Intelligent assessment of the histamine level in mackerel (Scomber australasicus) using near-infrared spectroscopy coupled with a hybrid variable selection strategy

Determination of the histamine level in fish is essential not only because it is an indicator of fish freshness but also because this prevents the risk of histamine intoxication in consumers. This study used the strategy of near-infrared (NIR) spectroscopy coupled with a hybrid variable selection fo...

Full description

Saved in:
Bibliographic Details
Published inFood science & technology Vol. 145; p. 111524
Main Authors Pauline, Ong, Chang, Hsin-Tze, Tsai, I-Lin, Lin, Che-Hsuan, Chen, Suming, Chuang, Yung-Kun
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Determination of the histamine level in fish is essential not only because it is an indicator of fish freshness but also because this prevents the risk of histamine intoxication in consumers. This study used the strategy of near-infrared (NIR) spectroscopy coupled with a hybrid variable selection for rapid and nondestructive assessment of the histamine level in mackerel. To effectively identify the highly informative spectral variables, a three-step hybrid strategy, combining backward interval partial least squares, selectivity ratio and flower pollination algorithm, was developed. The optimized variables were fitted to the multivariate calibration models of partial least squares model (PLS), radial basis function neural network (RBFNN), and wavelet neural network (WNN). The best model was obtained by the optimized WNN model using the hybrid variable selection method, with R-squared (RP2) value and root mean squared error for prediction were, 0.79 and 70 mg/kg for flesh side dataset, and 0.76 and 75 mg/kg for skin side dataset. The obtained results for the skin side dataset significantly outperformed the PLS(RP2=0.58) and RBFNN (RP2=0.47) calibration models. •The proposed hybrid variable selection improved the accuracy of regression model.•The proposed hybrid variable selection reduced the complexity of regression model.•Coupling of the hybrid strategy and wavelet neural network outperformed others.•Wavelet neural network achieved R2 of 0.79 and 0.76 for flesh and skin dataset.•Near-infrared successfully predicted the histamine content in blue mackerel.
AbstractList Determination of the histamine level in fish is essential not only because it is an indicator of fish freshness but also because this prevents the risk of histamine intoxication in consumers. This study used the strategy of near-infrared (NIR) spectroscopy coupled with a hybrid variable selection for rapid and nondestructive assessment of the histamine level in mackerel. To effectively identify the highly informative spectral variables, a three-step hybrid strategy, combining backward interval partial least squares, selectivity ratio and flower pollination algorithm, was developed. The optimized variables were fitted to the multivariate calibration models of partial least squares model (PLS), radial basis function neural network (RBFNN), and wavelet neural network (WNN). The best model was obtained by the optimized WNN model using the hybrid variable selection method, with R-squared (RP2) value and root mean squared error for prediction were, 0.79 and 70 mg/kg for flesh side dataset, and 0.76 and 75 mg/kg for skin side dataset. The obtained results for the skin side dataset significantly outperformed the PLS(RP2=0.58) and RBFNN (RP2=0.47) calibration models.
Determination of the histamine level in fish is essential not only because it is an indicator of fish freshness but also because this prevents the risk of histamine intoxication in consumers. This study used the strategy of near-infrared (NIR) spectroscopy coupled with a hybrid variable selection for rapid and nondestructive assessment of the histamine level in mackerel. To effectively identify the highly informative spectral variables, a three-step hybrid strategy, combining backward interval partial least squares, selectivity ratio and flower pollination algorithm, was developed. The optimized variables were fitted to the multivariate calibration models of partial least squares model (PLS), radial basis function neural network (RBFNN), and wavelet neural network (WNN). The best model was obtained by the optimized WNN model using the hybrid variable selection method, with R-squared (RP2) value and root mean squared error for prediction were, 0.79 and 70 mg/kg for flesh side dataset, and 0.76 and 75 mg/kg for skin side dataset. The obtained results for the skin side dataset significantly outperformed the PLS(RP2=0.58) and RBFNN (RP2=0.47) calibration models. •The proposed hybrid variable selection improved the accuracy of regression model.•The proposed hybrid variable selection reduced the complexity of regression model.•Coupling of the hybrid strategy and wavelet neural network outperformed others.•Wavelet neural network achieved R2 of 0.79 and 0.76 for flesh and skin dataset.•Near-infrared successfully predicted the histamine content in blue mackerel.
ArticleNumber 111524
Author Chen, Suming
Chuang, Yung-Kun
Lin, Che-Hsuan
Tsai, I-Lin
Pauline, Ong
Chang, Hsin-Tze
Author_xml – sequence: 1
  givenname: Ong
  surname: Pauline
  fullname: Pauline, Ong
  email: ongp@uthm.edu.my
  organization: Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
– sequence: 2
  givenname: Hsin-Tze
  orcidid: 0000-0001-7498-3116
  surname: Chang
  fullname: Chang, Hsin-Tze
  email: ma47106003@tmu.edu.tw
  organization: Master Program in Food Safety, College of Nutrition, Taipei Medical University, 250 Wusing Street, Taipei, 11031, Taiwan
– sequence: 3
  givenname: I-Lin
  orcidid: 0000-0002-3951-5197
  surname: Tsai
  fullname: Tsai, I-Lin
  email: isabel10@tmu.edu.tw
  organization: Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wusing Street, Taipei, 11031, Taiwan
– sequence: 4
  givenname: Che-Hsuan
  orcidid: 0000-0001-9134-3786
  surname: Lin
  fullname: Lin, Che-Hsuan
  email: cloudfrank@gmail.com
  organization: Department of Otolaryngology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wusing Street, Taipei, 11031, Taiwan
– sequence: 5
  givenname: Suming
  surname: Chen
  fullname: Chen, Suming
  email: schen@ntu.edu.tw
  organization: Department of Biomechatronics Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
– sequence: 6
  givenname: Yung-Kun
  surname: Chuang
  fullname: Chuang, Yung-Kun
  email: ykchuang@tmu.edu.tw
  organization: Master Program in Food Safety, College of Nutrition, Taipei Medical University, 250 Wusing Street, Taipei, 11031, Taiwan
BookMark eNp9kctu2zAQRYkiBeqk_YDuuEwXcviQZQpdFUEfAQJ00XZNjOiRTZeiVA7lwP_TDy0FZ9VFZjODwT0D3LnX7CqOERl7L8VaCtncHdfhKa-VUHItpdyo-hVbSdE2lZRqe8VWQihdNbU2b9g10VGUqpVZsb8PMWMIfo8xcyBComEZx57nA_KDpwyDj8gDnjBwH_kA7jemMt_-cOPQYeIwU04QgLyb6QOfycc9jwip8rFPkHDHaUKX00hunM7cjfMUyvLJ5wMHfjh3ye_4CZKHLiAnDEXsx8iXsxn357fsdQ-B8N1zv2G_vnz-ef-tevz-9eH-02PltBa5akVjQLawbUAp2ErtWoFgGtDGGaOxAwRVux5a1WgQXW0Udsq1rjV9L43WN-z2cndK458ZKdvBkyvvgYjjTFa1ptm0TV1vilRepK64ooS9nZIfIJ2tFHZJxB5tScQuidhLIoXZ_sc4n2FxWnz68CL58UJicX_ymCw5j9HhzqfyK7sb_Qv0P01QrMA
CitedBy_id crossref_primary_10_1016_j_foodcont_2024_110531
crossref_primary_10_1016_j_infrared_2024_105216
crossref_primary_10_1016_j_saa_2023_123037
crossref_primary_10_1016_j_saa_2024_124998
crossref_primary_10_1016_j_microc_2023_108499
crossref_primary_10_1016_j_saa_2023_123214
crossref_primary_10_3390_foods10081767
crossref_primary_10_1016_j_foodcont_2022_108886
crossref_primary_10_1016_j_saa_2023_123095
crossref_primary_10_1051_bioconf_20235802006
crossref_primary_10_1039_D2JA00216G
crossref_primary_10_3390_foods13243992
Cites_doi 10.1016/S0308-8146(02)00552-6
10.1016/j.foodcont.2012.09.013
10.1016/j.chroma.2008.09.028
10.1016/j.ijleo.2020.165128
10.1016/j.molstruc.2019.126942
10.1002/jssc.201600893
10.1021/jf061727v
10.1080/02652030802520878
10.3109/10408448609023767
10.1007/s00170-019-04020-6
10.14311/NNW.2012.22.025
10.1007/s12161-020-01816-1
10.1366/000370210791666246
10.1016/j.saa.2019.117376
10.1016/j.foodchem.2010.10.069
10.2331/suisan.39.1339
10.1093/pubmed/fdi063
10.1002/cem.1360
10.1016/j.infrared.2017.08.013
10.1007/s10462-018-9624-4
10.1016/j.toxicon.2010.02.006
10.1016/j.foodcont.2016.12.001
10.4315/0362-028X.JFP-15-190
10.1016/j.idairyj.2005.03.008
10.1016/j.infrared.2020.103188
10.1016/j.trac.2017.11.001
10.1002/cem.3211
10.1016/j.foodchem.2016.12.032
10.1016/j.aca.2012.10.025
10.1016/0168-1605(95)00032-1
10.1080/02652030701278321
10.4315/0362-028X-53.3.217
10.1111/j.1745-4514.2007.00131.x
10.1016/j.foodchem.2016.05.111
10.3389/fmicb.2012.00188
10.1016/j.chemolab.2017.11.008
10.1556/JPC.22.2009.1.3
10.1021/jf1017912
10.1080/19440049.2011.600728
10.1109/72.165591
10.1007/s12161-014-9897-4
10.1007/s00216-020-02506-x
10.1016/S0168-1605(00)00296-8
10.1007/s12161-015-0129-3
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.lwt.2021.111524
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1096-1127
ExternalDocumentID 10_1016_j_lwt_2021_111524
S0023643821006770
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABGRD
ABMAC
ABXDB
ABYKQ
ACDAQ
ACRLP
ADEZE
ADFGL
ADHUB
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AEXQZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CAG
CBWCG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
HLV
HVGLF
HZ~
IHE
J1W
KOM
LG5
LW8
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SDP
SES
SEW
SPCBC
SSA
SSZ
T5K
UHS
WUQ
XPP
Y6R
ZU3
~G-
~KM
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c330t-9068a19a76a22a713c90ea86a38c883ebaea24cfa9263a0b482eb2c9c98ff1833
IEDL.DBID .~1
ISSN 0023-6438
IngestDate Fri Jul 11 02:46:48 EDT 2025
Thu Apr 24 23:05:12 EDT 2025
Tue Jul 01 02:54:45 EDT 2025
Fri Feb 23 02:47:53 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Backward interval partial least squares
Partial least squares
Selectivity ratio
Artificial neural networks
Flower pollination algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c330t-9068a19a76a22a713c90ea86a38c883ebaea24cfa9263a0b482eb2c9c98ff1833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3951-5197
0000-0001-7498-3116
0000-0001-9134-3786
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0023643821006770
PQID 2986596445
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2986596445
crossref_primary_10_1016_j_lwt_2021_111524
crossref_citationtrail_10_1016_j_lwt_2021_111524
elsevier_sciencedirect_doi_10_1016_j_lwt_2021_111524
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2021
2021-06-00
20210601
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationTitle Food science & technology
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Huang, Gan, Lv, Cao, Ou, Tang (bib10) 2016; 39
Yang, Lu, Ren, Wang (bib43) 2017; 86
Skeie, Feten, Almøy, Østlie, Isaksson (bib32) 2006; 16
Suyama (bib35) 1973; 39
Zhang, Benveniste (bib48) 1992; 3
Hungerford (bib11) 2010; 56
Chen, Ma, Zhang, Zhang, Chen, Wu (bib6) 2020; 105
Taylor, Speckhard (bib38) 1983; 45
Seyed, Shahana, Jeff (bib29) 2012; 8
Janči, Valinger, Kljusurić, Mikac, Vidaček, Ivanda (bib12) 2017; 224
Peng, Fang, Xie, Ding, Yin, Cui (bib24) 2008; 1209
Ong, Lee, Lau (bib22) 2019; 104
Abdel-Basset, Shawky (bib1) 2019; 52
Shen, Niu, Yang, Ying, Li, Zhu (bib31) 2010; 58
Baranowski, Frank, Brust, Chongsiriwatana, Premaratne (bib5) 1990; 53
Bajc, Gačnik (bib4) 2009; 22
Wang, Lin, Wang, Xiao, Xu, Li (bib41) 2018; 172
Lehane, Olley (bib16) 2000; 58
Altieri, Semeraro, Scalise, Calderari, Stacchini (bib2) 2016; 211
(bib19) 2012
Prester (bib26) 2011; 28
Yu, Zuo, Xia, Liu, Yun, Zhang (bib46) 2020
Visciano, Schirone, Tofalo, Suzzi (bib40) 2012; 3
Liu, Zhang, Rong, Wu, Yang, Wang (bib17) 2015; 8
Yu, Yun, Zhang, Chen, Liu, Zhong (bib45) 2020; 224
Petrovic, Babić, Jaksic, Kartalovic, Ljubojevic, Cirkovic (bib25) 2016; 79
Zou, Zhao, Mao, Shi, Yin, Li (bib49) 2010; 64
Yang (bib42) 2012, 3-9-2012
Santos (bib28) 1996; 29
Muscarella, Magro, Campaniello, Armentano, Stacchini (bib20) 2013; 31
Zainuddin, Ong (bib47) 2012; 22
Cohen, Rudnik, Laloush, Yakir, Karpas (bib7) 2015; 8
Visciano, Campana, Annunziata, Vergara, Ianieri (bib39) 2007; 31
Song, Du, Li, Tang, Huang (bib33) 2020; 412
Sun, Fan, Wang, Wang, Nie, Li (bib34) 2020; 1199
McLauchlin, Little, Grant, Mithani (bib18) 2006; 28
Kvalheim (bib14) 2020; 34
Prester, Macan, Varnai, Orct, Vukušić, Kipčić (bib27) 2009; 26
De la Haba, Garrido-Varo, Guerrero-Ginel, Pérez-Marín (bib8) 2006; 54
Köse, Kaklıkkaya, Koral, Tufan, Buruk, Aydın (bib13) 2011; 125
Economou, Brett, Papadopoulou, Frillingos, Nichols (bib9) 2007; 24
Takagi, Iida, Murayama, Soma (bib36) 1969; 20
Yang, Yang, Zhang, Wang, Song, Huang (bib44) 2020; 220
Andersen, Bro (bib3) 2010; 24
Taylor, Eitenmiller (bib37) 1986; 17
Nei, Nakamura, Ishihara, Kimura, Satomi (bib21) 2017; 75
Papageorgiou, Lambropoulou, Morrison, Kłodzińska, Namieśnik, Płotka-Wasylka (bib23) 2018; 98
Shakila, Vijayalakshmi, Jeyasekaran (bib30) 2003; 82
Lee, Bawn, Yoon (bib15) 2012; 757
Economou (10.1016/j.lwt.2021.111524_bib9) 2007; 24
Nei (10.1016/j.lwt.2021.111524_bib21) 2017; 75
Petrovic (10.1016/j.lwt.2021.111524_bib25) 2016; 79
Papageorgiou (10.1016/j.lwt.2021.111524_bib23) 2018; 98
Chen (10.1016/j.lwt.2021.111524_bib6) 2020; 105
Cohen (10.1016/j.lwt.2021.111524_bib7) 2015; 8
Kvalheim (10.1016/j.lwt.2021.111524_bib14) 2020; 34
Huang (10.1016/j.lwt.2021.111524_bib10) 2016; 39
Taylor (10.1016/j.lwt.2021.111524_bib38) 1983; 45
Visciano (10.1016/j.lwt.2021.111524_bib39) 2007; 31
Zou (10.1016/j.lwt.2021.111524_bib49) 2010; 64
McLauchlin (10.1016/j.lwt.2021.111524_bib18) 2006; 28
Skeie (10.1016/j.lwt.2021.111524_bib32) 2006; 16
Prester (10.1016/j.lwt.2021.111524_bib26) 2011; 28
Yu (10.1016/j.lwt.2021.111524_bib46) 2020
Lehane (10.1016/j.lwt.2021.111524_bib16) 2000; 58
Sun (10.1016/j.lwt.2021.111524_bib34) 2020; 1199
Zainuddin (10.1016/j.lwt.2021.111524_bib47) 2012; 22
Song (10.1016/j.lwt.2021.111524_bib33) 2020; 412
Zhang (10.1016/j.lwt.2021.111524_bib48) 1992; 3
Peng (10.1016/j.lwt.2021.111524_bib24) 2008; 1209
Yu (10.1016/j.lwt.2021.111524_bib45) 2020; 224
Taylor (10.1016/j.lwt.2021.111524_bib37) 1986; 17
Muscarella (10.1016/j.lwt.2021.111524_bib20) 2013; 31
Köse (10.1016/j.lwt.2021.111524_bib13) 2011; 125
Seyed (10.1016/j.lwt.2021.111524_bib29) 2012; 8
Santos (10.1016/j.lwt.2021.111524_bib28) 1996; 29
Suyama (10.1016/j.lwt.2021.111524_bib35) 1973; 39
Shen (10.1016/j.lwt.2021.111524_bib31) 2010; 58
Yang (10.1016/j.lwt.2021.111524_bib42) 2012
Janči (10.1016/j.lwt.2021.111524_bib12) 2017; 224
Liu (10.1016/j.lwt.2021.111524_bib17) 2015; 8
Hungerford (10.1016/j.lwt.2021.111524_bib11) 2010; 56
Abdel-Basset (10.1016/j.lwt.2021.111524_bib1) 2019; 52
De la Haba (10.1016/j.lwt.2021.111524_bib8) 2006; 54
Yang (10.1016/j.lwt.2021.111524_bib43) 2017; 86
(10.1016/j.lwt.2021.111524_bib19) 2012
Shakila (10.1016/j.lwt.2021.111524_bib30) 2003; 82
Ong (10.1016/j.lwt.2021.111524_bib22) 2019; 104
Takagi (10.1016/j.lwt.2021.111524_bib36) 1969; 20
Yang (10.1016/j.lwt.2021.111524_bib44) 2020; 220
Prester (10.1016/j.lwt.2021.111524_bib27) 2009; 26
Bajc (10.1016/j.lwt.2021.111524_bib4) 2009; 22
Wang (10.1016/j.lwt.2021.111524_bib41) 2018; 172
Lee (10.1016/j.lwt.2021.111524_bib15) 2012; 757
Andersen (10.1016/j.lwt.2021.111524_bib3) 2010; 24
Visciano (10.1016/j.lwt.2021.111524_bib40) 2012; 3
Altieri (10.1016/j.lwt.2021.111524_bib2) 2016; 211
Baranowski (10.1016/j.lwt.2021.111524_bib5) 1990; 53
References_xml – volume: 757
  start-page: 11
  year: 2012
  end-page: 18
  ident: bib15
  article-title: Reproducibility, complementary measure of predictability for robustness improvement of multivariate calibration models via variable selections
  publication-title: Analytica Chimica Acta
– volume: 26
  start-page: 355
  year: 2009
  end-page: 362
  ident: bib27
  article-title: Endotoxin and biogenic amine levels in Atlantic mackerel (
  publication-title: Food Additives & Contaminants: Part A
– volume: 1209
  start-page: 70
  year: 2008
  end-page: 75
  ident: bib24
  article-title: Development of an automated on-line pre-column derivatization procedure for sensitive determination of histamine in food with high-performance liquid chromatography–fluorescence detection
  publication-title: Journal of Chromatography A
– volume: 79
  start-page: 90
  year: 2016
  end-page: 94
  ident: bib25
  article-title: Fish product–borne histamine intoxication outbreak and survey of imported fish and fish products in Serbia
  publication-title: Journal of Food Protection
– volume: 58
  start-page: 9809
  year: 2010
  end-page: 9816
  ident: bib31
  article-title: Determination of amino acids in Chinese rice wine by Fourier transform near-infrared spectroscopy
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 22
  start-page: 15
  year: 2009
  end-page: 17
  ident: bib4
  article-title: Densitometric TLC analysis of histamine in fish and fishery products
  publication-title: Journal of Planar Chromatography – Modern TLC
– volume: 172
  start-page: 229
  year: 2018
  end-page: 240
  ident: bib41
  article-title: A selective review and comparison for interval variable selection in spectroscopic modeling
  publication-title: Chemometrics and Intelligent Laboratory Systems
– year: 2020
  ident: bib46
  article-title: Rapid and nondestructive freshness determination of Tilapia fillets by a portable near-infrared spectrometer combined with chemometrics methods
  publication-title: Food Analytical Methods
– volume: 8
  start-page: 334
  year: 2015
  end-page: 342
  ident: bib17
  article-title: Rapid determination of fat, protein and amino acid content in coix seed using near-infrared spectroscopy technique
  publication-title: Food Analytical Methods
– volume: 82
  start-page: 347
  year: 2003
  end-page: 352
  ident: bib30
  article-title: Changes in histamine and volatile amines in six commercially important species of fish of the Thoothukkudi coast of Tamil Nadu, India stored at ambient temperature
  publication-title: Food Chemistry
– volume: 220
  year: 2020
  ident: bib44
  article-title: Quantifying soluble sugar in super sweet corn using near-infrared spectroscopy combined with chemometrics
  publication-title: Optik
– volume: 39
  start-page: 1339
  year: 1973
  end-page: 1343
  ident: bib35
  article-title: Free amino acid composition of the skeletal muscle of migratory fish
  publication-title: Nippon Suisan Gakkaishi
– volume: 56
  start-page: 231
  year: 2010
  end-page: 243
  ident: bib11
  article-title: Scombroid poisoning: A review
  publication-title: Toxicon
– volume: 28
  start-page: 1547
  year: 2011
  end-page: 1560
  ident: bib26
  article-title: Biogenic amines in fish, fish products and shellfish: A review
  publication-title: Food Additives & Contaminants: Part A
– volume: 22
  start-page: 407
  year: 2012
  ident: bib47
  article-title: An effective and novel wavelet neural network approach in classifying type 2 diabetics
  publication-title: Neural Network World
– volume: 412
  start-page: 2795
  year: 2020
  end-page: 2804
  ident: bib33
  article-title: Rapid spectral analysis of agro-products using an optimal strategy: Dynamic backward interval PLS–competitive adaptive reweighted sampling. [Article]
  publication-title: Analytical and Bioanalytical Chemistry
– volume: 3
  start-page: 188
  year: 2012
  ident: bib40
  article-title: Biogenic amines in raw and processed seafood
  publication-title: Frontiers in Microbiology
– volume: 45
  start-page: 35
  year: 1983
  end-page: 39
  ident: bib38
  article-title: Isolation of histamine-producing bacteria from frozen tuna
  publication-title: Marine Fisheries Review
– volume: 8
  start-page: 2376
  year: 2015
  end-page: 2382
  ident: bib7
  article-title: A novel method for determination of histamine in tuna fish by ion mobility spectrometry
  publication-title: Food Analytical Methods
– year: 2012, 3-9-2012
  ident: bib42
  article-title: Flower pollination algorithm for global optimization
  publication-title: Paper presented at the international conference on unconventional computing and natural computation, Berlin, Heidelberg
– volume: 17
  start-page: 91
  year: 1986
  end-page: 128
  ident: bib37
  article-title: Histamine food poisoning: Toxicology and clinical aspects
  publication-title: CRC Critical Reviews in Toxicology
– volume: 86
  start-page: 23
  year: 2017
  end-page: 34
  ident: bib43
  article-title: Rapid determination of biogenic amines in cooked beef using hyperspectral imaging with sparse representation algorithm
  publication-title: Infrared Physics & Technology
– volume: 105
  start-page: 103188
  year: 2020
  ident: bib6
  article-title: Comparison of several variable selection methods for quantitative analysis and monitoring of the Yangxinshi tablet process using near-infrared spectroscopy
  publication-title: Infrared Physics & Technology
– volume: 31
  start-page: 577
  year: 2007
  end-page: 588
  ident: bib39
  article-title: Effect of storage temperature on histamine formation in
  publication-title: Journal of Food Biochemistry
– volume: 24
  start-page: 728
  year: 2010
  end-page: 737
  ident: bib3
  article-title: Variable selection in regression—a tutorial
  publication-title: Journal of Chemometrics
– volume: 53
  start-page: 217
  year: 1990
  end-page: 222
  ident: bib5
  article-title: Decomposition and histamine content in Mahimahi (
  publication-title: Journal of Food Protection
– volume: 39
  start-page: 4384
  year: 2016
  end-page: 4390
  ident: bib10
  article-title: Environmentally friendly solid‐phase microextraction coupled with gas chromatography and mass spectrometry for the determination of biogenic amines in fish samples
  publication-title: Journal of Separation Science
– volume: 211
  start-page: 694
  year: 2016
  end-page: 699
  ident: bib2
  article-title: European official control of food: Determination of histamine in fish products by a HPLC–UV-DAD method
  publication-title: Food Chemistry
– volume: 58
  start-page: 1
  year: 2000
  end-page: 37
  ident: bib16
  article-title: Histamine fish poisoning revisited
  publication-title: International Journal of Food Microbiology
– volume: 29
  start-page: 213
  year: 1996
  end-page: 231
  ident: bib28
  article-title: Biogenic amines: Their importance in foods
  publication-title: International Journal of Food Microbiology
– volume: 20
  start-page: 227
  year: 1969
  end-page: 234
  ident: bib36
  article-title: On the formation of histamine during loss of freshness and putrefaction of various marine products
  publication-title: Hokkaido Daigaku Suisan Gakubu Kenkyu Iho
– volume: 104
  start-page: 1369
  year: 2019
  end-page: 1379
  ident: bib22
  article-title: Tool condition monitoring in CNC end milling using wavelet neural network based on machine vision
  publication-title: International Journal of Advanced Manufacturing Technology
– volume: 31
  start-page: 211
  year: 2013
  end-page: 217
  ident: bib20
  article-title: Survey of histamine levels in fresh fish and fish products collected in Puglia (Italy) by ELISA and HPLC with fluorimetric detection
  publication-title: Food Control
– volume: 54
  start-page: 7703
  year: 2006
  end-page: 7709
  ident: bib8
  article-title: Near-infrared reflectance spectroscopy for predicting amino acids content in intact processed animal proteins
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 75
  start-page: 181
  year: 2017
  end-page: 186
  ident: bib21
  article-title: A rapid screening of histamine concentration in fish fillet by direct analysis in real time mass spectrometry (DART-MS)
  publication-title: Food Control
– volume: 8
  start-page: 28
  year: 2012
  end-page: 32
  ident: bib29
  article-title: Determination of histamine in human serum/plasma by SPE and HILIC LC-MS-MS
  publication-title: The Column
– volume: 16
  start-page: 236
  year: 2006
  end-page: 242
  ident: bib32
  article-title: The use of near infrared spectroscopy to predict selected free amino acids during cheese ripening
  publication-title: International Dairy Journal
– volume: 98
  start-page: 128
  year: 2018
  end-page: 142
  ident: bib23
  article-title: Literature update of analytical methods for biogenic amines determination in food and beverages
  publication-title: TRAC Trends in Analytical Chemistry
– volume: 1199
  start-page: 126942
  year: 2020
  ident: bib34
  article-title: Assessment of the human albumin in acid precipitation process using NIRS and multi-variable selection methods combined with SPA
  publication-title: Journal of Molecular Structure
– volume: 224
  start-page: 117376
  year: 2020
  ident: bib45
  article-title: Three-step hybrid strategy towards efficiently selecting variables in multivariate calibration of near-infrared spectra
  publication-title: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
– volume: 52
  start-page: 2533
  year: 2019
  end-page: 2557
  ident: bib1
  article-title: Flower pollination algorithm: A comprehensive review
  publication-title: Artificial Intelligence Review
– volume: 125
  start-page: 1490
  year: 2011
  end-page: 1497
  ident: bib13
  article-title: Commercial test kits and the determination of histamine in traditional (ethnic) fish products-evaluation against an EU accepted HPLC method
  publication-title: Food Chemistry
– volume: 28
  start-page: 61
  year: 2006
  end-page: 62
  ident: bib18
  article-title: Scombrotoxic fish poisoning
  publication-title: Journal of Public Health
– volume: 64
  start-page: 786
  year: 2010
  end-page: 794
  ident: bib49
  article-title: Genetic algorithm interval partial least squares regression combined successive projections algorithm for variable selection in near-infrared quantitative analysis of pigment in cucumber leaves
  publication-title: Applied Spectroscopy
– volume: 224
  start-page: 48
  year: 2017
  end-page: 54
  ident: bib12
  article-title: Determination of histamine in fish by Surface Enhanced Raman Spectroscopy using silver colloid SERS substrates
  publication-title: Food Chemistry
– volume: 34
  year: 2020
  ident: bib14
  article-title: Variable importance: Comparison of selectivity ratio and significance multivariate correlation for interpretation of latent-variable regression models
  publication-title: Journal of Chemometrics
– year: 2012
  ident: bib19
  publication-title: Method of test for histamine in foods
– volume: 3
  start-page: 889
  year: 1992
  end-page: 898
  ident: bib48
  article-title: Wavelet networks
  publication-title: IEEE Transactions on Neural Networks
– volume: 24
  start-page: 820
  year: 2007
  end-page: 832
  ident: bib9
  article-title: Changes in histamine and microbiological analyses in fresh and frozen tuna muscle during temperature abuse
  publication-title: Food Additives & Contaminants
– volume: 82
  start-page: 347
  issue: 3
  year: 2003
  ident: 10.1016/j.lwt.2021.111524_bib30
  article-title: Changes in histamine and volatile amines in six commercially important species of fish of the Thoothukkudi coast of Tamil Nadu, India stored at ambient temperature
  publication-title: Food Chemistry
  doi: 10.1016/S0308-8146(02)00552-6
– volume: 31
  start-page: 211
  issue: 1
  year: 2013
  ident: 10.1016/j.lwt.2021.111524_bib20
  article-title: Survey of histamine levels in fresh fish and fish products collected in Puglia (Italy) by ELISA and HPLC with fluorimetric detection
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2012.09.013
– volume: 1209
  start-page: 70
  issue: 1–2
  year: 2008
  ident: 10.1016/j.lwt.2021.111524_bib24
  article-title: Development of an automated on-line pre-column derivatization procedure for sensitive determination of histamine in food with high-performance liquid chromatography–fluorescence detection
  publication-title: Journal of Chromatography A
  doi: 10.1016/j.chroma.2008.09.028
– volume: 8
  start-page: 28
  issue: 22
  year: 2012
  ident: 10.1016/j.lwt.2021.111524_bib29
  article-title: Determination of histamine in human serum/plasma by SPE and HILIC LC-MS-MS
  publication-title: The Column
– volume: 220
  year: 2020
  ident: 10.1016/j.lwt.2021.111524_bib44
  article-title: Quantifying soluble sugar in super sweet corn using near-infrared spectroscopy combined with chemometrics
  publication-title: Optik
  doi: 10.1016/j.ijleo.2020.165128
– volume: 1199
  start-page: 126942
  year: 2020
  ident: 10.1016/j.lwt.2021.111524_bib34
  article-title: Assessment of the human albumin in acid precipitation process using NIRS and multi-variable selection methods combined with SPA
  publication-title: Journal of Molecular Structure
  doi: 10.1016/j.molstruc.2019.126942
– volume: 39
  start-page: 4384
  issue: 22
  year: 2016
  ident: 10.1016/j.lwt.2021.111524_bib10
  article-title: Environmentally friendly solid‐phase microextraction coupled with gas chromatography and mass spectrometry for the determination of biogenic amines in fish samples
  publication-title: Journal of Separation Science
  doi: 10.1002/jssc.201600893
– volume: 54
  start-page: 7703
  issue: 20
  year: 2006
  ident: 10.1016/j.lwt.2021.111524_bib8
  article-title: Near-infrared reflectance spectroscopy for predicting amino acids content in intact processed animal proteins
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf061727v
– volume: 26
  start-page: 355
  issue: 3
  year: 2009
  ident: 10.1016/j.lwt.2021.111524_bib27
  article-title: Endotoxin and biogenic amine levels in Atlantic mackerel (Scomber scombrus), sardine (Sardina pilchardus) and Mediterranean hake (Merluccius merluccius) stored at 22 °C
  publication-title: Food Additives & Contaminants: Part A
  doi: 10.1080/02652030802520878
– volume: 17
  start-page: 91
  issue: 2
  year: 1986
  ident: 10.1016/j.lwt.2021.111524_bib37
  article-title: Histamine food poisoning: Toxicology and clinical aspects
  publication-title: CRC Critical Reviews in Toxicology
  doi: 10.3109/10408448609023767
– volume: 104
  start-page: 1369
  issue: 1–4
  year: 2019
  ident: 10.1016/j.lwt.2021.111524_bib22
  article-title: Tool condition monitoring in CNC end milling using wavelet neural network based on machine vision
  publication-title: International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-019-04020-6
– year: 2012
  ident: 10.1016/j.lwt.2021.111524_bib42
  article-title: Flower pollination algorithm for global optimization
– volume: 22
  start-page: 407
  issue: 5
  year: 2012
  ident: 10.1016/j.lwt.2021.111524_bib47
  article-title: An effective and novel wavelet neural network approach in classifying type 2 diabetics
  publication-title: Neural Network World
  doi: 10.14311/NNW.2012.22.025
– year: 2020
  ident: 10.1016/j.lwt.2021.111524_bib46
  article-title: Rapid and nondestructive freshness determination of Tilapia fillets by a portable near-infrared spectrometer combined with chemometrics methods
  publication-title: Food Analytical Methods
  doi: 10.1007/s12161-020-01816-1
– volume: 64
  start-page: 786
  issue: 7
  year: 2010
  ident: 10.1016/j.lwt.2021.111524_bib49
  article-title: Genetic algorithm interval partial least squares regression combined successive projections algorithm for variable selection in near-infrared quantitative analysis of pigment in cucumber leaves
  publication-title: Applied Spectroscopy
  doi: 10.1366/000370210791666246
– year: 2012
  ident: 10.1016/j.lwt.2021.111524_bib19
– volume: 224
  start-page: 117376
  year: 2020
  ident: 10.1016/j.lwt.2021.111524_bib45
  article-title: Three-step hybrid strategy towards efficiently selecting variables in multivariate calibration of near-infrared spectra
  publication-title: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
  doi: 10.1016/j.saa.2019.117376
– volume: 125
  start-page: 1490
  issue: 4
  year: 2011
  ident: 10.1016/j.lwt.2021.111524_bib13
  article-title: Commercial test kits and the determination of histamine in traditional (ethnic) fish products-evaluation against an EU accepted HPLC method
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2010.10.069
– volume: 39
  start-page: 1339
  year: 1973
  ident: 10.1016/j.lwt.2021.111524_bib35
  article-title: Free amino acid composition of the skeletal muscle of migratory fish
  publication-title: Nippon Suisan Gakkaishi
  doi: 10.2331/suisan.39.1339
– volume: 28
  start-page: 61
  issue: 1
  year: 2006
  ident: 10.1016/j.lwt.2021.111524_bib18
  article-title: Scombrotoxic fish poisoning
  publication-title: Journal of Public Health
  doi: 10.1093/pubmed/fdi063
– volume: 24
  start-page: 728
  issue: 11‐12
  year: 2010
  ident: 10.1016/j.lwt.2021.111524_bib3
  article-title: Variable selection in regression—a tutorial
  publication-title: Journal of Chemometrics
  doi: 10.1002/cem.1360
– volume: 86
  start-page: 23
  year: 2017
  ident: 10.1016/j.lwt.2021.111524_bib43
  article-title: Rapid determination of biogenic amines in cooked beef using hyperspectral imaging with sparse representation algorithm
  publication-title: Infrared Physics & Technology
  doi: 10.1016/j.infrared.2017.08.013
– volume: 52
  start-page: 2533
  issue: 4
  year: 2019
  ident: 10.1016/j.lwt.2021.111524_bib1
  article-title: Flower pollination algorithm: A comprehensive review
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-018-9624-4
– volume: 56
  start-page: 231
  issue: 2
  year: 2010
  ident: 10.1016/j.lwt.2021.111524_bib11
  article-title: Scombroid poisoning: A review
  publication-title: Toxicon
  doi: 10.1016/j.toxicon.2010.02.006
– volume: 75
  start-page: 181
  year: 2017
  ident: 10.1016/j.lwt.2021.111524_bib21
  article-title: A rapid screening of histamine concentration in fish fillet by direct analysis in real time mass spectrometry (DART-MS)
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2016.12.001
– volume: 79
  start-page: 90
  issue: 1
  year: 2016
  ident: 10.1016/j.lwt.2021.111524_bib25
  article-title: Fish product–borne histamine intoxication outbreak and survey of imported fish and fish products in Serbia
  publication-title: Journal of Food Protection
  doi: 10.4315/0362-028X.JFP-15-190
– volume: 16
  start-page: 236
  issue: 3
  year: 2006
  ident: 10.1016/j.lwt.2021.111524_bib32
  article-title: The use of near infrared spectroscopy to predict selected free amino acids during cheese ripening
  publication-title: International Dairy Journal
  doi: 10.1016/j.idairyj.2005.03.008
– volume: 105
  start-page: 103188
  year: 2020
  ident: 10.1016/j.lwt.2021.111524_bib6
  article-title: Comparison of several variable selection methods for quantitative analysis and monitoring of the Yangxinshi tablet process using near-infrared spectroscopy
  publication-title: Infrared Physics & Technology
  doi: 10.1016/j.infrared.2020.103188
– volume: 98
  start-page: 128
  year: 2018
  ident: 10.1016/j.lwt.2021.111524_bib23
  article-title: Literature update of analytical methods for biogenic amines determination in food and beverages
  publication-title: TRAC Trends in Analytical Chemistry
  doi: 10.1016/j.trac.2017.11.001
– volume: 45
  start-page: 35
  issue: 4–6
  year: 1983
  ident: 10.1016/j.lwt.2021.111524_bib38
  article-title: Isolation of histamine-producing bacteria from frozen tuna
  publication-title: Marine Fisheries Review
– volume: 20
  start-page: 227
  year: 1969
  ident: 10.1016/j.lwt.2021.111524_bib36
  article-title: On the formation of histamine during loss of freshness and putrefaction of various marine products
  publication-title: Hokkaido Daigaku Suisan Gakubu Kenkyu Iho
– volume: 34
  issue: 4
  year: 2020
  ident: 10.1016/j.lwt.2021.111524_bib14
  article-title: Variable importance: Comparison of selectivity ratio and significance multivariate correlation for interpretation of latent-variable regression models
  publication-title: Journal of Chemometrics
  doi: 10.1002/cem.3211
– volume: 224
  start-page: 48
  year: 2017
  ident: 10.1016/j.lwt.2021.111524_bib12
  article-title: Determination of histamine in fish by Surface Enhanced Raman Spectroscopy using silver colloid SERS substrates
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2016.12.032
– volume: 757
  start-page: 11
  year: 2012
  ident: 10.1016/j.lwt.2021.111524_bib15
  article-title: Reproducibility, complementary measure of predictability for robustness improvement of multivariate calibration models via variable selections
  publication-title: Analytica Chimica Acta
  doi: 10.1016/j.aca.2012.10.025
– volume: 29
  start-page: 213
  issue: 2–3
  year: 1996
  ident: 10.1016/j.lwt.2021.111524_bib28
  article-title: Biogenic amines: Their importance in foods
  publication-title: International Journal of Food Microbiology
  doi: 10.1016/0168-1605(95)00032-1
– volume: 24
  start-page: 820
  issue: 8
  year: 2007
  ident: 10.1016/j.lwt.2021.111524_bib9
  article-title: Changes in histamine and microbiological analyses in fresh and frozen tuna muscle during temperature abuse
  publication-title: Food Additives & Contaminants
  doi: 10.1080/02652030701278321
– volume: 53
  start-page: 217
  issue: 3
  year: 1990
  ident: 10.1016/j.lwt.2021.111524_bib5
  article-title: Decomposition and histamine content in Mahimahi (Coryphaena hippurus)
  publication-title: Journal of Food Protection
  doi: 10.4315/0362-028X-53.3.217
– volume: 31
  start-page: 577
  issue: 5
  year: 2007
  ident: 10.1016/j.lwt.2021.111524_bib39
  article-title: Effect of storage temperature on histamine formation in Sardina pilchardus and Engraulis encrasicolus after catch
  publication-title: Journal of Food Biochemistry
  doi: 10.1111/j.1745-4514.2007.00131.x
– volume: 211
  start-page: 694
  year: 2016
  ident: 10.1016/j.lwt.2021.111524_bib2
  article-title: European official control of food: Determination of histamine in fish products by a HPLC–UV-DAD method
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2016.05.111
– volume: 3
  start-page: 188
  year: 2012
  ident: 10.1016/j.lwt.2021.111524_bib40
  article-title: Biogenic amines in raw and processed seafood
  publication-title: Frontiers in Microbiology
  doi: 10.3389/fmicb.2012.00188
– volume: 172
  start-page: 229
  year: 2018
  ident: 10.1016/j.lwt.2021.111524_bib41
  article-title: A selective review and comparison for interval variable selection in spectroscopic modeling
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2017.11.008
– volume: 22
  start-page: 15
  issue: 1
  year: 2009
  ident: 10.1016/j.lwt.2021.111524_bib4
  article-title: Densitometric TLC analysis of histamine in fish and fishery products
  publication-title: Journal of Planar Chromatography – Modern TLC
  doi: 10.1556/JPC.22.2009.1.3
– volume: 58
  start-page: 9809
  issue: 17
  year: 2010
  ident: 10.1016/j.lwt.2021.111524_bib31
  article-title: Determination of amino acids in Chinese rice wine by Fourier transform near-infrared spectroscopy
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf1017912
– volume: 28
  start-page: 1547
  issue: 11
  year: 2011
  ident: 10.1016/j.lwt.2021.111524_bib26
  article-title: Biogenic amines in fish, fish products and shellfish: A review
  publication-title: Food Additives & Contaminants: Part A
  doi: 10.1080/19440049.2011.600728
– volume: 3
  start-page: 889
  issue: 6
  year: 1992
  ident: 10.1016/j.lwt.2021.111524_bib48
  article-title: Wavelet networks
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.165591
– volume: 8
  start-page: 334
  issue: 2
  year: 2015
  ident: 10.1016/j.lwt.2021.111524_bib17
  article-title: Rapid determination of fat, protein and amino acid content in coix seed using near-infrared spectroscopy technique
  publication-title: Food Analytical Methods
  doi: 10.1007/s12161-014-9897-4
– volume: 412
  start-page: 2795
  issue: 12
  year: 2020
  ident: 10.1016/j.lwt.2021.111524_bib33
  article-title: Rapid spectral analysis of agro-products using an optimal strategy: Dynamic backward interval PLS–competitive adaptive reweighted sampling. [Article]
  publication-title: Analytical and Bioanalytical Chemistry
  doi: 10.1007/s00216-020-02506-x
– volume: 58
  start-page: 1
  issue: 1–2
  year: 2000
  ident: 10.1016/j.lwt.2021.111524_bib16
  article-title: Histamine fish poisoning revisited
  publication-title: International Journal of Food Microbiology
  doi: 10.1016/S0168-1605(00)00296-8
– volume: 8
  start-page: 2376
  issue: 9
  year: 2015
  ident: 10.1016/j.lwt.2021.111524_bib7
  article-title: A novel method for determination of histamine in tuna fish by ion mobility spectrometry
  publication-title: Food Analytical Methods
  doi: 10.1007/s12161-015-0129-3
SSID ssj0000428
Score 2.4073238
Snippet Determination of the histamine level in fish is essential not only because it is an indicator of fish freshness but also because this prevents the risk of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 111524
SubjectTerms algorithms
Artificial neural networks
Backward interval partial least squares
data collection
Flower pollination algorithm
freshness
histamine
mackerel
near-infrared spectroscopy
Partial least squares
poisoning
prediction
risk
Scomber australasicus
Selectivity ratio
wavelet
Title Intelligent assessment of the histamine level in mackerel (Scomber australasicus) using near-infrared spectroscopy coupled with a hybrid variable selection strategy
URI https://dx.doi.org/10.1016/j.lwt.2021.111524
https://www.proquest.com/docview/2986596445
Volume 145
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcgAOFRQQpaUaJA6AZJr1a-1jVVFtQeoFKvVmOY4Di7bJarPbai_8Gn5oZ_JYHhI9cEssJ4o84_FM_H2fGXutdLBOjCK3Raa5wm6caAi8kCNTOFdobCK0xbmZXKiPl_pyi50MXBiCVfaxv4vpbbTuW4760TyaT6fE8SXxc2mxaCEZNKrblRqTl7__8QvmQTVBB_OQnHoPO5stxmt2Q3BKMaLAoYX619r0V5Rul57TR2ynzxnhuPusx2wrVbvs_kApbnbZw99UBZ-wn2cbmc0lhI3yJtQlYLYHpDAcrrA7zAgwBNMKrgKBK_D6zWcchzwtIGwolnHVvAVCx3-FCmcFR49cEGgdWo4maWHW8zXEejWfYSP91oUA39ZEBINrLMSJmgVNe9oOugA0nRru-im7OP3w5WTC-8MYeJQyW3KXGRtGLoxNECJgaRtdloI1QdporUx5SEGoWAYnjAxZrqzAoj266GxZYtyQz9h2VVfpOQNV5OgfTqUsL5UsXI5pxtjoUqdorLNqj2WDGXzslcrpwIyZHyBp3z1azpPlfGe5PfZu88i8k-m4q7MabOv_8DWPy8hdj70a_MDjHKSNlVCletV44azRDjNL_eL_Xr3PHtBdB0E7YNvLxSq9xGRnmR-23nzI7h2ffZqc3wLNNAGj
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaq7aFwQFBAlFcHiQMgWc36kdrHqqLapWUvtFJvluM4dNE2WW12Qft_-KHM5LGUSu2BW-TYUeSZjGfi7_vM2HulvbFiGLjJE80VduNEQ-C5HKa5tbnGJkJbTNLRhfpyqS-32HHPhSFYZRf725jeROuu5aCbzYP5dEocXxI_lwaLFpJBw7p9m9Sp9IBtH41PR5O_AVmJNiALyWlAv7nZwLxmvwhRKYYUO7RQdy1PtwJ1s_qcPGaPurQRjto3e8K2YrnLdnpWcb3LHt4QFnzKfo83SptL8BvxTagKwIQPSGTYX2N3mBFmCKYlXHvCV-D1h284FVlcgN-wLMOq_ggEkP8OJX4YHJ1yQbh1aGiaJIdZzdcQqtV8ho30Zxc8XK2JCwY_sRYndhbUzYE76AVQt4K462fs4uTz-fGId-cx8CBlsuQ2SY0fWn-YeiE8VrfBJtGb1EsTjJEx89ELFQpvRSp9kikjsG4PNlhTFBg65HM2KKsyvmCg8gxdxKqYZIWSuc0w0zhMdaFjSI01ao8lvRlc6MTK6cyMmetRaT8cWs6R5VxruT32aTNk3ip13NdZ9bZ1_7ibw5XkvmHvej9w-BnS3oovY7WqnbAm1RaTS_3y_x69z3ZG51_P3Nl4cvqKPaA7LSLtNRssF6v4BnOfZfa28-0_k2kEVA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+assessment+of+the+histamine+level+in+mackerel+%28Scomber+australasicus%29+using+near-infrared+spectroscopy+coupled+with+a+hybrid+variable+selection+strategy&rft.jtitle=Food+science+%26+technology&rft.au=Pauline%2C+Ong&rft.au=Chang%2C+Hsin-Tze&rft.au=Tsai%2C+I-Lin&rft.au=Lin%2C+Che-Hsuan&rft.date=2021-06-01&rft.issn=0023-6438&rft.volume=145+p.111524-&rft_id=info:doi/10.1016%2Fj.lwt.2021.111524&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0023-6438&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0023-6438&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0023-6438&client=summon