1016/j.mechmachtheory.2020.103874_bib0029) 1989; 1 Zhou (10.1016/j.mechmachtheory.2020.103874_bib0030) 1991; 89 Malaeke (10.1016/j.mechmachtheory.2020.103874_bib0019) 2017; 48 Bhagat (10.1016/j.mechmachtheory.2020.103874_bib0004) 2014; 19 Qin (10.1016/j.mechmachtheory.2020.103874_bib0006) 2014; 19 Yin (10.1016/j.mechmachtheory.2020.103874_bib0012) 2003; 31 |
References_xml | – year: 2018 ident: bib0013 article-title: GPU-Accelerated Finite element modeling of bio-heat conduction for simulation of thermal ablation publication-title: J. Mech. Med. Biol. – volume: 52 start-page: 929 year: 2015 end-page: 943 ident: bib0016 article-title: Stress-constrained topology optimization for compliant mechanism design publication-title: Struct. Multidiscip. Optim. – volume: 135 start-page: 383 year: 2018 end-page: 397 ident: bib0036 article-title: Topology optimization of fundamental compliant mechanisms using a novel asymmetric beam flexure publication-title: Int. J. Mech. Sci. – volume: 37 start-page: 415 year: 2013 end-page: 424 ident: bib0002 article-title: Compliance modeling and analysis of statically indeterminate symmetric flexure structures publication-title: Precis. Eng. – volume: 231 start-page: 4635 year: 2017 end-page: 4645 ident: bib0024 article-title: Design of flexure hinges based on stress-constrained topology optimization publication-title: Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. – volume: 95 start-page: 42 year: 2016 end-page: 58 ident: bib0017 article-title: A new topology optimization method for planar compliant parallel mechanisms publication-title: Mech. Mach. Theory – volume: 31 start-page: 151 year: 2003 end-page: 179 ident: bib0012 article-title: Design of distributed compliant mechanisms publication-title: Mech. Based Des. Struct. Mach. – volume: 21 start-page: 1222 year: 2016 end-page: 1232 ident: bib0008 article-title: Development of a passive compliant mechanism for measurement of micro/nanoscale planar 3-DOF motions publication-title: IEEE/ASME Trans. Mechatron. – year: 2001 ident: bib0001 article-title: Compliant Mechanisms – volume: 55 start-page: 397 year: 2019 end-page: 407 ident: bib0022 article-title: Topology optimization of leaf flexures to maximize in-plane to out-of-plane compliance ratio publication-title: Precis. Eng. – volume: 32 year: 2019 ident: bib0026 article-title: Topological and shape optimization of flexure hinges for designing compliant mechanisms using the level set method publication-title: Chin. J. Mech. Eng. (Engl. Ed.) – year: 2003 ident: bib0032 article-title: Topology Optimization: Theory, Methods, and Applications – volume: 48 start-page: 216 year: 2017 end-page: 233 ident: bib0019 article-title: A novel flexure beam module with low stiffness loss in compliant mechanisms publication-title: Precis. Eng. – volume: 40 start-page: 156 year: 2016 end-page: 166 ident: bib0011 article-title: Design, development and analysis of a haptic-enabled modular flexure-based manipulator publication-title: Mechatronics – volume: 74 start-page: 173 year: 2014 end-page: 187 ident: bib0009 article-title: Design and analysis of a novel flexure-based 3-DOF mechanism publication-title: Mech. Mach. Theory – volume: 205 start-page: 156 year: 2014 end-page: 163 ident: bib0015 article-title: Numerical simulation and experimental investigation of a topologically optimized compliant microgripper publication-title: Sens. Actuat. A Phys. – volume: 143 start-page: 103622 year: 2020 ident: bib0018 article-title: Design of compliant mechanisms using continuum topology optimization: a review publication-title: Mech. Mach. Theory – volume: 24 start-page: 359 year: 1987 end-page: 373 ident: bib0034 article-title: The method of moving asymptotesa new method for structural optimization publication-title: Int. J. Numer. Methods Eng. – volume: 45 start-page: 160 year: 2016 end-page: 167 ident: bib0021 article-title: Lattice flexures: geometries for stiffness reduction of blade flexures publication-title: Precis. Eng. – volume: 57 start-page: 560 year: 2014 end-page: 567 ident: bib0025 article-title: Design of single-axis flexure hinges using continuum topology optimization method publication-title: Sci. China Technol. Sci. – volume: 132 start-page: 1 year: 2010 end-page: 11 ident: bib0020 article-title: A generalized constraint model for two-Dimensional beam flexures : nonlinear load-Displacement formulation publication-title: J. Mech. Des. – volume: 37 start-page: 125 year: 2016 end-page: 138 ident: bib0003 article-title: Development of a Piezo-driven 3-DOF stage with T-shape flexible hinge mechanism publication-title: Robot. Comput. Integr. Manuf. – volume: 50 start-page: 55 year: 2018 end-page: 68 ident: bib0007 article-title: Development of a 4-DOF haptic micromanipulator utilizing a hybrid parallel-serial flexure mechanism publication-title: Mechatronics – volume: 122 start-page: 113 year: 2018 end-page: 131 ident: bib0014 article-title: Topology optimisation of bridge input structures with maximal amplification for design of flexure mechanisms publication-title: Mech. Mach. Theory – volume: 32 start-page: 93 year: 2015 end-page: 105 ident: bib0005 article-title: Design and control methodology of a 3-DOF flexure-based mechanism for micro/nano-positioning publication-title: Robot. Comput. Integr. Manuf. – volume: 25 start-page: 493 year: 1997 end-page: 524 ident: bib0031 article-title: On the design of compliant mechanisms using topology optimization publication-title: Mech. Struct. Mach. – volume: 12 start-page: 555 year: 2002 end-page: 573 ident: bib0035 article-title: Methods based on conservative convex separable publication-title: Soc. Ind. Appl. Math. – volume: 39 start-page: 139 year: 1986 end-page: 182 ident: bib0028 article-title: Optimal design and relaxation of variational problems, II publication-title: Commun. Pure Appl. Math. – start-page: Pages93 year: 2013 end-page: 107 ident: bib0027 article-title: Optimization publication-title: Handbook of Compliant Mechanisms – volume: 61 start-page: 893 year: 2014 end-page: 903 ident: bib0010 article-title: Design and development of a compact flexure-based XY precision positioning system with centimeter range publication-title: IEEE Trans. Ind. Electron. – volume: 19 start-page: 872 year: 2014 end-page: 881 ident: bib0006 article-title: Design and computational optimization of a decoupled 2-DOF monolithic mechanism publication-title: IEEE/ASME Trans. Mechatron. – volume: 1 start-page: 193 year: 1989 end-page: 202 ident: bib0029 article-title: Optimal shape design as a material distribution problem publication-title: Struct. Optim. – volume: 48 start-page: 292 year: 2017 end-page: 304 ident: bib0023 article-title: Design and analysis of a multi-notched flexure hinge for compliant mechanisms publication-title: Precis. Eng. – volume: 19 start-page: 1737 year: 2014 end-page: 1745 ident: bib0004 article-title: Experimental investigation of robust motion tracking control for a 2-DOF flexure-based mechanism publication-title: IEEE/ASME Trans. Mechatron. – volume: 50 start-page: 1175 year: 2014 end-page: 1196 ident: bib0033 article-title: An efficient 3D topology optimization code written in matlab publication-title: Struct. Multidiscip. Optim. – volume: 89 start-page: 309 year: 1991 end-page: 336 ident: bib0030 article-title: The COC algorithm, part II: topological, geometrical and generalized shape optimization publication-title: Comput. Methods Appl. Mech. Eng. – volume: 37 start-page: 125 year: 2016 ident: 10.1016/j.mechmachtheory.2020.103874_bib0003 article-title: Development of a Piezo-driven 3-DOF stage with T-shape flexible hinge mechanism publication-title: Robot. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2015.07.004 – volume: 19 start-page: 1737 issue: 6 year: 2014 ident: 10.1016/j.mechmachtheory.2020.103874_bib0004 article-title: Experimental investigation of robust motion tracking control for a 2-DOF flexure-based mechanism publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2014.2300481 – volume: 32 start-page: 93 year: 2015 ident: 10.1016/j.mechmachtheory.2020.103874_bib0005 article-title: Design and control methodology of a 3-DOF flexure-based mechanism for micro/nano-positioning publication-title: Robot. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2014.10.003 – volume: 50 start-page: 55 year: 2018 ident: 10.1016/j.mechmachtheory.2020.103874_bib0007 article-title: Development of a 4-DOF haptic micromanipulator utilizing a hybrid parallel-serial flexure mechanism publication-title: Mechatronics doi: 10.1016/j.mechatronics.2018.01.007 – start-page: Pages93 year: 2013 ident: 10.1016/j.mechmachtheory.2020.103874_bib0027 article-title: Optimization – volume: 32 issue: 1 year: 2019 ident: 10.1016/j.mechmachtheory.2020.103874_bib0026 article-title: Topological and shape optimization of flexure hinges for designing compliant mechanisms using the level set method publication-title: Chin. J. Mech. Eng. (Engl. Ed.) – volume: 37 start-page: 415 issue: 2 year: 2013 ident: 10.1016/j.mechmachtheory.2020.103874_bib0002 article-title: Compliance modeling and analysis of statically indeterminate symmetric flexure structures publication-title: Precis. Eng. doi: 10.1016/j.precisioneng.2012.11.004 – volume: 31 start-page: 151 issue: 2 year: 2003 ident: 10.1016/j.mechmachtheory.2020.103874_bib0012 article-title: Design of distributed compliant mechanisms publication-title: Mech. Based Des. Struct. Mach. doi: 10.1081/SME-120020289 – volume: 89 start-page: 309 issue: 1–3 year: 1991 ident: 10.1016/j.mechmachtheory.2020.103874_bib0030 article-title: The COC algorithm, part II: topological, geometrical and generalized shape optimization publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/0045-7825(91)90046-9 – volume: 132 start-page: 1 issue: August 2010 year: 2010 ident: 10.1016/j.mechmachtheory.2020.103874_bib0020 article-title: A generalized constraint model for two-Dimensional beam flexures : nonlinear load-Displacement formulation publication-title: J. Mech. Des. – volume: 205 start-page: 156 year: 2014 ident: 10.1016/j.mechmachtheory.2020.103874_bib0015 article-title: Numerical simulation and experimental investigation of a topologically optimized compliant microgripper publication-title: Sens. Actuat. A Phys. doi: 10.1016/j.sna.2013.11.011 – year: 2001 ident: 10.1016/j.mechmachtheory.2020.103874_bib0001 – volume: 52 start-page: 929 issue: 5 year: 2015 ident: 10.1016/j.mechmachtheory.2020.103874_bib0016 article-title: Stress-constrained topology optimization for compliant mechanism design publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-015-1279-z – volume: 143 start-page: 103622 year: 2020 ident: 10.1016/j.mechmachtheory.2020.103874_bib0018 article-title: Design of compliant mechanisms using continuum topology optimization: a review publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2019.103622 – volume: 55 start-page: 397 year: 2019 ident: 10.1016/j.mechmachtheory.2020.103874_bib0022 article-title: Topology optimization of leaf flexures to maximize in-plane to out-of-plane compliance ratio publication-title: Precis. Eng. doi: 10.1016/j.precisioneng.2018.10.008 – volume: 19 start-page: 872 issue: 3 year: 2014 ident: 10.1016/j.mechmachtheory.2020.103874_bib0006 article-title: Design and computational optimization of a decoupled 2-DOF monolithic mechanism publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2013.2262801 – volume: 48 start-page: 292 year: 2017 ident: 10.1016/j.mechmachtheory.2020.103874_bib0023 article-title: Design and analysis of a multi-notched flexure hinge for compliant mechanisms publication-title: Precis. Eng. doi: 10.1016/j.precisioneng.2016.12.012 – volume: 1 start-page: 193 issue: 4 year: 1989 ident: 10.1016/j.mechmachtheory.2020.103874_bib0029 article-title: Optimal shape design as a material distribution problem publication-title: Struct. Optim. doi: 10.1007/BF01650949 – volume: 21 start-page: 1222 issue: 3 year: 2016 ident: 10.1016/j.mechmachtheory.2020.103874_bib0008 article-title: Development of a passive compliant mechanism for measurement of micro/nanoscale planar 3-DOF motions publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2015.2503728 – volume: 24 start-page: 359 issue: 2 year: 1987 ident: 10.1016/j.mechmachtheory.2020.103874_bib0034 article-title: The method of moving asymptotesa new method for structural optimization publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.1620240207 – volume: 12 start-page: 555 issue: 2 year: 2002 ident: 10.1016/j.mechmachtheory.2020.103874_bib0035 article-title: Methods based on conservative convex separable publication-title: Soc. Ind. Appl. Math. – year: 2018 ident: 10.1016/j.mechmachtheory.2020.103874_bib0013 article-title: GPU-Accelerated Finite element modeling of bio-heat conduction for simulation of thermal ablation publication-title: J. Mech. Med. Biol. doi: 10.1142/S0219519418400122 – volume: 40 start-page: 156 year: 2016 ident: 10.1016/j.mechmachtheory.2020.103874_bib0011 article-title: Design, development and analysis of a haptic-enabled modular flexure-based manipulator publication-title: Mechatronics doi: 10.1016/j.mechatronics.2016.10.004 – volume: 74 start-page: 173 year: 2014 ident: 10.1016/j.mechmachtheory.2020.103874_bib0009 article-title: Design and analysis of a novel flexure-based 3-DOF mechanism publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2013.12.006 – volume: 95 start-page: 42 year: 2016 ident: 10.1016/j.mechmachtheory.2020.103874_bib0017 article-title: A new topology optimization method for planar compliant parallel mechanisms publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2015.08.016 – year: 2003 ident: 10.1016/j.mechmachtheory.2020.103874_bib0032 – volume: 50 start-page: 1175 issue: 6 year: 2014 ident: 10.1016/j.mechmachtheory.2020.103874_bib0033 article-title: An efficient 3D topology optimization code written in matlab publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-014-1107-x – volume: 39 start-page: 139 issue: 2 year: 1986 ident: 10.1016/j.mechmachtheory.2020.103874_bib0028 article-title: Optimal design and relaxation of variational problems, II publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.3160390202 – volume: 135 start-page: 383 issue: August 2017 year: 2018 ident: 10.1016/j.mechmachtheory.2020.103874_bib0036 article-title: Topology optimization of fundamental compliant mechanisms using a novel asymmetric beam flexure publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2017.11.023 – volume: 122 start-page: 113 year: 2018 ident: 10.1016/j.mechmachtheory.2020.103874_bib0014 article-title: Topology optimisation of bridge input structures with maximal amplification for design of flexure mechanisms publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2017.12.017 – volume: 61 start-page: 893 issue: 2 year: 2014 ident: 10.1016/j.mechmachtheory.2020.103874_bib0010 article-title: Design and development of a compact flexure-based XY precision positioning system with centimeter range publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2013.2257139 – volume: 45 start-page: 160 year: 2016 ident: 10.1016/j.mechmachtheory.2020.103874_bib0021 article-title: Lattice flexures: geometries for stiffness reduction of blade flexures publication-title: Precis. Eng. doi: 10.1016/j.precisioneng.2016.02.007 – volume: 231 start-page: 4635 issue: 24 year: 2017 ident: 10.1016/j.mechmachtheory.2020.103874_bib0024 article-title: Design of flexure hinges based on stress-constrained topology optimization publication-title: Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. doi: 10.1177/0954406216671346 – volume: 48 start-page: 216 year: 2017 ident: 10.1016/j.mechmachtheory.2020.103874_bib0019 article-title: A novel flexure beam module with low stiffness loss in compliant mechanisms publication-title: Precis. Eng. doi: 10.1016/j.precisioneng.2016.12.004 – volume: 25 start-page: 493 issue: 4 year: 1997 ident: 10.1016/j.mechmachtheory.2020.103874_bib0031 article-title: On the design of compliant mechanisms using topology optimization publication-title: Mech. Struct. Mach. doi: 10.1080/08905459708945415 – volume: 57 start-page: 560 issue: 3 year: 2014 ident: 10.1016/j.mechmachtheory.2020.103874_bib0025 article-title: Design of single-axis flexure hinges using continuum topology optimization method publication-title: Sci. China Technol. Sci. doi: 10.1007/s11431-013-5446-4 |
SSID | ssj0007543 |
Score | 2.4440606 |
Snippet | •Flexure-hinges, a commonly used compliant design element are optimized.•Investigation of precision-based cost function for use within topology... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 103874 |
Title | Topology optimization of stiffness constrained flexure-hinges for precision and range maximization |
URI | https://dx.doi.org/10.1016/j.mechmachtheory.2020.103874 |
Volume | 150 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KBdGD-MT6KHvodW0emxcepBRLVeypQm9h9kUrJi2xhfbib3e32b7AQ8FjQnaTzE5mvizfN4NQQ-kk67rSI0pASGgEHoEkAiJ5yLgAwaLlPuR7L-x-0NdBMKig9koLY2iVNvaXMX0Zre2ZprVmczIaGY1vom9DB572UwMUjIKdRsbLH342NI8osMy5hBJz9SFqbDhemeTDDPhwKRpc6L9Fr6wYHtG_09RW6umcohOLGXGrfKwzVJH5OTreqiR4gVi_bHawwGMdAzIrrsRjhfUnrJSJZ5gbKGg6QkiB1ZeczwpJzP6T_MYaueJJYdvtYMgFLozoAGcwX092ifqd5367S2z7BMJ935mSBHyfs0QpR8VcJx3uATggPIi4KxTjEIByIymCJA4cR8QiEcxTjDGlV1WBf4Wq-TiX1whrUCMpixNKA0XB40yGIuR-HIIbMMeFGnpcGSvltrS4eZ-vdMUh-0x3TZ0aU6elqWsoWI-elCU29hz3tFqXdMdlUp0N9prh5t8z3KIjc1QyAu9QdVrM5L1GKVNWX7phHR20Xt66vV-yfO_e |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JSgNBEC00AZeDuOJuH7w2ztI9Cx5EREk0ySlCbkP1hpFsxATi39ud6cQIHgSvM1TNTHX1qzdNLQDXxgbZMNQRNQoTylKMKOYpUi0TIRUqkc7PIZutpPbKnju8swYPi1oYl1bpsb_E9Dla-ys33po3o27X1fjm9jGsE1k_dURhHaquOxWvQPW-_lJrLQE55T55LmfUCWzA9XeaV1_Ltz7Kt3nd4Kf9YYzKpuEp-z1SrUSfp13Y8bSR3JdvtgdrerAP2yvNBA9AtMt5B59kaGGg7-srydAQu4uNcZBGpGODbiiEVsT09Gw61tQdQekPYskrGY39xB2CA0XGru6A9HG2VHYI7afH9kON-gkKVMZxMKE5xrEUuTGByaSNOzJCDFBFmMpQGSGRowlTrXie8SBQmcqViIwQwtiFNRgfQWUwHOhjIJbXaCaynDFuGEZS6EQlMs4SDLkIQjyB24WxCum7i7vv6RWLNLL34qepC2fqojT1CfCl9KjssvFHubvFuhQ_vKawAeFPGk7_reEKNmvtZqNo1FsvZ7Dl7pQJgudQmYyn-sKSlom49E75BdqO8o8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topology+optimization+of+stiffness+constrained+flexure-hinges+for+precision+and+range+maximization&rft.jtitle=Mechanism+and+machine+theory&rft.au=Pinskier%2C+Joshua&rft.au=Shirinzadeh%2C+Bijan&rft.au=Ghafarian%2C+Mohammadali&rft.au=Das%2C+Tilok+Kumar&rft.date=2020-08-01&rft.issn=0094-114X&rft.volume=150&rft.spage=103874&rft_id=info:doi/10.1016%2Fj.mechmachtheory.2020.103874&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mechmachtheory_2020_103874 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-114X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-114X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-114X&client=summon |