Intelligent assessment of the histamine level in mackerel (Scomber australasicus) using near-infrared spectroscopy coupled with a hybrid variable selection strategy
Determination of the histamine level in fish is essential not only because it is an indicator of fish freshness but also because this prevents the risk of histamine intoxication in consumers. This study used the strategy of near-infrared (NIR) spectroscopy coupled with a hybrid variable selection fo...
Saved in:
Published in | Food science & technology Vol. 145; p. 111524 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Determination of the histamine level in fish is essential not only because it is an indicator of fish freshness but also because this prevents the risk of histamine intoxication in consumers. This study used the strategy of near-infrared (NIR) spectroscopy coupled with a hybrid variable selection for rapid and nondestructive assessment of the histamine level in mackerel. To effectively identify the highly informative spectral variables, a three-step hybrid strategy, combining backward interval partial least squares, selectivity ratio and flower pollination algorithm, was developed. The optimized variables were fitted to the multivariate calibration models of partial least squares model (PLS), radial basis function neural network (RBFNN), and wavelet neural network (WNN). The best model was obtained by the optimized WNN model using the hybrid variable selection method, with R-squared (RP2) value and root mean squared error for prediction were, 0.79 and 70 mg/kg for flesh side dataset, and 0.76 and 75 mg/kg for skin side dataset. The obtained results for the skin side dataset significantly outperformed the PLS(RP2=0.58) and RBFNN (RP2=0.47) calibration models.
•The proposed hybrid variable selection improved the accuracy of regression model.•The proposed hybrid variable selection reduced the complexity of regression model.•Coupling of the hybrid strategy and wavelet neural network outperformed others.•Wavelet neural network achieved R2 of 0.79 and 0.76 for flesh and skin dataset.•Near-infrared successfully predicted the histamine content in blue mackerel. |
---|---|
AbstractList | Determination of the histamine level in fish is essential not only because it is an indicator of fish freshness but also because this prevents the risk of histamine intoxication in consumers. This study used the strategy of near-infrared (NIR) spectroscopy coupled with a hybrid variable selection for rapid and nondestructive assessment of the histamine level in mackerel. To effectively identify the highly informative spectral variables, a three-step hybrid strategy, combining backward interval partial least squares, selectivity ratio and flower pollination algorithm, was developed. The optimized variables were fitted to the multivariate calibration models of partial least squares model (PLS), radial basis function neural network (RBFNN), and wavelet neural network (WNN). The best model was obtained by the optimized WNN model using the hybrid variable selection method, with R-squared (RP2) value and root mean squared error for prediction were, 0.79 and 70 mg/kg for flesh side dataset, and 0.76 and 75 mg/kg for skin side dataset. The obtained results for the skin side dataset significantly outperformed the PLS(RP2=0.58) and RBFNN (RP2=0.47) calibration models. Determination of the histamine level in fish is essential not only because it is an indicator of fish freshness but also because this prevents the risk of histamine intoxication in consumers. This study used the strategy of near-infrared (NIR) spectroscopy coupled with a hybrid variable selection for rapid and nondestructive assessment of the histamine level in mackerel. To effectively identify the highly informative spectral variables, a three-step hybrid strategy, combining backward interval partial least squares, selectivity ratio and flower pollination algorithm, was developed. The optimized variables were fitted to the multivariate calibration models of partial least squares model (PLS), radial basis function neural network (RBFNN), and wavelet neural network (WNN). The best model was obtained by the optimized WNN model using the hybrid variable selection method, with R-squared (RP2) value and root mean squared error for prediction were, 0.79 and 70 mg/kg for flesh side dataset, and 0.76 and 75 mg/kg for skin side dataset. The obtained results for the skin side dataset significantly outperformed the PLS(RP2=0.58) and RBFNN (RP2=0.47) calibration models. •The proposed hybrid variable selection improved the accuracy of regression model.•The proposed hybrid variable selection reduced the complexity of regression model.•Coupling of the hybrid strategy and wavelet neural network outperformed others.•Wavelet neural network achieved R2 of 0.79 and 0.76 for flesh and skin dataset.•Near-infrared successfully predicted the histamine content in blue mackerel. |
ArticleNumber | 111524 |
Author | Chen, Suming Chuang, Yung-Kun Lin, Che-Hsuan Tsai, I-Lin Pauline, Ong Chang, Hsin-Tze |
Author_xml | – sequence: 1 givenname: Ong surname: Pauline fullname: Pauline, Ong email: ongp@uthm.edu.my organization: Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia – sequence: 2 givenname: Hsin-Tze orcidid: 0000-0001-7498-3116 surname: Chang fullname: Chang, Hsin-Tze email: ma47106003@tmu.edu.tw organization: Master Program in Food Safety, College of Nutrition, Taipei Medical University, 250 Wusing Street, Taipei, 11031, Taiwan – sequence: 3 givenname: I-Lin orcidid: 0000-0002-3951-5197 surname: Tsai fullname: Tsai, I-Lin email: isabel10@tmu.edu.tw organization: Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wusing Street, Taipei, 11031, Taiwan – sequence: 4 givenname: Che-Hsuan orcidid: 0000-0001-9134-3786 surname: Lin fullname: Lin, Che-Hsuan email: cloudfrank@gmail.com organization: Department of Otolaryngology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wusing Street, Taipei, 11031, Taiwan – sequence: 5 givenname: Suming surname: Chen fullname: Chen, Suming email: schen@ntu.edu.tw organization: Department of Biomechatronics Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan – sequence: 6 givenname: Yung-Kun surname: Chuang fullname: Chuang, Yung-Kun email: ykchuang@tmu.edu.tw organization: Master Program in Food Safety, College of Nutrition, Taipei Medical University, 250 Wusing Street, Taipei, 11031, Taiwan |
BookMark | eNp9kctu2zAQRYkiBeqk_YDuuEwXcviQZQpdFUEfAQJ00XZNjOiRTZeiVA7lwP_TDy0FZ9VFZjODwT0D3LnX7CqOERl7L8VaCtncHdfhKa-VUHItpdyo-hVbSdE2lZRqe8VWQihdNbU2b9g10VGUqpVZsb8PMWMIfo8xcyBComEZx57nA_KDpwyDj8gDnjBwH_kA7jemMt_-cOPQYeIwU04QgLyb6QOfycc9jwip8rFPkHDHaUKX00hunM7cjfMUyvLJ5wMHfjh3ye_4CZKHLiAnDEXsx8iXsxn357fsdQ-B8N1zv2G_vnz-ef-tevz-9eH-02PltBa5akVjQLawbUAp2ErtWoFgGtDGGaOxAwRVux5a1WgQXW0Udsq1rjV9L43WN-z2cndK458ZKdvBkyvvgYjjTFa1ptm0TV1vilRepK64ooS9nZIfIJ2tFHZJxB5tScQuidhLIoXZ_sc4n2FxWnz68CL58UJicX_ymCw5j9HhzqfyK7sb_Qv0P01QrMA |
CitedBy_id | crossref_primary_10_1016_j_foodcont_2024_110531 crossref_primary_10_1016_j_infrared_2024_105216 crossref_primary_10_1016_j_saa_2023_123037 crossref_primary_10_1016_j_saa_2024_124998 crossref_primary_10_1016_j_microc_2023_108499 crossref_primary_10_1016_j_saa_2023_123214 crossref_primary_10_3390_foods10081767 crossref_primary_10_1016_j_foodcont_2022_108886 crossref_primary_10_1016_j_saa_2023_123095 crossref_primary_10_1051_bioconf_20235802006 crossref_primary_10_1039_D2JA00216G crossref_primary_10_3390_foods13243992 |
Cites_doi | 10.1016/S0308-8146(02)00552-6 10.1016/j.foodcont.2012.09.013 10.1016/j.chroma.2008.09.028 10.1016/j.ijleo.2020.165128 10.1016/j.molstruc.2019.126942 10.1002/jssc.201600893 10.1021/jf061727v 10.1080/02652030802520878 10.3109/10408448609023767 10.1007/s00170-019-04020-6 10.14311/NNW.2012.22.025 10.1007/s12161-020-01816-1 10.1366/000370210791666246 10.1016/j.saa.2019.117376 10.1016/j.foodchem.2010.10.069 10.2331/suisan.39.1339 10.1093/pubmed/fdi063 10.1002/cem.1360 10.1016/j.infrared.2017.08.013 10.1007/s10462-018-9624-4 10.1016/j.toxicon.2010.02.006 10.1016/j.foodcont.2016.12.001 10.4315/0362-028X.JFP-15-190 10.1016/j.idairyj.2005.03.008 10.1016/j.infrared.2020.103188 10.1016/j.trac.2017.11.001 10.1002/cem.3211 10.1016/j.foodchem.2016.12.032 10.1016/j.aca.2012.10.025 10.1016/0168-1605(95)00032-1 10.1080/02652030701278321 10.4315/0362-028X-53.3.217 10.1111/j.1745-4514.2007.00131.x 10.1016/j.foodchem.2016.05.111 10.3389/fmicb.2012.00188 10.1016/j.chemolab.2017.11.008 10.1556/JPC.22.2009.1.3 10.1021/jf1017912 10.1080/19440049.2011.600728 10.1109/72.165591 10.1007/s12161-014-9897-4 10.1007/s00216-020-02506-x 10.1016/S0168-1605(00)00296-8 10.1007/s12161-015-0129-3 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.lwt.2021.111524 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering |
EISSN | 1096-1127 |
ExternalDocumentID | 10_1016_j_lwt_2021_111524 S0023643821006770 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABGRD ABMAC ABXDB ABYKQ ACDAQ ACRLP ADEZE ADFGL ADHUB ADMUD ADQTV AEBSH AEKER AENEX AEQOU AEXQZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CAG CBWCG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ HLV HVGLF HZ~ IHE J1W KOM LG5 LW8 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SDP SES SEW SPCBC SSA SSZ T5K UHS WUQ XPP Y6R ZU3 ~G- ~KM AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c330t-9068a19a76a22a713c90ea86a38c883ebaea24cfa9263a0b482eb2c9c98ff1833 |
IEDL.DBID | .~1 |
ISSN | 0023-6438 |
IngestDate | Fri Jul 11 02:46:48 EDT 2025 Thu Apr 24 23:05:12 EDT 2025 Tue Jul 01 02:54:45 EDT 2025 Fri Feb 23 02:47:53 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Backward interval partial least squares Partial least squares Selectivity ratio Artificial neural networks Flower pollination algorithm |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c330t-9068a19a76a22a713c90ea86a38c883ebaea24cfa9263a0b482eb2c9c98ff1833 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3951-5197 0000-0001-7498-3116 0000-0001-9134-3786 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0023643821006770 |
PQID | 2986596445 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2986596445 crossref_primary_10_1016_j_lwt_2021_111524 crossref_citationtrail_10_1016_j_lwt_2021_111524 elsevier_sciencedirect_doi_10_1016_j_lwt_2021_111524 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2021 2021-06-00 20210601 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: June 2021 |
PublicationDecade | 2020 |
PublicationTitle | Food science & technology |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Huang, Gan, Lv, Cao, Ou, Tang (bib10) 2016; 39 Yang, Lu, Ren, Wang (bib43) 2017; 86 Skeie, Feten, Almøy, Østlie, Isaksson (bib32) 2006; 16 Suyama (bib35) 1973; 39 Zhang, Benveniste (bib48) 1992; 3 Hungerford (bib11) 2010; 56 Chen, Ma, Zhang, Zhang, Chen, Wu (bib6) 2020; 105 Taylor, Speckhard (bib38) 1983; 45 Seyed, Shahana, Jeff (bib29) 2012; 8 Janči, Valinger, Kljusurić, Mikac, Vidaček, Ivanda (bib12) 2017; 224 Peng, Fang, Xie, Ding, Yin, Cui (bib24) 2008; 1209 Ong, Lee, Lau (bib22) 2019; 104 Abdel-Basset, Shawky (bib1) 2019; 52 Shen, Niu, Yang, Ying, Li, Zhu (bib31) 2010; 58 Baranowski, Frank, Brust, Chongsiriwatana, Premaratne (bib5) 1990; 53 Bajc, Gačnik (bib4) 2009; 22 Wang, Lin, Wang, Xiao, Xu, Li (bib41) 2018; 172 Lehane, Olley (bib16) 2000; 58 Altieri, Semeraro, Scalise, Calderari, Stacchini (bib2) 2016; 211 (bib19) 2012 Prester (bib26) 2011; 28 Yu, Zuo, Xia, Liu, Yun, Zhang (bib46) 2020 Visciano, Schirone, Tofalo, Suzzi (bib40) 2012; 3 Liu, Zhang, Rong, Wu, Yang, Wang (bib17) 2015; 8 Yu, Yun, Zhang, Chen, Liu, Zhong (bib45) 2020; 224 Petrovic, Babić, Jaksic, Kartalovic, Ljubojevic, Cirkovic (bib25) 2016; 79 Zou, Zhao, Mao, Shi, Yin, Li (bib49) 2010; 64 Yang (bib42) 2012, 3-9-2012 Santos (bib28) 1996; 29 Muscarella, Magro, Campaniello, Armentano, Stacchini (bib20) 2013; 31 Zainuddin, Ong (bib47) 2012; 22 Cohen, Rudnik, Laloush, Yakir, Karpas (bib7) 2015; 8 Visciano, Campana, Annunziata, Vergara, Ianieri (bib39) 2007; 31 Song, Du, Li, Tang, Huang (bib33) 2020; 412 Sun, Fan, Wang, Wang, Nie, Li (bib34) 2020; 1199 McLauchlin, Little, Grant, Mithani (bib18) 2006; 28 Kvalheim (bib14) 2020; 34 Prester, Macan, Varnai, Orct, Vukušić, Kipčić (bib27) 2009; 26 De la Haba, Garrido-Varo, Guerrero-Ginel, Pérez-Marín (bib8) 2006; 54 Köse, Kaklıkkaya, Koral, Tufan, Buruk, Aydın (bib13) 2011; 125 Economou, Brett, Papadopoulou, Frillingos, Nichols (bib9) 2007; 24 Takagi, Iida, Murayama, Soma (bib36) 1969; 20 Yang, Yang, Zhang, Wang, Song, Huang (bib44) 2020; 220 Andersen, Bro (bib3) 2010; 24 Taylor, Eitenmiller (bib37) 1986; 17 Nei, Nakamura, Ishihara, Kimura, Satomi (bib21) 2017; 75 Papageorgiou, Lambropoulou, Morrison, Kłodzińska, Namieśnik, Płotka-Wasylka (bib23) 2018; 98 Shakila, Vijayalakshmi, Jeyasekaran (bib30) 2003; 82 Lee, Bawn, Yoon (bib15) 2012; 757 Economou (10.1016/j.lwt.2021.111524_bib9) 2007; 24 Nei (10.1016/j.lwt.2021.111524_bib21) 2017; 75 Petrovic (10.1016/j.lwt.2021.111524_bib25) 2016; 79 Papageorgiou (10.1016/j.lwt.2021.111524_bib23) 2018; 98 Chen (10.1016/j.lwt.2021.111524_bib6) 2020; 105 Cohen (10.1016/j.lwt.2021.111524_bib7) 2015; 8 Kvalheim (10.1016/j.lwt.2021.111524_bib14) 2020; 34 Huang (10.1016/j.lwt.2021.111524_bib10) 2016; 39 Taylor (10.1016/j.lwt.2021.111524_bib38) 1983; 45 Visciano (10.1016/j.lwt.2021.111524_bib39) 2007; 31 Zou (10.1016/j.lwt.2021.111524_bib49) 2010; 64 McLauchlin (10.1016/j.lwt.2021.111524_bib18) 2006; 28 Skeie (10.1016/j.lwt.2021.111524_bib32) 2006; 16 Prester (10.1016/j.lwt.2021.111524_bib26) 2011; 28 Yu (10.1016/j.lwt.2021.111524_bib46) 2020 Lehane (10.1016/j.lwt.2021.111524_bib16) 2000; 58 Sun (10.1016/j.lwt.2021.111524_bib34) 2020; 1199 Zainuddin (10.1016/j.lwt.2021.111524_bib47) 2012; 22 Song (10.1016/j.lwt.2021.111524_bib33) 2020; 412 Zhang (10.1016/j.lwt.2021.111524_bib48) 1992; 3 Peng (10.1016/j.lwt.2021.111524_bib24) 2008; 1209 Yu (10.1016/j.lwt.2021.111524_bib45) 2020; 224 Taylor (10.1016/j.lwt.2021.111524_bib37) 1986; 17 Muscarella (10.1016/j.lwt.2021.111524_bib20) 2013; 31 Köse (10.1016/j.lwt.2021.111524_bib13) 2011; 125 Seyed (10.1016/j.lwt.2021.111524_bib29) 2012; 8 Santos (10.1016/j.lwt.2021.111524_bib28) 1996; 29 Suyama (10.1016/j.lwt.2021.111524_bib35) 1973; 39 Shen (10.1016/j.lwt.2021.111524_bib31) 2010; 58 Yang (10.1016/j.lwt.2021.111524_bib42) 2012 Janči (10.1016/j.lwt.2021.111524_bib12) 2017; 224 Liu (10.1016/j.lwt.2021.111524_bib17) 2015; 8 Hungerford (10.1016/j.lwt.2021.111524_bib11) 2010; 56 Abdel-Basset (10.1016/j.lwt.2021.111524_bib1) 2019; 52 De la Haba (10.1016/j.lwt.2021.111524_bib8) 2006; 54 Yang (10.1016/j.lwt.2021.111524_bib43) 2017; 86 (10.1016/j.lwt.2021.111524_bib19) 2012 Shakila (10.1016/j.lwt.2021.111524_bib30) 2003; 82 Ong (10.1016/j.lwt.2021.111524_bib22) 2019; 104 Takagi (10.1016/j.lwt.2021.111524_bib36) 1969; 20 Yang (10.1016/j.lwt.2021.111524_bib44) 2020; 220 Prester (10.1016/j.lwt.2021.111524_bib27) 2009; 26 Bajc (10.1016/j.lwt.2021.111524_bib4) 2009; 22 Wang (10.1016/j.lwt.2021.111524_bib41) 2018; 172 Lee (10.1016/j.lwt.2021.111524_bib15) 2012; 757 Andersen (10.1016/j.lwt.2021.111524_bib3) 2010; 24 Visciano (10.1016/j.lwt.2021.111524_bib40) 2012; 3 Altieri (10.1016/j.lwt.2021.111524_bib2) 2016; 211 Baranowski (10.1016/j.lwt.2021.111524_bib5) 1990; 53 |
References_xml | – volume: 757 start-page: 11 year: 2012 end-page: 18 ident: bib15 article-title: Reproducibility, complementary measure of predictability for robustness improvement of multivariate calibration models via variable selections publication-title: Analytica Chimica Acta – volume: 26 start-page: 355 year: 2009 end-page: 362 ident: bib27 article-title: Endotoxin and biogenic amine levels in Atlantic mackerel ( publication-title: Food Additives & Contaminants: Part A – volume: 1209 start-page: 70 year: 2008 end-page: 75 ident: bib24 article-title: Development of an automated on-line pre-column derivatization procedure for sensitive determination of histamine in food with high-performance liquid chromatography–fluorescence detection publication-title: Journal of Chromatography A – volume: 79 start-page: 90 year: 2016 end-page: 94 ident: bib25 article-title: Fish product–borne histamine intoxication outbreak and survey of imported fish and fish products in Serbia publication-title: Journal of Food Protection – volume: 58 start-page: 9809 year: 2010 end-page: 9816 ident: bib31 article-title: Determination of amino acids in Chinese rice wine by Fourier transform near-infrared spectroscopy publication-title: Journal of Agricultural and Food Chemistry – volume: 22 start-page: 15 year: 2009 end-page: 17 ident: bib4 article-title: Densitometric TLC analysis of histamine in fish and fishery products publication-title: Journal of Planar Chromatography – Modern TLC – volume: 172 start-page: 229 year: 2018 end-page: 240 ident: bib41 article-title: A selective review and comparison for interval variable selection in spectroscopic modeling publication-title: Chemometrics and Intelligent Laboratory Systems – year: 2020 ident: bib46 article-title: Rapid and nondestructive freshness determination of Tilapia fillets by a portable near-infrared spectrometer combined with chemometrics methods publication-title: Food Analytical Methods – volume: 8 start-page: 334 year: 2015 end-page: 342 ident: bib17 article-title: Rapid determination of fat, protein and amino acid content in coix seed using near-infrared spectroscopy technique publication-title: Food Analytical Methods – volume: 82 start-page: 347 year: 2003 end-page: 352 ident: bib30 article-title: Changes in histamine and volatile amines in six commercially important species of fish of the Thoothukkudi coast of Tamil Nadu, India stored at ambient temperature publication-title: Food Chemistry – volume: 220 year: 2020 ident: bib44 article-title: Quantifying soluble sugar in super sweet corn using near-infrared spectroscopy combined with chemometrics publication-title: Optik – volume: 39 start-page: 1339 year: 1973 end-page: 1343 ident: bib35 article-title: Free amino acid composition of the skeletal muscle of migratory fish publication-title: Nippon Suisan Gakkaishi – volume: 56 start-page: 231 year: 2010 end-page: 243 ident: bib11 article-title: Scombroid poisoning: A review publication-title: Toxicon – volume: 28 start-page: 1547 year: 2011 end-page: 1560 ident: bib26 article-title: Biogenic amines in fish, fish products and shellfish: A review publication-title: Food Additives & Contaminants: Part A – volume: 22 start-page: 407 year: 2012 ident: bib47 article-title: An effective and novel wavelet neural network approach in classifying type 2 diabetics publication-title: Neural Network World – volume: 412 start-page: 2795 year: 2020 end-page: 2804 ident: bib33 article-title: Rapid spectral analysis of agro-products using an optimal strategy: Dynamic backward interval PLS–competitive adaptive reweighted sampling. [Article] publication-title: Analytical and Bioanalytical Chemistry – volume: 3 start-page: 188 year: 2012 ident: bib40 article-title: Biogenic amines in raw and processed seafood publication-title: Frontiers in Microbiology – volume: 45 start-page: 35 year: 1983 end-page: 39 ident: bib38 article-title: Isolation of histamine-producing bacteria from frozen tuna publication-title: Marine Fisheries Review – volume: 8 start-page: 2376 year: 2015 end-page: 2382 ident: bib7 article-title: A novel method for determination of histamine in tuna fish by ion mobility spectrometry publication-title: Food Analytical Methods – year: 2012, 3-9-2012 ident: bib42 article-title: Flower pollination algorithm for global optimization publication-title: Paper presented at the international conference on unconventional computing and natural computation, Berlin, Heidelberg – volume: 17 start-page: 91 year: 1986 end-page: 128 ident: bib37 article-title: Histamine food poisoning: Toxicology and clinical aspects publication-title: CRC Critical Reviews in Toxicology – volume: 86 start-page: 23 year: 2017 end-page: 34 ident: bib43 article-title: Rapid determination of biogenic amines in cooked beef using hyperspectral imaging with sparse representation algorithm publication-title: Infrared Physics & Technology – volume: 105 start-page: 103188 year: 2020 ident: bib6 article-title: Comparison of several variable selection methods for quantitative analysis and monitoring of the Yangxinshi tablet process using near-infrared spectroscopy publication-title: Infrared Physics & Technology – volume: 31 start-page: 577 year: 2007 end-page: 588 ident: bib39 article-title: Effect of storage temperature on histamine formation in publication-title: Journal of Food Biochemistry – volume: 24 start-page: 728 year: 2010 end-page: 737 ident: bib3 article-title: Variable selection in regression—a tutorial publication-title: Journal of Chemometrics – volume: 53 start-page: 217 year: 1990 end-page: 222 ident: bib5 article-title: Decomposition and histamine content in Mahimahi ( publication-title: Journal of Food Protection – volume: 39 start-page: 4384 year: 2016 end-page: 4390 ident: bib10 article-title: Environmentally friendly solid‐phase microextraction coupled with gas chromatography and mass spectrometry for the determination of biogenic amines in fish samples publication-title: Journal of Separation Science – volume: 211 start-page: 694 year: 2016 end-page: 699 ident: bib2 article-title: European official control of food: Determination of histamine in fish products by a HPLC–UV-DAD method publication-title: Food Chemistry – volume: 58 start-page: 1 year: 2000 end-page: 37 ident: bib16 article-title: Histamine fish poisoning revisited publication-title: International Journal of Food Microbiology – volume: 29 start-page: 213 year: 1996 end-page: 231 ident: bib28 article-title: Biogenic amines: Their importance in foods publication-title: International Journal of Food Microbiology – volume: 20 start-page: 227 year: 1969 end-page: 234 ident: bib36 article-title: On the formation of histamine during loss of freshness and putrefaction of various marine products publication-title: Hokkaido Daigaku Suisan Gakubu Kenkyu Iho – volume: 104 start-page: 1369 year: 2019 end-page: 1379 ident: bib22 article-title: Tool condition monitoring in CNC end milling using wavelet neural network based on machine vision publication-title: International Journal of Advanced Manufacturing Technology – volume: 31 start-page: 211 year: 2013 end-page: 217 ident: bib20 article-title: Survey of histamine levels in fresh fish and fish products collected in Puglia (Italy) by ELISA and HPLC with fluorimetric detection publication-title: Food Control – volume: 54 start-page: 7703 year: 2006 end-page: 7709 ident: bib8 article-title: Near-infrared reflectance spectroscopy for predicting amino acids content in intact processed animal proteins publication-title: Journal of Agricultural and Food Chemistry – volume: 75 start-page: 181 year: 2017 end-page: 186 ident: bib21 article-title: A rapid screening of histamine concentration in fish fillet by direct analysis in real time mass spectrometry (DART-MS) publication-title: Food Control – volume: 8 start-page: 28 year: 2012 end-page: 32 ident: bib29 article-title: Determination of histamine in human serum/plasma by SPE and HILIC LC-MS-MS publication-title: The Column – volume: 16 start-page: 236 year: 2006 end-page: 242 ident: bib32 article-title: The use of near infrared spectroscopy to predict selected free amino acids during cheese ripening publication-title: International Dairy Journal – volume: 98 start-page: 128 year: 2018 end-page: 142 ident: bib23 article-title: Literature update of analytical methods for biogenic amines determination in food and beverages publication-title: TRAC Trends in Analytical Chemistry – volume: 1199 start-page: 126942 year: 2020 ident: bib34 article-title: Assessment of the human albumin in acid precipitation process using NIRS and multi-variable selection methods combined with SPA publication-title: Journal of Molecular Structure – volume: 224 start-page: 117376 year: 2020 ident: bib45 article-title: Three-step hybrid strategy towards efficiently selecting variables in multivariate calibration of near-infrared spectra publication-title: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy – volume: 52 start-page: 2533 year: 2019 end-page: 2557 ident: bib1 article-title: Flower pollination algorithm: A comprehensive review publication-title: Artificial Intelligence Review – volume: 125 start-page: 1490 year: 2011 end-page: 1497 ident: bib13 article-title: Commercial test kits and the determination of histamine in traditional (ethnic) fish products-evaluation against an EU accepted HPLC method publication-title: Food Chemistry – volume: 28 start-page: 61 year: 2006 end-page: 62 ident: bib18 article-title: Scombrotoxic fish poisoning publication-title: Journal of Public Health – volume: 64 start-page: 786 year: 2010 end-page: 794 ident: bib49 article-title: Genetic algorithm interval partial least squares regression combined successive projections algorithm for variable selection in near-infrared quantitative analysis of pigment in cucumber leaves publication-title: Applied Spectroscopy – volume: 224 start-page: 48 year: 2017 end-page: 54 ident: bib12 article-title: Determination of histamine in fish by Surface Enhanced Raman Spectroscopy using silver colloid SERS substrates publication-title: Food Chemistry – volume: 34 year: 2020 ident: bib14 article-title: Variable importance: Comparison of selectivity ratio and significance multivariate correlation for interpretation of latent-variable regression models publication-title: Journal of Chemometrics – year: 2012 ident: bib19 publication-title: Method of test for histamine in foods – volume: 3 start-page: 889 year: 1992 end-page: 898 ident: bib48 article-title: Wavelet networks publication-title: IEEE Transactions on Neural Networks – volume: 24 start-page: 820 year: 2007 end-page: 832 ident: bib9 article-title: Changes in histamine and microbiological analyses in fresh and frozen tuna muscle during temperature abuse publication-title: Food Additives & Contaminants – volume: 82 start-page: 347 issue: 3 year: 2003 ident: 10.1016/j.lwt.2021.111524_bib30 article-title: Changes in histamine and volatile amines in six commercially important species of fish of the Thoothukkudi coast of Tamil Nadu, India stored at ambient temperature publication-title: Food Chemistry doi: 10.1016/S0308-8146(02)00552-6 – volume: 31 start-page: 211 issue: 1 year: 2013 ident: 10.1016/j.lwt.2021.111524_bib20 article-title: Survey of histamine levels in fresh fish and fish products collected in Puglia (Italy) by ELISA and HPLC with fluorimetric detection publication-title: Food Control doi: 10.1016/j.foodcont.2012.09.013 – volume: 1209 start-page: 70 issue: 1–2 year: 2008 ident: 10.1016/j.lwt.2021.111524_bib24 article-title: Development of an automated on-line pre-column derivatization procedure for sensitive determination of histamine in food with high-performance liquid chromatography–fluorescence detection publication-title: Journal of Chromatography A doi: 10.1016/j.chroma.2008.09.028 – volume: 8 start-page: 28 issue: 22 year: 2012 ident: 10.1016/j.lwt.2021.111524_bib29 article-title: Determination of histamine in human serum/plasma by SPE and HILIC LC-MS-MS publication-title: The Column – volume: 220 year: 2020 ident: 10.1016/j.lwt.2021.111524_bib44 article-title: Quantifying soluble sugar in super sweet corn using near-infrared spectroscopy combined with chemometrics publication-title: Optik doi: 10.1016/j.ijleo.2020.165128 – volume: 1199 start-page: 126942 year: 2020 ident: 10.1016/j.lwt.2021.111524_bib34 article-title: Assessment of the human albumin in acid precipitation process using NIRS and multi-variable selection methods combined with SPA publication-title: Journal of Molecular Structure doi: 10.1016/j.molstruc.2019.126942 – volume: 39 start-page: 4384 issue: 22 year: 2016 ident: 10.1016/j.lwt.2021.111524_bib10 article-title: Environmentally friendly solid‐phase microextraction coupled with gas chromatography and mass spectrometry for the determination of biogenic amines in fish samples publication-title: Journal of Separation Science doi: 10.1002/jssc.201600893 – volume: 54 start-page: 7703 issue: 20 year: 2006 ident: 10.1016/j.lwt.2021.111524_bib8 article-title: Near-infrared reflectance spectroscopy for predicting amino acids content in intact processed animal proteins publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/jf061727v – volume: 26 start-page: 355 issue: 3 year: 2009 ident: 10.1016/j.lwt.2021.111524_bib27 article-title: Endotoxin and biogenic amine levels in Atlantic mackerel (Scomber scombrus), sardine (Sardina pilchardus) and Mediterranean hake (Merluccius merluccius) stored at 22 °C publication-title: Food Additives & Contaminants: Part A doi: 10.1080/02652030802520878 – volume: 17 start-page: 91 issue: 2 year: 1986 ident: 10.1016/j.lwt.2021.111524_bib37 article-title: Histamine food poisoning: Toxicology and clinical aspects publication-title: CRC Critical Reviews in Toxicology doi: 10.3109/10408448609023767 – volume: 104 start-page: 1369 issue: 1–4 year: 2019 ident: 10.1016/j.lwt.2021.111524_bib22 article-title: Tool condition monitoring in CNC end milling using wavelet neural network based on machine vision publication-title: International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-019-04020-6 – year: 2012 ident: 10.1016/j.lwt.2021.111524_bib42 article-title: Flower pollination algorithm for global optimization – volume: 22 start-page: 407 issue: 5 year: 2012 ident: 10.1016/j.lwt.2021.111524_bib47 article-title: An effective and novel wavelet neural network approach in classifying type 2 diabetics publication-title: Neural Network World doi: 10.14311/NNW.2012.22.025 – year: 2020 ident: 10.1016/j.lwt.2021.111524_bib46 article-title: Rapid and nondestructive freshness determination of Tilapia fillets by a portable near-infrared spectrometer combined with chemometrics methods publication-title: Food Analytical Methods doi: 10.1007/s12161-020-01816-1 – volume: 64 start-page: 786 issue: 7 year: 2010 ident: 10.1016/j.lwt.2021.111524_bib49 article-title: Genetic algorithm interval partial least squares regression combined successive projections algorithm for variable selection in near-infrared quantitative analysis of pigment in cucumber leaves publication-title: Applied Spectroscopy doi: 10.1366/000370210791666246 – year: 2012 ident: 10.1016/j.lwt.2021.111524_bib19 – volume: 224 start-page: 117376 year: 2020 ident: 10.1016/j.lwt.2021.111524_bib45 article-title: Three-step hybrid strategy towards efficiently selecting variables in multivariate calibration of near-infrared spectra publication-title: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy doi: 10.1016/j.saa.2019.117376 – volume: 125 start-page: 1490 issue: 4 year: 2011 ident: 10.1016/j.lwt.2021.111524_bib13 article-title: Commercial test kits and the determination of histamine in traditional (ethnic) fish products-evaluation against an EU accepted HPLC method publication-title: Food Chemistry doi: 10.1016/j.foodchem.2010.10.069 – volume: 39 start-page: 1339 year: 1973 ident: 10.1016/j.lwt.2021.111524_bib35 article-title: Free amino acid composition of the skeletal muscle of migratory fish publication-title: Nippon Suisan Gakkaishi doi: 10.2331/suisan.39.1339 – volume: 28 start-page: 61 issue: 1 year: 2006 ident: 10.1016/j.lwt.2021.111524_bib18 article-title: Scombrotoxic fish poisoning publication-title: Journal of Public Health doi: 10.1093/pubmed/fdi063 – volume: 24 start-page: 728 issue: 11‐12 year: 2010 ident: 10.1016/j.lwt.2021.111524_bib3 article-title: Variable selection in regression—a tutorial publication-title: Journal of Chemometrics doi: 10.1002/cem.1360 – volume: 86 start-page: 23 year: 2017 ident: 10.1016/j.lwt.2021.111524_bib43 article-title: Rapid determination of biogenic amines in cooked beef using hyperspectral imaging with sparse representation algorithm publication-title: Infrared Physics & Technology doi: 10.1016/j.infrared.2017.08.013 – volume: 52 start-page: 2533 issue: 4 year: 2019 ident: 10.1016/j.lwt.2021.111524_bib1 article-title: Flower pollination algorithm: A comprehensive review publication-title: Artificial Intelligence Review doi: 10.1007/s10462-018-9624-4 – volume: 56 start-page: 231 issue: 2 year: 2010 ident: 10.1016/j.lwt.2021.111524_bib11 article-title: Scombroid poisoning: A review publication-title: Toxicon doi: 10.1016/j.toxicon.2010.02.006 – volume: 75 start-page: 181 year: 2017 ident: 10.1016/j.lwt.2021.111524_bib21 article-title: A rapid screening of histamine concentration in fish fillet by direct analysis in real time mass spectrometry (DART-MS) publication-title: Food Control doi: 10.1016/j.foodcont.2016.12.001 – volume: 79 start-page: 90 issue: 1 year: 2016 ident: 10.1016/j.lwt.2021.111524_bib25 article-title: Fish product–borne histamine intoxication outbreak and survey of imported fish and fish products in Serbia publication-title: Journal of Food Protection doi: 10.4315/0362-028X.JFP-15-190 – volume: 16 start-page: 236 issue: 3 year: 2006 ident: 10.1016/j.lwt.2021.111524_bib32 article-title: The use of near infrared spectroscopy to predict selected free amino acids during cheese ripening publication-title: International Dairy Journal doi: 10.1016/j.idairyj.2005.03.008 – volume: 105 start-page: 103188 year: 2020 ident: 10.1016/j.lwt.2021.111524_bib6 article-title: Comparison of several variable selection methods for quantitative analysis and monitoring of the Yangxinshi tablet process using near-infrared spectroscopy publication-title: Infrared Physics & Technology doi: 10.1016/j.infrared.2020.103188 – volume: 98 start-page: 128 year: 2018 ident: 10.1016/j.lwt.2021.111524_bib23 article-title: Literature update of analytical methods for biogenic amines determination in food and beverages publication-title: TRAC Trends in Analytical Chemistry doi: 10.1016/j.trac.2017.11.001 – volume: 45 start-page: 35 issue: 4–6 year: 1983 ident: 10.1016/j.lwt.2021.111524_bib38 article-title: Isolation of histamine-producing bacteria from frozen tuna publication-title: Marine Fisheries Review – volume: 20 start-page: 227 year: 1969 ident: 10.1016/j.lwt.2021.111524_bib36 article-title: On the formation of histamine during loss of freshness and putrefaction of various marine products publication-title: Hokkaido Daigaku Suisan Gakubu Kenkyu Iho – volume: 34 issue: 4 year: 2020 ident: 10.1016/j.lwt.2021.111524_bib14 article-title: Variable importance: Comparison of selectivity ratio and significance multivariate correlation for interpretation of latent-variable regression models publication-title: Journal of Chemometrics doi: 10.1002/cem.3211 – volume: 224 start-page: 48 year: 2017 ident: 10.1016/j.lwt.2021.111524_bib12 article-title: Determination of histamine in fish by Surface Enhanced Raman Spectroscopy using silver colloid SERS substrates publication-title: Food Chemistry doi: 10.1016/j.foodchem.2016.12.032 – volume: 757 start-page: 11 year: 2012 ident: 10.1016/j.lwt.2021.111524_bib15 article-title: Reproducibility, complementary measure of predictability for robustness improvement of multivariate calibration models via variable selections publication-title: Analytica Chimica Acta doi: 10.1016/j.aca.2012.10.025 – volume: 29 start-page: 213 issue: 2–3 year: 1996 ident: 10.1016/j.lwt.2021.111524_bib28 article-title: Biogenic amines: Their importance in foods publication-title: International Journal of Food Microbiology doi: 10.1016/0168-1605(95)00032-1 – volume: 24 start-page: 820 issue: 8 year: 2007 ident: 10.1016/j.lwt.2021.111524_bib9 article-title: Changes in histamine and microbiological analyses in fresh and frozen tuna muscle during temperature abuse publication-title: Food Additives & Contaminants doi: 10.1080/02652030701278321 – volume: 53 start-page: 217 issue: 3 year: 1990 ident: 10.1016/j.lwt.2021.111524_bib5 article-title: Decomposition and histamine content in Mahimahi (Coryphaena hippurus) publication-title: Journal of Food Protection doi: 10.4315/0362-028X-53.3.217 – volume: 31 start-page: 577 issue: 5 year: 2007 ident: 10.1016/j.lwt.2021.111524_bib39 article-title: Effect of storage temperature on histamine formation in Sardina pilchardus and Engraulis encrasicolus after catch publication-title: Journal of Food Biochemistry doi: 10.1111/j.1745-4514.2007.00131.x – volume: 211 start-page: 694 year: 2016 ident: 10.1016/j.lwt.2021.111524_bib2 article-title: European official control of food: Determination of histamine in fish products by a HPLC–UV-DAD method publication-title: Food Chemistry doi: 10.1016/j.foodchem.2016.05.111 – volume: 3 start-page: 188 year: 2012 ident: 10.1016/j.lwt.2021.111524_bib40 article-title: Biogenic amines in raw and processed seafood publication-title: Frontiers in Microbiology doi: 10.3389/fmicb.2012.00188 – volume: 172 start-page: 229 year: 2018 ident: 10.1016/j.lwt.2021.111524_bib41 article-title: A selective review and comparison for interval variable selection in spectroscopic modeling publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/j.chemolab.2017.11.008 – volume: 22 start-page: 15 issue: 1 year: 2009 ident: 10.1016/j.lwt.2021.111524_bib4 article-title: Densitometric TLC analysis of histamine in fish and fishery products publication-title: Journal of Planar Chromatography – Modern TLC doi: 10.1556/JPC.22.2009.1.3 – volume: 58 start-page: 9809 issue: 17 year: 2010 ident: 10.1016/j.lwt.2021.111524_bib31 article-title: Determination of amino acids in Chinese rice wine by Fourier transform near-infrared spectroscopy publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/jf1017912 – volume: 28 start-page: 1547 issue: 11 year: 2011 ident: 10.1016/j.lwt.2021.111524_bib26 article-title: Biogenic amines in fish, fish products and shellfish: A review publication-title: Food Additives & Contaminants: Part A doi: 10.1080/19440049.2011.600728 – volume: 3 start-page: 889 issue: 6 year: 1992 ident: 10.1016/j.lwt.2021.111524_bib48 article-title: Wavelet networks publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.165591 – volume: 8 start-page: 334 issue: 2 year: 2015 ident: 10.1016/j.lwt.2021.111524_bib17 article-title: Rapid determination of fat, protein and amino acid content in coix seed using near-infrared spectroscopy technique publication-title: Food Analytical Methods doi: 10.1007/s12161-014-9897-4 – volume: 412 start-page: 2795 issue: 12 year: 2020 ident: 10.1016/j.lwt.2021.111524_bib33 article-title: Rapid spectral analysis of agro-products using an optimal strategy: Dynamic backward interval PLS–competitive adaptive reweighted sampling. [Article] publication-title: Analytical and Bioanalytical Chemistry doi: 10.1007/s00216-020-02506-x – volume: 58 start-page: 1 issue: 1–2 year: 2000 ident: 10.1016/j.lwt.2021.111524_bib16 article-title: Histamine fish poisoning revisited publication-title: International Journal of Food Microbiology doi: 10.1016/S0168-1605(00)00296-8 – volume: 8 start-page: 2376 issue: 9 year: 2015 ident: 10.1016/j.lwt.2021.111524_bib7 article-title: A novel method for determination of histamine in tuna fish by ion mobility spectrometry publication-title: Food Analytical Methods doi: 10.1007/s12161-015-0129-3 |
SSID | ssj0000428 |
Score | 2.4073238 |
Snippet | Determination of the histamine level in fish is essential not only because it is an indicator of fish freshness but also because this prevents the risk of... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 111524 |
SubjectTerms | algorithms Artificial neural networks Backward interval partial least squares data collection Flower pollination algorithm freshness histamine mackerel near-infrared spectroscopy Partial least squares poisoning prediction risk Scomber australasicus Selectivity ratio wavelet |
Title | Intelligent assessment of the histamine level in mackerel (Scomber australasicus) using near-infrared spectroscopy coupled with a hybrid variable selection strategy |
URI | https://dx.doi.org/10.1016/j.lwt.2021.111524 https://www.proquest.com/docview/2986596445 |
Volume | 145 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcgAOFRQQpaUaJA6AZJr1a-1jVVFtQeoFKvVmOY4Di7bJarPbai_8Gn5oZ_JYHhI9cEssJ4o84_FM_H2fGXutdLBOjCK3Raa5wm6caAi8kCNTOFdobCK0xbmZXKiPl_pyi50MXBiCVfaxv4vpbbTuW4760TyaT6fE8SXxc2mxaCEZNKrblRqTl7__8QvmQTVBB_OQnHoPO5stxmt2Q3BKMaLAoYX619r0V5Rul57TR2ynzxnhuPusx2wrVbvs_kApbnbZw99UBZ-wn2cbmc0lhI3yJtQlYLYHpDAcrrA7zAgwBNMKrgKBK_D6zWcchzwtIGwolnHVvAVCx3-FCmcFR49cEGgdWo4maWHW8zXEejWfYSP91oUA39ZEBINrLMSJmgVNe9oOugA0nRru-im7OP3w5WTC-8MYeJQyW3KXGRtGLoxNECJgaRtdloI1QdporUx5SEGoWAYnjAxZrqzAoj266GxZYtyQz9h2VVfpOQNV5OgfTqUsL5UsXI5pxtjoUqdorLNqj2WDGXzslcrpwIyZHyBp3z1azpPlfGe5PfZu88i8k-m4q7MabOv_8DWPy8hdj70a_MDjHKSNlVCletV44azRDjNL_eL_Xr3PHtBdB0E7YNvLxSq9xGRnmR-23nzI7h2ffZqc3wLNNAGj |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaq7aFwQFBAlFcHiQMgWc36kdrHqqLapWUvtFJvluM4dNE2WW12Qft_-KHM5LGUSu2BW-TYUeSZjGfi7_vM2HulvbFiGLjJE80VduNEQ-C5HKa5tbnGJkJbTNLRhfpyqS-32HHPhSFYZRf725jeROuu5aCbzYP5dEocXxI_lwaLFpJBw7p9m9Sp9IBtH41PR5O_AVmJNiALyWlAv7nZwLxmvwhRKYYUO7RQdy1PtwJ1s_qcPGaPurQRjto3e8K2YrnLdnpWcb3LHt4QFnzKfo83SptL8BvxTagKwIQPSGTYX2N3mBFmCKYlXHvCV-D1h284FVlcgN-wLMOq_ggEkP8OJX4YHJ1yQbh1aGiaJIdZzdcQqtV8ho30Zxc8XK2JCwY_sRYndhbUzYE76AVQt4K462fs4uTz-fGId-cx8CBlsuQ2SY0fWn-YeiE8VrfBJtGb1EsTjJEx89ELFQpvRSp9kikjsG4PNlhTFBg65HM2KKsyvmCg8gxdxKqYZIWSuc0w0zhMdaFjSI01ao8lvRlc6MTK6cyMmetRaT8cWs6R5VxruT32aTNk3ip13NdZ9bZ1_7ibw5XkvmHvej9w-BnS3oovY7WqnbAm1RaTS_3y_x69z3ZG51_P3Nl4cvqKPaA7LSLtNRssF6v4BnOfZfa28-0_k2kEVA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+assessment+of+the+histamine+level+in+mackerel+%28Scomber+australasicus%29+using+near-infrared+spectroscopy+coupled+with+a+hybrid+variable+selection+strategy&rft.jtitle=Food+science+%26+technology&rft.au=Pauline%2C+Ong&rft.au=Chang%2C+Hsin-Tze&rft.au=Tsai%2C+I-Lin&rft.au=Lin%2C+Che-Hsuan&rft.date=2021-06-01&rft.issn=0023-6438&rft.volume=145+p.111524-&rft_id=info:doi/10.1016%2Fj.lwt.2021.111524&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0023-6438&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0023-6438&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0023-6438&client=summon |