A numerical solution to nonlinear second order three-point boundary value problems in the reproducing kernel space

In this paper, a new numerical algorithm is provided to solve nonlinear three-point boundary value problems in a very favorable reproducing kernel space which satisfies all boundary conditions. Its reproducing kernel function is discussed in detail. We also prove that the approximate solution and it...

Full description

Saved in:
Bibliographic Details
Published inApplied mathematics and computation Vol. 218; no. 14; pp. 7362 - 7368
Main Authors Lin, Yingzhen, Niu, Jing, Cui, Minggen
Format Journal Article
LanguageEnglish
Published Elsevier Inc 15.03.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, a new numerical algorithm is provided to solve nonlinear three-point boundary value problems in a very favorable reproducing kernel space which satisfies all boundary conditions. Its reproducing kernel function is discussed in detail. We also prove that the approximate solution and its first and second order derivatives all converge uniformly. The numerical experiments show that the algorithm is quite accurate and efficient for solving nonlinear second order three-point boundary value problems.
AbstractList In this paper, a new numerical algorithm is provided to solve nonlinear three-point boundary value problems in a very favorable reproducing kernel space which satisfies all boundary conditions. Its reproducing kernel function is discussed in detail. We also prove that the approximate solution and its first and second order derivatives all converge uniformly. The numerical experiments show that the algorithm is quite accurate and efficient for solving nonlinear second order three-point boundary value problems.
Author Lin, Yingzhen
Cui, Minggen
Niu, Jing
Author_xml – sequence: 1
  givenname: Yingzhen
  surname: Lin
  fullname: Lin, Yingzhen
  organization: Department of Mathematics, Harbin Institute of Technology at Weihai, Shandong 264209, China
– sequence: 2
  givenname: Jing
  surname: Niu
  fullname: Niu, Jing
  email: niujing1982@gmail.com
  organization: Department of Mathematics, Harbin Institute of Technology at Weihai, Shandong 264209, China
– sequence: 3
  givenname: Minggen
  surname: Cui
  fullname: Cui, Minggen
  organization: Department of Mathematics, Harbin Institute of Technology at Weihai, Shandong 264209, China
BookMark eNp9kE1LRCEUhiUKmqZ-QDuXbe6k90NHWkX0BUGbWovXe245eXVSb9C_7wzTqkVwQDi8z6s-J-QwxACEnHO24oyLy83KTHZVM85XOIypA7Lga9lUnWjVIVngRlQNY80xOcl5wxiTgrcLkq5pmCdIzhpPc_RzcTHQEin2exfAJJrBxjDQmAZItLwngGobXSi0j3MYTPqmX8bPQLcp9h6mTB0WvANNgJthti680Q9IAfCCrbFwSo5G4zOc_Z5L8np3-3LzUD093z_eXD9VtmlYqdRa1dDUI-9G3oq2VoZZI6zs1dCZXgrJLFtLNa5VxwA63sIorZKD6FsztiNrluRi34vP-JwhFz25bMF7EyDOWaM3hXJkzTEq91GbYs4JRm1dMTsVJRnnMbpLC73RaFnvLGscdIok_0Nuk5tQyr_M1Z4B_P2Xg6SzdRAsDC6BLXqI7h_6B50hmRg
CitedBy_id crossref_primary_10_1142_S0219633618500207
crossref_primary_10_1080_00207160_2017_1366464
crossref_primary_10_1155_2014_630671
crossref_primary_10_1002_mma_2549
crossref_primary_10_1155_2012_360631
crossref_primary_10_3390_fractalfract4040053
crossref_primary_10_4236_am_2016_710095
crossref_primary_10_1007_s12190_021_01674_y
crossref_primary_10_1002_mma_3588
crossref_primary_10_1080_00207160_2015_1012070
crossref_primary_10_1155_2013_542839
crossref_primary_10_1007_s40314_018_0704_5
crossref_primary_10_1155_2014_691461
crossref_primary_10_1002_mma_8443
crossref_primary_10_3846_13926292_2016_1183240
crossref_primary_10_1155_2012_414612
crossref_primary_10_3846_mma_2018_003
crossref_primary_10_1002_jnm_2573
crossref_primary_10_1155_2014_302936
crossref_primary_10_1155_2014_263042
Cites_doi 10.1002/num.20071
10.1112/jlms/jdn066
10.1016/j.apnum.2004.02.002
10.1016/j.na.2006.07.023
10.1016/j.amc.2009.09.044
10.1007/s11075-009-9293-0
10.1016/S0096-3003(01)00194-1
10.1016/j.amc.2010.12.041
10.1016/j.na.2007.01.065
10.1016/j.cnsns.2011.06.018
10.1017/S0013091505000532
10.1016/j.chaos.2005.11.010
10.1016/S0022-247X(03)00396-2
10.1016/j.amc.2006.11.156
10.1177/1077546311408467
10.1016/j.amc.2006.07.110
10.1016/j.amc.2009.08.002
10.1016/j.camwa.2008.03.055
10.1002/num.20019
10.1088/0031-8949/73/6/023
ContentType Journal Article
Copyright 2012 Elsevier Inc.
Copyright_xml – notice: 2012 Elsevier Inc.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.amc.2011.11.009
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-5649
EndPage 7368
ExternalDocumentID 10_1016_j_amc_2011_11_009
S0096300311013397
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABAOU
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SME
SPC
SPCBC
SSW
SSZ
T5K
TN5
WH7
X6Y
XPP
ZMT
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ACRPL
ACVFH
ADCNI
ADIYS
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HMJ
HVGLF
R2-
SEW
SSH
TAE
VH1
VOH
WUQ
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c330t-9892e32f15f146429a0ca6c7b9d5ab7670c0879f8950ee514ef7c97d6b4af4f03
IEDL.DBID .~1
ISSN 0096-3003
IngestDate Thu Jul 10 19:27:12 EDT 2025
Thu Apr 24 22:55:11 EDT 2025
Tue Jul 01 04:07:24 EDT 2025
Fri Feb 23 02:31:13 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords Nonlinear problems
Reproducing kernel function
Three-point boundary value conditions
Numerical algorithm
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c330t-9892e32f15f146429a0ca6c7b9d5ab7670c0879f8950ee514ef7c97d6b4af4f03
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1019649721
PQPubID 23500
PageCount 7
ParticipantIDs proquest_miscellaneous_1019649721
crossref_citationtrail_10_1016_j_amc_2011_11_009
crossref_primary_10_1016_j_amc_2011_11_009
elsevier_sciencedirect_doi_10_1016_j_amc_2011_11_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-03-15
PublicationDateYYYYMMDD 2012-03-15
PublicationDate_xml – month: 03
  year: 2012
  text: 2012-03-15
  day: 15
PublicationDecade 2010
PublicationTitle Applied mathematics and computation
PublicationYear 2012
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Webb, Infante (b0030) 2009; 79
Infante, Webb (b0025) 2006; 49
Ji, P Guo, Zhang (b0050) 2007; 189
Tatari, Dehghan (b0105) 2006; 73
Zhao (b0045) 2009; 215
Dehghan (b0075) 2005; 21
Soedel (b0010) 1993
Li, Jia, Liu, Li (b0035) 2008; 68
Dehghan, Shokri (b0065) 2009; 52
.
Dulácska (b0005) 1992
Saadatmandi, Dehghan (b0060) 2012; 17
Dehghan (b0100) 2002; 132
Henderson, Tisdell (b0015) 2007; 67
Dehghan (b0085) 2007; 32
Geng (b0040) 2009; 215
Dehghan (b0090) 2006; 22
M. Tatari, M. Dehghan, An efficient method for solving multi-point boundary value problems and applications in physics, J. Vib. Control, in press.
Shakeri, Dehghan (b0070) 2008; 56
Cui, Lin (b0115) 2009
Du, Bai (b0055) 2007; 186
Zhang, Wang (b0020) 2003; 285
Dehghan (b0080) 2005; 52
Hajji (b0095) 2011; 217
Tatari (10.1016/j.amc.2011.11.009_b0105) 2006; 73
Dulácska (10.1016/j.amc.2011.11.009_b0005) 1992
Saadatmandi (10.1016/j.amc.2011.11.009_b0060) 2012; 17
Du (10.1016/j.amc.2011.11.009_b0055) 2007; 186
Zhao (10.1016/j.amc.2011.11.009_b0045) 2009; 215
Li (10.1016/j.amc.2011.11.009_b0035) 2008; 68
Henderson (10.1016/j.amc.2011.11.009_b0015) 2007; 67
10.1016/j.amc.2011.11.009_b0110
Geng (10.1016/j.amc.2011.11.009_b0040) 2009; 215
Dehghan (10.1016/j.amc.2011.11.009_b0065) 2009; 52
Dehghan (10.1016/j.amc.2011.11.009_b0080) 2005; 52
Dehghan (10.1016/j.amc.2011.11.009_b0085) 2007; 32
Hajji (10.1016/j.amc.2011.11.009_b0095) 2011; 217
Dehghan (10.1016/j.amc.2011.11.009_b0100) 2002; 132
Soedel (10.1016/j.amc.2011.11.009_b0010) 1993
Dehghan (10.1016/j.amc.2011.11.009_b0090) 2006; 22
Infante (10.1016/j.amc.2011.11.009_b0025) 2006; 49
Webb (10.1016/j.amc.2011.11.009_b0030) 2009; 79
Ji (10.1016/j.amc.2011.11.009_b0050) 2007; 189
Zhang (10.1016/j.amc.2011.11.009_b0020) 2003; 285
Cui (10.1016/j.amc.2011.11.009_b0115) 2009
Dehghan (10.1016/j.amc.2011.11.009_b0075) 2005; 21
Shakeri (10.1016/j.amc.2011.11.009_b0070) 2008; 56
References_xml – volume: 52
  start-page: 39
  year: 2005
  end-page: 62
  ident: b0080
  article-title: Efficient techniques for the second-order parabolic equation subject to nonlocal specifications
  publication-title: Appl. Numer. Math.
– volume: 215
  start-page: 2971
  year: 2009
  end-page: C2977
  ident: b0045
  article-title: Existence of fixed points for some convex operators and applications to multi-point boundary value problems
  publication-title: Appl. Math. Comput.
– year: 2009
  ident: b0115
  article-title: Nonlinear Numerical Analysis in Reproducing Kernel Hilbert Space
– year: 1992
  ident: b0005
  article-title: Soil settlement effects on buildings
  publication-title: Developments in Geotechnical Engineering
– year: 1993
  ident: b0010
  article-title: Vibrations of Shells and Plates
– volume: 32
  start-page: 661
  year: 2007
  end-page: 675
  ident: b0085
  article-title: The one-dimensional heat equation subject to a boundary integral specification
  publication-title: Chaos Soliton Fract.
– volume: 215
  start-page: 2095
  year: 2009
  end-page: C2102
  ident: b0040
  article-title: Solving singular second order three-point boundary value problems using reproducing kernel Hilbert space method
  publication-title: Appl. Math. Comput.
– volume: 217
  start-page: 5632
  year: 2011
  end-page: C5642
  ident: b0095
  article-title: A numerical scheme for multi-point special boundary-value problems and application to fluid flow through porous layers
  publication-title: Appl. Math. Comput.
– reference: .
– volume: 68
  start-page: 2381
  year: 2008
  end-page: C2388
  ident: b0035
  article-title: Existence and uniqueness of solutions of second-order three-point boundary value problems with upper and lower solutions in the reversed order
  publication-title: Nonlinear Anal.
– volume: 56
  start-page: 2175
  year: 2008
  end-page: 2188
  ident: b0070
  article-title: The method of lines for solution of the one-dimensional wave equation subject to an integral conservation condition
  publication-title: Comput. Math. Appl.
– reference: M. Tatari, M. Dehghan, An efficient method for solving multi-point boundary value problems and applications in physics, J. Vib. Control, in press.
– volume: 132
  start-page: 299
  year: 2002
  end-page: 313
  ident: b0100
  article-title: Numerical techniques for a parabolic equation subject to an overspecified boundary condition
  publication-title: Appl. Math. Comput.
– volume: 186
  start-page: 469
  year: 2007
  end-page: C473
  ident: b0055
  article-title: Asymptotic solutions for a second-order differential equation with three-point boundary conditions
  publication-title: Appl. Math. Comput.
– volume: 49
  start-page: 637
  year: 2006
  end-page: 656
  ident: b0025
  article-title: Nonlinear nonlocal boundary value problems and perturbed Hammerstein integral equations
  publication-title: Proc. Edinburgh. Math. Soc.
– volume: 73
  start-page: 672
  year: 2006
  end-page: 676
  ident: b0105
  article-title: The use of the Adomian decomposition method for solving multi-point boundary value problems
  publication-title: Phys. Scr.
– volume: 67
  start-page: 1374
  year: 2007
  end-page: 1386
  ident: b0015
  article-title: Dynamic boundary value problems of the second-order: Bernstein–Nagumo conditions and solvability
  publication-title: Nonlinear Anal.
– volume: 285
  start-page: 237
  year: 2003
  end-page: 249
  ident: b0020
  article-title: Positive solutions to a second order three-point boundary value problem
  publication-title: J. Math. Anal. Appl.
– volume: 79
  start-page: 238
  year: 2009
  end-page: 258
  ident: b0030
  article-title: Nonlocal boundary value problems of arbitrary order
  publication-title: J. London Math. Soc.
– volume: 17
  start-page: 593
  year: 2012
  end-page: C601
  ident: b0060
  article-title: The use of Sinc-collocation method for solving multi-point boundary value problems
  publication-title: Commun. Nonlinear. Sci. Numer. Simul.
– volume: 52
  start-page: 461
  year: 2009
  end-page: C477
  ident: b0065
  article-title: A meshless method for numerical solution of the one-dimensional wave equation with an integral condition using radial basis functions
  publication-title: Numer. Algor.
– volume: 189
  start-page: 725
  year: 2007
  end-page: C731
  ident: b0050
  article-title: Positive solutions for second-order quasilinear multi-point boundary value problems
  publication-title: Appl. Math. Comput.
– volume: 22
  start-page: 220
  year: 2006
  end-page: 257
  ident: b0090
  article-title: A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specifications
  publication-title: Numer. Methods Part. Diff. Eqs.
– volume: 21
  start-page: 24
  year: 2005
  end-page: 40
  ident: b0075
  article-title: On the solution of an initial-boundary value problem that combines Neumann and integral condition for the wave equation
  publication-title: Numer. Methods Part. Diff. Eqs.
– volume: 22
  start-page: 220
  year: 2006
  ident: 10.1016/j.amc.2011.11.009_b0090
  article-title: A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specifications
  publication-title: Numer. Methods Part. Diff. Eqs.
  doi: 10.1002/num.20071
– volume: 79
  start-page: 238
  year: 2009
  ident: 10.1016/j.amc.2011.11.009_b0030
  article-title: Nonlocal boundary value problems of arbitrary order
  publication-title: J. London Math. Soc.
  doi: 10.1112/jlms/jdn066
– volume: 52
  start-page: 39
  year: 2005
  ident: 10.1016/j.amc.2011.11.009_b0080
  article-title: Efficient techniques for the second-order parabolic equation subject to nonlocal specifications
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2004.02.002
– volume: 67
  start-page: 1374
  year: 2007
  ident: 10.1016/j.amc.2011.11.009_b0015
  article-title: Dynamic boundary value problems of the second-order: Bernstein–Nagumo conditions and solvability
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2006.07.023
– volume: 215
  start-page: 2971
  year: 2009
  ident: 10.1016/j.amc.2011.11.009_b0045
  article-title: Existence of fixed points for some convex operators and applications to multi-point boundary value problems
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2009.09.044
– volume: 52
  start-page: 461
  year: 2009
  ident: 10.1016/j.amc.2011.11.009_b0065
  article-title: A meshless method for numerical solution of the one-dimensional wave equation with an integral condition using radial basis functions
  publication-title: Numer. Algor.
  doi: 10.1007/s11075-009-9293-0
– volume: 132
  start-page: 299
  year: 2002
  ident: 10.1016/j.amc.2011.11.009_b0100
  article-title: Numerical techniques for a parabolic equation subject to an overspecified boundary condition
  publication-title: Appl. Math. Comput.
  doi: 10.1016/S0096-3003(01)00194-1
– volume: 217
  start-page: 5632
  year: 2011
  ident: 10.1016/j.amc.2011.11.009_b0095
  article-title: A numerical scheme for multi-point special boundary-value problems and application to fluid flow through porous layers
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2010.12.041
– year: 1992
  ident: 10.1016/j.amc.2011.11.009_b0005
  article-title: Soil settlement effects on buildings
– volume: 68
  start-page: 2381
  year: 2008
  ident: 10.1016/j.amc.2011.11.009_b0035
  article-title: Existence and uniqueness of solutions of second-order three-point boundary value problems with upper and lower solutions in the reversed order
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2007.01.065
– volume: 17
  start-page: 593
  year: 2012
  ident: 10.1016/j.amc.2011.11.009_b0060
  article-title: The use of Sinc-collocation method for solving multi-point boundary value problems
  publication-title: Commun. Nonlinear. Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2011.06.018
– year: 2009
  ident: 10.1016/j.amc.2011.11.009_b0115
– volume: 49
  start-page: 637
  year: 2006
  ident: 10.1016/j.amc.2011.11.009_b0025
  article-title: Nonlinear nonlocal boundary value problems and perturbed Hammerstein integral equations
  publication-title: Proc. Edinburgh. Math. Soc.
  doi: 10.1017/S0013091505000532
– volume: 32
  start-page: 661
  year: 2007
  ident: 10.1016/j.amc.2011.11.009_b0085
  article-title: The one-dimensional heat equation subject to a boundary integral specification
  publication-title: Chaos Soliton Fract.
  doi: 10.1016/j.chaos.2005.11.010
– volume: 285
  start-page: 237
  year: 2003
  ident: 10.1016/j.amc.2011.11.009_b0020
  article-title: Positive solutions to a second order three-point boundary value problem
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/S0022-247X(03)00396-2
– volume: 189
  start-page: 725
  year: 2007
  ident: 10.1016/j.amc.2011.11.009_b0050
  article-title: Positive solutions for second-order quasilinear multi-point boundary value problems
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2006.11.156
– year: 1993
  ident: 10.1016/j.amc.2011.11.009_b0010
– ident: 10.1016/j.amc.2011.11.009_b0110
  doi: 10.1177/1077546311408467
– volume: 186
  start-page: 469
  year: 2007
  ident: 10.1016/j.amc.2011.11.009_b0055
  article-title: Asymptotic solutions for a second-order differential equation with three-point boundary conditions
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2006.07.110
– volume: 215
  start-page: 2095
  year: 2009
  ident: 10.1016/j.amc.2011.11.009_b0040
  article-title: Solving singular second order three-point boundary value problems using reproducing kernel Hilbert space method
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2009.08.002
– volume: 56
  start-page: 2175
  year: 2008
  ident: 10.1016/j.amc.2011.11.009_b0070
  article-title: The method of lines for solution of the one-dimensional wave equation subject to an integral conservation condition
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2008.03.055
– volume: 21
  start-page: 24
  year: 2005
  ident: 10.1016/j.amc.2011.11.009_b0075
  article-title: On the solution of an initial-boundary value problem that combines Neumann and integral condition for the wave equation
  publication-title: Numer. Methods Part. Diff. Eqs.
  doi: 10.1002/num.20019
– volume: 73
  start-page: 672
  year: 2006
  ident: 10.1016/j.amc.2011.11.009_b0105
  article-title: The use of the Adomian decomposition method for solving multi-point boundary value problems
  publication-title: Phys. Scr.
  doi: 10.1088/0031-8949/73/6/023
SSID ssj0007614
Score 2.171644
Snippet In this paper, a new numerical algorithm is provided to solve nonlinear three-point boundary value problems in a very favorable reproducing kernel space which...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7362
SubjectTerms Algorithms
Approximation
Boundary value problems
Derivatives
Kernels
Mathematical analysis
Mathematical models
Nonlinear problems
Nonlinearity
Numerical algorithm
Reproducing kernel function
Three-point boundary value conditions
Title A numerical solution to nonlinear second order three-point boundary value problems in the reproducing kernel space
URI https://dx.doi.org/10.1016/j.amc.2011.11.009
https://www.proquest.com/docview/1019649721
Volume 218
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yXvQgPvG5RPAk1E3btGmOiyiroicFbyVJp7g-uku3e_Dib3emD0WRPXhsSdIwmc7kI998YewksLFVvp97kCU5leQYzyYWH02sibLoW0HFybd38ehBXj9Gj0vsvKuFIVplG_ubmF5H6_bNoLXmYDoeU42vJr2oEBMYAi1NFeVSKvLys49vmgfC9EaJWRPHS4TdyWbN8TJvrlHxJCFP4iT-nZt-Rek69Vyus7V2z8iHzbQ22BIUm2z19ktwdbbFyiEv5s3hyyvv3IlXE140Uhim5DOCvhmvtTZ5hUsI3nQyLipu65uVyndOwt_A2ytmZnyMAzwBJ9lLUoXFHMdfoCwAP4BAG7bZw-XF_fnIa69T8FwYisrTiQ4gDHI_yjE8Yh4ywpnYKauzyFgVK-FEonSe6EgA4EYKcuW0ymIrTS5zEe6wHk4adhlHDKJM4AziNSsDCYnLVBA76xDfaLB2j4nOkKlrtcbpyovXtCOVPado-5RsjxgkRdvvsdOvLtNGaGNRY9mtTvrDW1JMBIu6HXcrmeJfREcjpoDJfEbtdSxJyWj_f0MfsBV8Coid5keHrFeVczjC7Upl-7U_9tny8OpmdPcJ4ZTrDA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7R5dD2gIC2KlDASD1VinCejo8rBFoeuyeQuFm2M1G30Owqmz303zOTx0qtKg4ck9iJNXZm_MnffAPwPXKZU2FYBljkJafk2MDlji5tppmyGDrJycnTWTZ5SG4e08ctuBhyYZhW2fv-zqe33rq_c95b83w5n3OOr2a9qJgCGAEtrd7BNqtTpSPYHl_fTmYbh0xIvRNj1kzzkvFwuNnSvOxv3wl5spYn0xL_H57-cdRt9LnahZ1-2yjG3cj2YAurffg43Wiurj5BPRbVujt_eRbDihLNQlSdGoatxYrRbyFauU3R0CxisFzMq0a4trhS_Uew9jeKvsrMSszpBT9RsPIlC8NSmBNPWFdIHyCsjZ_h4ery_mIS9BUVAh_Hsgl0riOMozJMS_KQFIqs9DbzyukitU5lSnqZK13mOpWItJfCUnmtiswltkxKGX-BEQ0av4IgGKJs5C1BNpdECea-UFHmnSeIo9G5A5CDIY3v5ca56sWzGXhlvwzZ3rDtCYYYsv0B_Nh0WXZaG681TobZMX8tGEOx4LVuZ8NMGvqR-HTEVrhYr7i9zhIWMzp826tP4f3kfnpn7q5nt0fwgZ5ETFYL028wauo1HtPupXEn_ep8AfIJ7b0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+numerical+solution+to+nonlinear+second+order+three-point+boundary+value+problems+in+the+reproducing+kernel+space&rft.jtitle=Applied+mathematics+and+computation&rft.au=Lin%2C+Yingzhen&rft.au=Niu%2C+Jing&rft.au=Cui%2C+Minggen&rft.date=2012-03-15&rft.issn=0096-3003&rft.volume=218&rft.issue=14&rft.spage=7362&rft.epage=7368&rft_id=info:doi/10.1016%2Fj.amc.2011.11.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_amc_2011_11_009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon