A rotating machinery fault diagnosis method based on local mean decomposition
Local mean decomposition (LMD) is a novel self-adaptive time–frequency analysis method, which is particularly suitable for the processing of multi-component amplitude-modulated and frequency-modulated (AM–FM) signals. By using LMD, any complicated signal can be decomposed into a number of product fu...
Saved in:
Published in | Digital signal processing Vol. 22; no. 2; pp. 356 - 366 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.03.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Local mean decomposition (LMD) is a novel self-adaptive time–frequency analysis method, which is particularly suitable for the processing of multi-component amplitude-modulated and frequency-modulated (AM–FM) signals. By using LMD, any complicated signal can be decomposed into a number of product functions (PFs), each of which is the product of an envelope signal and a purely frequency modulated signal from which physically meaningful instantaneous frequencies can be obtained. In fact, each PF is just a mono-component AM–FM signal. Therefore, the procedure of LMD may be regarded as the process of demodulation. While fault occurs in gear or roller bearing, the vibration signals picked up would exactly display AM–FM characteristics. So it is possible to diagnose gear and roller bearing fault by LMD. Targeting the modulation features of the gear or roller bearing fault vibration signal, a rotating machinery fault diagnosis method based on LMD is proposed. In this paper, firstly the LMD method is introduced; secondly, the LMD method is compared with another competing time–frequency analysis approach, namely, empirical mode decomposition (EMD) method and the results show the superiority of the LMD method; finally, the LMD method is applied to the gear and roller bearing fault diagnosis. The analysis results from the practical gearbox vibration signal demonstrate that the diagnosis approach based on LMD could identify gear and roller bearing work condition accurately and effectively. |
---|---|
AbstractList | Local mean decomposition (LMD) is a novel self-adaptive time–frequency analysis method, which is particularly suitable for the processing of multi-component amplitude-modulated and frequency-modulated (AM–FM) signals. By using LMD, any complicated signal can be decomposed into a number of product functions (PFs), each of which is the product of an envelope signal and a purely frequency modulated signal from which physically meaningful instantaneous frequencies can be obtained. In fact, each PF is just a mono-component AM–FM signal. Therefore, the procedure of LMD may be regarded as the process of demodulation. While fault occurs in gear or roller bearing, the vibration signals picked up would exactly display AM–FM characteristics. So it is possible to diagnose gear and roller bearing fault by LMD. Targeting the modulation features of the gear or roller bearing fault vibration signal, a rotating machinery fault diagnosis method based on LMD is proposed. In this paper, firstly the LMD method is introduced; secondly, the LMD method is compared with another competing time–frequency analysis approach, namely, empirical mode decomposition (EMD) method and the results show the superiority of the LMD method; finally, the LMD method is applied to the gear and roller bearing fault diagnosis. The analysis results from the practical gearbox vibration signal demonstrate that the diagnosis approach based on LMD could identify gear and roller bearing work condition accurately and effectively. |
Author | Cheng, Junsheng Yang, Yu Yang, Yi |
Author_xml | – sequence: 1 givenname: Junsheng surname: Cheng fullname: Cheng, Junsheng email: signalp@tom.com organization: State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082, PR China – sequence: 2 givenname: Yi surname: Yang fullname: Yang, Yi organization: State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082, PR China – sequence: 3 givenname: Yu surname: Yang fullname: Yang, Yu organization: State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082, PR China |
BookMark | eNp9kE1LxDAQhoOs4OcP8Jajl9ZJ06YpnpbFL1C86DnEZKJZ2mRNusL-e7OsZ0_zMjzvwDxnZBFiQEKuGNQMmLhZ1zZv6gYYq2GoAeQROWUwdFXLOV_sc8eqBqA9IWc5rwGgbxtxSl6WNMVZzz580kmbLx8w7ajT23Gm1uvPELPPdML5K1r6oTNaGgMdo9Fj2epALZo4bQo1-xguyLHTY8bLv3lO3u_v3laP1fPrw9Nq-VwZzmGuhgE_uJCdbJ11VgBzyKUWpkejux4644beSW4lc9JwcH3jEFtAGIwQDbP8nFwf7m5S_N5intXks8Fx1AHjNquiZBAdl5IVlB1Qk2LOCZ3aJD_ptCvQnhNqrYo6tVenYFBFXencHjpYfvjxmFQ2HoNB6xOaWdno_2n_Al-teTY |
CitedBy_id | crossref_primary_10_1016_j_enconman_2019_112099 crossref_primary_10_1155_2021_8899188 crossref_primary_10_1177_1687814018812534 crossref_primary_10_1007_s40430_018_1184_7 crossref_primary_10_1177_14759217221133283 crossref_primary_10_4028_www_scientific_net_AMR_683_899 crossref_primary_10_1155_2015_429185 crossref_primary_10_1016_j_ymssp_2016_03_007 crossref_primary_10_1016_j_conengprac_2016_03_012 crossref_primary_10_1016_j_measurement_2015_10_015 crossref_primary_10_1109_ACCESS_2019_2924272 crossref_primary_10_1109_ACCESS_2020_3010806 crossref_primary_10_1177_09544062231185486 crossref_primary_10_1016_j_isatra_2019_07_027 crossref_primary_10_3390_app112311480 crossref_primary_10_3390_s22218325 crossref_primary_10_1155_2014_329458 crossref_primary_10_1115_1_4027926 crossref_primary_10_1109_ACCESS_2021_3074498 crossref_primary_10_1177_1475921719887496 crossref_primary_10_1007_s42417_021_00358_y crossref_primary_10_1155_2019_8479395 crossref_primary_10_1007_s00170_021_08047_6 crossref_primary_10_1177_0954406216671542 crossref_primary_10_1007_s40430_015_0455_9 crossref_primary_10_1016_j_ymssp_2021_108419 crossref_primary_10_21595_jve_2016_16594 crossref_primary_10_1016_j_apacoust_2021_108271 crossref_primary_10_1016_j_measurement_2022_111743 crossref_primary_10_1063_1_5037565 crossref_primary_10_21595_jve_2016_17566 crossref_primary_10_1016_j_ymssp_2017_12_031 crossref_primary_10_1007_s12206_013_1149_9 crossref_primary_10_1007_s12293_018_0277_2 crossref_primary_10_1016_j_ymssp_2018_06_055 crossref_primary_10_1088_1361_6501_aa97f4 crossref_primary_10_1016_j_measurement_2017_12_012 crossref_primary_10_1051_matecconf_201821108001 crossref_primary_10_3390_app13137500 crossref_primary_10_21595_jve_2017_18278 crossref_primary_10_1016_j_ymssp_2014_10_017 crossref_primary_10_1016_j_eswa_2016_02_025 crossref_primary_10_1109_ACCESS_2020_3043743 crossref_primary_10_3390_mi15040483 crossref_primary_10_1016_j_neucom_2013_04_033 crossref_primary_10_1515_jisys_2019_0237 crossref_primary_10_1109_ACCESS_2020_3021431 crossref_primary_10_1177_1687814016661087 crossref_primary_10_1016_j_ymssp_2017_09_011 crossref_primary_10_1109_ACCESS_2017_2766232 crossref_primary_10_1155_2020_8840676 crossref_primary_10_26745_ahbvuibfd_1363770 crossref_primary_10_4028_www_scientific_net_AMR_562_564_812 crossref_primary_10_3233_JIFS_212086 crossref_primary_10_1016_j_triboint_2015_12_037 crossref_primary_10_2139_ssrn_4103179 crossref_primary_10_1109_ACCESS_2023_3324961 crossref_primary_10_1016_j_isatra_2014_08_007 crossref_primary_10_1177_1461348418765973 crossref_primary_10_1016_j_ymssp_2017_03_035 crossref_primary_10_1177_1077546316688991 crossref_primary_10_1109_ACCESS_2022_3180338 crossref_primary_10_3390_en13040805 crossref_primary_10_3390_sym13030487 crossref_primary_10_1016_j_apenergy_2021_117193 crossref_primary_10_1007_s00202_021_01261_1 crossref_primary_10_1177_1077546314547533 crossref_primary_10_1016_j_dsp_2018_02_018 crossref_primary_10_1088_1361_6501_ab6f2f crossref_primary_10_1016_j_ymssp_2021_107909 crossref_primary_10_3390_s24113540 crossref_primary_10_3390_app8091441 crossref_primary_10_1016_j_neunet_2018_07_004 crossref_primary_10_1051_meca_2012037 crossref_primary_10_1088_1361_6501_acea9e crossref_primary_10_1155_2022_9489306 crossref_primary_10_1007_s10033_017_0188_z crossref_primary_10_1016_j_measurement_2017_05_029 crossref_primary_10_13168_AGG_2023_0006 crossref_primary_10_1109_ACCESS_2019_2947194 crossref_primary_10_1016_j_aej_2021_03_034 crossref_primary_10_1109_TIM_2019_2905022 crossref_primary_10_1080_20464177_2019_1655135 crossref_primary_10_1590_1679_78252290 crossref_primary_10_1016_j_isatra_2015_12_009 crossref_primary_10_1007_s10043_018_0477_5 crossref_primary_10_1088_1361_6501_ab231b crossref_primary_10_1155_2020_6216903 crossref_primary_10_1121_10_0016500 crossref_primary_10_1016_j_mechmachtheory_2012_04_008 crossref_primary_10_1088_1402_4896_ac5bc5 crossref_primary_10_1007_s40430_018_1503_z crossref_primary_10_21595_jve_2018_19200 crossref_primary_10_1016_j_measurement_2023_112531 crossref_primary_10_1016_j_conengprac_2016_06_020 crossref_primary_10_3390_e19060277 crossref_primary_10_1016_j_measurement_2023_112899 crossref_primary_10_1007_s12008_022_01001_0 crossref_primary_10_1016_j_ymssp_2021_108216 crossref_primary_10_1080_10589759_2020_1803860 crossref_primary_10_1016_j_neucom_2018_06_012 crossref_primary_10_1016_j_ymssp_2018_03_035 crossref_primary_10_32604_ee_2023_025404 crossref_primary_10_1016_j_dsp_2014_08_006 crossref_primary_10_1016_j_sigpro_2016_07_023 crossref_primary_10_1088_1361_6501_aa56d3 crossref_primary_10_21595_jve_2016_16949 crossref_primary_10_1016_j_procir_2016_10_051 crossref_primary_10_1109_ACCESS_2020_2976868 crossref_primary_10_1016_j_dsp_2019_02_019 crossref_primary_10_1049_rsn2_12536 crossref_primary_10_1016_j_jsv_2018_02_056 crossref_primary_10_1520_JTE20190107 crossref_primary_10_1109_ACCESS_2019_2943960 crossref_primary_10_1016_j_ymssp_2016_04_028 crossref_primary_10_3390_e21030290 crossref_primary_10_21595_jve_2017_18917 crossref_primary_10_1155_2020_7576034 crossref_primary_10_1016_j_dsp_2020_102881 crossref_primary_10_1155_2020_5303658 crossref_primary_10_1007_s10586_017_0932_2 crossref_primary_10_1016_j_jsv_2015_09_016 crossref_primary_10_1155_2017_5321815 crossref_primary_10_1016_j_measurement_2013_07_014 crossref_primary_10_1016_j_ymssp_2013_01_017 crossref_primary_10_1109_ACCESS_2019_2957777 crossref_primary_10_1109_ACCESS_2019_2938227 crossref_primary_10_1016_j_renene_2023_01_108 crossref_primary_10_1109_ACCESS_2020_2968382 crossref_primary_10_1109_JSEN_2021_3054502 crossref_primary_10_3390_e18090322 crossref_primary_10_1016_j_dsp_2015_07_001 crossref_primary_10_3390_app11199095 crossref_primary_10_3390_a15100347 crossref_primary_10_1109_TIE_2019_2955429 crossref_primary_10_3390_e23050527 crossref_primary_10_1016_j_jsv_2015_02_025 crossref_primary_10_1007_s10586_023_04008_8 crossref_primary_10_1016_j_comcom_2021_10_035 crossref_primary_10_2478_msr_2022_0022 crossref_primary_10_1007_s11071_024_09829_9 crossref_primary_10_1155_2022_5344652 crossref_primary_10_1016_j_jsv_2016_12_005 crossref_primary_10_1109_TII_2017_2683528 crossref_primary_10_1016_j_mechmachtheory_2015_04_009 crossref_primary_10_1016_j_dsp_2013_12_010 crossref_primary_10_1007_s11071_020_05832_y crossref_primary_10_1109_TIM_2019_2928534 crossref_primary_10_1016_j_measurement_2015_07_045 crossref_primary_10_1109_TIM_2017_2664599 crossref_primary_10_1007_s11465_018_0472_3 crossref_primary_10_21595_jve_2016_16847 crossref_primary_10_1109_JSEN_2022_3163658 crossref_primary_10_1177_1077546314538992 crossref_primary_10_1016_j_apacoust_2021_107966 crossref_primary_10_1155_2015_735853 crossref_primary_10_1016_j_jsv_2017_02_055 crossref_primary_10_1016_j_ymssp_2017_09_042 crossref_primary_10_21595_jve_2015_16184 crossref_primary_10_1016_j_dsp_2016_04_007 |
Cites_doi | 10.1146/annurev.fluid.31.1.417 10.3901/JME.2004.08.115 10.1109/34.192463 10.1098/rspa.2003.1123 10.1109/5.30749 10.1016/j.ymssp.2005.09.011 10.1016/j.ymssp.2005.09.005 10.1016/j.oceaneng.2004.03.007 10.1006/mssp.2002.1482 10.1016/j.ymssp.2005.07.002 10.1016/j.jsv.2005.11.002 10.1115/1.3269317 10.1098/rsif.2005.0058 10.1006/mssp.2001.1435 10.1098/rspa.1998.0193 10.1785/0120000715 10.1098/rspa.2003.1199 10.1016/S0888-3270(03)00075-X |
ContentType | Journal Article |
Copyright | 2011 |
Copyright_xml | – notice: 2011 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.dsp.2011.09.008 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1095-4333 |
EndPage | 366 |
ExternalDocumentID | 10_1016_j_dsp_2011_09_008 S1051200411001448 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG5 LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K WUQ XPP ZMT ZU3 ~G- AAXKI AAYXX AFJKZ AKRWK CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c330t-99eb368584fdfd601fe38a6c7eca5705cf97f83d81f8c30f72fee40e09c6621d3 |
IEDL.DBID | AIKHN |
ISSN | 1051-2004 |
IngestDate | Fri Oct 25 12:18:23 EDT 2024 Thu Sep 26 17:36:24 EDT 2024 Fri Feb 23 02:28:07 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Fault diagnosis Local mean decomposition Product functions Time–frequency analysis Rotating machinery Modulation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c330t-99eb368584fdfd601fe38a6c7eca5705cf97f83d81f8c30f72fee40e09c6621d3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1019653881 |
PQPubID | 23500 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1019653881 crossref_primary_10_1016_j_dsp_2011_09_008 elsevier_sciencedirect_doi_10_1016_j_dsp_2011_09_008 |
PublicationCentury | 2000 |
PublicationDate | 2012-03-01 |
PublicationDateYYYYMMDD | 2012-03-01 |
PublicationDate_xml | – month: 03 year: 2012 text: 2012-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Digital signal processing |
PublicationYear | 2012 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Huang, Wu, Long (br0130) 2003; 459 Mallat (br0040) 1989; 11 Olhede, Walden (br0060) 2004; 460 Cheng, Yu, Yang (br0140) 2006; 20 Qin, Zhong (br0150) 2006; 20 Zheng, Li, Chen (br0020) 2002; 16 Huang, Shen, Long (br0070) 1998; 454 Datig, Schlurmann (br0110) 2004; 31 Yang, Yu, Cheng (br0190) 2006; 294 Loh, Wu, Huang (br0100) 2001; 91 Huang, Shen, Long (br0080) 1999; 31 Cheng, Yu, Yang (br0090) 2004; 40 Cheng, Yu, Yang (br0120) 2007; 21 Smith (br0160) 2005; 2 Baydar, Ball (br0010) 2003; 17 Cohen (br0030) 1989; 77 Peng, Chu (br0050) 1989; 18 Radcliff (br0180) 1990 McFadden (br0170) 1986; 108 Radcliff (10.1016/j.dsp.2011.09.008_br0180) 1990 Huang (10.1016/j.dsp.2011.09.008_br0130) 2003; 459 Peng (10.1016/j.dsp.2011.09.008_br0050) 1989; 18 Yang (10.1016/j.dsp.2011.09.008_br0190) 2006; 294 Huang (10.1016/j.dsp.2011.09.008_br0070) 1998; 454 Cheng (10.1016/j.dsp.2011.09.008_br0140) 2006; 20 Olhede (10.1016/j.dsp.2011.09.008_br0060) 2004; 460 Zheng (10.1016/j.dsp.2011.09.008_br0020) 2002; 16 Mallat (10.1016/j.dsp.2011.09.008_br0040) 1989; 11 Datig (10.1016/j.dsp.2011.09.008_br0110) 2004; 31 McFadden (10.1016/j.dsp.2011.09.008_br0170) 1986; 108 Qin (10.1016/j.dsp.2011.09.008_br0150) 2006; 20 Cheng (10.1016/j.dsp.2011.09.008_br0090) 2004; 40 Cheng (10.1016/j.dsp.2011.09.008_br0120) 2007; 21 Baydar (10.1016/j.dsp.2011.09.008_br0010) 2003; 17 Cohen (10.1016/j.dsp.2011.09.008_br0030) 1989; 77 Huang (10.1016/j.dsp.2011.09.008_br0080) 1999; 31 Smith (10.1016/j.dsp.2011.09.008_br0160) 2005; 2 Loh (10.1016/j.dsp.2011.09.008_br0100) 2001; 91 |
References_xml | – volume: 294 start-page: 269 year: 2006 end-page: 277 ident: br0190 article-title: A roller bearing fault diagnosis method based on EMD energy entropy and ANN publication-title: J. Sound Vib. contributor: fullname: Cheng – volume: 11 start-page: 674 year: 1989 end-page: 689 ident: br0040 article-title: A theory for multi-resolution decomposition, the wavelet representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. contributor: fullname: Mallat – volume: 91 start-page: 1339 year: 2001 end-page: 1357 ident: br0100 article-title: Application of the empirical mode decomposition – Hilbert spectrum method to identify near-fault ground-motion characteristics and structural response publication-title: Bull. Seismol. Soc. Amer. contributor: fullname: Huang – volume: 18 start-page: 199 year: 1989 end-page: 221 ident: br0050 article-title: Application of the wavelet transforms in machine condition monitoring and fault diagnostics: a review with bibliography publication-title: Mech. Syst. Signal Process. contributor: fullname: Chu – volume: 77 start-page: 941 year: 1989 end-page: 981 ident: br0030 article-title: Time–frequency distribution – a review publication-title: Proc. IEEE contributor: fullname: Cohen – volume: 454 start-page: 903 year: 1998 end-page: 995 ident: br0070 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. R. Soc. Lond. contributor: fullname: Long – volume: 31 start-page: 1783 year: 2004 end-page: 1834 ident: br0110 article-title: Performance and limitations of the Hilbert–Huang transformation (HHT) with an application to irregular water waves publication-title: Ocean Engrg. contributor: fullname: Schlurmann – volume: 20 start-page: 1941 year: 2006 end-page: 1952 ident: br0150 article-title: A new algorithm of Hilbert–Huang transform publication-title: Mech. Syst. Signal Process. contributor: fullname: Zhong – start-page: 55 year: 1990 end-page: 67 ident: br0180 article-title: Condition monitoring of rolling element bearings using the enveloping technique publication-title: Machine Condition Monitoring contributor: fullname: Radcliff – volume: 17 start-page: 787 year: 2003 end-page: 804 ident: br0010 article-title: Detection of gear failures via vibration and acoustics signals using wavelet transform publication-title: Mech. Syst. Signal Process. contributor: fullname: Ball – volume: 108 start-page: 165 year: 1986 end-page: 170 ident: br0170 article-title: Detecting fatigue cracks in gear by amplitude and phase demodulation of the meshing vibration publication-title: ASME J. Vib. Acoust. Stress Reliab. Des. contributor: fullname: McFadden – volume: 460 start-page: 955 year: 2004 end-page: 975 ident: br0060 article-title: The Hilbert spectrum via wavelet projections publication-title: Proc. R. Soc. Lond. contributor: fullname: Walden – volume: 2 start-page: 443 year: 2005 end-page: 454 ident: br0160 article-title: The local mean decomposition and its application to EEG perception data publication-title: J. R. Soc. Interface contributor: fullname: Smith – volume: 459 start-page: 2317 year: 2003 end-page: 2345 ident: br0130 article-title: A confidence limit for the empirical mode decomposition and Hilbert spectral analysis publication-title: Proc. R. Soc. Lond. A contributor: fullname: Long – volume: 16 start-page: 447 year: 2002 end-page: 457 ident: br0020 article-title: Gear fault diagnosis based on continuous wavelet transform publication-title: Mech. Syst. Signal Process. contributor: fullname: Chen – volume: 31 start-page: 417 year: 1999 end-page: 457 ident: br0080 article-title: A new view of nonlinear water waves: the Hilbert spectrum publication-title: Annu. Rev. Fluid Mech. contributor: fullname: Long – volume: 21 start-page: 1197 year: 2007 end-page: 1211 ident: br0120 article-title: Application of support vector regression machines to the processing of end effects of Hilbert–Huang transform publication-title: Mech. Syst. Signal Process. contributor: fullname: Yang – volume: 20 start-page: 817 year: 2006 end-page: 824 ident: br0140 article-title: Research on the intrinsic mode function (IMF) criterion in EMD method publication-title: Mech. Syst. Signal Process. contributor: fullname: Yang – volume: 40 start-page: 115 year: 2004 end-page: 118 ident: br0090 article-title: Energy operator demodulating approach based on EMD and its application in mechanical fault diagnosis publication-title: Chinese J. Mech. Engrg. contributor: fullname: Yang – volume: 31 start-page: 417 year: 1999 ident: 10.1016/j.dsp.2011.09.008_br0080 article-title: A new view of nonlinear water waves: the Hilbert spectrum publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.31.1.417 contributor: fullname: Huang – volume: 40 start-page: 115 issue: 8 year: 2004 ident: 10.1016/j.dsp.2011.09.008_br0090 article-title: Energy operator demodulating approach based on EMD and its application in mechanical fault diagnosis publication-title: Chinese J. Mech. Engrg. doi: 10.3901/JME.2004.08.115 contributor: fullname: Cheng – volume: 11 start-page: 674 issue: 7 year: 1989 ident: 10.1016/j.dsp.2011.09.008_br0040 article-title: A theory for multi-resolution decomposition, the wavelet representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.192463 contributor: fullname: Mallat – volume: 459 start-page: 2317 year: 2003 ident: 10.1016/j.dsp.2011.09.008_br0130 article-title: A confidence limit for the empirical mode decomposition and Hilbert spectral analysis publication-title: Proc. R. Soc. Lond. A doi: 10.1098/rspa.2003.1123 contributor: fullname: Huang – volume: 77 start-page: 941 issue: 7 year: 1989 ident: 10.1016/j.dsp.2011.09.008_br0030 article-title: Time–frequency distribution – a review publication-title: Proc. IEEE doi: 10.1109/5.30749 contributor: fullname: Cohen – volume: 20 start-page: 817 issue: 4 year: 2006 ident: 10.1016/j.dsp.2011.09.008_br0140 article-title: Research on the intrinsic mode function (IMF) criterion in EMD method publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2005.09.011 contributor: fullname: Cheng – volume: 21 start-page: 1197 issue: 3 year: 2007 ident: 10.1016/j.dsp.2011.09.008_br0120 article-title: Application of support vector regression machines to the processing of end effects of Hilbert–Huang transform publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2005.09.005 contributor: fullname: Cheng – volume: 31 start-page: 1783 issue: 14–15 year: 2004 ident: 10.1016/j.dsp.2011.09.008_br0110 article-title: Performance and limitations of the Hilbert–Huang transformation (HHT) with an application to irregular water waves publication-title: Ocean Engrg. doi: 10.1016/j.oceaneng.2004.03.007 contributor: fullname: Datig – start-page: 55 year: 1990 ident: 10.1016/j.dsp.2011.09.008_br0180 article-title: Condition monitoring of rolling element bearings using the enveloping technique contributor: fullname: Radcliff – volume: 16 start-page: 447 issue: 2–3 year: 2002 ident: 10.1016/j.dsp.2011.09.008_br0020 article-title: Gear fault diagnosis based on continuous wavelet transform publication-title: Mech. Syst. Signal Process. doi: 10.1006/mssp.2002.1482 contributor: fullname: Zheng – volume: 20 start-page: 1941 issue: 8 year: 2006 ident: 10.1016/j.dsp.2011.09.008_br0150 article-title: A new algorithm of Hilbert–Huang transform publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2005.07.002 contributor: fullname: Qin – volume: 294 start-page: 269 year: 2006 ident: 10.1016/j.dsp.2011.09.008_br0190 article-title: A roller bearing fault diagnosis method based on EMD energy entropy and ANN publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2005.11.002 contributor: fullname: Yang – volume: 108 start-page: 165 year: 1986 ident: 10.1016/j.dsp.2011.09.008_br0170 article-title: Detecting fatigue cracks in gear by amplitude and phase demodulation of the meshing vibration publication-title: ASME J. Vib. Acoust. Stress Reliab. Des. doi: 10.1115/1.3269317 contributor: fullname: McFadden – volume: 2 start-page: 443 issue: 5 year: 2005 ident: 10.1016/j.dsp.2011.09.008_br0160 article-title: The local mean decomposition and its application to EEG perception data publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2005.0058 contributor: fullname: Smith – volume: 17 start-page: 787 issue: 4 year: 2003 ident: 10.1016/j.dsp.2011.09.008_br0010 article-title: Detection of gear failures via vibration and acoustics signals using wavelet transform publication-title: Mech. Syst. Signal Process. doi: 10.1006/mssp.2001.1435 contributor: fullname: Baydar – volume: 454 start-page: 903 year: 1998 ident: 10.1016/j.dsp.2011.09.008_br0070 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. R. Soc. Lond. doi: 10.1098/rspa.1998.0193 contributor: fullname: Huang – volume: 91 start-page: 1339 issue: 5 year: 2001 ident: 10.1016/j.dsp.2011.09.008_br0100 article-title: Application of the empirical mode decomposition – Hilbert spectrum method to identify near-fault ground-motion characteristics and structural response publication-title: Bull. Seismol. Soc. Amer. doi: 10.1785/0120000715 contributor: fullname: Loh – volume: 460 start-page: 955 year: 2004 ident: 10.1016/j.dsp.2011.09.008_br0060 article-title: The Hilbert spectrum via wavelet projections publication-title: Proc. R. Soc. Lond. doi: 10.1098/rspa.2003.1199 contributor: fullname: Olhede – volume: 18 start-page: 199 issue: 2 year: 1989 ident: 10.1016/j.dsp.2011.09.008_br0050 article-title: Application of the wavelet transforms in machine condition monitoring and fault diagnostics: a review with bibliography publication-title: Mech. Syst. Signal Process. doi: 10.1016/S0888-3270(03)00075-X contributor: fullname: Peng |
SSID | ssj0007426 |
Score | 2.43362 |
Snippet | Local mean decomposition (LMD) is a novel self-adaptive time–frequency analysis method, which is particularly suitable for the processing of multi-component... Local mean decomposition (LMD) is a novel self-adaptive time-frequency analysis method, which is particularly suitable for the processing of multi-component... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 356 |
SubjectTerms | Decomposition Fault diagnosis Faults Gears Local mean decomposition Modulation Product functions Roller bearings Rotating machinery Time-frequency analysis Vibration |
Title | A rotating machinery fault diagnosis method based on local mean decomposition |
URI | https://dx.doi.org/10.1016/j.dsp.2011.09.008 https://search.proquest.com/docview/1019653881 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsNAFB362OhCfGJ9lBFcCbGTmclrWYqlKu1GC90NyTykomlp04Ubv907yURU0IWbQMIkhDOXc-9lzpxB6JJJyGIEgjfVknmcZsZLaWQ8FgZcRtQEtNzHPZ6Eoym_mwWzBhrUe2GsrNJxf8XpJVu7Jz2HZm85n_ceoDLw7Rxb0zNoC-ImakM6ohDa7f7t_WjyScjQ_ZWbjGB8GRT14mYp81LrpTPytMaV8W_p6QdRl9lnuIt2XNmI-9Wf7aGGzvfR9hczwQM07uPVwi6s50_4tZRI6tUbNunmpcCqEtTN17g6MRrb5KXwIsdlLoOnaY6VtvpyJ-I6RNPhzeNg5LnDEjzJGCm8JIG22JrJc6OMgjbLaBanoYy0TIOIBNIkkYmZin0TS0YMzIPWnGiSyDCkvmJHqJUvcn2MsJ8RxVNDjcw4J5LB1frSQ7KLGIOKo4OuaozEsvLEELVY7FkAoMICKkgiANAO4jWK4tvECuDsv167qBEXEPB2FSPN9WKztuOTEGg69k_-9-lTtAV3tBKSnaFWsdroc6gsiqyLmtfvftfFzwdELcw4 |
link.rule.ids | 315,783,787,4510,24129,27937,27938,45598,45692 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLZKGYABcYpyGokJKdSJnWusKqoCbRdaqZuV-EBFkFRtOrDw23l2EnFIMLBkcOwo-vz0Dvl7nxG6ogKiGAHjTZSgDvNS7SReqB0a-EyEnvY928c9HAX9Cbuf-tMG6ta9MIZWWfn-0qdbb12NtCs02_PZrP0ImYFr9tiInkFZEK2hdWbkxsGob94_eR5Q-9kWI5htTaI-2rQkL7mcVzKeRrYy-i04_XDTNvb0dtB2lTTiTvlfu6ihsj209UVKcB8NO3iRm2P17Am_WoKkWrxhnaxeCixLOt1sicv7orEJXRLnGbaRDEaTDEtl2OUVhesATXq3427fqa5KcASlpHDiGIpiIyXPtNQSiiytaJQEIlQi8UPiCx2HOqIycnUkKNGwC0oxokgsgsBzJT1EzSzP1BHCbkokS7SnRcoYERSeRpUeQl1IKeQbLXRdY8TnpSIGr6lizxwA5QZQTmIOgLYQq1Hk37aVg8f-a9lljTgHczdnGEmm8tXSzI8DcNKRe_y_T1-gjf54OOCDu9HDCdqEN15JKTtFzWKxUmeQYxTpubWhDxiHzRE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+rotating+machinery+fault+diagnosis+method+based+on+local+mean+decomposition&rft.jtitle=Digital+signal+processing&rft.au=Cheng%2C+Junsheng&rft.au=Yang%2C+Yi&rft.au=Yang%2C+Yu&rft.date=2012-03-01&rft.issn=1051-2004&rft.volume=22&rft.issue=2&rft.spage=356&rft.epage=366&rft_id=info:doi/10.1016%2Fj.dsp.2011.09.008&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-2004&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-2004&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-2004&client=summon |