Free-standing, flexible thermochromic films based on one-dimensional magnetic photonic crystals
We have in this paper developed a simple, one-step strategy to fabricate free-standing, flexible thermochromic films at a centimeter scale by the instant free radical polymerization of a sterically stabilized magnetically responsive photonic crystal (MRPC) nonaqueous suspension containing N -isoprop...
Saved in:
Published in | Journal of materials chemistry. C, Materials for optical and electronic devices Vol. 3; no. 12; pp. 2848 - 2855 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
01.01.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We have in this paper developed a simple, one-step strategy to fabricate free-standing, flexible thermochromic films at a centimeter scale by the instant free radical polymerization of a sterically stabilized magnetically responsive photonic crystal (MRPC) nonaqueous suspension containing
N
-isopropyl acrylamide under an external magnetic field (
H
). In the as-prepared thermochromic films, the uniform superparamagnetic polyvinylpyrrolidone-coated Fe
3
O
4
colloidal nanocrystalline cluster (Fe
3
O
4
@PVP CNC) particles exist as a form of one-dimensional (1D) nanochain-like photonic crystal structures parallel oriented along the direction of
H
in the poly(
N
-isopropyl acrylamide) (PNIPAM) gel matrix. Since the PNIPAM matrix has a much smaller refractive index than that of the Fe
3
O
4
@PVP CNC particles, and may remarkably change its volume and thus the lattice constants with temperature, the as-prepared thermochromic 1D PC films can display bright iridescent colors which are obviously sensitive to temperature with good reversibility and durability even when the volume fraction of the Fe
3
O
4
@PVP CNC particles is as low as 0.1 vol%. For example, the blue-shift range for the diffraction wavelength can reach up to 140 nm when temperature increases from 10 to 35 °C. Compared to the previously reported 3D photonic crystal films, they also have the significant advantages of a facile, instant one-step preparation process and good mechanical properties. Furthermore, the lattice constants and optical properties can be conveniently tuned by altering
H
or the level of crosslinking during the polymerization process. Therefore, the as-obtained self-standing thermochromic 1D PC films are believed to have potential practical applications as a new generation of thermochromic polymer matrix composite materials. |
---|---|
AbstractList | We have in this paper developed a simple, one-step strategy to fabricate free-standing, flexible thermochromic films at a centimeter scale by the instant free radical polymerization of a sterically stabilized magnetically responsive photonic crystal (MRPC) nonaqueous suspension containing Nisopropyl acrylamide under an external magnetic field (H). In the as-prepared thermochromic films, the uniform superparamagnetic polyvinylpyrrolidone-coated Fe sub(3)O sub(4) colloidal nanocrystalline cluster (Fe sub(3)O sub(4)[at]PVP CNC) particles exist as a form of one-dimensional (1D) nanochain-like photonic crystal structures parallel oriented along the direction of H in the poly(N-isopropyl acrylamide) (PNIPAM) gel matrix. Since the PNIPAM matrix has a much smaller refractive index than that of the Fe sub(3)O sub(4)[at]PVP CNC particles, and may remarkably change its volume and thus the lattice constants with temperature, the as-prepared thermochromic 1D PC films can display bright iridescent colors which are obviously sensitive to temperature with good reversibility and durability even when the volume fraction of the Fe sub(3)O sub(4)[at]PVP CNC particles is as low as 0.1 vol%. For example, the blue-shift range for the diffraction wavelength can reach up to 140 nm when temperature increases from 10 to 35 degree C. Compared to the previously reported 3D photonic crystal films, they also have the significant advantages of a facile, instant one-step preparation process and good mechanical properties. Furthermore, the lattice constants and optical properties can be conveniently tuned by altering H or the level of crosslinking during the polymerization process. Therefore, the as-obtained self-standing thermochromic 1D PC films are believed to have potential practical applications as a new generation of thermochromic polymer matrix composite materials. We have in this paper developed a simple, one-step strategy to fabricate free-standing, flexible thermochromic films at a centimeter scale by the instant free radical polymerization of a sterically stabilized magnetically responsive photonic crystal (MRPC) nonaqueous suspension containing N -isopropyl acrylamide under an external magnetic field ( H ). In the as-prepared thermochromic films, the uniform superparamagnetic polyvinylpyrrolidone-coated Fe 3 O 4 colloidal nanocrystalline cluster (Fe 3 O 4 @PVP CNC) particles exist as a form of one-dimensional (1D) nanochain-like photonic crystal structures parallel oriented along the direction of H in the poly( N -isopropyl acrylamide) (PNIPAM) gel matrix. Since the PNIPAM matrix has a much smaller refractive index than that of the Fe 3 O 4 @PVP CNC particles, and may remarkably change its volume and thus the lattice constants with temperature, the as-prepared thermochromic 1D PC films can display bright iridescent colors which are obviously sensitive to temperature with good reversibility and durability even when the volume fraction of the Fe 3 O 4 @PVP CNC particles is as low as 0.1 vol%. For example, the blue-shift range for the diffraction wavelength can reach up to 140 nm when temperature increases from 10 to 35 °C. Compared to the previously reported 3D photonic crystal films, they also have the significant advantages of a facile, instant one-step preparation process and good mechanical properties. Furthermore, the lattice constants and optical properties can be conveniently tuned by altering H or the level of crosslinking during the polymerization process. Therefore, the as-obtained self-standing thermochromic 1D PC films are believed to have potential practical applications as a new generation of thermochromic polymer matrix composite materials. |
Author | Ma, Huiru Zhu, Mingxing Li, Wei Luo, Wei Mou, Fangzhi Guan, Jianguo Fang, Kai |
Author_xml | – sequence: 1 givenname: Huiru surname: Ma fullname: Ma, Huiru organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China, Department of Chemistry – sequence: 2 givenname: Mingxing surname: Zhu fullname: Zhu, Mingxing organization: Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070 – sequence: 3 givenname: Wei surname: Luo fullname: Luo, Wei organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China – sequence: 4 givenname: Wei surname: Li fullname: Li, Wei organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China – sequence: 5 givenname: Kai surname: Fang fullname: Fang, Kai organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China – sequence: 6 givenname: Fangzhi surname: Mou fullname: Mou, Fangzhi organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China – sequence: 7 givenname: Jianguo surname: Guan fullname: Guan, Jianguo organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China |
BookMark | eNptkE9LAzEQxYNUsNZe_AR7FHE1fza72aMs1goFL_W8TLOzbWQ3qUkK9tsbURTEYeC9w28ezDsnE-ssEnLJ6C2jor5rinVDuaro8oRMOZU0r6QoJj-el2dkHsIrTaNYqcp6StqFR8xDBNsZu73J-gHfzWbALO7Qj07vvBuNznozjCHbQMAuczYt5p0Z0QbjLAzZCFuLMXH7nYvOJqP9MYUO4YKc9klw_q0z8rJ4WDfLfPX8-NTcr3ItBI15rSrRoepYB7LacIoF7zaoVSdZz6EAkBwAkAmmEJSsRcEUVJWWjEtdCylm5Oord-_d2wFDbEcTNA4DWHSH0LKyquq6rMsioddfqPYuBI99u_dmBH9sGW0_i2x_i0ww_QNrEyGmt6MHM_x38gEE1XhK |
CitedBy_id | crossref_primary_10_1021_acsami_9b16770 crossref_primary_10_1002_idm2_12138 crossref_primary_10_1021_acs_iecr_3c03948 crossref_primary_10_1016_j_cej_2021_130683 crossref_primary_10_1021_acsami_0c12710 crossref_primary_10_1002_adfm_202303470 crossref_primary_10_1021_acs_jpcc_6b01987 crossref_primary_10_3390_sym10120760 crossref_primary_10_1002_adom_201701093 crossref_primary_10_1021_acs_analchem_7b04255 crossref_primary_10_3390_nano12111867 crossref_primary_10_1002_adfm_201903743 crossref_primary_10_1134_S1560090421020111 crossref_primary_10_1021_acs_iecr_4c00656 crossref_primary_10_1177_1747519820958604 crossref_primary_10_3390_nano13192632 crossref_primary_10_1002_adma_201707069 crossref_primary_10_1002_adom_201800980 crossref_primary_10_1021_acsnano_9b04231 crossref_primary_10_1021_acsami_6b09650 crossref_primary_10_1039_C6RA10355C crossref_primary_10_1039_D1TA03917B crossref_primary_10_1021_acs_langmuir_8b00186 crossref_primary_10_1016_j_jcis_2016_08_005 crossref_primary_10_1039_D2MA00793B crossref_primary_10_1002_marc_202100867 crossref_primary_10_1002_adom_202400192 crossref_primary_10_1016_j_snb_2016_06_015 crossref_primary_10_1021_acssuschemeng_9b03578 crossref_primary_10_1039_C6NR10022H crossref_primary_10_1021_acs_nanolett_7b04218 crossref_primary_10_1002_adfm_202008548 crossref_primary_10_1039_D1MH00556A crossref_primary_10_1002_adfm_201902301 crossref_primary_10_1002_adom_202200769 crossref_primary_10_1002_marc_202200800 crossref_primary_10_1016_j_pmatsci_2020_100702 crossref_primary_10_1002_advs_202101295 crossref_primary_10_1016_j_cej_2023_145448 crossref_primary_10_1016_j_jphotochemrev_2015_05_001 crossref_primary_10_3390_sym10050147 crossref_primary_10_1039_D3MH00877K crossref_primary_10_1021_acsami_2c06273 crossref_primary_10_1039_C8TC00640G crossref_primary_10_1021_accountsmr_5c00007 crossref_primary_10_1016_j_talanta_2021_122297 crossref_primary_10_1016_j_jmst_2022_08_044 crossref_primary_10_1002_adsu_202200503 crossref_primary_10_1007_s42235_017_0001_9 crossref_primary_10_1016_j_colsurfa_2023_131689 crossref_primary_10_1002_adfm_202308293 crossref_primary_10_1002_adma_202109055 crossref_primary_10_1002_marc_202100200 crossref_primary_10_1007_s11082_021_03137_x crossref_primary_10_1016_j_cej_2023_143614 crossref_primary_10_1039_D1TC06136D crossref_primary_10_1039_D1RA09028C crossref_primary_10_1021_acsami_3c08872 crossref_primary_10_1063_5_0020963 crossref_primary_10_1002_smll_201902198 crossref_primary_10_1039_C7NR03335D crossref_primary_10_3390_cryst9080417 crossref_primary_10_1039_C5RA08046K crossref_primary_10_1021_acsami_8b05887 crossref_primary_10_1016_j_cej_2021_128950 crossref_primary_10_1021_acssuschemeng_3c01782 crossref_primary_10_1021_acsami_6b14455 crossref_primary_10_1021_acs_langmuir_5b02134 |
Cites_doi | 10.1039/c0jm03790g 10.1002/adma.201304134 10.1039/c2jm30169e 10.1002/1521-4095(20020503)14:9<658::AID-ADMA658>3.0.CO;2-3 10.1002/adma.200700159 10.1002/adom.201300538 10.1038/nphoton.2009.141 10.1021/ma070253d 10.1006/jcis.2000.7190 10.1039/b814830a 10.1002/anie.200603554 10.1002/1521-4095(200111)13:22<1708::AID-ADMA1708>3.0.CO;2-L 10.1002/adma.200304588 10.1002/adfm.201202587 10.1039/C1JM14082E 10.1039/b304306a 10.1002/adfm.201000143 10.1021/jp048486j 10.1021/la011405f 10.1021/ac034276b 10.1021/cr400462e 10.1021/la0521037 10.1002/1521-4095(200111)13:22<1681::AID-ADMA1681>3.0.CO;2-G 10.1002/anie.201307828 10.1039/b902090j 10.1038/39834 10.1002/anie.200351326 10.1002/adma.200602884 10.1039/c3tc32228a 10.1002/anie.200907091 10.1002/adma.201000356 10.1007/s10971-011-2556-y 10.1002/anie.200903472 10.1038/nphoton.2007.140 10.1021/ar200276t 10.1039/c3tc30885e 10.1002/adma.200800657 10.1039/c3tc30399c 10.1126/science.274.5289.959 10.1021/ja037118a 10.1021/la034918q 10.1002/adma.200901562 10.1021/ac970853i 10.1016/j.jcis.2012.08.012 10.1016/S0001-8686(99)00023-8 10.1021/la035142w 10.1039/c1jm11697e |
ContentType | Journal Article |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1039/C4TC02870H |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 2050-7534 |
EndPage | 2855 |
ExternalDocumentID | 10_1039_C4TC02870H |
GroupedDBID | 0-7 0R~ 4.4 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANBJS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K CITATION EBS ECGLT EE0 EF- EJD GGIMP GNO H13 HZ~ H~N J3G J3H J3I O-G O9- R7C RAOCF RCNCU RNS ROL RPMJG RRC RSCEA SKA SKF SLH 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c330t-9873de8d1da57b20e42dbec8d51f2a4aa52aaae1318ea8593418a77c5125c9353 |
ISSN | 2050-7526 |
IngestDate | Fri Jul 11 15:25:48 EDT 2025 Tue Jul 01 02:08:25 EDT 2025 Thu Apr 24 23:00:45 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c330t-9873de8d1da57b20e42dbec8d51f2a4aa52aaae1318ea8593418a77c5125c9353 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1677996964 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1677996964 crossref_primary_10_1039_C4TC02870H crossref_citationtrail_10_1039_C4TC02870H |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-01-01 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of materials chemistry. C, Materials for optical and electronic devices |
PublicationYear | 2015 |
References | Debord (C4TC02870H-(cit12)/*[position()=1]) 2002; 14 Ueno (C4TC02870H-(cit36)/*[position()=1]) 2007; 19 Fudouzi (C4TC02870H-(cit18)/*[position()=1]) 2006; 22 Xuan (C4TC02870H-(cit24)/*[position()=1]) 2012; 22 Hu (C4TC02870H-(cit27)/*[position()=1]) 2003; 42 Wang (C4TC02870H-(cit39)/*[position()=1]) 2007; 19 Huang (C4TC02870H-(cit13)/*[position()=1]) 2007; 40 Reese (C4TC02870H-(cit30)/*[position()=1]) 2004; 126 Xu (C4TC02870H-(cit6)/*[position()=1]) 2001; 13 Ge (C4TC02870H-(cit5)/*[position()=1]) 2008; 20 Luo (C4TC02870H-(cit7)/*[position()=1]) 2014; 26 Takeoka (C4TC02870H-(cit3)/*[position()=1]) 2013; 1 Hu (C4TC02870H-(cit23)/*[position()=1]) 2011; 21 Hu (C4TC02870H-(cit33)/*[position()=1]) 2001; 13 Holtz (C4TC02870H-(cit38)/*[position()=1]) 1998; 70 Lyon (C4TC02870H-(cit28)/*[position()=1]) 2004; 108 Galisteo-Lopez (C4TC02870H-(cit2)/*[position()=1]) 2011; 23 Kim (C4TC02870H-(cit41)/*[position()=1]) 2009; 3 Wang (C4TC02870H-(cit45)/*[position()=1]) 2014; 2 Takeoka (C4TC02870H-(cit35)/*[position()=1]) 2003; 19 Hu (C4TC02870H-(cit25)/*[position()=1]) 2012; 22 He (C4TC02870H-(cit40)/*[position()=1]) 2012; 45 Xuan (C4TC02870H-(cit43)/*[position()=1]) 2011; 21 Chiappini (C4TC02870H-(cit1)/*[position()=1]) 2011; 60 Ge (C4TC02870H-(cit22)/*[position()=1]) 2009; 21 Zhao (C4TC02870H-(cit4)/*[position()=1]) 2012; 388 Aguirre (C4TC02870H-(cit17)/*[position()=1]) 2010; 20 Matsubara (C4TC02870H-(cit34)/*[position()=1]) 2007; 46 Arsenault (C4TC02870H-(cit8)/*[position()=1]) 2007; 1 Calvo (C4TC02870H-(cit46)/*[position()=1]) 2009; 19 Smirnov (C4TC02870H-(cit47)/*[position()=1]) 2013; 23 Zhao (C4TC02870H-(cit20)/*[position()=1]) 2009; 48 Fudouzi (C4TC02870H-(cit21)/*[position()=1]) 2003; 19 Reese (C4TC02870H-(cit37)/*[position()=1]) 2000; 232 Seeboth (C4TC02870H-(cit15)/*[position()=1]) 2014; 114 Reese (C4TC02870H-(cit10)/*[position()=1]) 2003; 75 Saito (C4TC02870H-(cit11)/*[position()=1]) 2003 Ge (C4TC02870H-(cit44)/*[position()=1]) 2011; 50 Holtz (C4TC02870H-(cit19)/*[position()=1]) 1997; 389 Zhou (C4TC02870H-(cit14)/*[position()=1]) 2009; 5 Lee (C4TC02870H-(cit16)/*[position()=1]) 2003; 15 Fenzl (C4TC02870H-(cit31)/*[position()=1]) 2014; 53 Weissman (C4TC02870H-(cit29)/*[position()=1]) 1996; 274 Pelton (C4TC02870H-(cit32)/*[position()=1]) 2000; 85 Gao (C4TC02870H-(cit26)/*[position()=1]) 2002; 18 Hu (C4TC02870H-(cit42)/*[position()=1]) 2014; 2 Liu (C4TC02870H-(cit9)/*[position()=1]) 2013; 1 |
References_xml | – volume: 21 start-page: 3672 year: 2011 ident: C4TC02870H-(cit43)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c0jm03790g – volume: 26 start-page: 1058 year: 2014 ident: C4TC02870H-(cit7)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201304134 – volume: 22 start-page: 11048 year: 2012 ident: C4TC02870H-(cit25)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c2jm30169e – volume: 14 start-page: 658 year: 2002 ident: C4TC02870H-(cit12)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/1521-4095(20020503)14:9<658::AID-ADMA658>3.0.CO;2-3 – volume: 19 start-page: 2807 year: 2007 ident: C4TC02870H-(cit36)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200700159 – volume: 2 start-page: 652 year: 2014 ident: C4TC02870H-(cit45)/*[position()=1] publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201300538 – volume: 3 start-page: 534 year: 2009 ident: C4TC02870H-(cit41)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/nphoton.2009.141 – volume: 40 start-page: 3749 year: 2007 ident: C4TC02870H-(cit13)/*[position()=1] publication-title: Macromolecules doi: 10.1021/ma070253d – volume: 232 start-page: 76 year: 2000 ident: C4TC02870H-(cit37)/*[position()=1] publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.2000.7190 – volume: 5 start-page: 820 year: 2009 ident: C4TC02870H-(cit14)/*[position()=1] publication-title: Soft Matter doi: 10.1039/b814830a – volume: 46 start-page: 1688 year: 2007 ident: C4TC02870H-(cit34)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200603554 – volume: 13 start-page: 1708 year: 2001 ident: C4TC02870H-(cit33)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/1521-4095(200111)13:22<1708::AID-ADMA1708>3.0.CO;2-L – volume: 15 start-page: 563 year: 2003 ident: C4TC02870H-(cit16)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200304588 – volume: 23 start-page: 2805 year: 2013 ident: C4TC02870H-(cit47)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201202587 – volume: 22 start-page: 367 year: 2012 ident: C4TC02870H-(cit24)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/C1JM14082E – start-page: 2126 year: 2003 ident: C4TC02870H-(cit11)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/b304306a – volume: 20 start-page: 2565 year: 2010 ident: C4TC02870H-(cit17)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201000143 – volume: 108 start-page: 19099 year: 2004 ident: C4TC02870H-(cit28)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp048486j – volume: 18 start-page: 1360 year: 2002 ident: C4TC02870H-(cit26)/*[position()=1] publication-title: Langmuir doi: 10.1021/la011405f – volume: 75 start-page: 3915 year: 2003 ident: C4TC02870H-(cit10)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac034276b – volume: 114 start-page: 3037 year: 2014 ident: C4TC02870H-(cit15)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr400462e – volume: 22 start-page: 1365 year: 2006 ident: C4TC02870H-(cit18)/*[position()=1] publication-title: Langmuir doi: 10.1021/la0521037 – volume: 13 start-page: 1681 year: 2001 ident: C4TC02870H-(cit6)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/1521-4095(200111)13:22<1681::AID-ADMA1681>3.0.CO;2-G – volume: 53 start-page: 3318 year: 2014 ident: C4TC02870H-(cit31)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201307828 – volume: 19 start-page: 3144 year: 2009 ident: C4TC02870H-(cit46)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/b902090j – volume: 389 start-page: 829 year: 1997 ident: C4TC02870H-(cit19)/*[position()=1] publication-title: Nature doi: 10.1038/39834 – volume: 42 start-page: 4799 year: 2003 ident: C4TC02870H-(cit27)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200351326 – volume: 19 start-page: 3865 year: 2007 ident: C4TC02870H-(cit39)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200602884 – volume: 2 start-page: 3695 year: 2014 ident: C4TC02870H-(cit42)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/c3tc32228a – volume: 50 start-page: 1492 year: 2011 ident: C4TC02870H-(cit44)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200907091 – volume: 23 start-page: 30 year: 2011 ident: C4TC02870H-(cit2)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201000356 – volume: 60 start-page: 408 year: 2011 ident: C4TC02870H-(cit1)/*[position()=1] publication-title: J. Sol-Gel Sci. Technol. doi: 10.1007/s10971-011-2556-y – volume: 48 start-page: 7350 year: 2009 ident: C4TC02870H-(cit20)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200903472 – volume: 1 start-page: 468 year: 2007 ident: C4TC02870H-(cit8)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/nphoton.2007.140 – volume: 45 start-page: 1431 year: 2012 ident: C4TC02870H-(cit40)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar200276t – volume: 1 start-page: 6059 year: 2013 ident: C4TC02870H-(cit3)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/c3tc30885e – volume: 20 start-page: 3485 year: 2008 ident: C4TC02870H-(cit5)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200800657 – volume: 1 start-page: 6129 year: 2013 ident: C4TC02870H-(cit9)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/c3tc30399c – volume: 274 start-page: 959 year: 1996 ident: C4TC02870H-(cit29)/*[position()=1] publication-title: Science doi: 10.1126/science.274.5289.959 – volume: 126 start-page: 1493 year: 2004 ident: C4TC02870H-(cit30)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja037118a – volume: 19 start-page: 9653 year: 2003 ident: C4TC02870H-(cit21)/*[position()=1] publication-title: Langmuir doi: 10.1021/la034918q – volume: 21 start-page: 4259 year: 2009 ident: C4TC02870H-(cit22)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200901562 – volume: 70 start-page: 780 year: 1998 ident: C4TC02870H-(cit38)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac970853i – volume: 388 start-page: 40 year: 2012 ident: C4TC02870H-(cit4)/*[position()=1] publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2012.08.012 – volume: 85 start-page: 1 year: 2000 ident: C4TC02870H-(cit32)/*[position()=1] publication-title: Adv. Colloid Interface Sci. doi: 10.1016/S0001-8686(99)00023-8 – volume: 19 start-page: 9104 year: 2003 ident: C4TC02870H-(cit35)/*[position()=1] publication-title: Langmuir doi: 10.1021/la035142w – volume: 21 start-page: 13062 year: 2011 ident: C4TC02870H-(cit23)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c1jm11697e |
SSID | ssj0000816869 |
Score | 2.3388615 |
Snippet | We have in this paper developed a simple, one-step strategy to fabricate free-standing, flexible thermochromic films at a centimeter scale by the instant free... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 2848 |
SubjectTerms | Acrylamide Computer numerical control Durability Lattice parameters Nanostructure Particulate composites Photonic crystals Polymerization Three dimensional |
Title | Free-standing, flexible thermochromic films based on one-dimensional magnetic photonic crystals |
URI | https://www.proquest.com/docview/1677996964 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKrpDggGABsbxkBBdUspvYcR7HVdWqoLJcUtFb5NjOttI2qdpEAn4FP5mxE6cpLNLCJapcy0o9n2em45lvEHqXK5oFLPMcGfLMAS0ZOFzmoaM8wnkUBDkz_VM-XwbTuf9pwRaDwc9e1lJdZWfix411Jf8jVRgDueoq2X-QbLcoDMBnkC88QcLwvJWMJ1ulHFuZojcr1_SWuhZKu3XrUiy3uuhYky-td0NtsKS-HCgL5UjN6t8wcgzX_KrQtYzDzbKsTEccsf0Oy17v_uK6gpfb_LyhsP3izoajpvTHfqPTF8tN1ZER9PrtSGXU0z4YbuxfvdrW-zB23eT0F1ffrG3VWUO1Cex-VatuZNUfaKMXHutFL4ySIy5znZCRlg67P9YGOVstTftgJH2VGzVUna35JlFD-_uHaXCpZlYVfiVcfbm73BtAe-l_-SWdzGezNBkvkjvomMAfD9Ccxxfj5OOsi9uZRiWmU2L36pb1lsbn--UP_ZxDM298l-QhetBKDl80CHqEBqo4Qfd7VJQn6K5JBRa7xyg9QNUHbDGFDzCFDaawwRQuC_wbprDFFLaYwhZTT9B8Mk5GU6dtw-EISt3KiaOQShVJT3IWZsRVPpFw8iPJvJxwn3MGx5orD6yD4po-z_ciHoYCXEkmYsroU3RUwFs8QxjWyD0huU5x9Ekus5BxwqJYUqIIcfkpem83LRUtR71ulXKdmlwJGqcjPxmZDZ6eorfd3E3DzHLjrDd271M4D_o2jBeqrHepF4RhrLmh_Oe3mPMC3dvD9yU6qra1egXuaJW9bhHyC_yTkeg |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Free-standing%2C+flexible+thermochromic+films+based+on+one-dimensional+magnetic+photonic+crystals&rft.jtitle=Journal+of+materials+chemistry.+C%2C+Materials+for+optical+and+electronic+devices&rft.au=Ma%2C+Huiru&rft.au=Zhu%2C+Mingxing&rft.au=Luo%2C+Wei&rft.au=Li%2C+Wei&rft.date=2015-01-01&rft.issn=2050-7526&rft.eissn=2050-7534&rft.volume=3&rft.issue=12&rft.spage=2848&rft.epage=2855&rft_id=info:doi/10.1039%2Fc4tc02870h&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7526&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7526&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7526&client=summon |