A nonlocal connection between certain linear and nonlinear ordinary differential equations – Part II: Complex nonlinear oscillators

•We identified a class of integrable nonlinear complex ODEs.•Two types of nonlocal transformations which connect the nonlinear complex ODE with linear ODE are presented.•General solution of a class of nonlinear complex ODEs are given. In this paper, we present a method to identify integrable complex...

Full description

Saved in:
Bibliographic Details
Published inApplied mathematics and computation Vol. 224; pp. 593 - 602
Main Authors Mohanasubha, R., Sheeba, Jane H., Chandrasekar, V.K., Senthilvelan, M., Lakshmanan, M.
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.11.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We identified a class of integrable nonlinear complex ODEs.•Two types of nonlocal transformations which connect the nonlinear complex ODE with linear ODE are presented.•General solution of a class of nonlinear complex ODEs are given. In this paper, we present a method to identify integrable complex nonlinear oscillator systems and construct their solutions. For this purpose, we introduce two types of nonlocal transformations which relate specific classes of nonlinear complex ordinary differential equations (ODEs) with complex linear ODEs, thereby proving the integrability of the former. We also show how to construct the solutions using the two types of nonlocal transformations with several physically interesting cases as examples.
AbstractList •We identified a class of integrable nonlinear complex ODEs.•Two types of nonlocal transformations which connect the nonlinear complex ODE with linear ODE are presented.•General solution of a class of nonlinear complex ODEs are given. In this paper, we present a method to identify integrable complex nonlinear oscillator systems and construct their solutions. For this purpose, we introduce two types of nonlocal transformations which relate specific classes of nonlinear complex ordinary differential equations (ODEs) with complex linear ODEs, thereby proving the integrability of the former. We also show how to construct the solutions using the two types of nonlocal transformations with several physically interesting cases as examples.
In this paper, we present a method to identify integrable complex nonlinear oscillator systems and construct their solutions. For this purpose, we introduce two types of nonlocal transformations which relate specific classes of nonlinear complex ordinary differential equations (ODEs) with complex linear ODEs, thereby proving the integrability of the former. We also show how to construct the solutions using the two types of nonlocal transformations with several physically interesting cases as examples.
Author Chandrasekar, V.K.
Mohanasubha, R.
Lakshmanan, M.
Senthilvelan, M.
Sheeba, Jane H.
Author_xml – sequence: 1
  givenname: R.
  surname: Mohanasubha
  fullname: Mohanasubha, R.
– sequence: 2
  givenname: Jane H.
  surname: Sheeba
  fullname: Sheeba, Jane H.
– sequence: 3
  givenname: V.K.
  surname: Chandrasekar
  fullname: Chandrasekar, V.K.
– sequence: 4
  givenname: M.
  surname: Senthilvelan
  fullname: Senthilvelan, M.
  email: velan@cnld.bdu.ac.in
– sequence: 5
  givenname: M.
  surname: Lakshmanan
  fullname: Lakshmanan, M.
BookMark eNp9UMtKAzEUDVLBtvoB7rJ0M_VmksxDV1J8FARd6DpkMncgZZrUZOpj58Yv8A_9ElPrwpVw4HLhnMM5Z0JGzjsk5JjBjAErTpczvTKzHBifQZUg9siYVSXPZCHqERkD1EXGAfgBmcS4BICyYGJMPi5ocuq90T013jk0g_WONji8IDpqMAzaOtpbhzpQ7dof-u7zobVOhzfa2q7DgG6wyQWfNnrrEenX-ye912Ggi8UZnfvVusfXv_JobN_rwYd4SPY73Uc8-r1T8nh1-TC_yW7vrhfzi9vMcA5DVkkupWB1Sl_UrGwRdNNUrOOya01VYWOaMhdY5ihyrmWLhnd5VXOBugDJDZ-Sk53vOvinDcZBrWw0mFI49JuomGRc5FIWkKhsRzXBxxiwU-tgV6mtYqC2k6ulSpOr7eQKqgSRNOc7DaYOzxaDShXRGWxtSMOq1tt_1N9D745i
CitedBy_id crossref_primary_10_1007_s12346_016_0187_y
Cites_doi 10.1103/PhysRevLett.18.510
10.1080/16073606.1989.9632170
10.1103/PhysRevE.72.066203
10.1088/0305-4470/39/31/006
10.1016/j.physleta.2012.04.058
10.1103/PhysRevLett.50.870
10.2991/jnmp.2004.11.3.9
10.1103/PhysRevA.41.4166
10.1143/JPSJ.44.1730
10.1007/BF02969405
10.1088/0305-4470/30/21/017
10.1063/1.526766
10.1098/rspa.2005.1465
10.1112/jlms/s1-36.1.33
10.1088/0034-4885/70/6/R03
10.1063/1.1664532
10.1111/1467-9590.00134
10.1098/rspa.2005.1648
10.1088/0305-4470/39/3/L01
10.1103/PhysRevA.30.2788
10.1088/0305-4470/26/19/030
10.1007/BF02393131
10.1063/1.2171520
10.1088/0951-7715/12/4/311
10.1080/16073606.1985.9631915
10.2991/jnmp.2002.9.3.4
10.1088/1751-8113/45/38/382002
ContentType Journal Article
Copyright 2013 Elsevier Inc.
Copyright_xml – notice: 2013 Elsevier Inc.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.amc.2013.08.084
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-5649
EndPage 602
ExternalDocumentID 10_1016_j_amc_2013_08_084
S0096300313009521
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABAOU
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SME
SPC
SPCBC
SSW
SSZ
T5K
TN5
WH7
X6Y
XPP
ZMT
~02
~G-
AAQXK
AAXKI
AAYXX
ABEFU
ADIYS
ADMUD
AFFNX
AFJKZ
AI.
AKRWK
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HMJ
HVGLF
HZ~
R2-
SEW
TAE
VH1
VOH
WUQ
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c330t-853554190006917de0abb81f35fdc88ebcb724e72e423a5dec3f28934ea6053c3
IEDL.DBID AIKHN
ISSN 0096-3003
IngestDate Thu Oct 24 23:39:33 EDT 2024
Thu Sep 26 19:14:21 EDT 2024
Fri Feb 23 02:27:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Complex nonlinear oscillators
Nonlocal transformation
Linearization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c330t-853554190006917de0abb81f35fdc88ebcb724e72e423a5dec3f28934ea6053c3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1513425560
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_1513425560
crossref_primary_10_1016_j_amc_2013_08_084
elsevier_sciencedirect_doi_10_1016_j_amc_2013_08_084
PublicationCentury 2000
PublicationDate 2013-11-01
PublicationDateYYYYMMDD 2013-11-01
PublicationDate_xml – month: 11
  year: 2013
  text: 2013-11-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied mathematics and computation
PublicationYear 2013
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Lemmer, Leach (b0090) 1993; 26
Lakshmanan, Rajasekar (b0040) 2003
Cosgrove (b0155) 2000; 104
Chandrasekar, Senthilvelan, Kundu, Lakshmanan (b0005) 2006; 39
Pikovsky, Rosenblum, Kurths (b0025) 2001
Chithiika Ruby, Senthilvelan, Lakshmanan (b0180) 2012; 45
Mahomed, Leach (b0075) 1989; 12
Ince (b0065) 1956
Chandrasekar, Senthilvelan, Lakshmanan (b0105) 2006; 39
Bender (b0030) 2007; 70
Mahomed, Leach (b0070) 1985; 8
Halburd (b0150) 1999; 12
C.M. Bender, D.W. Hook, S.P. Klevansky, Negative energy PT-symmetric Hamiltonians, arXiv
Feix, Geronimi, Cairo, Leach, Lemmer, Bouquet (b0095) 1997; 30
Euler, Euler (b0165) 2004; 11
Bluman, Kumei (b0045) 1989
Dixon, Tuszynski (b0100) 1990; 41
Chazy (b0145) 1911; 34
Mugan, Jrad (b0160) 2002; 9
Leach (b0080) 1985; 26
Jr (b0135) 1967; 18
Smith (b0110) 1961; 36
M. Euler, N. Euler, P.G.L. Leach, The Riccati and Ermakov-Pinney hierarchies, Report No. 08, Institut Mittag-Leffler, Sweden, 2005/2006.
Pinney (b0130) 1950; 1
Chandrasekar, Sheeba, Gladwin Pradeep, Divyasree, Lakshmanan (b0015) 2012; 376
Chandrasekar, Senthilvelan, Lakshmanan (b0050) 2005; 461
Kuramoto (b0020) 1984
Chandrasekar, Pandey, Senthilvelan, Lakshmanan (b0060) 2006; 47
Sawada, Osawa (b0115) 1978; 4
Christopher, Llibre (b0055) 1999; 1
Jr (b0140) 1968; 9
Gonzalez, Piro (b0125) 1984; 30
2012.
Chandrasekar, Senthilvelan, Lakshmanan (b0175) 2006; 462
Gonzalez, Piro (b0120) 1983; 50
Chandrasekar, Senthilvelan, Lakshmanan (b0010) 2005; 72
Leach, Feix, Bouquet (b0085) 1988; 29
Gonzalez (10.1016/j.amc.2013.08.084_b0120) 1983; 50
Bluman (10.1016/j.amc.2013.08.084_b0045) 1989
Feix (10.1016/j.amc.2013.08.084_b0095) 1997; 30
Gonzalez (10.1016/j.amc.2013.08.084_b0125) 1984; 30
Ince (10.1016/j.amc.2013.08.084_b0065) 1956
Bender (10.1016/j.amc.2013.08.084_b0030) 2007; 70
Kuramoto (10.1016/j.amc.2013.08.084_b0020) 1984
Chandrasekar (10.1016/j.amc.2013.08.084_b0005) 2006; 39
Chandrasekar (10.1016/j.amc.2013.08.084_b0060) 2006; 47
Chandrasekar (10.1016/j.amc.2013.08.084_b0175) 2006; 462
Chandrasekar (10.1016/j.amc.2013.08.084_b0105) 2006; 39
10.1016/j.amc.2013.08.084_b0035
Smith (10.1016/j.amc.2013.08.084_b0110) 1961; 36
Chandrasekar (10.1016/j.amc.2013.08.084_b0050) 2005; 461
Chandrasekar (10.1016/j.amc.2013.08.084_b0010) 2005; 72
Leach (10.1016/j.amc.2013.08.084_b0080) 1985; 26
Dixon (10.1016/j.amc.2013.08.084_b0100) 1990; 41
Pikovsky (10.1016/j.amc.2013.08.084_b0025) 2001
Jr (10.1016/j.amc.2013.08.084_b0140) 1968; 9
Halburd (10.1016/j.amc.2013.08.084_b0150) 1999; 12
Lemmer (10.1016/j.amc.2013.08.084_b0090) 1993; 26
Leach (10.1016/j.amc.2013.08.084_b0085) 1988; 29
Lakshmanan (10.1016/j.amc.2013.08.084_b0040) 2003
Pinney (10.1016/j.amc.2013.08.084_b0130) 1950; 1
10.1016/j.amc.2013.08.084_b0170
Chithiika Ruby (10.1016/j.amc.2013.08.084_b0180) 2012; 45
Jr (10.1016/j.amc.2013.08.084_b0135) 1967; 18
Sawada (10.1016/j.amc.2013.08.084_b0115) 1978; 4
Mahomed (10.1016/j.amc.2013.08.084_b0075) 1989; 12
Christopher (10.1016/j.amc.2013.08.084_b0055) 1999; 1
Chandrasekar (10.1016/j.amc.2013.08.084_b0015) 2012; 376
Chazy (10.1016/j.amc.2013.08.084_b0145) 1911; 34
Euler (10.1016/j.amc.2013.08.084_b0165) 2004; 11
Cosgrove (10.1016/j.amc.2013.08.084_b0155) 2000; 104
Mahomed (10.1016/j.amc.2013.08.084_b0070) 1985; 8
Mugan (10.1016/j.amc.2013.08.084_b0160) 2002; 9
References_xml – year: 1984
  ident: b0020
  article-title: Chemical Oscillations, Waves and Turbulence
  contributor:
    fullname: Kuramoto
– volume: 12
  start-page: 121
  year: 1989
  end-page: 139
  ident: b0075
  article-title: The Lie algebra sl
  publication-title: Quaestiones Math.
  contributor:
    fullname: Leach
– year: 1956
  ident: b0065
  article-title: Ordinary Differential Equations
  contributor:
    fullname: Ince
– volume: 11
  start-page: 399
  year: 2004
  end-page: 421
  ident: b0165
  article-title: Sundman symmetries of nonlinear second-order and third-order ordinary differential equations
  publication-title: J. Nonlinear Math. Phys.
  contributor:
    fullname: Euler
– year: 2003
  ident: b0040
  article-title: Nonlinear Dynamics
  contributor:
    fullname: Rajasekar
– volume: 18
  start-page: 510
  year: 1967
  end-page: 512
  ident: b0135
  article-title: Lewis, Classical and quantum Systems with time-dependent harmonic-oscillator-type Hamiltonians
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Jr
– volume: 39
  start-page: 9743
  year: 2006
  end-page: 9754
  ident: b0005
  article-title: A nonlocal connection between certain linear and nonlinear differential equations/oscillators
  publication-title: J. Phys. A: Math. Gen.
  contributor:
    fullname: Lakshmanan
– year: 2001
  ident: b0025
  article-title: Synchronization – A Universal Concept in Nonlinear Sciences
  contributor:
    fullname: Kurths
– volume: 8
  start-page: 241
  year: 1985
  end-page: 274
  ident: b0070
  article-title: The linear symmetries of a nonlinear differential equation
  publication-title: Quaestiones Math.
  contributor:
    fullname: Leach
– volume: 461
  start-page: 2451
  year: 2005
  end-page: 2477
  ident: b0050
  article-title: On the complete integrability and linearization of certain second-order nonlinear ordinary differential equations
  publication-title: Proc. R. Soc. London A
  contributor:
    fullname: Lakshmanan
– volume: 50
  start-page: 870
  year: 1983
  end-page: 872
  ident: b0120
  article-title: Chaos in a nonlinear driven oscillator with exact solution
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Piro
– volume: 1
  start-page: 681
  year: 1950
  ident: b0130
  article-title: The nonlinear differential equation
  publication-title: Proc. Am. Math. Soc.
  contributor:
    fullname: Pinney
– volume: 26
  start-page: 5017
  year: 1993
  end-page: 5024
  ident: b0090
  article-title: The Painlevé test, hidden symmetries and the equation
  publication-title: J. Phys. A: Math. Gen.
  contributor:
    fullname: Leach
– volume: 462
  start-page: 1831
  year: 2006
  end-page: 1852
  ident: b0175
  article-title: On the complete integrability and linearization of nonlinear ordinary differential equations. II. Third-order equations
  publication-title: Proc. R. Soc. London A
  contributor:
    fullname: Lakshmanan
– volume: 36
  start-page: 33
  year: 1961
  end-page: 34
  ident: b0110
  article-title: A simple non-linear oscillation
  publication-title: J. London Math. Soc.
  contributor:
    fullname: Smith
– year: 1989
  ident: b0045
  article-title: Symmetries and Differential Equations
  contributor:
    fullname: Kumei
– volume: 34
  start-page: 317
  year: 1911
  end-page: 385
  ident: b0145
  article-title: Sur les équations différentielles du troisiéme ordre et d’ordre supérieur dont l’intégrale générale a ses points critiques fixes
  publication-title: Acta Math.
  contributor:
    fullname: Chazy
– volume: 12
  start-page: 931
  year: 1999
  end-page: 938
  ident: b0150
  article-title: Integrable relativistic models and the generalized Chazy equation
  publication-title: Nonlinearity
  contributor:
    fullname: Halburd
– volume: 41
  start-page: 4166
  year: 1990
  end-page: 4173
  ident: b0100
  article-title: Solutions of a generalized Emden equation and their physical significance
  publication-title: Phys. Rev. A
  contributor:
    fullname: Tuszynski
– volume: 376
  start-page: 2188
  year: 2012
  end-page: 2194
  ident: b0015
  article-title: A class of solvable coupled nonlinear oscillators with amplitude independent frequencies
  publication-title: Phys. Lett. A
  contributor:
    fullname: Lakshmanan
– volume: 47
  start-page: 023508
  year: 2006
  ident: b0060
  article-title: A simple and unified approach to identify integrable nonlinear oscillators and systems
  publication-title: J. Math. Phys.
  contributor:
    fullname: Lakshmanan
– volume: 4
  start-page: 1730
  year: 1978
  end-page: 1732
  ident: b0115
  article-title: On exactly soluble nonlinear ordinary differential equations of the Liénard type
  publication-title: J. Phys. Soc. Japan
  contributor:
    fullname: Osawa
– volume: 45
  start-page: 382002
  year: 2012
  ident: b0180
  article-title: Exact quantization of a PT-symmetric (reversible) Liénard-type nonlinear oscillator
  publication-title: J. Phys. A
  contributor:
    fullname: Lakshmanan
– volume: 9
  start-page: 1976
  year: 1968
  ident: b0140
  article-title: Lewis, Class of exact invariants for classical and quantum timedependent harmonic oscillators
  publication-title: J. Math. Phys.
  contributor:
    fullname: Jr
– volume: 104
  start-page: 171
  year: 2000
  ident: b0155
  article-title: Chazy classes IXXI of third-order differential equations
  publication-title: Stud. Appl. Math.
  contributor:
    fullname: Cosgrove
– volume: 9
  start-page: 282
  year: 2002
  end-page: 310
  ident: b0160
  article-title: Painlevé test and higher order differential equations
  publication-title: J. Nonlinear Math. Phys.
  contributor:
    fullname: Jrad
– volume: 26
  start-page: 2510
  year: 1985
  ident: b0080
  article-title: First integrals for the modified Emden equation
  publication-title: J. Math. Phys.
  contributor:
    fullname: Leach
– volume: 29
  start-page: 2563
  year: 1988
  end-page: 2569
  ident: b0085
  article-title: Analysis and solution of a nonlinear second-order equation through rescaling and through a dynamical point of view
  publication-title: J. Phys. A: Math. Gen.
  contributor:
    fullname: Bouquet
– volume: 39
  start-page: L69
  year: 2006
  ident: b0105
  article-title: A unification in the theory of linearization of second-order nonlinear ordinary differential equations
  publication-title: J. Phys. A: Math. Gen.
  contributor:
    fullname: Lakshmanan
– volume: 72
  start-page: 066203
  year: 2005
  ident: b0010
  article-title: Unusual Liénard-type nonlinear oscillator
  publication-title: Phys. Rev. E
  contributor:
    fullname: Lakshmanan
– volume: 70
  start-page: 947
  year: 2007
  end-page: 1018
  ident: b0030
  article-title: Making sense of non-Hermitian Hamiltonians
  publication-title: Rep. Prog. Phys.
  contributor:
    fullname: Bender
– volume: 30
  start-page: 7437
  year: 1997
  end-page: 7461
  ident: b0095
  article-title: On the singularity analysis of ordinary differential equation invariant under time translation and rescaling
  publication-title: J. Phys. A: Math. Gen.
  contributor:
    fullname: Bouquet
– volume: 1
  start-page: 71
  year: 1999
  end-page: 95
  ident: b0055
  article-title: Algebraic aspects of integrability for polynomial systems
  publication-title: Qual. Theory Dyn. Syst.
  contributor:
    fullname: Llibre
– volume: 30
  start-page: 2788
  year: 1984
  end-page: 2790
  ident: b0125
  article-title: Disappearance of chaos and integrability in an externally modulated nonlinear oscillator
  publication-title: Phys. Rev. A
  contributor:
    fullname: Piro
– volume: 1
  start-page: 681
  year: 1950
  ident: 10.1016/j.amc.2013.08.084_b0130
  article-title: The nonlinear differential equation y¨+p(x)y+cy-3
  publication-title: Proc. Am. Math. Soc.
  contributor:
    fullname: Pinney
– volume: 18
  start-page: 510
  year: 1967
  ident: 10.1016/j.amc.2013.08.084_b0135
  article-title: Lewis, Classical and quantum Systems with time-dependent harmonic-oscillator-type Hamiltonians
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.18.510
  contributor:
    fullname: Jr
– volume: 12
  start-page: 121
  year: 1989
  ident: 10.1016/j.amc.2013.08.084_b0075
  article-title: The Lie algebra sl(3,R) and linearization
  publication-title: Quaestiones Math.
  doi: 10.1080/16073606.1989.9632170
  contributor:
    fullname: Mahomed
– volume: 72
  start-page: 066203
  year: 2005
  ident: 10.1016/j.amc.2013.08.084_b0010
  article-title: Unusual Liénard-type nonlinear oscillator
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.72.066203
  contributor:
    fullname: Chandrasekar
– volume: 29
  start-page: 2563
  year: 1988
  ident: 10.1016/j.amc.2013.08.084_b0085
  article-title: Analysis and solution of a nonlinear second-order equation through rescaling and through a dynamical point of view
  publication-title: J. Phys. A: Math. Gen.
  contributor:
    fullname: Leach
– volume: 39
  start-page: 9743
  year: 2006
  ident: 10.1016/j.amc.2013.08.084_b0005
  article-title: A nonlocal connection between certain linear and nonlinear differential equations/oscillators
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/39/31/006
  contributor:
    fullname: Chandrasekar
– volume: 376
  start-page: 2188
  year: 2012
  ident: 10.1016/j.amc.2013.08.084_b0015
  article-title: A class of solvable coupled nonlinear oscillators with amplitude independent frequencies
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2012.04.058
  contributor:
    fullname: Chandrasekar
– volume: 50
  start-page: 870
  year: 1983
  ident: 10.1016/j.amc.2013.08.084_b0120
  article-title: Chaos in a nonlinear driven oscillator with exact solution
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.50.870
  contributor:
    fullname: Gonzalez
– volume: 11
  start-page: 399
  year: 2004
  ident: 10.1016/j.amc.2013.08.084_b0165
  article-title: Sundman symmetries of nonlinear second-order and third-order ordinary differential equations
  publication-title: J. Nonlinear Math. Phys.
  doi: 10.2991/jnmp.2004.11.3.9
  contributor:
    fullname: Euler
– volume: 41
  start-page: 4166
  year: 1990
  ident: 10.1016/j.amc.2013.08.084_b0100
  article-title: Solutions of a generalized Emden equation and their physical significance
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.41.4166
  contributor:
    fullname: Dixon
– volume: 4
  start-page: 1730
  year: 1978
  ident: 10.1016/j.amc.2013.08.084_b0115
  article-title: On exactly soluble nonlinear ordinary differential equations of the Liénard type
  publication-title: J. Phys. Soc. Japan
  doi: 10.1143/JPSJ.44.1730
  contributor:
    fullname: Sawada
– ident: 10.1016/j.amc.2013.08.084_b0035
– volume: 1
  start-page: 71
  year: 1999
  ident: 10.1016/j.amc.2013.08.084_b0055
  article-title: Algebraic aspects of integrability for polynomial systems
  publication-title: Qual. Theory Dyn. Syst.
  doi: 10.1007/BF02969405
  contributor:
    fullname: Christopher
– volume: 30
  start-page: 7437
  year: 1997
  ident: 10.1016/j.amc.2013.08.084_b0095
  article-title: On the singularity analysis of ordinary differential equation invariant under time translation and rescaling
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/30/21/017
  contributor:
    fullname: Feix
– volume: 26
  start-page: 2510
  year: 1985
  ident: 10.1016/j.amc.2013.08.084_b0080
  article-title: First integrals for the modified Emden equation q¨+α(t)q̇+qn
  publication-title: J. Math. Phys.
  doi: 10.1063/1.526766
  contributor:
    fullname: Leach
– volume: 461
  start-page: 2451
  year: 2005
  ident: 10.1016/j.amc.2013.08.084_b0050
  article-title: On the complete integrability and linearization of certain second-order nonlinear ordinary differential equations
  publication-title: Proc. R. Soc. London A
  doi: 10.1098/rspa.2005.1465
  contributor:
    fullname: Chandrasekar
– volume: 36
  start-page: 33
  year: 1961
  ident: 10.1016/j.amc.2013.08.084_b0110
  article-title: A simple non-linear oscillation
  publication-title: J. London Math. Soc.
  doi: 10.1112/jlms/s1-36.1.33
  contributor:
    fullname: Smith
– volume: 70
  start-page: 947
  year: 2007
  ident: 10.1016/j.amc.2013.08.084_b0030
  article-title: Making sense of non-Hermitian Hamiltonians
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/70/6/R03
  contributor:
    fullname: Bender
– volume: 9
  start-page: 1976
  year: 1968
  ident: 10.1016/j.amc.2013.08.084_b0140
  article-title: Lewis, Class of exact invariants for classical and quantum timedependent harmonic oscillators
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1664532
  contributor:
    fullname: Jr
– year: 2001
  ident: 10.1016/j.amc.2013.08.084_b0025
  contributor:
    fullname: Pikovsky
– volume: 104
  start-page: 171
  year: 2000
  ident: 10.1016/j.amc.2013.08.084_b0155
  article-title: Chazy classes IXXI of third-order differential equations
  publication-title: Stud. Appl. Math.
  doi: 10.1111/1467-9590.00134
  contributor:
    fullname: Cosgrove
– volume: 462
  start-page: 1831
  year: 2006
  ident: 10.1016/j.amc.2013.08.084_b0175
  article-title: On the complete integrability and linearization of nonlinear ordinary differential equations. II. Third-order equations
  publication-title: Proc. R. Soc. London A
  doi: 10.1098/rspa.2005.1648
  contributor:
    fullname: Chandrasekar
– volume: 39
  start-page: L69
  year: 2006
  ident: 10.1016/j.amc.2013.08.084_b0105
  article-title: A unification in the theory of linearization of second-order nonlinear ordinary differential equations
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/39/3/L01
  contributor:
    fullname: Chandrasekar
– volume: 30
  start-page: 2788
  year: 1984
  ident: 10.1016/j.amc.2013.08.084_b0125
  article-title: Disappearance of chaos and integrability in an externally modulated nonlinear oscillator
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.30.2788
  contributor:
    fullname: Gonzalez
– year: 1984
  ident: 10.1016/j.amc.2013.08.084_b0020
  contributor:
    fullname: Kuramoto
– year: 2003
  ident: 10.1016/j.amc.2013.08.084_b0040
  contributor:
    fullname: Lakshmanan
– volume: 26
  start-page: 5017
  year: 1993
  ident: 10.1016/j.amc.2013.08.084_b0090
  article-title: The Painlevé test, hidden symmetries and the equation y¨+yẏ+ky3=0
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/26/19/030
  contributor:
    fullname: Lemmer
– volume: 34
  start-page: 317
  year: 1911
  ident: 10.1016/j.amc.2013.08.084_b0145
  article-title: Sur les équations différentielles du troisiéme ordre et d’ordre supérieur dont l’intégrale générale a ses points critiques fixes
  publication-title: Acta Math.
  doi: 10.1007/BF02393131
  contributor:
    fullname: Chazy
– ident: 10.1016/j.amc.2013.08.084_b0170
– volume: 47
  start-page: 023508
  year: 2006
  ident: 10.1016/j.amc.2013.08.084_b0060
  article-title: A simple and unified approach to identify integrable nonlinear oscillators and systems
  publication-title: J. Math. Phys.
  doi: 10.1063/1.2171520
  contributor:
    fullname: Chandrasekar
– volume: 12
  start-page: 931
  year: 1999
  ident: 10.1016/j.amc.2013.08.084_b0150
  article-title: Integrable relativistic models and the generalized Chazy equation
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/12/4/311
  contributor:
    fullname: Halburd
– year: 1956
  ident: 10.1016/j.amc.2013.08.084_b0065
  contributor:
    fullname: Ince
– volume: 8
  start-page: 241
  year: 1985
  ident: 10.1016/j.amc.2013.08.084_b0070
  article-title: The linear symmetries of a nonlinear differential equation
  publication-title: Quaestiones Math.
  doi: 10.1080/16073606.1985.9631915
  contributor:
    fullname: Mahomed
– volume: 9
  start-page: 282
  year: 2002
  ident: 10.1016/j.amc.2013.08.084_b0160
  article-title: Painlevé test and higher order differential equations
  publication-title: J. Nonlinear Math. Phys.
  doi: 10.2991/jnmp.2002.9.3.4
  contributor:
    fullname: Mugan
– year: 1989
  ident: 10.1016/j.amc.2013.08.084_b0045
  contributor:
    fullname: Bluman
– volume: 45
  start-page: 382002
  year: 2012
  ident: 10.1016/j.amc.2013.08.084_b0180
  article-title: Exact quantization of a PT-symmetric (reversible) Liénard-type nonlinear oscillator
  publication-title: J. Phys. A
  doi: 10.1088/1751-8113/45/38/382002
  contributor:
    fullname: Chithiika Ruby
SSID ssj0007614
Score 2.1125593
Snippet •We identified a class of integrable nonlinear complex ODEs.•Two types of nonlocal transformations which connect the nonlinear complex ODE with linear ODE are...
In this paper, we present a method to identify integrable complex nonlinear oscillator systems and construct their solutions. For this purpose, we introduce...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 593
SubjectTerms Complex nonlinear oscillators
Construction
Differential equations
Joints
Linearization
Mathematical analysis
Mathematical models
Nonlinearity
Nonlocal transformation
Oscillators
Transformations
Title A nonlocal connection between certain linear and nonlinear ordinary differential equations – Part II: Complex nonlinear oscillators
URI https://dx.doi.org/10.1016/j.amc.2013.08.084
https://search.proquest.com/docview/1513425560
Volume 224
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qe9GD-MT6KCt4EqJJZpMm3kpRWqXFg4K3ZbPZQKXW2gd4Ei_-Av-hv8SZTVJU0IPHDdlNmN39ZoaZ-YaxozBKfYA0dgKhE0coyByVad9RARjXTwCVFEV0e_2wcysu74K7CmuXtTCUVllgf47pFq2LJ6eFNE_HgwHV-MbEFwUUkIkDKiav2SBRldVa3atOfwHI6KnnZMwxpXm5UAY3bZqXeiAiQw8skWckflNPP4Daap-LNbZamI28lf_ZOquY0QZb6S04V6eb7K3F0ZW3uolrSl-xFQu8SMTiOo_9czIr1YSrUWpfz0fogdq6XF72S8F7P-TmKecBn_KP13d-jWLh3e4ZJwgZmuev01FyeJyocc8Wu704v2l3nKLJgqMB3JmD6hotCo96h4bouqXGVUkSeRkEWaqjyCQ6afrCNH2DhpcKUqMhQycNhFHoCYGGbVbF75kdxtHayHxjIs91jch0jFDQTGJfh64AHeuwzo5L2cpxzqUhyySze4kbIWkjJLXFjESdiVL68tuBkIj1f007LHdK4kWh6Icamcf5VKJpA4II19zd_y29x5ZplBci7rPqbDI3B2iRzJIGWzp58RrFufsE38Hh9Q
link.rule.ids 315,783,787,4511,24130,27938,27939,45599,45693
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5ED-pBfGJ9ruBJiKaZTZp4K0VptS0eFLwtm80GlFprH-BJvPgL_If-Emd2E1-gB495bBJmJzPfMDPfMLYfxVkAkCVeKHTqCQW5p3IdeCoE4wcpoJOijG6nGzWvxNl1eD3FGmUvDJVVFrbf2XRrrYszR4U0jwY3N9TjmxBfFFBCJgmpmXxGEH8WKvXh02edB8bpjoo5oSIvH8rUpi3yUndEY1gFS-MZi9-c0w8zbX3P6SJbKEAjr7vvWmJTpr_M5jsfjKujFfZS5xjIW8_ENRWv2H4FXpRhce0y_5xApRpy1c_s7e4I40_blcvLaSn41_e4eXAs4CP-9vzKL1AovNU65mRAeubx63KUGyoTje1ZZVenJ5eNpleMWPA0gD_20FkjnqjS5NAIA7fM-CpN42oOYZ7pODapTmuBMLXAIOxSYWY05BiigTAK4yDQsMam8X1mnXHEGnlgTFz1fSNynaAhqKVJoCNfgE50VGEHpWzlwDFpyLLE7FbiRkjaCElDMWNRYaKUvvymDhIt_V_L9sqdkvibUO5D9c39ZCQR2IAgujV_43-P3mWzzctOW7Zb3fNNNkdXXEviFpseDydmG7HJON2xuvcOBGTi1w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+nonlocal+connection+between+certain+linear+and+nonlinear+ordinary+differential+equations+a+Part+II%3A+Complex+nonlinear+oscillators&rft.jtitle=Applied+mathematics+and+computation&rft.au=Mohanasubha%2C+R&rft.au=Sheeba%2C+Jane&rft.au=Chandrasekar%2C+V+K&rft.au=Senthilvelan%2C+M&rft.date=2013-11-01&rft.issn=0096-3003&rft.volume=224&rft.spage=593&rft.epage=602&rft_id=info:doi/10.1016%2Fj.amc.2013.08.084&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon