A nonlocal connection between certain linear and nonlinear ordinary differential equations – Part II: Complex nonlinear oscillators
•We identified a class of integrable nonlinear complex ODEs.•Two types of nonlocal transformations which connect the nonlinear complex ODE with linear ODE are presented.•General solution of a class of nonlinear complex ODEs are given. In this paper, we present a method to identify integrable complex...
Saved in:
Published in | Applied mathematics and computation Vol. 224; pp. 593 - 602 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.11.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •We identified a class of integrable nonlinear complex ODEs.•Two types of nonlocal transformations which connect the nonlinear complex ODE with linear ODE are presented.•General solution of a class of nonlinear complex ODEs are given.
In this paper, we present a method to identify integrable complex nonlinear oscillator systems and construct their solutions. For this purpose, we introduce two types of nonlocal transformations which relate specific classes of nonlinear complex ordinary differential equations (ODEs) with complex linear ODEs, thereby proving the integrability of the former. We also show how to construct the solutions using the two types of nonlocal transformations with several physically interesting cases as examples. |
---|---|
AbstractList | •We identified a class of integrable nonlinear complex ODEs.•Two types of nonlocal transformations which connect the nonlinear complex ODE with linear ODE are presented.•General solution of a class of nonlinear complex ODEs are given.
In this paper, we present a method to identify integrable complex nonlinear oscillator systems and construct their solutions. For this purpose, we introduce two types of nonlocal transformations which relate specific classes of nonlinear complex ordinary differential equations (ODEs) with complex linear ODEs, thereby proving the integrability of the former. We also show how to construct the solutions using the two types of nonlocal transformations with several physically interesting cases as examples. In this paper, we present a method to identify integrable complex nonlinear oscillator systems and construct their solutions. For this purpose, we introduce two types of nonlocal transformations which relate specific classes of nonlinear complex ordinary differential equations (ODEs) with complex linear ODEs, thereby proving the integrability of the former. We also show how to construct the solutions using the two types of nonlocal transformations with several physically interesting cases as examples. |
Author | Chandrasekar, V.K. Mohanasubha, R. Lakshmanan, M. Senthilvelan, M. Sheeba, Jane H. |
Author_xml | – sequence: 1 givenname: R. surname: Mohanasubha fullname: Mohanasubha, R. – sequence: 2 givenname: Jane H. surname: Sheeba fullname: Sheeba, Jane H. – sequence: 3 givenname: V.K. surname: Chandrasekar fullname: Chandrasekar, V.K. – sequence: 4 givenname: M. surname: Senthilvelan fullname: Senthilvelan, M. email: velan@cnld.bdu.ac.in – sequence: 5 givenname: M. surname: Lakshmanan fullname: Lakshmanan, M. |
BookMark | eNp9UMtKAzEUDVLBtvoB7rJ0M_VmksxDV1J8FARd6DpkMncgZZrUZOpj58Yv8A_9ElPrwpVw4HLhnMM5Z0JGzjsk5JjBjAErTpczvTKzHBifQZUg9siYVSXPZCHqERkD1EXGAfgBmcS4BICyYGJMPi5ocuq90T013jk0g_WONji8IDpqMAzaOtpbhzpQ7dof-u7zobVOhzfa2q7DgG6wyQWfNnrrEenX-ye912Ggi8UZnfvVusfXv_JobN_rwYd4SPY73Uc8-r1T8nh1-TC_yW7vrhfzi9vMcA5DVkkupWB1Sl_UrGwRdNNUrOOya01VYWOaMhdY5ihyrmWLhnd5VXOBugDJDZ-Sk53vOvinDcZBrWw0mFI49JuomGRc5FIWkKhsRzXBxxiwU-tgV6mtYqC2k6ulSpOr7eQKqgSRNOc7DaYOzxaDShXRGWxtSMOq1tt_1N9D745i |
CitedBy_id | crossref_primary_10_1007_s12346_016_0187_y |
Cites_doi | 10.1103/PhysRevLett.18.510 10.1080/16073606.1989.9632170 10.1103/PhysRevE.72.066203 10.1088/0305-4470/39/31/006 10.1016/j.physleta.2012.04.058 10.1103/PhysRevLett.50.870 10.2991/jnmp.2004.11.3.9 10.1103/PhysRevA.41.4166 10.1143/JPSJ.44.1730 10.1007/BF02969405 10.1088/0305-4470/30/21/017 10.1063/1.526766 10.1098/rspa.2005.1465 10.1112/jlms/s1-36.1.33 10.1088/0034-4885/70/6/R03 10.1063/1.1664532 10.1111/1467-9590.00134 10.1098/rspa.2005.1648 10.1088/0305-4470/39/3/L01 10.1103/PhysRevA.30.2788 10.1088/0305-4470/26/19/030 10.1007/BF02393131 10.1063/1.2171520 10.1088/0951-7715/12/4/311 10.1080/16073606.1985.9631915 10.2991/jnmp.2002.9.3.4 10.1088/1751-8113/45/38/382002 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Inc. |
Copyright_xml | – notice: 2013 Elsevier Inc. |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/j.amc.2013.08.084 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1873-5649 |
EndPage | 602 |
ExternalDocumentID | 10_1016_j_amc_2013_08_084 S0096300313009521 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABAOU ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADGUI AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ RXW SBC SDF SDG SES SME SPC SPCBC SSW SSZ T5K TN5 WH7 X6Y XPP ZMT ~02 ~G- AAQXK AAXKI AAYXX ABEFU ADIYS ADMUD AFFNX AFJKZ AI. AKRWK ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HLZ HMJ HVGLF HZ~ R2- SEW TAE VH1 VOH WUQ 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c330t-853554190006917de0abb81f35fdc88ebcb724e72e423a5dec3f28934ea6053c3 |
IEDL.DBID | AIKHN |
ISSN | 0096-3003 |
IngestDate | Thu Oct 24 23:39:33 EDT 2024 Thu Sep 26 19:14:21 EDT 2024 Fri Feb 23 02:27:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Complex nonlinear oscillators Nonlocal transformation Linearization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c330t-853554190006917de0abb81f35fdc88ebcb724e72e423a5dec3f28934ea6053c3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1513425560 |
PQPubID | 23500 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1513425560 crossref_primary_10_1016_j_amc_2013_08_084 elsevier_sciencedirect_doi_10_1016_j_amc_2013_08_084 |
PublicationCentury | 2000 |
PublicationDate | 2013-11-01 |
PublicationDateYYYYMMDD | 2013-11-01 |
PublicationDate_xml | – month: 11 year: 2013 text: 2013-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Applied mathematics and computation |
PublicationYear | 2013 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Lemmer, Leach (b0090) 1993; 26 Lakshmanan, Rajasekar (b0040) 2003 Cosgrove (b0155) 2000; 104 Chandrasekar, Senthilvelan, Kundu, Lakshmanan (b0005) 2006; 39 Pikovsky, Rosenblum, Kurths (b0025) 2001 Chithiika Ruby, Senthilvelan, Lakshmanan (b0180) 2012; 45 Mahomed, Leach (b0075) 1989; 12 Ince (b0065) 1956 Chandrasekar, Senthilvelan, Lakshmanan (b0105) 2006; 39 Bender (b0030) 2007; 70 Mahomed, Leach (b0070) 1985; 8 Halburd (b0150) 1999; 12 C.M. Bender, D.W. Hook, S.P. Klevansky, Negative energy PT-symmetric Hamiltonians, arXiv Feix, Geronimi, Cairo, Leach, Lemmer, Bouquet (b0095) 1997; 30 Euler, Euler (b0165) 2004; 11 Bluman, Kumei (b0045) 1989 Dixon, Tuszynski (b0100) 1990; 41 Chazy (b0145) 1911; 34 Mugan, Jrad (b0160) 2002; 9 Leach (b0080) 1985; 26 Jr (b0135) 1967; 18 Smith (b0110) 1961; 36 M. Euler, N. Euler, P.G.L. Leach, The Riccati and Ermakov-Pinney hierarchies, Report No. 08, Institut Mittag-Leffler, Sweden, 2005/2006. Pinney (b0130) 1950; 1 Chandrasekar, Sheeba, Gladwin Pradeep, Divyasree, Lakshmanan (b0015) 2012; 376 Chandrasekar, Senthilvelan, Lakshmanan (b0050) 2005; 461 Kuramoto (b0020) 1984 Chandrasekar, Pandey, Senthilvelan, Lakshmanan (b0060) 2006; 47 Sawada, Osawa (b0115) 1978; 4 Christopher, Llibre (b0055) 1999; 1 Jr (b0140) 1968; 9 Gonzalez, Piro (b0125) 1984; 30 2012. Chandrasekar, Senthilvelan, Lakshmanan (b0175) 2006; 462 Gonzalez, Piro (b0120) 1983; 50 Chandrasekar, Senthilvelan, Lakshmanan (b0010) 2005; 72 Leach, Feix, Bouquet (b0085) 1988; 29 Gonzalez (10.1016/j.amc.2013.08.084_b0120) 1983; 50 Bluman (10.1016/j.amc.2013.08.084_b0045) 1989 Feix (10.1016/j.amc.2013.08.084_b0095) 1997; 30 Gonzalez (10.1016/j.amc.2013.08.084_b0125) 1984; 30 Ince (10.1016/j.amc.2013.08.084_b0065) 1956 Bender (10.1016/j.amc.2013.08.084_b0030) 2007; 70 Kuramoto (10.1016/j.amc.2013.08.084_b0020) 1984 Chandrasekar (10.1016/j.amc.2013.08.084_b0005) 2006; 39 Chandrasekar (10.1016/j.amc.2013.08.084_b0060) 2006; 47 Chandrasekar (10.1016/j.amc.2013.08.084_b0175) 2006; 462 Chandrasekar (10.1016/j.amc.2013.08.084_b0105) 2006; 39 10.1016/j.amc.2013.08.084_b0035 Smith (10.1016/j.amc.2013.08.084_b0110) 1961; 36 Chandrasekar (10.1016/j.amc.2013.08.084_b0050) 2005; 461 Chandrasekar (10.1016/j.amc.2013.08.084_b0010) 2005; 72 Leach (10.1016/j.amc.2013.08.084_b0080) 1985; 26 Dixon (10.1016/j.amc.2013.08.084_b0100) 1990; 41 Pikovsky (10.1016/j.amc.2013.08.084_b0025) 2001 Jr (10.1016/j.amc.2013.08.084_b0140) 1968; 9 Halburd (10.1016/j.amc.2013.08.084_b0150) 1999; 12 Lemmer (10.1016/j.amc.2013.08.084_b0090) 1993; 26 Leach (10.1016/j.amc.2013.08.084_b0085) 1988; 29 Lakshmanan (10.1016/j.amc.2013.08.084_b0040) 2003 Pinney (10.1016/j.amc.2013.08.084_b0130) 1950; 1 10.1016/j.amc.2013.08.084_b0170 Chithiika Ruby (10.1016/j.amc.2013.08.084_b0180) 2012; 45 Jr (10.1016/j.amc.2013.08.084_b0135) 1967; 18 Sawada (10.1016/j.amc.2013.08.084_b0115) 1978; 4 Mahomed (10.1016/j.amc.2013.08.084_b0075) 1989; 12 Christopher (10.1016/j.amc.2013.08.084_b0055) 1999; 1 Chandrasekar (10.1016/j.amc.2013.08.084_b0015) 2012; 376 Chazy (10.1016/j.amc.2013.08.084_b0145) 1911; 34 Euler (10.1016/j.amc.2013.08.084_b0165) 2004; 11 Cosgrove (10.1016/j.amc.2013.08.084_b0155) 2000; 104 Mahomed (10.1016/j.amc.2013.08.084_b0070) 1985; 8 Mugan (10.1016/j.amc.2013.08.084_b0160) 2002; 9 |
References_xml | – year: 1984 ident: b0020 article-title: Chemical Oscillations, Waves and Turbulence contributor: fullname: Kuramoto – volume: 12 start-page: 121 year: 1989 end-page: 139 ident: b0075 article-title: The Lie algebra sl publication-title: Quaestiones Math. contributor: fullname: Leach – year: 1956 ident: b0065 article-title: Ordinary Differential Equations contributor: fullname: Ince – volume: 11 start-page: 399 year: 2004 end-page: 421 ident: b0165 article-title: Sundman symmetries of nonlinear second-order and third-order ordinary differential equations publication-title: J. Nonlinear Math. Phys. contributor: fullname: Euler – year: 2003 ident: b0040 article-title: Nonlinear Dynamics contributor: fullname: Rajasekar – volume: 18 start-page: 510 year: 1967 end-page: 512 ident: b0135 article-title: Lewis, Classical and quantum Systems with time-dependent harmonic-oscillator-type Hamiltonians publication-title: Phys. Rev. Lett. contributor: fullname: Jr – volume: 39 start-page: 9743 year: 2006 end-page: 9754 ident: b0005 article-title: A nonlocal connection between certain linear and nonlinear differential equations/oscillators publication-title: J. Phys. A: Math. Gen. contributor: fullname: Lakshmanan – year: 2001 ident: b0025 article-title: Synchronization – A Universal Concept in Nonlinear Sciences contributor: fullname: Kurths – volume: 8 start-page: 241 year: 1985 end-page: 274 ident: b0070 article-title: The linear symmetries of a nonlinear differential equation publication-title: Quaestiones Math. contributor: fullname: Leach – volume: 461 start-page: 2451 year: 2005 end-page: 2477 ident: b0050 article-title: On the complete integrability and linearization of certain second-order nonlinear ordinary differential equations publication-title: Proc. R. Soc. London A contributor: fullname: Lakshmanan – volume: 50 start-page: 870 year: 1983 end-page: 872 ident: b0120 article-title: Chaos in a nonlinear driven oscillator with exact solution publication-title: Phys. Rev. Lett. contributor: fullname: Piro – volume: 1 start-page: 681 year: 1950 ident: b0130 article-title: The nonlinear differential equation publication-title: Proc. Am. Math. Soc. contributor: fullname: Pinney – volume: 26 start-page: 5017 year: 1993 end-page: 5024 ident: b0090 article-title: The Painlevé test, hidden symmetries and the equation publication-title: J. Phys. A: Math. Gen. contributor: fullname: Leach – volume: 462 start-page: 1831 year: 2006 end-page: 1852 ident: b0175 article-title: On the complete integrability and linearization of nonlinear ordinary differential equations. II. Third-order equations publication-title: Proc. R. Soc. London A contributor: fullname: Lakshmanan – volume: 36 start-page: 33 year: 1961 end-page: 34 ident: b0110 article-title: A simple non-linear oscillation publication-title: J. London Math. Soc. contributor: fullname: Smith – year: 1989 ident: b0045 article-title: Symmetries and Differential Equations contributor: fullname: Kumei – volume: 34 start-page: 317 year: 1911 end-page: 385 ident: b0145 article-title: Sur les équations différentielles du troisiéme ordre et d’ordre supérieur dont l’intégrale générale a ses points critiques fixes publication-title: Acta Math. contributor: fullname: Chazy – volume: 12 start-page: 931 year: 1999 end-page: 938 ident: b0150 article-title: Integrable relativistic models and the generalized Chazy equation publication-title: Nonlinearity contributor: fullname: Halburd – volume: 41 start-page: 4166 year: 1990 end-page: 4173 ident: b0100 article-title: Solutions of a generalized Emden equation and their physical significance publication-title: Phys. Rev. A contributor: fullname: Tuszynski – volume: 376 start-page: 2188 year: 2012 end-page: 2194 ident: b0015 article-title: A class of solvable coupled nonlinear oscillators with amplitude independent frequencies publication-title: Phys. Lett. A contributor: fullname: Lakshmanan – volume: 47 start-page: 023508 year: 2006 ident: b0060 article-title: A simple and unified approach to identify integrable nonlinear oscillators and systems publication-title: J. Math. Phys. contributor: fullname: Lakshmanan – volume: 4 start-page: 1730 year: 1978 end-page: 1732 ident: b0115 article-title: On exactly soluble nonlinear ordinary differential equations of the Liénard type publication-title: J. Phys. Soc. Japan contributor: fullname: Osawa – volume: 45 start-page: 382002 year: 2012 ident: b0180 article-title: Exact quantization of a PT-symmetric (reversible) Liénard-type nonlinear oscillator publication-title: J. Phys. A contributor: fullname: Lakshmanan – volume: 9 start-page: 1976 year: 1968 ident: b0140 article-title: Lewis, Class of exact invariants for classical and quantum timedependent harmonic oscillators publication-title: J. Math. Phys. contributor: fullname: Jr – volume: 104 start-page: 171 year: 2000 ident: b0155 article-title: Chazy classes IXXI of third-order differential equations publication-title: Stud. Appl. Math. contributor: fullname: Cosgrove – volume: 9 start-page: 282 year: 2002 end-page: 310 ident: b0160 article-title: Painlevé test and higher order differential equations publication-title: J. Nonlinear Math. Phys. contributor: fullname: Jrad – volume: 26 start-page: 2510 year: 1985 ident: b0080 article-title: First integrals for the modified Emden equation publication-title: J. Math. Phys. contributor: fullname: Leach – volume: 29 start-page: 2563 year: 1988 end-page: 2569 ident: b0085 article-title: Analysis and solution of a nonlinear second-order equation through rescaling and through a dynamical point of view publication-title: J. Phys. A: Math. Gen. contributor: fullname: Bouquet – volume: 39 start-page: L69 year: 2006 ident: b0105 article-title: A unification in the theory of linearization of second-order nonlinear ordinary differential equations publication-title: J. Phys. A: Math. Gen. contributor: fullname: Lakshmanan – volume: 72 start-page: 066203 year: 2005 ident: b0010 article-title: Unusual Liénard-type nonlinear oscillator publication-title: Phys. Rev. E contributor: fullname: Lakshmanan – volume: 70 start-page: 947 year: 2007 end-page: 1018 ident: b0030 article-title: Making sense of non-Hermitian Hamiltonians publication-title: Rep. Prog. Phys. contributor: fullname: Bender – volume: 30 start-page: 7437 year: 1997 end-page: 7461 ident: b0095 article-title: On the singularity analysis of ordinary differential equation invariant under time translation and rescaling publication-title: J. Phys. A: Math. Gen. contributor: fullname: Bouquet – volume: 1 start-page: 71 year: 1999 end-page: 95 ident: b0055 article-title: Algebraic aspects of integrability for polynomial systems publication-title: Qual. Theory Dyn. Syst. contributor: fullname: Llibre – volume: 30 start-page: 2788 year: 1984 end-page: 2790 ident: b0125 article-title: Disappearance of chaos and integrability in an externally modulated nonlinear oscillator publication-title: Phys. Rev. A contributor: fullname: Piro – volume: 1 start-page: 681 year: 1950 ident: 10.1016/j.amc.2013.08.084_b0130 article-title: The nonlinear differential equation y¨+p(x)y+cy-3 publication-title: Proc. Am. Math. Soc. contributor: fullname: Pinney – volume: 18 start-page: 510 year: 1967 ident: 10.1016/j.amc.2013.08.084_b0135 article-title: Lewis, Classical and quantum Systems with time-dependent harmonic-oscillator-type Hamiltonians publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.18.510 contributor: fullname: Jr – volume: 12 start-page: 121 year: 1989 ident: 10.1016/j.amc.2013.08.084_b0075 article-title: The Lie algebra sl(3,R) and linearization publication-title: Quaestiones Math. doi: 10.1080/16073606.1989.9632170 contributor: fullname: Mahomed – volume: 72 start-page: 066203 year: 2005 ident: 10.1016/j.amc.2013.08.084_b0010 article-title: Unusual Liénard-type nonlinear oscillator publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.72.066203 contributor: fullname: Chandrasekar – volume: 29 start-page: 2563 year: 1988 ident: 10.1016/j.amc.2013.08.084_b0085 article-title: Analysis and solution of a nonlinear second-order equation through rescaling and through a dynamical point of view publication-title: J. Phys. A: Math. Gen. contributor: fullname: Leach – volume: 39 start-page: 9743 year: 2006 ident: 10.1016/j.amc.2013.08.084_b0005 article-title: A nonlocal connection between certain linear and nonlinear differential equations/oscillators publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/39/31/006 contributor: fullname: Chandrasekar – volume: 376 start-page: 2188 year: 2012 ident: 10.1016/j.amc.2013.08.084_b0015 article-title: A class of solvable coupled nonlinear oscillators with amplitude independent frequencies publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2012.04.058 contributor: fullname: Chandrasekar – volume: 50 start-page: 870 year: 1983 ident: 10.1016/j.amc.2013.08.084_b0120 article-title: Chaos in a nonlinear driven oscillator with exact solution publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.50.870 contributor: fullname: Gonzalez – volume: 11 start-page: 399 year: 2004 ident: 10.1016/j.amc.2013.08.084_b0165 article-title: Sundman symmetries of nonlinear second-order and third-order ordinary differential equations publication-title: J. Nonlinear Math. Phys. doi: 10.2991/jnmp.2004.11.3.9 contributor: fullname: Euler – volume: 41 start-page: 4166 year: 1990 ident: 10.1016/j.amc.2013.08.084_b0100 article-title: Solutions of a generalized Emden equation and their physical significance publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.41.4166 contributor: fullname: Dixon – volume: 4 start-page: 1730 year: 1978 ident: 10.1016/j.amc.2013.08.084_b0115 article-title: On exactly soluble nonlinear ordinary differential equations of the Liénard type publication-title: J. Phys. Soc. Japan doi: 10.1143/JPSJ.44.1730 contributor: fullname: Sawada – ident: 10.1016/j.amc.2013.08.084_b0035 – volume: 1 start-page: 71 year: 1999 ident: 10.1016/j.amc.2013.08.084_b0055 article-title: Algebraic aspects of integrability for polynomial systems publication-title: Qual. Theory Dyn. Syst. doi: 10.1007/BF02969405 contributor: fullname: Christopher – volume: 30 start-page: 7437 year: 1997 ident: 10.1016/j.amc.2013.08.084_b0095 article-title: On the singularity analysis of ordinary differential equation invariant under time translation and rescaling publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/30/21/017 contributor: fullname: Feix – volume: 26 start-page: 2510 year: 1985 ident: 10.1016/j.amc.2013.08.084_b0080 article-title: First integrals for the modified Emden equation q¨+α(t)q̇+qn publication-title: J. Math. Phys. doi: 10.1063/1.526766 contributor: fullname: Leach – volume: 461 start-page: 2451 year: 2005 ident: 10.1016/j.amc.2013.08.084_b0050 article-title: On the complete integrability and linearization of certain second-order nonlinear ordinary differential equations publication-title: Proc. R. Soc. London A doi: 10.1098/rspa.2005.1465 contributor: fullname: Chandrasekar – volume: 36 start-page: 33 year: 1961 ident: 10.1016/j.amc.2013.08.084_b0110 article-title: A simple non-linear oscillation publication-title: J. London Math. Soc. doi: 10.1112/jlms/s1-36.1.33 contributor: fullname: Smith – volume: 70 start-page: 947 year: 2007 ident: 10.1016/j.amc.2013.08.084_b0030 article-title: Making sense of non-Hermitian Hamiltonians publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/70/6/R03 contributor: fullname: Bender – volume: 9 start-page: 1976 year: 1968 ident: 10.1016/j.amc.2013.08.084_b0140 article-title: Lewis, Class of exact invariants for classical and quantum timedependent harmonic oscillators publication-title: J. Math. Phys. doi: 10.1063/1.1664532 contributor: fullname: Jr – year: 2001 ident: 10.1016/j.amc.2013.08.084_b0025 contributor: fullname: Pikovsky – volume: 104 start-page: 171 year: 2000 ident: 10.1016/j.amc.2013.08.084_b0155 article-title: Chazy classes IXXI of third-order differential equations publication-title: Stud. Appl. Math. doi: 10.1111/1467-9590.00134 contributor: fullname: Cosgrove – volume: 462 start-page: 1831 year: 2006 ident: 10.1016/j.amc.2013.08.084_b0175 article-title: On the complete integrability and linearization of nonlinear ordinary differential equations. II. Third-order equations publication-title: Proc. R. Soc. London A doi: 10.1098/rspa.2005.1648 contributor: fullname: Chandrasekar – volume: 39 start-page: L69 year: 2006 ident: 10.1016/j.amc.2013.08.084_b0105 article-title: A unification in the theory of linearization of second-order nonlinear ordinary differential equations publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/39/3/L01 contributor: fullname: Chandrasekar – volume: 30 start-page: 2788 year: 1984 ident: 10.1016/j.amc.2013.08.084_b0125 article-title: Disappearance of chaos and integrability in an externally modulated nonlinear oscillator publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.30.2788 contributor: fullname: Gonzalez – year: 1984 ident: 10.1016/j.amc.2013.08.084_b0020 contributor: fullname: Kuramoto – year: 2003 ident: 10.1016/j.amc.2013.08.084_b0040 contributor: fullname: Lakshmanan – volume: 26 start-page: 5017 year: 1993 ident: 10.1016/j.amc.2013.08.084_b0090 article-title: The Painlevé test, hidden symmetries and the equation y¨+yẏ+ky3=0 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/26/19/030 contributor: fullname: Lemmer – volume: 34 start-page: 317 year: 1911 ident: 10.1016/j.amc.2013.08.084_b0145 article-title: Sur les équations différentielles du troisiéme ordre et d’ordre supérieur dont l’intégrale générale a ses points critiques fixes publication-title: Acta Math. doi: 10.1007/BF02393131 contributor: fullname: Chazy – ident: 10.1016/j.amc.2013.08.084_b0170 – volume: 47 start-page: 023508 year: 2006 ident: 10.1016/j.amc.2013.08.084_b0060 article-title: A simple and unified approach to identify integrable nonlinear oscillators and systems publication-title: J. Math. Phys. doi: 10.1063/1.2171520 contributor: fullname: Chandrasekar – volume: 12 start-page: 931 year: 1999 ident: 10.1016/j.amc.2013.08.084_b0150 article-title: Integrable relativistic models and the generalized Chazy equation publication-title: Nonlinearity doi: 10.1088/0951-7715/12/4/311 contributor: fullname: Halburd – year: 1956 ident: 10.1016/j.amc.2013.08.084_b0065 contributor: fullname: Ince – volume: 8 start-page: 241 year: 1985 ident: 10.1016/j.amc.2013.08.084_b0070 article-title: The linear symmetries of a nonlinear differential equation publication-title: Quaestiones Math. doi: 10.1080/16073606.1985.9631915 contributor: fullname: Mahomed – volume: 9 start-page: 282 year: 2002 ident: 10.1016/j.amc.2013.08.084_b0160 article-title: Painlevé test and higher order differential equations publication-title: J. Nonlinear Math. Phys. doi: 10.2991/jnmp.2002.9.3.4 contributor: fullname: Mugan – year: 1989 ident: 10.1016/j.amc.2013.08.084_b0045 contributor: fullname: Bluman – volume: 45 start-page: 382002 year: 2012 ident: 10.1016/j.amc.2013.08.084_b0180 article-title: Exact quantization of a PT-symmetric (reversible) Liénard-type nonlinear oscillator publication-title: J. Phys. A doi: 10.1088/1751-8113/45/38/382002 contributor: fullname: Chithiika Ruby |
SSID | ssj0007614 |
Score | 2.1125593 |
Snippet | •We identified a class of integrable nonlinear complex ODEs.•Two types of nonlocal transformations which connect the nonlinear complex ODE with linear ODE are... In this paper, we present a method to identify integrable complex nonlinear oscillator systems and construct their solutions. For this purpose, we introduce... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 593 |
SubjectTerms | Complex nonlinear oscillators Construction Differential equations Joints Linearization Mathematical analysis Mathematical models Nonlinearity Nonlocal transformation Oscillators Transformations |
Title | A nonlocal connection between certain linear and nonlinear ordinary differential equations – Part II: Complex nonlinear oscillators |
URI | https://dx.doi.org/10.1016/j.amc.2013.08.084 https://search.proquest.com/docview/1513425560 |
Volume | 224 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qe9GD-MT6KCt4EqJJZpMm3kpRWqXFg4K3ZbPZQKXW2gd4Ei_-Av-hv8SZTVJU0IPHDdlNmN39ZoaZ-YaxozBKfYA0dgKhE0coyByVad9RARjXTwCVFEV0e_2wcysu74K7CmuXtTCUVllgf47pFq2LJ6eFNE_HgwHV-MbEFwUUkIkDKiav2SBRldVa3atOfwHI6KnnZMwxpXm5UAY3bZqXeiAiQw8skWckflNPP4Daap-LNbZamI28lf_ZOquY0QZb6S04V6eb7K3F0ZW3uolrSl-xFQu8SMTiOo_9czIr1YSrUWpfz0fogdq6XF72S8F7P-TmKecBn_KP13d-jWLh3e4ZJwgZmuev01FyeJyocc8Wu704v2l3nKLJgqMB3JmD6hotCo96h4bouqXGVUkSeRkEWaqjyCQ6afrCNH2DhpcKUqMhQycNhFHoCYGGbVbF75kdxtHayHxjIs91jch0jFDQTGJfh64AHeuwzo5L2cpxzqUhyySze4kbIWkjJLXFjESdiVL68tuBkIj1f007LHdK4kWh6Icamcf5VKJpA4II19zd_y29x5ZplBci7rPqbDI3B2iRzJIGWzp58RrFufsE38Hh9Q |
link.rule.ids | 315,783,787,4511,24130,27938,27939,45599,45693 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5ED-pBfGJ9ruBJiKaZTZp4K0VptS0eFLwtm80GlFprH-BJvPgL_If-Emd2E1-gB495bBJmJzPfMDPfMLYfxVkAkCVeKHTqCQW5p3IdeCoE4wcpoJOijG6nGzWvxNl1eD3FGmUvDJVVFrbf2XRrrYszR4U0jwY3N9TjmxBfFFBCJgmpmXxGEH8WKvXh02edB8bpjoo5oSIvH8rUpi3yUndEY1gFS-MZi9-c0w8zbX3P6SJbKEAjr7vvWmJTpr_M5jsfjKujFfZS5xjIW8_ENRWv2H4FXpRhce0y_5xApRpy1c_s7e4I40_blcvLaSn41_e4eXAs4CP-9vzKL1AovNU65mRAeubx63KUGyoTje1ZZVenJ5eNpleMWPA0gD_20FkjnqjS5NAIA7fM-CpN42oOYZ7pODapTmuBMLXAIOxSYWY05BiigTAK4yDQsMam8X1mnXHEGnlgTFz1fSNynaAhqKVJoCNfgE50VGEHpWzlwDFpyLLE7FbiRkjaCElDMWNRYaKUvvymDhIt_V_L9sqdkvibUO5D9c39ZCQR2IAgujV_43-P3mWzzctOW7Zb3fNNNkdXXEviFpseDydmG7HJON2xuvcOBGTi1w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+nonlocal+connection+between+certain+linear+and+nonlinear+ordinary+differential+equations+a+Part+II%3A+Complex+nonlinear+oscillators&rft.jtitle=Applied+mathematics+and+computation&rft.au=Mohanasubha%2C+R&rft.au=Sheeba%2C+Jane&rft.au=Chandrasekar%2C+V+K&rft.au=Senthilvelan%2C+M&rft.date=2013-11-01&rft.issn=0096-3003&rft.volume=224&rft.spage=593&rft.epage=602&rft_id=info:doi/10.1016%2Fj.amc.2013.08.084&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon |